Using UPPAAL to Verify Recovery in a Fault-tolerant Mechanism
Providing Persistent State at the Edge

Zeinab Bakhshi, Guillermo Rodriguez-Navas, Hans Hansson
Milardalen University, Sweden, {zeinab.bakhshi, guillermo.rodriguez-navas, hans.hansson} @mdh.se

Abstract— In our previous work we proposed a fault-tolerant
persistent storage for container-based fog architecture. We
leveraged the use of containerization to provide storage as a
containerized application working along with other containers.
As a fault-tolerance mechanism we introduced a replicated data
structure and to solve consistency issue between the replicas
distributed in the cluster of nodes, we used the RAFT consensus
protocol.

In this paper, we verify our proposed solution using the
UPPAAL model checker. We explain how our solution is
modeled in UPPAAL and present a formal verification of key
properties related to persistent storage and data consistency
between nodes.

I. INTRODUCTION

Containerization and container orchestration solutions ini-
tially devised for cloud computing are also useful for imple-
mentation of the fog layer, as they provide good portability,
scalability, and automatic application deployment, including
migration between the fog and the cloud layer [1]. Container-
ization also saves much resources at resource constrained fog
platforms due to its lightweight characteristic.

Cloud-native container orchestration solutions, like Kuber-
netes, also provide automatic healing for its managed con-
tainers, that is, restarting the failed containers and replacing
or rescheduling them when they or their hosts fail [2]. In
addition to these recovery actions that naturally improve the
availability of the containerized applications deployed with
Kubernetes, redundancy mechanisms implemented by repli-
cating applications remain the most important Kubernetes
feature to improve application availability [3].

Replication of stateless applications can be performed
easily as they can be deployed as interchangeable instances.
However, the same is not applicable for stateful applications.
There are two important issues when it comes to deploying
stateful applications using Kubernetes; (1) the state of the
failed container is not restored, and (2) the behaviour of a
stateful applications is dependent on its current state and
therefore, redeploying a new instance without providing the
state of the instance it is replacing could lead to unpre-
dictable, potentially erroneous, behaviour. Hence, a synchro-
nization mechanism is required to coordinate the different
replicas when redeploying stateful applications.

In a previous publication [4], we proposed a number of
strategies to overcome volatile storage issues and achieve
data consistency for stateful applications in container-based
fog applications. Our solution is based on three principles:

978-1-7281-2989-1/21/$31.00 ©2021 IEEE

(1) Dissociation of data storage from application processes
by introducing separate storage containers. This reduces the
load of data synchronization from applications by off-loading
it to containerized storage applications; (2) Using a replicated
data structure to increase data availability and to provide
fault-tolerant persistent storage in each node of the cluster;
and (3) Adding a consistency protocol to keep the replicated
data structures that are distributed in the cluster of nodes
synchronized.

In this work we present a formal model of our solution,
using the UPPAAL [5] model checker, and formally verify
the fault-tolerance and data consistency mechanisms of our
solution. The rest of the paper is organized as follows.
We describe the design logic of our system in Section
II. We explain the limitations of the existing solutions in
Section II-C. We continue with a short description of our
proposed solution in Section III and then we continue to the
verification of our solution in Section IV and review related
work in V. We conclude our work in Section VI.

II. PRELIMINARIES

In this section we explain the difference between stateful
and stateless applications, the application model we consider
in this work, and the temporal aspect of our solution.

A. Stateful vs. Stateless Applications

Figure 1 illustrates the difference between stateless and
stateful applications, and the consequence of their failures.
As shown in Figure 1 (a) and (b), stateless applications
are interchangeable, as for any given input the outputs are
identical thus can easily be replaced. However, in stateful
applications illustrated in Figure 1 (c) and (d), applications
are not interchangeable. They are performed with the context
of previous state. In this case failure of one application results
in data loss (due to volatile storage) and data inconsistency.
As shown in Figure 1 (d) failure of the Robot Application,
results in losing state and as well as an undesired output of
the Application although it is recovered and redeployed.

We now briefly analyze how this situation is handled in
Kubernetes. For stateful applications, Kubernetes provides
two solutions: it is possible to deploy stateful applications
with “Deployment Controllers” or with “StatefulSet Con-
trollers”. In both cases, the state information is stored on
a persistent storage (PV) outside of Kubernetes. However,
using PV for both these stateful deployments cannot solve
data access and availability issues for distributes systems
when an application or a node fails.

