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Abstract 
In this thesis we present the Probabilistic Property Language (PPL) and a supporting tool. The 
purpose of this language is to analyse real-time systems based on information in execution traces. 
Traditional real-time analysis, e.g. fixed priority analysis, tends to be too pessimistic. Systems that 
does work can sometimes be deemed unschedulable since only worst case times, e.g. execution times 
or minimum inter arrival times, are considered. This is a problem when the worst cases are unlikely or 
never occur in the system. Furthermore these methods of analysis have no mean of checking 
properties like non emptiness of a message queue. To deal with that a simulation based analysis 
method was developed [13][14] . Using a modelling language a model of the system is constructed. 
Changes can then be made in this model before they are implemented in the system. Executing this 
model in a simulator will result in a trace. The trace contains information about task switches and 
probe observations that will be used to analyse the system with the help of PPL. A PPL query is 
formulated as a probabilistic statement, stating for example that some property should always be true, 
e.g. meeting a hard deadline, would be to formulate it as having a probability of 1. The probe 
observations contain information about system resource usage and other more application specific 
information. They could for example contain the size of a message queue. This could be used to verify 
requirements that could not be checked using fixed priority analysis like for example a message queue 
never being empty. Many different properties like precedence, separation and pre-emption can be 
formulated using PPL. In addition to this the query can contain an unbounded variable. This variable 
can be used to retrieve various constraint values , e.g. to find what deadline is met with a given 
probability. 
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1 Introduction 
In order to analyse temporal properties in a large and complex real-time system, one method is to 
gather execution traces from the system and base the analysis on the information in those traces. 
These execution traces would contain very large amounts of information making them practically 
impossible to analyse manually. Therefore a query language, the Probabilistic Property Language 
(PPL), has been outlined to assist in this analysis .  

 
1.1 Background 
Many large and complex real-time systems have evolved over a long period of time. Over time 
functionality has been changed and new features added. Eventually the temporal model of the system, 
if there were one in the first place, will no longer be consistent with the current system. In the early 
stages this might not be a problem as the system is still rather simple and the effects of making 
changes can quite easily be analysed. However as the system grows analysing becomes increasingly 
difficult to the point where the system will need to be re -engineered to reintroduce analysability. 
 
An attempt to do this in a robot control system at ABB Robotics was done by Wall, Andersson and 
Norström [13][14]. At first traditional real-time analysis, FPA (fixed priority analysis), was 
considered. However these methods of analysis were found to be insufficient. FPA give a true or false 
answer to the question “is the system schedulable?”. In this case the system was deemed 
unschedulable while in practice it is schedulable, i.e. the FPA was too pessimistic. That is because of 
the FPA only using worst case times, e.g. worst case execution time or minimum inter arrival time. 
Furthermore in this system there are other, additional, correctness criterions. One such criterion is a 
message queue that may never be empty. No analysis method was found that supported such 
criterions. Hence a different approach was needed. 
 
A simulation based approach was chosen. Using simulation those other criterions can be analysed. In 
addition the distribution of execution times, rather than the worst cases, could be used in the analysis. 
Software probes are used to measure the system and these measurements are then written to a log file 
after the measuring is done. The logged information is : changes in value on general probes, time when 
task start executing, time when task was interrupted, time when task restart after interruption and time 
when task finish execution.  
 
A modelling language, ART-ML (Architecture and Real-Time behaviour Modelling Language), was 
developed. Using ART-ML the system is modelled and when changes are to be made they can first be 
introduced in the mo del. Simulating this model of the system will result in a log file similar to one 
from probing the actual system.  
 
From these log files properties of the system can be extracted. However because of the size of the files 
it is not feasible to do it manually. Thus a tool was required to perform the analysis. To perform the 
analysis a probabilistic query language, PPL (Probabilistic Property Language), was outlined. PPL 
queries are written as probabilistic statements about a property. Checking, for example, that a task t 
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always meets a deadline of 10 would be written as the response time of t being less than 10 with a 
probability of 1. Furthermore, PPL support the use of unbounded variables. Unbounded variables can 
be used to return values to the user. 
 
1.2 Problem description 
Our task consists of two parts, to define PPL in detail and to develop a PPL tool. 
 
First part is to define the PPL language. To define all the operators; their syntax and exact semantics. 
To define the data model; what information is available and how is it accessed. The use of the 
instance operator. Furthermore how and where unbounded variables may be used as well as how they 
are bounded.  
 
The second part is to develop a PPL tool. This tool is to determine if a PPL query is true or false with 
respect to a given execution trace. If the query contained an unbounded variable it will be bounded 
and the bounded values returned to the user. Possible additional features could be for the tool to 
support macros in order to make complex queries easier to formulate. Another one could be to, in 
some manner, simultaneously work on several traces. 

 

1.3 Related work 
 
1.3.1 Log file analysis 
Log file analysis has been used in several testing-related projects. Qiao and Zhang [12], use a log file 
analyser to check communication consistency in a parallel system. Their tool is made specifically for 
programs using MPI (Message Passing Interface). They have implemented a logger that, during 
runtime, logs all communication events. In addition they have a wrapper that extends the original MPI 
functions to support the logger. The wrapper controls the logging process; it chooses what to log in 
situations. It also starts  and stops the logger on certain MPI function calls. The last step is applying 
the analyser. This is done post execution. Each process in the parallel system generates its own log. 
The analyser takes these logs as input and check for matching pairs of events. Each found pair is 
moved to a “complete list”. If all events from the logs where moved to the complete list then there 
where no errors in communication during this system run. Although their tool is made for MPI, Qiao 
and Zhang claim it could easily be adapted to other message passing libraries. 
 
Andrews and Zhang, [3][4][5], has taken a more general approach to log file analysis. Their approach 
is to create a log file analyser as set of state machines. Each machine checks  some specific 
requirement of the tested software. The machines will ignore the lines of a log file that is not relevant 
for their purpose. For each line that a machine recognizes it makes a state transition. An error is found 
when a machine recognizes a line but has no valid transition for it from its current state. To create 
analysers they have defined a language, LFAL (Log File Analysis Language). LFAL is used to define 
states and transitions to create state machines in a straightforward way. In addition they have created a 
complier to make executables of LFAL analysers. Their work does  not concern the logging process. 
Instead they assume the tested software writes proper records to the log file. The LFAL analysers set 
few limitations on the log files they are to analyse. Each line in the files is to consist of a sequence of 
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keywords, strings and/or numbers, beginning with a keyword. Such general requirements allows for a 
variety of different kinds of log files. Thus LFAL analysers could be applicable in a very wide 
spectrum of tests. In one of their papers, [4], they present the result of a study where they constructed 
and applied a LFAL analyser to a complex safety critical system, the steam-boiler control system. The 
analyser worked well which they believe partly was a result of the compositionality of the analyser. 
The problem was broken down and spread over several state machines. However they recognize that 
“more experience is needed to say whether safety properties are usually amenable to this kind of 
analysis”. 
 
In his work on Rapid Application of Lightweight Formal Methods for Consistency Analyses [8], 
Feather conducted two studies on NASA spacecraft software. This software was divided into larger 
modules. Each of these modules where designed and developed by different teams. His first study 
analysed the interfaces the different modules used to communicate with each other. Each modules 
interface is modelled in a database. Inconsistencies in the interfaces could be found by issuing queries 
on the database. As an example an inconsistency could be a module M1 having a message MSG listed 
as outgoing to module M2 when M2 do not have MSG listed as incoming from M1. Because of the 
large quantities of data to analyse a database approach was a good choice. And since the calculations 
needed for the analysis where quite simple a database tool was sufficient. As his work was on rapid 
analysis Feather needed a database tool with a powerful query mechanism. His choice was AP5, a 
research-quality database tool developed at University of Southern California. According to Feather 
AP5 is flexible and powerful. The second study was to analyse log files created by the same software 
during its execution. The log file held records of all messages passed between the different modules. 
Again the same database approach was used. The log file was loaded into a database. Then by issuing 
queries on this database, violations of the systems requirement could be found. 
 
1.3.2 Data mining 
Bratko and Šuc has done work on machine learning from numerical data [6]. In this work they use an 
approach involving qualitative data mining to find qualitative patterns or relationships. They reason 
that building a quantitative model of a complex system is often a demanding or even unrealistic task. 
The task would be simpler if the problem could be solved at a qualitative level of abstraction. For that 
they present an approach using a learning program called QUIN (Qualitative Induction). QUIN is 
used to search for patterns in numerical data. These patterns are then combined into qualitative trees. 
Using induction of the tree a solution is found. In the mentioned paper they present a case study where 
a system learned to control a crane by learning from traces of human operators controlling it. 
 
The fields where data mining is applicable is wide. Because of that there exist a variety of data mining 
tools. Han et al, [9], believes that these tools are only interfaces build on similar underlying 
mechanisms. They make comparisons to the success of relational databases where a standardized 
relational query language was developed early on. Hence they have designed a data mining query 
language, DMQL. The language was designed based on these five considerations. The set of relevant 
data and the kinds of knowledge to be discovered should be specified in the data mining request. 
Background information could be available to help in the mining process. The results  should be 
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specified in generalized or multiple-level concepts rather than primitive data. And there should be the 
possibility to specify various thresholds to filter the results. 
 
Data mining has been used to find sequential patterns in databases. In [1] Agrawal and Srikant present 
their work on finding patterns in a large database of customer transactions. Their task was to find 
connections between items; what items were bought in sequence. They use one example where a 
customer renting the first star wars movie is likely to also rent the second and third, however not 
necessarily at the same time or even consecutively. For this task they have developed a five phase 
algorithm. In the first phase the database is sorted on customer and transaction time. In the second 
phase the transactions are split into item sets. In the third phase each customer’s transaction sequence 
is transformed into a sequence of item sets. In the next phase the item sets are used to find desired 
sequences. They have three algorithms for this phase, each with their properties making them more or 
less suitable depending on the properties of the database. In the final phase the maximal of the 
sequences found in the previous phase is found. 
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2 The PPL Language 
The greater purpose of the Probabilistic Property Language (PPL) is to analyse the impact of changes 
made in a real-time system. The changes are introduced in a model and a simulation of this model 
results in an execution trace. The need for a language like PPL is because of the size of these traces. 
To try to manually gather any useful information from them is simply not an option.  
 
Using PPL, properties of tasks and message queues can be extracted. The properties are extracted as 
probabilities of fulfilling some requirement. To find out if some task t always meets its deadline of 10 
time units would be to ask if the probability, of the response time of t being less than 10, is 1. 
 

P(t(i),t(i).response < 10) = 1 
 

Example 2.1 task t should always meet its deadline 10 

 
This way the analysis of the changes is a process of, from the trace, count and compare the values 
collected during the simulation. A task t always meeting its deadline of 10, as in Example 2.1, would 
be done by checking if the response time for all instances of t is less than 10. That is, all observed 
response times for t is less than 10.  
 