Input Output : Input Output
| state:=ini
! . Robot App
in1 : inA
outl ! f(inA, state)
in2 Web App —_— inB state:=new_state | ——p
<y | .
out2 | f(in B, state)
| e
| state:=new_state
Y,

t : "t
e e Dl __ o o L.
® '@

Input Output | Input Output
state:=ini
I —_—
in1 ' inA Robot A
Web A X I PP f(inA, state)
PP | out1 X state:=new_state| —— 3
>§ Failure : >§ Failure
| 4{State loss
in2 , | inB ,
Web App | out2 ' Robot App | f(inB, ini)
— > —>
v .

t

- initial_state : ini

Fig. 1. Stateful versus Stateless Applications.

After a node failure, the connection to PV is lost and the
only way to access it to have the failed node back to the
network,and thus none of these solutions can provide state
recovery. With regards to application failures, the implemen-
tation with a Deployment controller causes data loss when
a pod (virtual host of a container) fails and the StatefulSet
Controller suffers from longer restart time when a container
fails [2], [3].

B. Design rationale

In our solution, we consider the use of Kubernetes deploy-
ment with an integration of storage containers and secondary
labels (key identifier for objects in Kubernetes) together with
a consensus protocol called RAFT [6]. In this way, the slow
restart issue of the application in StatefulSet deployment is
solved by instead using a Deployment controller, which is
known to restart the application in the shortest possible time
(2], [3].

To guarantee data availability and consistency between
distributed nodes we rely on the RAFT consensus proto-
col [7], particularly because of its good fault tolerance mech-
anisms and because the service is guaranteed to be provided
at the rate of the so-called leader heartbeat, as formally and
experimentally proven [8], [9]. In principle, other consensus
protocols could also be used with our scheme, but that has
not been investigated yet.

Figure 2 depicts a high level block diagram of how a
stateful application works in our solution. We consider that
after writing the output of execution on the container’s
volume, the state of the application is also written to a local
storage space named “Replicated Data Structure”.

Each application has a set of specifications described in
our previous paper [4] including id, run time, etc. In addition
to those specifications, each application includes a set of
tasks, defined as T' = {tl,tg,tg, ...,tn}. Each of the tasks
can be executed once or repeatedly. We assume that tasks de-
fined in the tasks set of an application must be executed based
on pre-defined orders. The detail of interaction between the

Input

Output
—>

Stateful Application

State SW

B
)
A
=
Q
4
)
a
o
QU
o
by
w
&
=
c
()
a
c
=
)

Fig. 2. Application Execution Model.

application and the storage subsystem is explained in Section
III. We use the terms App and Application alternatively to
refer to a containerized application in this work.

We here summarize the properties of underlying infras-
tructure, divided into properties that are part of the validation
of the modeling, or Model Properties (MP), and properties
that are verification of the fault-tolerance behaviour of de-
signed model, which we will call Fault-Tolerance Properties
(FTP).

MP1 (Volatile storage): Whenever a containerized appli-
cation is deployed or restarted, the corresponding volume is
empty.

FTP1 (Application failure recovery): Whenever a con-
tainerized application fails it is automatically restarted.

FTP2 (Node failure recovery): Whenever a node hosting
containerized application fails, all the application running on
it are restarted on another node.

C. Comparison with existing solutions

In our previous work [4], we described the problem of
persistent storage for stateful applications at the fog layer.
We also mentioned that there are some solutions in the
literature for the described issue of storing states for stateful
applications at the fog layer. However, the existing solutions
have some limitations to fit in a fog infrastructure:

1) They are all implemented using cloud storage and our
solution aims to provide a fault-tolerant storage system
at the fog level [2], [3].

2) Solutions proposed for data consistency between dif-
ferent nodes and applications inside nodes require at
least two replicas of each application and all the load
of execution is always on one container. (All other
containers in the cluster will remain standby, apart from
forwarding the task and result to/from the leader [9].)

3) Node failure in a cluster has not been investigated.

4) Data consistency between pods (virtual container hosts
in Kubernetes) and containers of different kinds has not
been investigated.