An outline for PPL and its semantics was previously presented, along with a grammar, in [14]. In 
Appendix A we present our version of the PPL grammar. Naturally the foundation of our grammar is 
the same as the outlined version. Most noticeable difference is a syntactical change to the probability 
function, P, to help avoid ambiguity. In addition we have extended it with the statistical functions min, 
max, avg and median. For the instance operator the function following has been added to better 
compare different tasks. The instance operator has also been extended with a macro to simplify 
properties over sequences . We also allow more complex arithmetic expressions 
 
2.1 Queries 
PPL is intended to be used to formulate probabilistic queries. A probabilistic query can be defined as 
a relational operation on two probabilities.  

 
<probability> <relation operator> <probability> 

 
Syntax 2.1 query 

 
A probability can be either a constant between 0 and 1, the probability function P or an unbounded 
variable  (see Section 2.7). The result from a query without an unbounded variable is  either true or 
false. If the query contains an unbounded variable then the result is the value or interval of values on 
the variable for which the query is true. In addition to the probabilistic queries a query is allowed to 
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consist only of one of the statistical functions. Finally there is a function called subset that writes all 
values in a set to a file, e.g. it could write all response times of some task.  
 
2.2 Task 
In PPL a task is considered as a set of instances. Each instance being one execution of that task in the 
system. In order to analyse a trace the information about its task instances  need to be accessed. Each 
instance has four basic data members, start time , end time, response time  and execution time. The 
trace can also contain probes. These probes are general and the value from each probe might have 
different meaning for different traces. It could for example be the number of messages in a queue. It is 
up to the user to know what information was observed by the probes. The probes can be accessed as 
data members to get the value of that probe when the task instance begun execution.  
 

Data members  
start The time when this instance of the task begun executing. 
end The time when this instance of the task was done 

executing. 
response (resp) The response time of this instance. The time passed from 

starting execution to finishing execution. 
exec The execution time of this instance. 
probe[16..255] The value the probe had when this instance begun 

execution. The id of a probe can range from 16 to 255. 
 

Figure 2.1 data members 

 
The syntax for tasks, in PPL, is shown in Syntax 2.2. The name of the task is used to specify what 
task. With the instance operator an instance of the task is selected. To access data of an instance a “.” 
and the name of the data member is used, like when accessing a field of a C-struct. 

 
<task>(<instance variable>).<data member> 

 
Syntax 2.2 accessing data members 

 
t(i).resp 

 
Example 2.2 accessing the response times of task t  

 
2.3 Instance operator 
As mentioned in Section 2.2, a task is a set of instances where each instance is an execution of that 
task. When evaluating PPL queries it is these task instances that are compared. The probability of a 
task fulfilling a temporal requirement is how many of the instances that fulfil this requirement. The 
instance operator is used to bind instances. Since all instances need to be evaluated to calculate a 
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probability it is not possible to explicitly state what instance to compare with, i.e. writing “t(1).resp” 
is not valid. Instead a variable is used in the instance operator in order to compare instances. To 
compare relative instances an integer may be added or subtracted to that variable.  
 
In Example 2.3 the response time of all instances is compared to the response time of the next 
instance by adding 1 to the instance variable . 

 
t (i).resp > t (i+1).resp 

 
Example 2.3 comparing instances 

 
The instance operator could also be used to compare the same instance of different tasks as shown in 
Example 2.4.  

 
t (i).resp > s (i).resp 

 
Example 2.4 comparing tasks 

 
2.4 Probability function P 
The function P is the core of PPL. It is the foundation of all probabilistic queries as one without P 
would only compare constants. P takes two arguments, first the working set, the task from whose 
point of view the function is formulated, the second argument is the condition of the function. The 
result from P is the probability of an instance of the set fulfilling the condition. As this probability is 
based on the observations in a trace it is only an estimation of the true probability.  

 
P(<working set> , <condition>) 

 
Syntax 2.3 P function 

 
In the first version of the PPL grammar [14] the working set was not part of the syntax for P. Not 
knowing what set to work from could make the condition ambiguous. Hence this change in P was 
made. For the same reason it is require d that an instance variable is specified for the working set using 
the instance operator.  

  
P(t(i) , <condition> ) 

 
Example 2.5 working set 

 
What P does is to take each instance i of the working set and check it against the condition. The 
condition is one or more relational expressions containing properties for instances of tasks. If there are 
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several expressions these are combined with logic operators. The probability is calculated by dividing 
the size of the subset of instances that fulfil the condition with the size of the working set. 
 
2.5 Probes 
As mentioned in Section 2.2 the traces also contain probe observations. One typical example of such 
an observation could be the size of a message queue, where a change in the size of the queue becomes 
a probe event in the trace. As also mentioned in Section 2.2 this observed value can be accessed as a 
data member of a task instance. But message queues are shared between different tasks. Thus it might 
be of value to check properties on the queue for several tasks. Furthermore looking at a probe as a 
data member of an instance only gives the value of the probe at the start of that instance. These values 
might not be representative for the probes. This only shows what values is changed to, and nothing 
about how long the probe has each value. During most of the time the probes might have values that 
are not changed to frequently. It could for example be that a message queue is empty most of the time.  
If this queue then has  values perhaps just at the start of several tasks it would give the false impression 
that this queue is rarely empty. To get around these problems there is an option to look at the value of 
the probe over time rather than at the start time of task instances. The wildcard character ‘*’ is used to 
represent the entire time of the trace as a set. This is a set of time units similar to how a task is a set of 
instances. From this set only a probe data member can be accessed. A P function with this set as the 
working set calculates the probability, not from how many instances fulfil the condition, but from how 
many time units the condition is fulfilled. 
 
In Example 2.6 probe18 is used as a data member to state that it should always have a value greater 
than 0 at the start of task t. By changing the working set to *, the query will state that probe18 should 
be greater than 0 not only when t start but at all times as shown in Example 2.7. 

 
P(t (i), t (i).probe18 > 0) = 1 

 
Example 2.6 probe as data member 

 
P(*,*. probe18 > 0) = 1 

  
Example 2.7 probe over time 

 
2.6 Operators 
The expressions that make up the condition of a P function may contain arithmetic operations. The 
four basic arithmetic operators ‘+’, ‘-‘, ‘*’ and ‘/’ can be used. They have their common use and 
precedence; ‘*’ and ‘/’ before ‘+’ and ‘-‘. Unary minus and parenthesises can also be used. Any 
arithmetic expression that can be constructed using these components is valid. The operators are 
applied to the data members of instances of tasks, numeric constants and statistical functions. The 
absolute value function abs, which takes an arithmetic expression as its only argument, can also be 
used. 
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In Example 2.8, a valid, albeit unnecessarily complex, PPL query stating that the response time of t 
should be less than 28 with a probability of less than 0.5.  

 
P(t (i), t (i).resp < (abs(1 + 6) * 4) / (-1 + 2)) < 0.5 

 
Example 2.8 arithmetic’s as a constant 

 
In Example 2.9 abs is used to formulate the property that the instances of t should start within 10 time 
units of any instance of s with a probability greater than 0.5. What task start first is not of interest, 
only that the difference in starting times is less than 10.  

 
P(t(i), abs(t(i).start – s(j).start) < 10 ) > 0.5 

 
Example 2.9 separation using abs 

 
In Example 2.10, the probability of t meeting its deadline of 10 time units with a margin of 1 time 
unit should be greater than 0.5. 

 
P(t(i), t(i).resp + 1 < 10) > 0.5 

 
Example 2.10 arithmetic’s on data member 

 
PPL have the three logic operators AND, OR and NOT. All three are applied to relational expressions. 
AND and OR connects expressions that make up the condition of a P function. NOT is unary and 
gives the inversion of the expression it is applied to. Generally the NOT operator could be replaced by 
changing the relation operator of the expression. The expression in question might however be quite 
complex with several relations making it easier to use NOT than to translate it. AND and OR has the 
same precedence and NOT has higher precedence than them. 
 
In Example 2.11 the AND operator is used to state that the response time of t should be between 5 
and 10 time units, with a probability greater than 0.5. 

 
P(t(i), t(i).resp > 5 AND t(i).resp < 10) > 0.5 

 
Example 2.11 AND operator 
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In Example 2.12 the NOT  operator is used to state that the response time of t should not be greater 
than 5, with a probability greater than 0.5. This query could be formulated without the NOT operator 
as in Example 2.13. 

 
P(t(i), NOT(t(i).resp > 5)) > 0.5 

 
Example 2.12 NOT operator 

 
P(t(i), t(i).resp <= 5) > 0.5 

 
Example 2.13 not greater than 5 without NOT operator 

 
PPL has five relational operators, greater than ‘>’, less than ‘<’, greater than or equal ‘>=’, less than 
or equal ‘<=’ and strict equal ‘=’. These operators can be applied to probabilities or numeric 
expressions. The use of these operators is  twofold. If one of their operands is an unbounded variable 
then they become more of assignment operators than relational operators. If no unbounded variable is 
involved they have their regular relational meaning. All P functions contain at least one relational 
operation. 
 
2.7 Unbounded variables 
PPL queries may contain one unbounded variable. This variable can be used to return values to the 
user. For example it is possible to find a deadline or the probability of some property. Normally a 
query would answer only true or false. The unbounded variable can be part of the condition in a P 
function or as one operand in the outer relational operation of the query. An unbounded variable may 
not be part of an arithmetic expression . To allow them to be part of arithmetic expressions as well as 
allowing more then one unbounded variable was not desired features. Furthermore, those features 
would have been difficult to implement and thus the restrictions were made. The restriction on 
arithmetic’s does not limit the language. Any arithmetic’s could be rewritten to be applied to the 
expression the unbounded variable is compared to instead, e.g. t(i).resp = 2X can be written as 
t(i).resp/2 = X. Another restriction is that the unbounded variable may not be part of the argument to a 
statistical function. A statistical function is evaluated to a single value. That can not be done if it 
contains an unknown, i.e. an unbounded variable. 
 
In Example 2.14 an unbounded variable, X, used in the condition of the query: what deadlines are met 
with a probability of at least 0.5. 
  

P(t (i), t (i).resp <= X) >= 0.5 
 

Example 2.14 inner unbounded variable 
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In Example 2.15 the unbounded variable, X, is used as the probability of the task t not meeting a 
deadline of 5.  

 
P(t(i), t(i).resp > 5) = X 

 
Example 2.15 outer unbounded variable 

 

2.8 Statistical functions 
There are four statistical functions, min, max, avg and median  that can be used in the conditions of P 
functions. These functions are also allowed to be written as stand alone queries. These are all classic 
statistical functions. Each function has  two versions. The first one take only one argument, the set 
they are to be applied to, i.e. the working set, as in Syntax 2.4. Unlike for the P function the working 
set for the statistical functions must also contain what data member of the task that should be used. 
The second version, Syntax 2.5, takes two arguments, a set and a condition. This second version does 
the same thing as the original but is applied only to the subset of the set that fulfil the condition.  
 