Our approach to address the volatile storage issue in

container-based architectures in fog platforms is using the
advantages of containerization: scalability, self-healing and

[E)— Volume (Volatile local storage in the App)

(2L T—> Replicated data structure (A directory to locally store data of Apps)
File (Portion of replicated data structure allocated to a specific App)

(sg—> Storage Container

Send 1,24
Send 3+
((Send 1,2 \
[(Send 3,4 S]I
App3 @ App4 ﬂ SC Leader
l l))
Replicated Replicated Replicated
DataStructure[1 |2|3|4‘ |n] DataStructure[1 |2|3|4| et ln] DataStructure[1|2|3|4| ‘n]
Node 1 Node 2 Node 3
Fig. 3. Proposed Storage Container Schema

portability [4]. In this solution, the use of storage containers
(SC) provides suitable mechanisms for:

(1) Outsourcing data storing and data retrieving upon
failure to containerized storage mechanisms thereby reduc-
ing the application load; (2) Storing data/states of stateful
application (execution) locally inside each node; (3) Toler-
ating failures at two levels, application (software), and node
failures (Software and Hardware); and (4) Achieving data
consistency between nodes and applications inside nodes.

III. PROPOSED SOLUTION

Figure 3 is an illustration of the fog nodes, including the
applications, SCs and replicated data structure.

Each instance of a containerized application creates a
state and updates it after each execution. First, the state is
stored locally in the application container volume and then
it is duplicated to be stored in the replicated data structure.
The replicated data structure is the local storage space or
directory that is created by the SC. Each application has a
specific space (file) in the replicated data structure directory,
with write access to their own file and read access to other
applications’ file.

A data exchange mechanism is needed to provide ex-
change of data between different replicated data structures
in a cluster. One possible solution is to use the same mech-
anism that orchestration solutions provide for data exchange
between volumes. However, in this case, when a node fails,
the replicated data structure on the failed node will be
inaccessible. The applications previously working on the
failed node can be restarted on another available node in the
cluster, but, the replicated data structure newly created on the
new node is empty. Therefore, the applications restarted on
another node loses access to their previous states. This also
causes data inconsistency between different applications and
different nodes in a cluster. Data consistency in our work is
defined as the operation of updating the latest value of states
uniformly as the states change in application execution and
is transferred through the network.

Each SC on each node is responsible to participate in data
synchronization to achieve consensus and data consistency

in the cluster using the RAFT protocol. SC reads the states
of all applications located on the same node as the SC, and
sends them to the SC which is labeled as the "Leader”, which
can be located in a different node. The SC which is the leader
works as the RAFT leader as described in our previous work
[4] and the RAFT paper [6]. The SC leader receives states
from different SCs (followers) distributed over the nodes in
the cluster and then it broadcasts the states to other SCs to
make sure all the SCs have the same states.

When an SC receives a state (external state) from the
leader, it will write the state to its instance of the replicated
data structure, so the application working on the same node
can directly read it from the replicated data structure.

When a SC is deployed in a node (either for the first
time or if it is restarted due to a failure) it first gathers
the states from the applications inside the same node that
is hosting the SC. If there is no states in the local replicated
data structure on the same node, the SC will contact the
leader to synchronize all the states.

We rely on the RAFT consensus mechanism implemented
in each SC to ensure that: (1) in case of a node failure,
data is available to the applications, and (2) the distributed
replicated data structures are consistent with each other.

These features derived from our novel design are summa-
rized in the following properties:

MP2 (Node failure consequences): when a node fails,
the corresponding replicated data structure crashes and its
content is lost.

MP3 (Data transfer to/from leader): there is a commu-
nication channel between the SC and the leader to send and
receive data to achieve consistency (CP1).

FTP3 (Data availability after application failure): when
a containerized application restarts after application failure,
the last data committed to the replicated data structure is
available for access.

FTP4 (Data availability after node failure): when a
containerized application restarts after node failure, either
the last data committed to the replicated data structure or
the previous one is available to access. We consider cases in
which a node fails before SC sends committed data to the

SC leader.

CP1 (Data consistency in distributed replicated data
structure): data stored in the replicated data structures are
eventually equal.

IV. VERIFICATION AND ANALYSIS OF THE PROPOSED
SOLUTION

To visualize, analyze, validate, and formally prove that the
proposed solution works as explained, we use UPPAAL to
model our solution and verify the properties that we define
later. (The UPPAAL file is uploaded in a github repository)’.

A. Scopes of the verification

This subsection explains the functions/modules/parameters
that we consider in our modeling as in-scope and what we
did not consider as out of scope.

In-scope:

« Functional testing of the application and storage con-
tainers and their relations.

Application and storage container failures and the ef-
fects of these failures on the replicated data structures
values

« Node failure and its effect on accessing replicated data
structure

Data consistency between distributed replicas of repli-
cated data structures

Out of scope:
« Timing effects and probable delays of application, stor-
age container restart up on application and node failure
o Scalability of the system is not tested and analyzed (the
effect of adding multiple nodes, SCs, etc.)
« Cost in terms of energy, replication of application, etc.

B. Overview of the application functionality

The main functionality of an application in failure free
conditions is to (1) execute the defined tasks and (2) save
data to its volume.

In addition to task execution, an Application in our pro-
posed solution must: (1) write its state to the replicated data
structure whenever there is a change on its state (this must
occur after saving the state in the volume), and (2) fetch the
required states from the replicated data structure whenever
an App requires to read external states.

The pseudocode of the application functionality is shown
in Algorithm 1.

Algorithm 1. Application Functionality Pseudocode

1

> T={t_-1,t-2,..,t-n}

3 id := App-id

4 //Fetch internal_state

sinternal_state:=rep_data_struct[id];
6 While Running Tasks ()

{

s for (t=0; t<=n-1; t++){

9 Run t()

10 internal_state :=new_internal_state
11 //Commit self_state

Uhttps://github.com/ZeinabBa/UPPAAL

12 rep-data_struct[id] := internal_state;

13}
14 if (read_external (true)){
15 // Fetch external_state

16 for (j=0; j<=num_ext_apps—1; j++){

17 external_state[j]:=rep-data_struct[num_apps+j]
s} else{}

19}

The variables in Algorithm 1, are explained next. Each
application in the cluster has an identifier number called
id (this is the same identifier number in the application
specification explained in [4]). Each application has a set
of tasks to execute. After execution of each of the tasks, the
application writes its state in the volume and in the replicated
data structure, respectively.

When an internal_state is changed in the next iter-
ation of task execution, the updated “internal_state” is called
new_internal_state. In this algorithm there are three
variables, namely internal_state, external_state
and rep_data_struct that are all used for stor-
ing state variables of applications. The variable named
internal_state contains the state variable of the cor-
responding application. The applications residing in other
nodes or external Apps do not have write access to the
internal_state of other applications.

The external_wvalue contains the state variable of
applications that are working on any other node(s) in the
cluster. We further explain the interactions between different
entities in the cluster to clarify how data is written in this
variable.

The array rep_data_struct refers to the replicated
data structure of each node and it contains both internal
and external state variables of all the applications. Simply
put, rep_data_struct is a concatenation of all the
internal_state and the external_state array.

Depending on the number of internal Apps and the num-
ber of external Apps the length of the array forming the
replicated data structure will vary. We use two integers,
num_apps and num_ext_apps to show the number of
internal and external applications in our system respectively.

C. Overview of the storage container functionality

The Storage Container (SC) is responsible to (1) provide
data storage, and (2) data consistency.

It is the responsibility of a SC to create the replicated data
structure on each node right after the SC is deployed on the
node. This is a one time task to be performed when the SC
is deployed for the first time on a new node.

Each SC on each node is responsible to participate in data
synchronization to achieve consensus and data consistency
in the cluster, using the RAFT protocol.

We assume that all SCs in the cluster send the internal
state(s) to the SC leader whenever there is a change in any
of the internal states (states of the applications running on
the same node). It is the role of SC leader to broadcast the
data received from a SC to all other SCs.

The synchronization process for each SC has two main
procedures: (a) to read (fetch) internal states from the repli-
cated data structure, in case there is a change in the value

of any internal states, since SC must send these data to the
SC leader, and (2) to receive external states from the SC
leader and commit them to the replicated data structure so
that internal applications can fetch and read them locally.

Algorithm 2. Storage Container Functionality Pseudocode
1

2if (rep-data_struct.empty())

3 rep._data_struct[num_apps+nume_ext_apps] = {};
4 Full_synchronize (rep_-data_struct){

5 rep-data_struct:=1_rep_-data_struct_log;

6 telse{

7 for (id=0; id<=num_apps-—1; id++){

8 rep-data_struct[id] :=internal_state [id]

9} for (j=0; j<=num_ext_apps—1; j++){

10 rep-data_struct [num_apps+j]:=external_state[]
1}

n}

12 While SC_working (true)

134

14 for (id=0; id<=num_apps—1; id++){

15 if (rep-data_struct[id]=!1_rep_-data_struct_log/[id
DA

16 // send update to leader by appending the log

17 l_-rep-data_struct_-log[id]:=rep-data_struct[id]