<function>(<task>.<data member>) 
 

Syntax 2.4 statistical function 

 
<function>(<task>(<instance variable>).<data member> , <condition>) 

 
Syntax 2.5 statistical function on a subset 

 
Functions 
min() Returns the smallest value of the set. 
max() Returns the greatest value of the set. 
avg() Returns the average of all the values in the set. 
median() Returns the median, the middlemost value of the set. If the 

size of the set is even then the median is calculated as the 
average of the two middlemost values. 

 

Figure 2.2 The statisti cal functions of PPL 

 
In Example 2.16 max is used in a P function to state that the response time of t should be less than the 
greatest response time observed for s with a probability of less than 0.5.  

 
P(t (i), t (i).resp < max(s .resp)) < 0.5 

 
Example 2.16 max used in a P 
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Example 2.17 shows a  stand alone function used to find the average response time for the task t.  

 
avg(t.resp) 

 
Example 2.17 stand alone avg 

 
In Example 2.18 a  condition is used to get the average response time for the instances of t which have 
a start time greater than 5.  

 
avg(t(i).resp , t (i).start > 5) 

  
Example 2.18 stand alone avg on a subset 

2.9 Following 
With the instance operator it is possible to compare the same instance of different tasks, t(i) with s(i). 
However t(i) and s(i) might not have any connection, t(20) and s(20), for example, might be very far 
from each other in time. Such comparisons will likely be pointless unless t and s have the same rate. 
More useful would be to compare instances with similar start times, e.g. to compare t(i) with the next 
instance of s starting after t(i). To easily find instances of different tasks that are sequential in time 
like this PPL contain the function following. This function is used in the instance operator to map 
instances over time. Following takes, as its only argument, a task with an instance operator, e.g. t(i). 
What it does is to find the instance, of the task whose instance operator it is part of, that start 
execution closest after the end of the instance given as an argument.  
 
Accessing data members of a task using the following function would be written as in Syntax 2.6.  

 
<task>(following(<task>(<instance variable>))).<data member> 

 
Syntax 2.6 following 

 
In Example 2.19 all instances  of s is compared to the instance of t closest after.  

 
s(i).resp > t(following(s(i))).resp 

 
Example 2.19 comparing s to the following t  
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Like with the plain instance operator plus and minus can be used to get relative instances. These 
arithmetic's can be applied to the instance variable in the argument, the result returned from the 
function or both. 
  

t(following(s(i + 1))) 
 

Example 2.20 the instance of t fol lowing the next instance of s  

 
t(following(s(i)) + 1) 

 
Example 2.21 the next instance of t after the instance of t following this instance of s  

 
t(following(s(i+1)) + 1) 

 
 Example 2.22 the next instance of t after the instance of t following the next instance of s  

 
Consider the execution Example 2.23, t(0) executing at time 2 and 4, s(0) at time 1, s(1) at time 3 etc 
where t(0) is pre-empted by s(1) and t(1) is pre-empted by s(3). Mapping instances of t following an 
instance of s would give the mappings presented in Example 2.24. As this shows, several instances 
can be followed by the same instance, e.g. both s(1) and s(2) is followed by t(1).  It also shows that 
all instances are not necessarily followed. Here there is no instance of t after s(6). That will result in 
some instances being excluded from the query as explained in Section 3.7. Mapping instances of s 
following an instance of t would give mappings as shown in Example 2.25. Notice that s(2), not s(1), 
is following t(0) since it is the instance after the end of t(0). 
 

t(i)  0  0    1  1 1      2    
s(i) 0  1   2   3    4  5   6   
time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

 

Example 2.23 an example trace 



 
 

 20 

 
s(i) t(following(s(i)))  

0 0 
1 1 
2 1 
3 2 
4 2 
5 2 
6 - 

 

Example 2.24 results from following 

 
t(i) s(following(t(i)))  
0 2 
1 4 
2 6 

 

Example 2.25 results from following  

 

2.10 Instance sequencing 
Common PPL queries concern properties over sequences of instances, e.g. a query like the probability 
of a number of consecutive instances all having a response time greater than some value. This would 
be done using the instance operator and the AND operator. Such a query could be quite large, 
especially if the property to be checked is a complexly formulated one. A mean to specify that a 
property should be true for several consecutive instances  could be useful. Hence there is a feature of 
sequencing in the instance operator. Previously one integer was allowed to be added to the instance 
variable to compare sequences. Now a range of integers can be added to specify that not only should a 
property be true for the instance i but also for i + 1 and i + 2 and i + 3 etc.  
 
Syntax 2.7 shows the syntax for the instance operator using sequencing. The sequence is written as 
the first and last number of the range within brackets, separated by ‘..’. It is then applied to the 
instance variable using one of the arithmetic operators ‘+’ or  ‘–‘. 

 
(<instance variable><aritop>[NUM..NUM]) 

 
Syntax 2.7 instance operator with sequencing 

 
The property that three consecutive instances of t should have a response time greater than 5 with a 
probability greater than 0.5 is formulated in Example 2.26 using sequencing.. Example 2.27 show the 
same property formulated using AND operators instead of a sequence.  
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P(t(i), t(i + [0..2]).resp > 5) > 0.5 

 
Example 2.26 comparing a range of instances using sequencing 

 
P(t(i), t(i+0).resp > 5 AND t(i + 1).resp > 5 AND t(i + 2).resp > 5) > 0.5 

 
Example 2.27 comparing a range of instances without sequencing 

  
Sequencing can be combined with the function following. The sequence could be applied in the 
argument of following as in Example 2.28 stating that three consecutive instances of s should be 
followed by instances of t with a response time greater than 5 with a probability greater than 0.5. In 
Example 2.29 the sequence is applied to the result from following . There the query state that the 
probability of an instance of s being followed by three consecutive instances of t with response times 
greater than 5, should be greater than 0.5.  
 

P(s(i), t(following(s(i + [0..2]))).resp > 5) > 0.5 
 

Example 2.28 sequencing the argument to following 

 
P(s(i), t(following(s(i)) + [0..2]).resp > 5) > 0.5 

 
Example 2.29 sequencing the result from following 

 
Example 2.30 is a combination of Example 2.28 and Example 2.29. It states that the probability, of 
three consecutive instances of s each being followed by three consecutive instances of t with response 
times greater than 5, should be greater than 0.5. Example 2.31 is similar to Example 2.30 with the 
difference that, instead of having response times greater than five all those instances should have 
response times greater than the response times of three instances of s. 

 
P(s(i), t(following(s(i + [0..2])) + [0..2]).resp > 5) > 0.5 

 
Example 2.30 sequencing both argument and result of following 

 
P(s(i), t(following(s(i + [0..2])) + [0..2]).resp > s(i + [0..2]).resp) > 0.5 

 
Example 2.31 comparing two sequences 
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2.11 Subset  
The function subset  is not used in expressions, instead it is used as a stand alone function to print a set 
of values to a file. This could, for example, be used to see all response times for some task. Like the 
statistical functions its first argument is the working set it should be applied to. The second, optional, 
argument is the condition if only a subset should be printed. Hence the syntax is quite similar to those 
functions. The difference is that after the function the operator ‘>’ is used as a pipe to the file the 
result should be written to. When ‘*’ is used as the task not only the values of the probe but also how 
many time units that value was held is written to the file . 
 

subset(<task>.<data member>) > “<file>” 
 

Syntax 2.8 the subset function without a condition 

 
subset(<task>(<instance variable>).<data member>,<condition>) > “<file>” 

 
Syntax 2.9 the subset function with a condition 

 
subset(t(i).resp, t(i).resp > 5) > “t_resp.txt” 

 
Example 2.32 writing response times greater than  5
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3 Semantics of PPL 
Here we present the semantics for PPL. As tasks are sets of instances we present the semantic rules in 
terms of set theory. Throughout this section we use the following notations. A capital letter represents 
a set, e.g. X. A set must contain instances, i.e. we do not allow the empty set in our queries. A lower 
case letter represents  a constant or a variable. To distinguish between the two we denote constants 
with a c, e.g. xc, and variables with a v, e.g. xv. We use two labels to represent different operators; 
aritop is an arithmetic operator and relop is a relational operator. The meaning of a query will vary 
depending on if certain expressions are right or left operand of certain operators. To simplify the 
semantics we only explain them assuming this given form on the query. The P function is always the 
left operand of the outer relation. When an unbounded variable is used it is always the right operand 
of the relation it is part of. Hence using for example the greater than operator in Section 3.5, 
unbounded variables, means “greater than the unbounded variable”, e.g. 3 > xv. As we for some 
semantic rules need to reason about relative order between instances we use the relative order 
operator, defined as follows in definition21 in [14] : 
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Especially we say that x∈ X and y∈ Y have the same order in X respectively Y if x <0 y. 
 

Definition 3.1 the relative order operator 

 

3.1 Probability function P 
The foundation of PPL is the probability function P. P can be defined as the probability of a set 
having some property. P takes two arguments. The first one is the working set. The second argument 
is the condition. What the function does is to create a subset containing all instances of the set that 
fulfil the condition. The size of this subset is then divided by the size of the working set to get a 
probability.  
 
The working set must be given as an argument to avoid ambiguity. This ambiguity could also have 
been avoided with semantic rules explaining the expression. That however would more or less limit 
the flexibility or power of the query. The first set of the expression could for example have been 
considered the working set. Another solution would be to consider the working set the intersecting 
instances of all sets, i.e. the smallest set is the working set. These would all be inferior to the choice of 
explicitly stating the working set as an argument. This also makes the purpose of the query clearer. 
All queries would not be ambiguous without the working set, but for some it makes a difference, 
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especially when the query contains several different tasks. Consider Example 3.1 and Example 3.2, 
both have the same condition, the instance of X start during the execution of some instance of Y. 
Depending on what set is chosen  as the working set the meaning, and result, of the query will vary.  
 
In Example 3.1, using X(i) as the working set, P gives the probability of X pre-empting Y. 

 
P(X(i), X(i).start > Y(j).start AND X(i).start < Y(j).end) 

 
Example 3.1 X pre-empting Y 

 
In Example 3.2 the working set is changed to Y(j). Here P gives the probability of Y being pre-
empted by X.   

 
P(Y(j), X(i).start > Y(j).start AND X(i).start < Y(j).end) 

 
Example 3.2 Y being pre-empted by X 

 

3.2 Instances 
The instance operator assigns  instance variables to tasks. Instance variables are split into two 
categories, bounded instance variables and unbounded instance variables . In Section 3.1, the 
probability function P was defined as the probability of the instances of its set fulfilling the condition. 
The working set was defined as a task with an instance operator. The instance variable in this operator 
is the one and only bounded instance variable of the query. When evaluating a query every possible 
binding for the bounded instance is evaluated . All other instance variables in the query are 
unbounded. For them it is not always necessary to try every possibility. Instead they are only bounded 
such that the condition is fulfilled. Consider Example 3.1 from above, in this query i is the bounded 
instance variable while j is unbounded. For every i a value on j should be found that makes the 
condition true. If such a j is found then this instance X(i) is considered true. If every possible j is tried 
without finding one that makes it true then that X(i) is false. If there are several j that would make it 
true makes no difference. What is asked for is the probability of X pre -empting some instance of Y, 
not how many Y or a specific instance of Y.  
 