18

19

20 }for (j=0; j<=num_ext_apps—1; j++){

a if (l_rep_data_struct[j]=!rep_data_struct[j]){

2 //update external state

23 rep-data_struct[j]:=1_rep_data_struct[j]
%}

5 }

Algorithm 2 is the pseudocode of the SC functionality.
When a SC is deployed on a node, it first checks if a
replicated data structure already exists on the node and
whether the replicated data structure is empty or not. In case
the replicated data structure does not exist on the node, SC
will create it and then by following the leader the SC will
read all the states from the leading replicated data structure
(1_rep_data_struct). Submitting data to leader and
replicating data from the leader in the algorithm done through
the replicated logs [6]. The update of logs is implemented
in each of leader’s heartbeat. The consensus log is shown as
1_rep_data_struct_log in this pseudocode.

Reading all the states (internal and external) from the
leader is called a full synchronization and it happens even
if the replicated data structure already exists on a node but it
is empty. Whenever the replicated data structure is not empty,
SC first fetches the latest internal states from the replicated
data structure and then reads the external states from the
leading replicated data structure by following the leader.

In this work we consider that applications are clients to
the RAFT network, the SCs are (1) the interfaces between
the SC leader in the RAFT and the clients which are
the applications; (2) replicas of the leader to ensure data
consistency despite failures in the system.

D. Overview of the Leader Storage Container functionality

We described earlier that one of the SCs in the cluster
must be a leader. According to RAFT, a leader is responsible
to process the requests from clients and send the output of

update_SC_to_L7?

update_L_to_SCl!

external_sync_increase()

Fig. 4. Leader Storage Container Automaton

processing the request to all other members in the RAFT
network. In case a leader fails other members of the RAFT
consensus protocol will become leader candidates and the
next leader will be selected based on the election and the
votes that members give to the candidates. The election is
limited in time, so that if a response from a candidate is not
received in time then it will be excluded from the election.
Based on this, we can assume that a RAFT network will
always have a leader. Figure 4 shows the SC leader automa-
ton in UPPAAL. This automaton has only one state with two
synchronization channels and an update edge that whenever
it is activated the value of external(s) Apps will be increased.
The synchronization channels are the communications to the
Send_Receiv_state_var state in the SC automaton.

Sending internal states

\wrile : fetch /
\fetch : commit /
SC(a) 1
SC (Leader) \ : /
sC(b) \\ ' /
SC(0 : /

Fig. 5. RAFT and SCs Interactions

Receiving external states

Application(1)

Replicated Data Structure

Figure 5 illustrates sending internal states and receiving
external states between SCs, where arrows without label
represent send actions. To make the data transaction clearer,
we include an application and the replicated data structure
as well.

E. Adding Application and Node Failure

The main aim of our modeling is to evaluate the behavior
of the system in the presence of application and node failures,
knowing that SCs are also mortal and vulnerable to failure.
Therefore, we need to add two types of failure to our model:
application failure and node failure. By adding these failures
to our model we want to investigate if using replicated data
structure together with SC and RAFT can provide our system
with fault-tolerant persistent storage and data consistency. An
application failure represents the failure of a container, and
therefore it can be either a failure of an application container
or a failure of a SC.

To add application failure to the model, we add an
automaton that activates application and SC failures. Figure 7

@ recovery[Fid]?

lpp_execution Volume_{urite

App_deployment fetch_internally()

is_internal_state_empty()== false

internal_change()
mit_iptérnal_state()

valyé_check()
falue_inc()

fetch Jxternalf)

error{Fid]?

")
ep_date_struct_write reset_internal_state()

®

is_rep_data_struct_empty()
is_L_updated_with_rep()
update_SC_to_L!

© send_update_to_leader(),
recovery[fid]? syngh:=
errorffig
Failyré & Send_Receiv_state_var "Ch”’"'m’

erpdfid]?

SC_deployment update_all() Full_sync

is_rep_data_struct_empty()==falsg is_rep_updated_with_L()

update_interna|_state update_L_to_SC?
update_external_states(),
synch:=1
Local_sync update_external_states()

External_sync

Fig. 6. Application and Storage Container Automatons

(a) shows the UPPAAL automaton, modeling the application
failure. As is shown in this figure, activation of App and
SC failure is done through channels in UPPAAL. When the
edge having this channel is activated it forces the App or SC
automaton to take an edge to its failure state. Figure 6 (a)
and (b) show the application and SC automatons respectively,
including the failure states.