3.3 Arithmetic and relational operators 
Three different basic constructions for arithmetic and relational operators are allowed in PPL,  
between two scalar values, between a set and a scalar or between two sets. A scalar value is a 
constant, the result from an arithmetic expression or the result from a statistical function. An 
arithmetic operation between two scalars is done by applying the operator to the two values. 

 
xc aritop yc ⇒ { }cc yaritopx  

 
Semantic rule 3.1 arithmetic’s between scalar values 
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The same is true for relational operations. The operator is simply applied to the two operands. 
However a relation between two constants does not contain any set. Thus it cannot be matched with 
instances of the working set and has a probability of either 0, if the relation is false or 1, if the relation 
is true.  

P(X(i), xc  relop1 yc) relop2 zc  ⇒ 
( )





otherwisefalse

zrelopyrelopxiftrue ccc 21
 

 

Semantic rule 3.2 relation between scalar values 

 
An operation between a set and a scalar is almost equally straightforward. The operation is applied to 
each instance of the set. 

 
X(i) aritop xc ⇒ { }Xxxaritopx c ∈:  

 

Semantic rule 3.3 arithmetic’s between a set and a scalar 

  
For relational operations this gives a subset of instances that fulfil the condition. The size of this 
subset is divided by the working set to get the probability. 
 

P(X(i), X(i) relop1 xc) relop2 yc  ⇒ 

{ }







 ∧∈

otherwisefalse

yrelop
X

xrelopxXxx
iftrue c

c 2
1:

 

 

Semantic rule 3.4 relation between a set and a scalar 

 
There are three different kinds of operations between two sets. The variation depends on the instance 
variable in the instance operators of the sets , those between two bounded instance variables, between 
a bounded and an unbounded and between two unbounded. With two bounded the operation is applied 
index-wise, e.g. X(0) + Y(0), X(1) + Y(1), etc. 

 
X(i) aritop Y(i) ⇒ { }yxYyXxyaritopx 0: <∧∈∧∈  

 

Semantic rule 3.5 arithmetic’s between two sets 
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P(X(i), X(i) relop1 Y(i)) relop2 yc  ⇒ 

{ }
{ }










<∧∈∧∈

<∧∧∈∧∈

otherwisefalse

yrelop
yxYyXxyx

yxyrelopxYyXxyx
iftrue c2

:,

1:,
0

0

 

 

Semantic rule 3.6 relation between two set with bounded instance variables 

 
With these operations there is a risk that the cardinality of the sets is  not the same. If that is the case 
some instances might be ignored. The goal is to try for every instance in the working set of the P. If 
the other sets using the bounded instance variable in their instance operator have more instances then 
those are ignored. Those extra instances are not of any interest in this case. If one of those set have 
less instances than the working set then there is no option but to ignore some of the instances in the 
working set as it is not possible to compare with something that does not exist. However, unlike the 
previous case, here those ignored instances will influence the result. Those instances that cannot be 
compared will be excluded from the query. Consider Examp le 3.3 stating that all instances of X 
should have a response time greater than their counterpart in Y. If X.resp = {3,4,3,2,4} and Y.resp = 
{3,2,4} then there is a cardinality problem as X has two instances more than Y. The effect will be that 
the last two instances of X will not be part of the query. Out of the three instances that is compared, 
only one, X(1) > Y(1); 4 > 2, fulfil the condition. Since two instances from X was excluded those 
cannot be taken into account when calculating the probability as shown in Example 3.4. The result 
from the P function will thus be one third, or 0.333. The answer for the query is false, 0.333 is not 
equal to 1. 

 
P(X(i), X(i).resp > Y(i).resp) = 1 

  
Example 3.3 comparing same instance in two sets 

 
{ }

{ } 333.0
3
1

4,3,2,4,3,3

2,4
==  

 

Example 3.4 calculating result with cardinality problem 

 
Operations between a bounded and an unbounded are a bit different. As explained in Section 3.2 an 
unbounded instance variable is bounded such that, if possible, the condition will be fulfilled. The 
operation is then applied between the bounded and one binding for the unbounded. 

 



 
 

 27 

X(i) aritop Y(j) ⇒ { }YyXxyxyaritopx ∈∧∈∧∃∧∀:  
 

Semantic rule 3.7 arithmetic’s between a set with a bounded  

instance, i, and a set with a unbounded instance, j 

 

P(X(i), X(i) relop1 Y(j)) relop2 yc ⇒ 

{ }







 ∧∈∧∈

otherwisefalse

yrelop
X

yrelopxYyXxx
iftrue c2

1:

 

 

Semantic rule 3.8 relation between a set with bounded and a set with unbounded instance 

 
Example 3.5 states that all instances of X should have a response time greater than the response time 
of an instance of Y. As it says nothing about what instance of Y it should compare with each X could 
be compared with any Y. Thus there can not be any cardinality problem as several instances of X 
could be compared to the same instance of Y. If an instance of X has a response time greater than one 
or more of the instances of Y then it fulfil the condition. Assuming the same sets as above, X.resp = 
{3, 4, 3, 2, 4} and Y.resp = {3, 2, 4}, then four out of the five instances of X fulfil the condition. Only 
X(3) does not as its response time of 2 is not greater than any of the response times of Y. The two 
instances with response time 3, X(0) and X(2), is greater than 2, the response time of Y(1). The two 
instances with response times of 4, X(1) and X(4), is greater than both 3 and 2, Y(0) and Y(1), that 
however is no different from them being greater than only one. As long as they are greater than at 
least one, the condition is fulfilled. As Example 3.6 shows the result from the P function will be 0.8. 
 

P(X(i), X(i).resp > Y(j).resp) = 1. 
 

Example 3.5 relation between a set with bounded and a set with unbounded instance 

 
{ }

8.0
5
43,4,2,3,3,4,2,3

==
X

 

  

Example 3.6 calculating result for a relation between a set  

with bounded and a set with unbounded instance  
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Example 3.7 is the same query as in Example 3.5 only with the working set changed from X(i) to 
Y(j).  Using the same sets X.resp = {3, 4, 3, 2, 4} and Y.resp = {3, 2, 4} as above then two out of the 
three instances fulfil the condition, X(1) > Y(0) and X(0) > Y(1), as shown in Example 3.8. 

 
P(Y(j), X(i).resp > Y(j).resp) = 1. 

 
Example 3.7 relation between a set with bounded and a set with unbounded instance 

 
{ }

666.0
3
22,3,3,4

==
Y

 

  
Example 3.8 calculating result for a relation between a set  

with bounded and a set with unbounded instance  

 
Between two unbounded instance variables is not much different from between a bounded and an 
unbounded. The difference is that if the query is to make any sense it must also contain another 
expression with the bounded instance variable. A P with only unbounded instance variables in the 
condition is like one with only constants. Their bindings will be the same for all instances of the 
working set. Thus the condition will be true for either all or none, i.e. the probability will be either 1 
or 0. 
 

X(j) aritop Y(k) ⇒ { }YyXxyxyaritopx ∈∧∈∧∃∧∃:  
  

 Semantic rule 3.9 arithmetic’s between two sets with unbounded instance variables 

 

P(X(i), X(j) relop1 Y(k)) relop2 yc  ⇒ 
( )



 ∈∧∈

otherwisefalse

yrelopYyXxyrelopxiftrue c2:1
 

  

Semantic rule 3.10 relation between two sets with unbounded instance variables 

 
Using arithmetic’s in the instance operator will quite possibly lead to comparing sets with different 
cardinality. For example comparing X(i) with X(i+1), X(i+1) will be a subset of X(i) containing all 
but the first instance. The first instance of X(i+1) will be X(0+1), i.e . X(1). Consequently there will be 
no instance for the last instance of X(i) to be compared with as there are no instance X(n+1) if X has n 
instances. To deal with this that last instance has to be excluded. Depending on the constant added to i 
several trailing instances could be excluded. For example comparing X(i) with X(i+5) the last five 
instances of X(i) would not be compared. If the arithmetic operator is ‘-‘ instead of ‘+’ would give the 
same problem only then it is the first instances of X(i) that is excluded. Naturally this cardinality 
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problem could also occur when comparing different sets. As discussed previously in this section this 
can happen even without applying arithmetic’s as the two sets can have a different number of 
instances. The problem is solved like for those without arithmetic’s in the instance operator, Semantic  
rule 3.6, with the exception that it is now for x <n y instead of x <0 y.  

 
P(X(i), X(i) relop1 Y(i aritop n)) relop2 yc ⇒ 

{ }
{ }










<∧∈∧∈

<∧∧∈∧∈

otherwisefalse

yrelop
yxYyXxyx

yxyrelopxYyXxyx
iftrue cn

n

2
:,

1:,

 

 

Semantic rule 3.11 relation with arithmetic’s in the instance operator 

 
These cardinality problems  can never occur for unbounded instance variables. However if j is an 
unbounded instance variable then adding n to it would eliminate the n first possible bindings as the 
first one tried would be (0+n). 
 

3.4 Probes 
The condition of a P on probes, a P with the working set *, can contain all the constructions that those 
with tasks have. Except for the instance operator as there is no instances here. The only difference is 
that instead of calculating a probability based on instances it is calculated on time units. A relational 
operation on a probe, the ‘|  |’ operator here count the number of time units rather than elements in a 
set. That is, the number of time units that probeX fulfil the condition divided with the total number of 
time units that probeX have a value.  

 

P(*, *.probeX relop1 xc  ) relop2 y c ⇒  








otherwisefalse

yrelop
probeX

xrelopprobeX
iftrue c

c 2
1

 

 

Semantic rule 3.12 relation in a P on probes 

 
The semantics for using a probe as a data member is no different compared to for any other data 
member. The probability is calculated as the number of instances of the working set that fulfils the 
condition divided with the total number of instances in the working set. The difference when using a 
probe as data member is that the value of the probe can not be found directly. Instead the probe event 
in the execution trace, whose value should be used, need to be found. The value of the probe data 
member should be the value of the probe when the task instance starts, i.e. the value of the probe 
event with the greatest timestamp that is less than the start time of the task instance. 
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X(i).probeX ⇒ X(i).probeX = 
{ }

{ }( )



∈∧<=
∈∧=

tsprobeXevenestartiXtimeetimeet
tsprobeXevenettimeevaluee

).(.:.max
.:.

 

 
Semantic rule 3.13 the value of a probe data member 

 

3.5 Unbounded variables 
A query may contain one unbounded variable. The unbounded variable decides the purpose of the 
query. If there is no unbounded variable then the query decides if a statement about the relation 
between two probabilities is true or not. If the query contains  an unbounded variable then its purpose 
is to bind the variable to such values that the query is true. Hence the relational operators, when 
applied to an unbounded variable, function more like assignments than traditional comparisons. The 
unbounded variables can be used in two contexts. As a probability or inside the condition of a P. 
Queries with unbounded probabilities are relatively straightforward. First the P is evaluated and then 
an interval based on the result is assigned to the variable. For strict equal the result is not an interval. 
Instead the variable is bounded to the probability from P. 