For each of the Apps and SC a separate automaton is
defined as a system, since failure of one App/SC (automaton)
should not affect the other App/Sc automata. As shown in the
figures 6 and 7 (a), when failure is triggered in the application
failure automaton, it is the id indicated in the channel that
determines which container (App or SC) must transit to the
failure location. When an App or a SC fails and reaches the
failure state it must transition to its initial state afterwards.
However, when an application fails, its own state in its local
variable or internal state must be turned to 0 (empty)
as a consequence of the failure.

For activating the node failure, we create another automa-
ton in UPPAAL, shown in figure 7 (b). However, in the App
and the SC the failure state is the same location (for both
failures, App and node) and they are also activated using the
same channel. When a node failure is activated, each of the
App(s) and SC(s) in the same node will reach the failure state
in their own automaton. In the node failure automaton this is
done through committed locations (delay for next transition
is not possible) and activating a sequence of failures for
App(s) and SC(s), one by one. When all the App(s) and
SC(s) in the node fail, then they all will start from their
initial state, after recovery. The recovery is also done using
committed locations and each recovery channel activates a
recovery channel in the relevant automata (App or SC).

F. UPPAAL Queries

We divide the properties into three categories. (i) Model
properties that are used to verify that the functionality of the
system is specified correctly; (ii) Fault-tolerance properties
to verify that the proposed fault-tolerant mechanisms work
as intended and our designed system can tolerate application
and node failures and achieve data availability after these
two types of failure; and (iii) Consistency properties to verify
that the integration of the RAFT consensus protocol with our
solution provides eventual data consistency.

1) Model Properties:
MP1 (Volatile Storage:) As stated in Section II-B, we
need to make sure that we have implemented the volatile
characteristic of volumes in our model correctly. Therefore
we need to verify that when an App is in the deployment
state, its internal state (its volume) is empty. We verify this
by the following properties as:

Al]
Al]

AQ.App_deployment imply internal_value[0]==0
Al.App_deployment imply internal_value[l]==0

In our modeling value O represents empty. These prop-
erties verify that MP 1(Volatile Storage) is fulfilled in our
modeling.

MP2 (Node Failure Consequences): As state in Section
III, we need to examine the behaviour of the system when
a node fails. Specifically, we need to verify that when a
node failure occurs, the data stored in the local copy of the
replicated data structure is lost.

A[] NF.Node_Failure imply (rep_data_struct[0] == 0

&&rep_data_struct[l] == 0&& rep_data_struct[2] == 0)

Intuitively, this property states that, when the location
Node_Failure in the Node Failure (NF) automata is
reached for all possible transition sequences, always all the
values of the rep_data_struct array are reset to 0

MP3 (Data transfer to/from leader): As stated in Section
III, we need to verify if the defined communication channel
leads to data transfer in location related to data transfer
to/from leader. To verify this we need to check if the edge
for the channel is taken in the send and receive location. To
formulate this, we need to either use an observer to monitor
if the edge if taken or use a Boolean that is false and it only
is true when it takes the edge with the channel and after
leaving the synchronization state it turns to false again. This
Boolean in our model is named checker. To verify this,
we formulate the property:

A[] S.Sync imply checker==true

Intuitively, this property states that, when the state Sync
in the SC automaton is reached the checker is always true.
2) Fault-tolerance Properties:
FTP1 (Application Failure Recovery): As stated in Section
II-B, we need to verify the failure recovery ability of appli-
cations in our system. We formulate its related properties
as:

recovery[Fid]!
ef:=1

Working

O App_Failure
error[Fid]!
ef==1

reset_internal_state()

Working

1 error[0]! error[1]! error[2]! Node_Failure

ef==

empty_rep_data_struct() internal_value[1]:=0

All_recovered

©
ef:=1 recovery[2]!

recovery[1]! recovery[0]!

Fig. 7. Application and Node Failure Automatons

AQ.Failure --> AO0.App_deployment
Al.Failure —--> Al.App_deployment

Intuitively, these properties state that, if the Failure
state in App0 (AO) is reached, the state App_deployment
in AO then will eventually be reached. The same applies to
Appl (Al).

FTP2 (Node Failure Recovery): As stated in Section II-
B, we need to verify that after node failure, the applications
(Apps and SC) that before the failure were executing on the
node will be recovered. We formulate this property as:
NF.Node_Failure --> NF.All_recovered

Intuitively, this property states that, whenever the
Node_Failure state in Node Failure (NF) automaton
isreached, the A11_recovered state in NF, which indicate
all the applications are recovered, will eventually be reached.