 

P(X(i), X(i) relop xc ) = yv   ⇒ 
{ }

X

xrelopxXxx
y c

v

∧∈
=

:
 

 

Semantic rule 3.14 outer unbounded variable with outer strict equal  

 
For less than and less than  equal the probability from P is the highest value of the interval. The lowest 
possible probability is 0. The two operators differ in that for less than equal the high value should be 
included in the interval while for less than the interval is only up to that value. 

 

P(X(i), X(i) relop xc ) < y v   ⇒ [ ) { }
X

xrelopxXxx
xxy c

mmv

∧∈
==

:
:..0  

 
Semantic rule 3.15 outer unbounded variable with outer less than 

 

P(X(i), X(i) relop xc ) <= yv  ⇒ [ ] { }
X

xrelopxXxx
xxy c

mmv

∧∈
==

:
:..0  

 

Semantic rule 3.16 outer unbounded variable with outer less than equal  
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Greater than and greater than equal work like the less than operators with the exception that the result 
from the P is the lowest value of the interval and not the highest. 

 

P(X(i), X(i) relop xc ) > yv   ⇒ ( ] { }
X

xrelopxXxx
xxy c

mmv

∧∈
==

:
:1..  

 

Semantic rule 3.17 outer unbounded variable with outer greater than 

 

P(X(i), X(i) relop xc ) >= yv  ⇒ [ ] { }
X

xrelopxXxx
xxy c

mmv

∧∈
==

:
:1..  

 

Semantic rule 3.18 outer unbounded variable with outer greater than equal 

 
The unbounded variable must not necessarily be a probability. It could also be part of an expression. 
Finding bindings for these variables are more difficult than for the unbounded probabilities. The 
unbounded variables are bounded to intervals. These intervals can be constructed by finding 
thresholds. A threshold is a value that changes  the result for the P. These thresholds are found around 
the values that the expression the unbounded variable is compared to can take. For example if the 
variable is compared with the response times of X, X(i).resp < xv. If X.resp = {3, 4, 2} then those 
values are 3, 4 and 2. When solving these queries the query should be evaluated with the unbounded 
variable bounded to every one of those values. From this set of possible bindings a subset is gathered 
with all the bindings that makes both the outer and inner relation true. Depending on the operators the 
max or min value of this subset is taken to create an interval of valid bindings, i.e. bindings that make 
the query true. If the min or the max value should be used depends on the combination of operators. 
For some combinations just min and max is not enough as the interval should be up, or down, to the 
value that is just outside the interval. This is the case for example when both operators is ‘>’. There 
the interval is from –8 up to the smallest invalid binding, i.e. the smallest of the bindings that make 
the query false. In the semantic rules below the set of invalid bindings is created as the complement of 
the set of valid bindings. If the start or end of an interval is the least or greatest value in a set of 
possible bindings then the values just outside of this set must also be tested. If the value just outside 
this set is also a valid binding then the start/end of the interval should be -8/8 instead. Consider 
Example 3.9 with the set X.resp = {3, 4, 2}. All three values are valid binging so the value just 
outs ide the set must also be tested. For the operators in this example the interval should end with the 
max value. Thus the extra value to test will be 5. 5 is not a valid binding meaning that the unbounded 
variable will be bounded to the interval (-8..4]. Consider the similar Example 3.10 with the same set. 
As in Example 3.9 all three values are valid and the extra value 5 must be tested. In this case however, 
5 is also a valid binding and the unbounded variable will be bounded to (-8..8).  
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P(X(i), X(i).resp < xv) <= 0.8 
 

Example 3.9 inner unbounded variable 

 

P(X(i), X(i).resp < xv) <= 1 
 

Example 3.10 inner unbounded variable 

 
When the inner operator is not strict equal there will be no difference in the assign method between an 
outer ‘<’ and ‘<=’ or between a ‘>’ and ‘>=’. Hence in the following eight rules any outer ‘<’ could 
be replaced with a ‘<=’ and any outer ‘>’ could be replaced with a ‘>=’. 

 

P(X(i), X(i) < yv ) < xc  ⇒ ( )( ] { }












<
<∧∈

∧∈=∞−= cv x
X

xiXii
XxxSSy

:
::max..  

 

Semantic rule 3.19 inner unbounded variable with inner less than and outer less than 

 

P(X(i), X(i) > yv ) > xc  ⇒ ( )( )
{ } C

cv x
X

xiXii
XxxSSy













>
>∧∈

∧∈=∞−=
:

::min..  

 

Semantic rule 3.20 inner unbounded variable with inner greater than and outer greater than 

 

P(X(i), X(i) >= yv ) > xc  ⇒ ( )( ] { }












>
≥∧∈

∧∈=∞−= cv x
X

xiXii
XxxSSy

:
::max..  

 

Semantic rule 3.21 inner unbounded variable with inner greater than equal and outer greater than 

 

P(X(i), X(i) <= yv ) < xc  ⇒ ( )( ) { } C

cv x
X

xiXii
XxxSSy













<
≤∧∈

∧∈=∞−=
:

::min..  

 

Semantic rule 3.22 inner unbounded variable with inner less than equal and outer less than 
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P(X(i), X(i) > yv ) < xc  ⇒ ( )[ ) { }












<
>∧∈

∧∈=∞= cv x
X

xiXii
XxxSSy

:
::..min  

 

Semantic rule 3.23 inner unbounded variable with inner greater than and outer less than 

 

P(X(i), X(i) < yv ) > xc  ⇒ ( )( ) { } C

cv x
X

xiXii
XxxSSy













>
<∧∈

∧∈=∞=
:

::..max  

 

Semantic rule 3.24 inner unbounded variable with inner less than and outer greater than 

 

P(X(i), X(i) <= yv ) > xc   ⇒ ( )[ ) { }












>
≤∧∈

∧∈=∞= cv x
X

xiXii
XxxSSy

:
::..min  

 

Semantic rule 3.25 inner unbounded variable with inner less than equal and outer greater than 

 

P(X(i), X(i) >= yv ) < xc   ⇒ ( )( ) { } C

cv x
X

xiXii
XxxSSy













<
≥∧∈

∧∈=∞=
:

::..max  

 

Semantic rule 3.26 inner unbounded variable with inner greater than equal and outer less than 

 
When using a strict equality in the query there is a risk of getting an undecidable expression. It is 
quite possible that there are not enough instances  of a task to get some probabilities. Consider the 
query in Example 3.11, if X contains an odd number of instances then there is no possible condition 
that half of the instances meet. If X had for example 3 instances then 1.5 instances would have to 
fulfil the condition. As there are no such thing as half instances this expression is undecidable. The 
only times a query with strict equal is certain to be decidable is when the comparison is  with either 1 
or 0. There is always a value for xv  such that all or none of the instances fulfil the condition. For those 
expressions that are decidable the valid bindings are found in the same manner as for the other 
relational operators. When the outer operator is strict equal and the inner is any but strict equal then an 
interval will be assigned to the unbounded variable. Unlike for without strict equal the interval does 
not necessarily include infinity.  
  

P(X(i), X(i) relop xv) = 0.5 
 

Example 3.11 a possibly undecidable query 
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For the operators ‘>’ and ‘<=’ the first value in the interval is the smallest valid binding. The interval 
then range up to the smallest of the invalid bindings that are greater than the valid bindings. If the 
bindings are sorted then this would mean that the start of the interval is the first valid and the end of 
the interval is the first invalid after that first valid.  

 
P(X(i), X(i) relop yv ) = xc  ⇒ 

[ )

{ }

{ }















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


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


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









=
∧∈

∧∈=



























=
∧∈

∧∈=

=

21

2

1

21

:
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:
:min

:..
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x
X

xrelopiXii
Xxxt

x
X

xrelopiXii
Xxxt

tty
C

c

c

v  

 

Semantic rule 3.27 inner unbounded variable with inner  

greater than or less than equal and outer strict equal 

 
For the operators ‘<’ and ‘>=’ it is the other way around. Assuming a sorted set of bindings the start 
of the interval is the invalid before the first valid. The end of the interval is the greatest valid binding. 

 
P(X(i), X(i) relop yv ) = xc  ⇒ 

( ]

{ }

{ }


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














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







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




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
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




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


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Semantic rule 3.28 inner unbounded variable with inner  

less than or greater than equal and outer strict equal 

 



 
 

 35 

It is also possible to get undecidable expressions when having a strict equality as the inner relation, 
e.g. Example 3.12. It is not necessarily the case that X has enough instances with the same value to 
fulfil the condition. Consider for example the set {1, 2, 3, 4, 2} and the relational operator ‘>’. There 
is no value for xv that more than half of the instances are equal to.  
 

P(X(i), X(i) = xv ) relop 0.5 
 

Example 3.12 a possibly undecidable query 

 
When the outer operator is ‘<’ or ‘<=’ the unbounded variable can be bounded to any value but the 
ones from our set of bindings that are not valid. Hence the unbounded variable will not be bounded to 
one but several intervals. These are the intervals that are created when splitting the interval (-8..8) at 
the values from the subset of invalid bindings.  
 
P(X(i), X(i) = yv ) relop xc  ⇒ 

( )( ) )( )( ( ) { } C

cnnnnv xrelop
X

xiXii
XxxSSSSSSSSSy











 =∧∈

∧∈=∞∞−= −−

:
::........... 111100  

 

Semantic rule 3.29 inner unbounded variable with inner  

strict equal and outer less than or less than  equal  

 
Example 3.13 would, if X = {1, 2, 3, 4, 2}, give yv = (-8..2)(2..8). The probability of X(i) = 2 is 2 / 5 
= 0.4. For any of the other values in the set the probability is 0.2. For any value not included in  that 
set the probability is naturally 0. Thus the query is true for any value between -8 and 8 except 2. 
 

P(X(i), X(i) = yv) < 0.4 
 

Example 3.13 inner unbounded variable with inner strict equal and outer less than 

 
With the outer operators ‘>’, ‘>=’ and ‘=’ the unbounded variable is no bounded to any interval at all. 
Instead the only values for the unbounded that makes the query true is exactly the valid bindings. 
Hence instead of an interval the set of valid bindings is assigned to the unbounded variable. 

 

P(X(i), X(i) = yv ) relop xc  ⇒ 
{ }











 =∧∈

∧∈= cv xrelop
X

xiXii
Xxxy

:
:  

 

Semantic rule 3.30 inner unbounded variable with inner  

strict equal and outer greater than or greater than equal  
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Consider Example 3.14, it is the same query as in Example 3.13 above only with a different outer 
operator. If X = {1, 2, 3, 4, 2} then X(i) = 2 gives the probability 0.4. Any other value gives  0.2 or 0. 
For this query that means yv = [2]. 2 is the only value that gives a probability greater than or equal to 
0.4.  
 

P(X(i), X(i) = yv) >= 0.4 
 

Example 3.14 inner unbounded variable with inner strict equal and outer greater than equal 

 
There is one exception to those two rules, when the outer relation is ‘= 0’ Semantic rule 3.29 should 
be used, not Semantic rule 3.30 as normally when both are strict equal. The values to try for yv are the 
values in the set X. Thus the condition is always true for at least one instance as all values are equal to 
themselves. Because of this it is not possible to get a probability of 0 when both operators are strict 
equal. However there are undeniably values that would result in a probability of 0. Any value that is 
not in the set X would give that. Hence X could be bounded to any value except the ones in the set X. 
That is exactly what is done in Semantic rule 3.29, and thus it can be used for this case.  
 
As discussed previously in this section these queries can be undecidable. There are no restrictions on 
them in order to prevent this. There are two reasons for this. First to fully remove the risk of 
undecidable expressions they would need to be restricted to the point where strict equality may barely 
be used at all. The only certain queries are those where probabilities are compared to 1 or 0. Secondly 
it is easy to, when trying to bind the variable, find out if the expression is undecidable. If a query is 
found to be undecidable then the answer will simply be that there is no valid binding.  
 

3.6 Logic operators 
The logic operators AND and OR connect several expressions. Thus the semantics for a query with 
logic operators is a combination of the semantic rules for its expressions. With the AND operator the 
same kind of cardinality problems that was discussed previously, in Section 3.3, concerning instances 
can occur. If the same instance variable is used in instance operators for different sets in two 
expressions connected by AND then it might not be possible to compare all the instances. In the same 
way as before only as many instances as the smallest of the involved sets contain can be compared. 
Any other instances must be ignored.  
 

P(X(i), X(i) relop1 xc  AND Y(i) relop2 yc) relop3 zc   ⇒ 

{ }
{ }










<∧∈∧∈

<∧∧∧∈∧∈

otherwisefalse

zrelop
yxYyXxyx

yxyrelopyxrelopxYyXxyx
iftrue c

cc
3

:,

21:,
0

0

 

 

Semantic rule 3.31 AND without unbounded instance variables 
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P(X(i), X(i) relop1 xc  AND Y(j) relop2 yc) relop3 zc   ⇒ 

{ }







 ∧∧∈∧∈

otherwisefalse

zrelop
X

yrelopyxrelopxYyXxx
iftrue c

cc 3
21:

 

 

Semantic rule 3.32 AND with unbounded instance variables 

 
Expressions connected with the OR operator work similar to those connected with AND. The 
significant difference is that the cardinality problem not occurs. If the set in the other expression 
contain fewer instances, then that expression is simply considered to be false for those instances. This 
can be done since OR only require one of its operands to be true.  
 

X Y X < 3  Y < 3 AND OR 
1 4 true false false true 
3 5 false false false false 
2 2 true true true true 
4  false   false 
2  true   true 

 

Example 3.15 truth table for two sets X and Y 

 
P(X(i), X(i) relop1 xc  OR Y(i) relop2 yc) relop3 zc  ⇒ 

( ){ }







 <∧∨∧∈∧∈

otherwisefalse

zrelop
X

yxyrelopyxrelopxYyXxx
iftrue c

cc
3

21: 0

 

 

Semantic rule 3.33 OR without unbounded instance variables 

 
P(X(i), X(i) relop1 xc  OR Y(j) relop2 yc) relop3 zc  ⇒ 

( ){ }







 ∨∧∈∧∈

otherwisefalse

zrelop
X

yrelopyxrelopxYyXxx
iftrue c

cc 3
21:

 

 

Semantic rule 3.34 OR with unbounded instance variables 
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Queries with unbounded variables and AND or OR operators work like the regular unbounded 
variable queries. Is it the probability that is unbounded then there is no difference at all as the variable 
is bounded to the result from the P function. In the other cases the AND or OR is added to the 
condition when the subset of valid bindings is created. Then the variable is, depending on the 
relational operators, bounded to this set or an interval involving the min or max of it, as previously 
defined in Section 3.5. As examples the semantic rules for when both relations are less than, i.e. logic 
operators added to Semantic rule 3.19. 
 

P(X(i), X(i) < yv AND Y(i) relop yc) < xc  ⇒ 

( )( ]
{ }

{ } 











<
<∧∈∧∈

<∧∧<∧∈∧∈
∧∈=∞−= c

c

v x
yiYyXiyi

yiyrelopyxiYyXiyi
XxxSSy

0

0

:,

:,
::max..  

 

Semantic rule 3.35 AND operator and inner unbounded variable with inner and outer less than 

  
P(X(i), X(i) < yv OR Y(i) relop yc) < xc   ⇒  

( )( ]
( ){ }













<
<∧∨<∧∈∧∈

∧∈=∞−= c

c

v x
X

yiyrelopyxiYyXii
XxxSSy

0:
::max..  

 

Semantic rule 3.36 OR operator and inner unbounded variable with inner and outer less than  

 
If the operand to the NOT operator is true then the result from the operation is false. If the operand is 
false then the result will be true. 

 

NOT( exp ) ⇒ 


 =

otherwisefalse
falseiftrue exp

 

 
Semantic rule 3.37 NOT operator 

 

3.7 Following 
The function following does not really add or change anything to the semantics of the query. Its 
purpose is only to map instances on their start times. The instance of Y that follows X(i) is the first 
instance of Y executing after the end of X(i). 
 

Y(following(X(i))) ⇒ { }( )endiXyendYyyendjYjY ).(.:min).(:)( >∧∈=  
 

Semantic rule 3.38 following 
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The semantics for a query containing following is naturally the same as for those without. The only 
difference is the introduction of the risk that not all instances of X necessarily have a matching 
instance of Y. There might not be any instances in X that start after some instance of Y. An extreme 
example would be that first all instances of Y execute and then all instances of X execute. This is 
basically the same problem as the cardinality problems discussed in Section 3.3 and thus can be 
solved the same way. Those instances that do not have a match are excluded from the query. 
 

3.8 Instance sequencing 
Instance sequencing is a simplified way of writing expressions containing several AND operators. 
When several consecutive instances are to be compared they can simply be writ ten as one comparison 
on a sequence instead of several comparisons combined with ANDs. The range of the sequence must 
be increasing. The numbers may be negative as for example looking at the previous, current and 
following instance, X(i + [-1..1]). As these queries are only a number of AND connected expressions 
they are solved no different than other queries with AND operators as defined in Section 3.6. The 
query is first translated from sequence to AND form, i.e. any sequence is replaced by several 
expressions connected by AND.  

 
X(i aritop [n..m]) relop xc  ⇒ X(i aritop n) relop xc AND 

X(i aritop n+1) relop xc  AND 
X(i aritop n+2) relop xc  AND 
… 
X(i aritop m-1) relop xc AND 
X(i aritop m) relop xc  

 

Example 3.16 translating relation between sequence and scalar 

 
The sequence does not have to be compared to a constant. It could also be compared with another 
sequence. Comparing two sequences results in a matrix like effect as each instance of the first 
sequence is compared to each instance of the second, i.e. the cross product.  
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X(i aritop1 [n..m]) relop Y(i aritop2 [a..b])    ⇒  X(i aritop1 n) relop Y(i aritop2 a) AND 

X(i aritop1 n) relop Y(i aritop2 a+1) AND 
… 
X(i aritop1 n) relop Y(i aritop2 b) AND 
X(i aritop1 n+1) relop Y(i aritop2 a) AND 
X(i aritop1 n+1) relop Y(i aritop2 a+1) AND 
… 
X(i aritop1 n+1) relop Y(i aritop2 b) AND 
… 
X(i aritop1 m) relop Y(i aritop2 a) AND 
X(i aritop1 m) relop Y(i aritop2 a+1) AND 
… 
X(i aritop1 m) relop Y(i aritop2 b) 

 

Example 3.17 translating a relation between two sequences 

 
Sequences may be combined with the function following in two ways. The instance given in the 
argument to following  may contain a sequence as in Example 3.18. A sequence can also be added to 
the index returned from following as in Example 3.19. With the sequence given in the argument of the 
following  function results in a number of following  functions with different arguments when 
translating the queries to “AND-form”. One for each instance in the sequence. When applied after the 
following  function the argument or return value will not change. Instead the sequence is applied to the 
index returned. Moreover the two could be combined as in Example 3.20. This results in a sequence 
of indexes from following . To each of them the second sequence is applied. 

 
X(following(Y(i aritop [n..m]))) relop xc  ⇒ X(following(Y(i aritop n))) relop xc AND 

X(following(Y(i aritop n+1))) relop xc AND 
… 
X(following(Y(i aritop m))) relop xc 

 

Example 3.18 translating a sequence as argument to following 

 
X(following(Y(i)) aritop [n..m]) relop xc  ⇒ X(following(Y(i)) aritop n) relop xc AND 

X(following(Y(i)) aritop n+1) relop xc AND 
… 
X(following(Y(i)) aritop m) relop xc 

 

Example 3.19 translating a sequence applied to the result from following 
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X(following(Y(i aritop1 [n..m])) aritop2 [a..b]) relop xc  ⇒  

X(following(Y(i aritop1 n)) aritop2 a) relop xc AND 
X(following(Y(i aritop1 n+1)) aritop2 a) relop xc AND 
… 
X(following(Y(i aritop1 m)) aritop2 a) relop xc  AND 
X(following(Y(i aritop1 n)) aritop2 a+1) relop xc AND 
X(following(Y(i aritop1 n+1)) aritop2 a+1) relop xc AND 
… 
X(following(Y(i aritop1 m)) aritop2 a+1) relop xc AND 
X(following(Y(i aritop1 n)) aritop2 b) relop xc  AND 
X(following(Y(i aritop1 n+1)) aritop2 b) relop xc AND 
… 
X(following(Y(i aritop1 m)) aritop2 b) relop xc  

 

Example 3.20 translating a following with sequences both in argument and on its result 
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4 The tool 
A tool has been implemented that evaluates PPL queries using the semantics defined in Section 3. The 
tool is divided into three parts. A parser that recognises queries and builds them into suitable tree 
structures, a log file compiler that reads a trace and compiles its data into task instances, and the 
actual query evaluator, that evaluates queries from the parser on the data from the compiler. The three 
parts are combined into one application. 
 
The tool does not come with a graphical user interface. Although it can be used by itself it is intended 
to be run from some other application. It takes three arguments, a log file, a query file and a result file. 
The log file is the trace to be analysed. The query file contains one or more PPL queries. If the file 
contain several queries then they are separated by ‘;’. The result file is where the tool writes the 
results for the queries. 
 