To complement the above property, we also examine
whether the Node_Failure state indicates application
failure and the A11_recovered state represents that the
applications are all back to deployment state. This is ex-
pressed as:

A[] NF.Node_Failure imply AO.Failure && Al.Failure
A[] NF.Al1l _recovered imply AO.App_deployment &&
Al.App_deployment

FTP 3,4 (Data availability after application/ Node fail-
ure): Since the failure state in our modeling is the same
for both application and node failure. We examine these two
properties in one query.

A[] Al.App_execution imply

rep_data_struct[l] == last_internal_value[l] ||
rep_data_struct[1l] == pre_last([1l]

A[] AO.App_execution imply
rep_data_struct [0] == last_internal_value[0] ||
rep_data_struct [0] pre_last[0]

Intuitively, this property states that, whenever the
App_execution state in App (AppO and Appl) automa-
ton is reached, the value of replicated data structure is the
last committed data to it or the previously committed data.

3) Consistency Properties:

CP1 (Data Consistency in Distributed Replicated Data
Structures): As stated in Section III we need to verify
data consistency between the nodes. We formulate its related
property as path formula 1:

AJA<> ¢ (D

Where ¢ indicates data consistency. However, since UP-
PAAL does not allow nesting of path formula [10] we define
the equivalent propertiy in UPPAAL as follows:

True —--> rep_data_struct == 1_rep_data_struct

This property intuitively states that, for all possi-
ble transition sequences always eventually, the values of
the replicated data structure (rep_data_struct) are
equal to the values of leader replicated data structure
(1_rep_data_struct).

We also verify data consistency with another property:

Al]

S.Sync imply (rep_data_struct ==

Intuitively, this property states that for all paths
when the Sync state in a storage container (S) is
reached, always the values of replicated data structure
(rep_data_struct) and leader replicated data structure
(1_rep_data_struct) are equal.

In addition to these properties we also define a safety
property to show that the system will never be in a deadlock
state. This property is essential to verify as the deadlock
of any single state will lead to data loss or even system
breakdown. We specify this property as usual in UPPAAL:
A[] not deadlock

All the defined properties are shown to be satisfied by
the UPPAAL verifier. This proved that the proposed fault-
tolerance and consistency mechanisms work as intended and
the target properties are achieved. Additionally, satisfaction
of the properties we called model properties proves that the
underlying properties of the platform were correctly specified
in our model.

V. RELATED WORK AND DISCUSSION

In our previous paper [4], we discussed the main problem
of distributed data storage and the existing solutions for that
in the literature. We reviewed the related works focusing on
two fundamental problems: providing fault-tolerant, perma-
nent data storage and achieving a decentralised consensus.

1_rep_data_struct)

We also reviewed the works proposing persistent storage
container-based architectures in cloud platforms [3], [9],
[11]-[13].

In this section, we review related work focusing on stateful
application execution in container-based architectures.

Netto et al. in [13] and [14] indicated that using Kuber-
netes improve service availability of stateless applications.
However, for stateful applications, Kubernetes faces some
issues. In [13], they proposed state replication between pods,
in a way that all pod replicas execute the incoming requests.
However, only the one replica will respond to the request. In
[14], they improved their solution by integrating an execution
layer between clients and containers (called Koordinator). In
this solution Koordinator received the clients requests and
sends them to the application containers. There is also a
layer between the Koordinator and the client which is a
containeriezed Firewall. However, this firewall is a single
point of failure in this model, when the firewall container
fails the whole connection to nodes and other containers are
lost especially in case of node failure. In our solution, we
rely on the underlying Kubernetes service that is designed
as a set of rules added to the IP tables of all nodes.
Moreover, our solution is completely based on Kubernetes’
principles, therefore, integration of it to Kubernetes can
be easily managed. In another work Soenen et al. in [15]
proposed a solution to provide high availability for the
management and orchestration (MANO) in the Network
Function Virtualization (NFV) architecture. Their solution is
based on decomposing the application to functional blocks
each performing a task in a workflow. The interaction
between these functional blocks is through remote calls
over a network. They deploy a redundant instance for each
functional block to increase availability. Redundant instances
check each other’s availability through heartbeat. This means
that each application needs to have an implementation of
the availability logic which increase the application load to
send and receive the heartbeats. In our solution, it is the
Storage container responsibility to send and receive data
and the communication between applications is offloaded to
SC. The other problem in this work is the data consistency
between replicas that has not been investigated. In our
solution however, data consistency in the whole cluster is
achieved by integrating the RAFT consensus protocol.

VI. CONCLUSION

In this paper we modeled and verified a persistent fault-
tolerant storage solution for container-based fog architecture,
which we proposed in [4]. We verified the model, fault-
tolerance and consistency properties. The results indicates
that using SC along with the containerized stateful applica-
tions provides fault-tolerance and data availability in case of
application and node failure. In addition, integration of the
RAFT protocol with SC provides eventual data consistency.
In our future work we will add timing constrains to our
model to examine the performance of our solution when there
are tight timing requirements in the system.

ACKNOWLEDGMENT

This research has received funding from the European
Union’s Horizon 2020 research and innovation programme
under the Marie Sktodowska-Curie grant agreement No
764785 and also from the VINNOVA project 2018-02437.

REFERENCES

[1] A. Javed, K. Heljanko, A. Buda, and K. Frimling, “Cefiot:
A fault-tolerant IoT architecture for edge and cloud,” in
2018 IEEE 4th World Forum on Internet of Things (WF-
IoT), 2018, pp. 813-818.

[2] Kubernetes Foundation, Kubernetes
https://kubernetes.io/.

[3] L. Abdollahi Vayghan, M. A. Saied, M. Toeroe, and F.
Khendek, “Microservice based architecture: Towards high-
availability for stateful applications with kubernetes,” in
2019 IEEE 19th International Conference on Software Qual-
ity, Reliability and Security (QRS), 2019, pp. 176-185.

[4] Z. Bakhshi Valojerdi, G. Rodriguez-Navas, and H. Hans-
son, “Fault-tolerant permanent storage for container-based
fog architectures,” in Proceedings of the 2021 22nd IEEE
International Conference on Industrial Technology (ICIT),
2021.

[5] UPPAAL Model Checker, UPPAAL Official Website,
https://https://uppaal.org/.

[6] D. Ongaro and J. Ousterhout, “In search of an under-
standable consensus algorithm,” in 2014 {USENIX} An-
nual Technical Conference ({USENIX}{ATC} 14), 2014,
pp. 305-319.

[71 J. M. O’Kane, A gentle introduction to ROS, 2014.

[8] A. Shahaab, B. Lidgey, C. Hewage, and I. Khan, “Applica-
bility and appropriateness of distributed ledgers consensus
protocols in public and private sectors: A systematic review,”
IEEE Access, vol. 7, pp. 43622-43 636, 2019.

[9] H. Netto, C. Pereira Oliveira, L. d. O. Rech, and E. Alchieri,
“Incorporating the raft consensus protocol in containers
managed by kubernetes: An evaluation,” International Jour-
nal of Parallel, Emergent and Distributed Systems, vol. 35,
no. 4, pp. 433-453, 2020.

[10] G. Behrmann, A. David, and K. G. Larsen, “A tutorial
on uppaal 4.0,” Department of computer science, Aalborg
university, 2006.

[11] A. Sharma, S. Yadav, N. Gupta, S. Dhall, and S. Rastogi,
“Proposed model for distributed storage automation system
using kubernetes operators,” in Advances in Data Sciences,
Security and Applications, Springer, 2020, pp. 341-351.

[12] E. Kristiani, C.-T. Yang, Y. T. Wang, and C.-Y. Huang,
“Implementation of an edge computing architecture using
openstack and kubernetes,” in International Conference
on Information Science and Applications, Springer, 2018,
pp. 675-685.

[13] H. V. Netto, L. C. Lung, M. Correia, A. F. Luiz, and L. M. S.
de Souza, “State machine replication in containers managed
by kubernetes,” Journal of Systems Architecture, vol. 73,
pp. 53-59, 2017.

[14] H. V. Netto, A. E. Luiz, M. Correia, L. de Oliveira Rech,
and C. P. Oliveira, “Koordinator: A service approach for
replicating docker containers in kubernetes,” in 2018 IEEE
Symposium on Computers and Communications (ISCC),
IEEE, 2018, pp. 00058-00 063.

[15] T. Soenen, W. Tavernier, D. Colle, and M. Pickavet, “Op-
timising microservice-based reliable nfv management &
orchestration architectures,” in 2017 9th International Work-
shop on Resilient Networks Design and Modeling (RNDM),
IEEE, 2017, pp. 1-7.

Documentation,