4.1 Parser 
The first stage of the tool is to read the query file and check the queries for errors. For this a scanner 
and a parser was created using two tools: Flex [11] and Bison [7]. Flex creates a scanner given an 
input file containing the regular expressions it should recognize and what actions to take for each 
expression. Bison creates a bottom up parser given a context free grammar. In this grammar semantic 
actions are used to build an Abstract Syntax Tree , AST, of the query. These actions are also used to 
perform various error checking. 
 
The scanner recognises all valid constructs that can be part of a query and creates tokens for them. 
Each token is passed on to the parser. If what it reads does not match any of the regular expressions 
for valid constructs then an error message is generated and scanning is aborted.  
 
The parser calls the scanner to get the next token. If the token received match a following terminal in 
the grammar then that terminal is consumed and the parser continues with the next token. If no 
matching terminal is found then there is a parse error, a syntactical error in the query. If a parse error 
is found the parsing is aborted. The second purpose of the parser, the first being syntax checking, is to 
construct an AST from the query. At the end of each grammar rule a tree node is constructed and 
passed up to the rule above. Each node contains pointers to all of its sub trees plus other information 
like data or operator depending on what kind of node it is (see Appendix B for details on the nodes). 
The grammar also has semantic actions to check that no P function contain both the all tasks set, ‘*’, 
and regular tasks. 
 
If the query parsed contains any sequences then the next step after parsing is to translate all sequences 
into AND connected expressions. The translation is done by a recursive algorithm traversing the AST 
in post order. It searches for a node containing a sequence. On its way it stores the latest visited node 
for a logic expression and the latest visited node for a relational expression. Once a sequence node is 
found copies are made of the expression it is part of. This expression is the latest relational expression 
that is stored. One copy is made for each index in the sequence. The sequence node of the copy is 
replaced by a regular index node. All the copies are then connected with AND operators. The final 
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task is to connect all these nodes to the tree. This is where the stored latest logic expression node is 
used. That node is simply the point where these new nodes are to be inserted. Now that the sequence 
is translated the algorithm start over. From the root of the tree it searches for another sequence to 
translate. It cannot just continue from where it was as the expression it has made copies of might 
contain several sequences. Thus it needs to start from the beginning after each translation. The 
algorithm is done once it has traversed the entire tree without finding any sequence. 
 
After sequences have been translated it is time for type checking. Type checking is also done by an 
recursive algorithm traversing the AST in post order. There are two types, NUM and BOOL. 
Unbounded variables are considered as type NUM since they are to be bounded to numeric values. On 
the way up from the recursion each node returns its type. For each operator node the types of the 
operand expression(s) is checked. If the type is wrong the type TYPE_ERROR is returned. For the 
property node, the root node of the tree that make up the outermost relation between two probabilities, 
a special check is performed to make sure that if an operand is a constant it must not be greater than 1 
or less than 0. In addition such comparisons, i.e. comparing if a probability is greater than 1 or less 
than 0, is also not allowed. The next step is to do an “unbounded check”. A query may never contain 
more than one unbounded variable. The entire AST is traversed and for every found unbounded 
variable node a counter is increased by one. If the value of this counter becomes greater than 1 then 
there are too many unbounded variables in the query. 

 

4.2 Log file compiler 
The log files that are to be analysed consist of three parts, first a header containing, among other 
things, the number of tasks in the system, then a task list with the names and id of all the tasks, and 
finally a list of events. These events are raw data about task switches and probe observations. In order 
to evaluate queries on this data the task switch events must first be compiled into task instances.  
 
The purpose of this step is to create two lists, a probe list and a task list, for use in the query 
evaluation. The task list is to contain all tasks where each task has a list of all its instances. The probe 
list is similar. It contains all the probes where each probe has a list of all observations it has made. For 
each task instance data from several events are needed . At least two events are needed, one for the 
start and one for the end of the instance. Thus a temporary working instance is needed. As tasks pre-
empt each other there will be times when information about more than one task instance need to be 
kept. Thus a list of such incomplete instances  is needed . This is called the active list as it is the list of 
the tasks currently active. When a task switch event is read it gives information about the state of the 
previous task and what task was started. If the started task was not in the active list then it is added. 
Depending on the state of the previous task it is either done with its execution or waiting to exe cute 
once again. If the task is not done then its execution time is increased with the time it had been 
running since last started/resumed. The task is then left in the active list. If the task is done executing 
then the end time is set and its response time calculated as well. This task is then removed from the 
active list and added as an instance in its list in the task list. For probes there are no instances, only 
observed changes  are stored. Thus there is no need to keep an active list for them. Instead a probe 
event is simply added to the event list for that probe. 
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A log file contains events from only a short period of the systems running time. Because of this it 
might be that some instances recorded are incomplete, i.e. they start or end outside of the log. 
Consider the example log in Figure 4.1. Task A is first noticed when it is switched to at time 2. The 
problem is that there is no way of knowing whether this is a new instance of A or if it was a 
resumption of an instance s tarted outside of the log. From the log it is impossible to see any difference 
between a resumed and a started task. Thus it must be assumed that this is the start of a new instance 
risking the introduction of a slight error. Task B in the example start just before the beginning of the 
log and is the task running when the log begin. The first event of the log is task B being done and A 
switched in. The event does however not say that it was task B that was done. It only shows that the 
currently running task was done. Thus there is no way of knowing that it was task B. In this case there 
is no other option but to ignore that B. Task C was pre-empted by D, i.e. it is not yet done with its 
execution. But the remainder of its execution occurs after the end of this log file. In this case there are 
some options. Enough information has been gathered to construct a valid instance of C. But it is 
known that not all information has been gathered making this instance faulty. The two most 
straightforward solutions would be to either remove the instance as it is incomplete or to add the 
current part as an instance. Other ways would be to make some educated guess on how the remainder 
of the instance looks. No matter what option is chosen some fault is introduced. The first option, to 
remove it, was chosen reasoning that the lack of that instance is a lesser error than adding a faulty 
instance. Task D is the task running at the end of the log file. It is similar to B only here there is a start 
but no end. D is also similar to C in the way that an instance could be constructed assuming the end of 
the log file as the end of the instance. Like with C the option to remove the instance rather than adding 
incomplete information was chosen.  
 

  start of log     end of log  
Task A A A    A A A       
Task B   B B B          
Task C         C C    C 
Task D           D D D  
time    0 1 2 3 4 5 6 7    

 

Figure 4.1 an example log 

 

4.3 Query evaluation 
There are two kinds of queries, those with properties and those that, consist of a function only. A 
function is simply evaluated the same way it would have been evaluated had it been part of a property. 
The result is then written to the result file. For the properties there are two basic categories, those with 
and those without unbounded variables.  
 
Each P function node and statistical function node in the AST has a symbol table. This table contains 
name and current value for variables, i.e. the bounded instance, all probes, all unbounded instances 
and the unbounded variable, used in the condition of that function.  The table also contains  an invalid 
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value flag that is set when, for some reason, no valid value for some sub expression of the condition 
can be found using the current value on the variables.  
 
4.3.1 P on task 
For properties without unbounded variables the property is a relational operator applied to two 
probabilities. If this relation is true then the result of the query is true, if not then the result is false.  A 
probability is either a constant or a P function. The actual work in these queries is to evaluate the P 
function. The working set of the P is either a task with an instance operator or all tasks, “*”. 
Depending on which of them it is the evaluation is done quite differently. In either case the first thing 
to do is to push the symbol table of the P on a global symbol table stack.  
 
If the working set of the P is a task then the first step is a loop that evaluates the condition for each of 
the instances of that set, i.e. all values for the bounded instance variable, as shown in  
Figure 4.2. For each of those instances the first step is a recursive loop function. This loop function 
will call itself once for each unbounded instance variable. This gives us a set of nested loops, one for 
each instance variable. For each iteration of these loops the value of that instance variable in the 
symbol table is updated. The innermost loop calls the evaluation function for the expression. These 
nested loops allow evaluation of the condition for every possible combination of unbounded instance 
variables. But since it only needs to be true for one combination all possibilities will commonly not 
have to be tested.  
 
Once a combination that makes the condition true is found the loop function aborts and returns true to 
the bounded instance variable loop. If all combinations was tried but the condition was not true for 
any of them then the loop function returns false. Apart from true and false the loop function could also 
return invalid . The reason for an invalid is because the condition could not be evaluated. Most 
commonly this is because of the cardinality problems  when comparing instances. It could also be 
when using following and an instance does not follow any instance in the other set. The bounded 
instance loop counts how many true and how many invalid results it get. Once all the instances has 
been iterated the result for the P function is calculated as the number of true divided by how many that 
did not give an invalid result.  
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Figure 4.2 Evaluation of P 
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Figure 4.3 Loop function for P on task 
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4.3.2 P on probes 
For P with the working set “*” the basic idea is the same as for P with a task as working set. It is 
however done quite differently. As these P work on probes over time there are no instances, instead it 
is time units that is iterated in its version of the loop function. First the point in time when all probes 
in the expression have a value is found. It is unknown what value, if any, a probe has  until the first 
probe event in the trace for that probe. It is not possible to evaluate an expression containing a probe 
with no value. Hence, similar to with the instance cardinality problem, the time before all involved 
probes have values must be excluded. Once that is done the value of the probes is set in the symbol 
table. The expression is then evaluated. If it is  true then the amount of time it was true is stored. This 
time is from the time of the event when the values were set up to the next probe event for any of the 
involved probes. For the last values this is up to the end of the log. This is then repeated for all probe 
events. The value in the symbol table is updated and the expression evaluated. The time for all values 
that made the expression true is summed up to get the total amount of time units that the condition is 
fulfilled. The result from the P is then calculated by dividing this total true time with the total time. 
The total time start at the first point where all the probes had values and ranges until the end of the 
log.  
 

Find common
start time

Start Set probe value in
symbol table

Evaluate True?
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time true
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Yes

No
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Figure 4.4 Loop function for P on probes 

 
4.3.3 Evaluating 
The evaluation of the expression is done the same way for both P on tasks and P on probes . A few 
recursive functions traverse the AST for the expression evaluating it bottom up. Operator nodes are 
evaluated by evaluating the operand expression(s) and then applying the operator to the results .  
 
The statistical functions are independent of the expression they are part of. They have their own 
symbol table, i.e. the instance variable i used in the arguments to the statistical function is not the 
same as the instance variable i used outside it  like for example in Example 4.1. Thus the result from 
one of the statistical functions will be the same for all of the bounded instances. To avoid wasting 
time evaluating the function several times the result of the function is stored once it has been 
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evaluated. When the function node is reached for the rest of the instances the stored value is simply 
returned.  
 

P(t (i), t (i).resp > avg(t (i).resp)) > 0.9 
 

Example 4.1 instance variables in statistical functions 

 
A task node contains the name of the task, its instance operator and the data member to be used. When 
evaluating a task node the first thing to do is to evaluate the instance operator. If it does not contain a 
following  function then the current value of the instance variable is retrieved from the symbol table. If 
it does have a following function then the instance of the task that execute closest after the task 
instance to be followed must be found. Instances are sorted after start times and thus also end time as 
instance X(i + 1) cannot end before instance X(i). Because of this the right instance for following  can 
be found by searching through the instance list from start. The first instance that ends after the end 
time of the instance to follow is the instance returned from following. Since it is known that the 
instances are sorted like this it is not necessary to search through the entire lis t every time. If instance 
X(i) was followed by instance Y(j) then X(i + 1) cannot be followed by an instance before Y(j). To 
make use of this the following function node keeps a shortcut pointer to the previously used instance, 
in this case Y(j). This eliminates a great deal of unnecessary iterations.  
 
Once the value from the instance variable or following function has been retrieved any arithmetic’s is 
applied to get the result from the instance operator. The task node now knows what data member from 
what instance of the task to use. To get the value of this data member the instance must first be found 
in the instance list of this task. To avoid searching through the entire list each time the task node, like 
the following function node, keep shortcut pointers. This works here also since the instances are 
looped through in order. The wanted instance can never be positioned before the previous one in the 
list. The exception is for unbounded instance variables or, as will be shown later, unbounded 
variables. With for example one unbounded instance that one unbounded instance will be looped 
through once for each value on the bounded instance. The instances will still be in order but when the 
bounded instance is increased the value on the unbounded instance, and hence shortcut pointers as 
well, must be reset. If the data member wanted was start, end, resp  or exec then the value is found in 
the instance and returned. If the data member was not one of them then it was a probe.  
 
The probe values unlike the others are not found in the instance. Instead the event list for the probe 
must be searched through . The value for a probe data member of a task instance is the value that 
probe had when the instance begun its execution. As the probe events are sorted on their time shortcut 
pointers can be used for the probes as well. The probe event for the instance X(i + 1) is the same or a 
later one as for instance X(i). Once the right probe event is found its value is the value for the probe 
data member of this task instance. In an AST for a P on probes there are no task nodes. Instead it has 
probe nodes representing the construct *.probeX. As explained in Section 4.3.2 the loop function for P 
on probes updates  the values for the probes in its symbol table. This is now used when a probe node is 
evaluated by simply taking the value found in the symbol table.  
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4.3.4 Unbounded variables 
There are two different kinds of unbounded variables, outer unbounded variables and inner 
unbounded variable s. Outer unbounded is when the unbounded variable is a probability, i.e. it is 
outside of a P function. These are relatively simple, the P function is evaluated exactly like it would 
have been if there where no unbounded variable. An interval based on the result from this P is then 
assigned to the unbounded variable. Inner unbounded, i.e. an unbounded variable in the conditional 
expression of a P function, is quite different. The first task is to find a set of all values that need to be 
tried as bindings. This is done by first finding the relational operation where the unbounded variable is 
one operand. The values to try as bindings are all possible values the other operand of that relational 
operation can take. That expression is evaluated for all possible values on instance variables to get a 
set of binding values. This set might contain duplets, but there is no point in trying the same value 
several times as  the result would always be the same. Hence any duplets is removed from the set. The 
set is then sorted as the algorit hms used require that. There are three of these algorithms , which of 
them is used depend on the two operators involved. These operators are the outer, i.e. the one between 
probabilities in the property, and the inner, i.e. the one where the unbounded variable is one of the 
operands. All three work somewhat similarly. They take values from the set of possible bindings and 
set them as the current value of the unbounded variable in the symbol table. Then the query is 
evaluated for that value using the same functions used for evaluating properties without unbounded 
variable. The unbounded variable has its own node. When such a node is found the variables current 
value is taken from the symbol table. The result from the query, true or false is stored with the value.  
 
If neither operator is strict equal, ‘=’, then the fastest of the algorithms, the quick way, can be used. 
This one is a divide and conquer style algorithm. It begins with evaluating the expression for the first 
and last values in the set of bindings. The key in this algorithm is the fact that there will be, at most, 
one threshold value, i.e. there will be no more than one binding that changes the result. All values 
after this threshold value will give the one result and all values before will give the other result. Thus 
it is also known that if the result from the first and the last value is the same then there is no such 
threshold, i.e. it is either true or false for all bindings. If the first and last is different then the threshold 
is searched for. This is done by evaluating for the value in the middle of the first and last. If the result 
from the middle value is the same as the first then the middle is considered the new first. If it is the 
same as the last then it is considered the new last. This is then repeated until first and last are next to 
each other. First and last will then give different results and the threshold has been found. The major 
benefit of this algorithm is that the result can be found after evaluating only a fraction of all the 
possible bindings. The efficiency of this algorithm is O(log n). The only exception is when there is no 
threshold. In that case it is O(1). 
 
If the outer operator is strict equal, and the inner any but strict equal, then the middle way can be used. 
With an outer strict equal there are two thresholds, which is why the fast way can not be used. The 
first threshold change the result and that result then continues until the second threshold is reached. 
What this algorithm does is to begin with the first value and then evaluate for each value until it finds 
the first threshold. The second threshold is later found by continuing the search. When the second is 
found there is no need to search anymore. Thus every possible value does not need to be evaluated. 
Still, in most cases, far more than for the quick way need to be evaluated. This method can vary 
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noticeably in performance. In the best case, the thresholds being the first values, only two evaluations 
are needed. In the worst case, one of the thresholds being the last value, every value needs to be 
evaluated. The efficiency of this algorithm is in the best case O(1) and at worst O(n). 
 
If the inner operator is strict equal then a slow way need to be used. With an inner strict equal the 
whole threshold system falls apart. Theoretically every value could be a threshold. The interval the 
unbounded variable is bounded to in the end is not really an interval but a set of values or a set of 
intervals. This means that the query must always be evaluated for every possible binding. The 
efficiency of this algorithm is always O(n). 
 
Once the thresholds have been found, or in the case of the slow way a full set of results, the interval to 
assign to the unbounded variable should be constructed. If a threshold was found using the fast way 
then assigning is a simple task of applying the semantic rule from Section 3. Depending on the 
operators an interval from -8 to the threshold or from the threshold to 8 is constructed. If no 
threshold was found two more evaluations are needed. It might be that the threshold is just outside our 
set of bindings. The query is evaluated with the unbounded variable given the first value – 1 and the 
last value + 1. If a threshold is found on one of them then an interval is assigned accordingly. If not 
then the interval will be empty if the results are false or from -8 to 8 if the results are true. For outer 
strict equal intervals are assigned similarly. The difference is that the interval does not start or end 
with -8 or 8 by default. Instead the interval is between the two thresholds. If the thresholds are on the 
first or last value the values just outside the set must be evaluated here also to see if that really is the 
threshold or if the interval should start/end with infinity. With an inner strict equal assigning is a bit 
different. If the outer operator is less than, less than equal or the special case strict equal to 0 then 
intervals  should be constructed. As explained in Semantic rule 3.29, the interval (-8. .8)  is split into 
several intervals excluding the values that gave the result false. This is done by starting with -8 then 
finding the first value that gave the result false. The current interval is ended and a new one started 
with that value. This is repeated until all values with the result false have been added. Finally the last 
interval is closed with 8. If the outer operator is any other, greater than, greater than equal or strict 
equal to anything but 0, then a set rather than an interval should be assigned to the unbounded 
variable. This is done by going through the set of results and adding all values that made it true to the 
assigned set. 
 

4.4 Performance issues 
All times measured and presented here was from tests on a system with a 600MHz processor and 
384MB memory running Windows 2000.  
 
Usually most queries would be solved more or less instantly. For these queries reading and compiling 
the trace take most of the time. A large trace with 300000 events takes about five seconds to read and 
another two seconds to compile. There is  however certain constructs and combinations that are more 
time consuming to evaluate, in general this concern unbounded variables and instances. As explained 
in Section 4.3.4 an inner unbounded variable is evaluated in two steps. First all possible values the 
unbounded can be compared to are found. Then the query is evaluated with the unbounded variable 
set to each of those values. In that section the three different algorithms used for this  was also 
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explained. The fastest algorithm was used when neither of the two operators are strict equal. This 
algorithm reduced the number of those possible values that needed to be tested heavily. Because of 
this algorithm such constructs do not lead to any significant time issues. For a frequently executing 
task, about 30000 instances, a query with an unbounded variable like Example 4.2 would take about 
two seconds while one without unbounded like Example 4.3 would take less than a second.  
 

P(T1(i), T1(i).resp < X) > 0.75 
 

Example 4.2 a standard inner unbounded variable query 

 
P(T1(i), T1(i).resp < 50) > 0.75 

 
Example 4.3 a standard relation query 

 
When either operator is strict equal the query becomes much more time consuming. With strict equal 
as the inner operator, as in Example 4.4, every one of those possible values would need to be tested. 
With the same 30000 instance task as above that query would take somewhere in the region of 40 
minutes to evaluate. If only the outer operator is strict equal, as in Example 4.5, then the time required 
is rather unpredictable. At worst this gives the same scenario as for the inner strict equal. At best the 
time required would be closer to those queries without strict equal. Commonly the time would 
probably be closer to the worst case than  the best case as finding a value that exactly match a 
probability, like 0.5 in this case, is rare.  
 

P(T1(i), T1(i).resp = X) > 0.5 
 

Example 4.4 inner unbounded variable with inner strict equal 

 
P(T1(i), T1(i).resp > X) = 0.5 

 
Example 4.5 inner unbounded variable with outer strict equal 

 
Unbounded instance variables are time consuming for similar reasons as the unbounded variables. 
Like for outer strict equal on the variables the time required to evaluate queries with unbounded 
instance variables are quite varying. At best the first instance makes the property true and nothing 
more need to be tested. At worst every possibility must be tested. Assuming that the queries written 
with unbounded instance variables are used to confirm assumptions rather than wild guesses it is 
likely that most evaluations come closer to the best case than the worst case. For example unbounded 
instance variables could typically be used to check pre-emption. If the property is formulated on tasks 
that is known, or at least believed, to pre-empt each other then there will likely be some instances that 
are true.  
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As these queries are evaluated by testing every possible combination on the instances the time 
required to evaluate them increase drastically if more unbounded instances are added to them. The 
time required for a query without unbounded instances is linear, since there is only the one bounded 
instance. With one unbounded the time is quadratic, bounded instance * unbounded instance1. With 
two unbounded it becomes cubic, bounded instance * unbounded instance1 * unbounded instance2, 
etc. When saying quadratic and cubic here it is assume d that all the tasks have the same number of 
instances. That is commonly not true but the concept still remains. For every added unbounded 
instance the total number of evaluations needed in the worst case is multiplied with the size of the 
largest task with that unbounded instance as instance operator.  
 
Unbounded variables and unbounded instances  are similar in how much time they require. Adding an 
unbounded variable to a query means that the number of required evaluations is multiplied with the 
number of possible bindings for the variable.  
 
The conclusion of this is that to keep the time it takes to evaluate a query reasonable, the number of 
unbounded instance variables should be kept low. To combine inner unbounded variables and 
unbounded instance variables is not recommended. For inner unbounded variables the use of strict 
equal should be avoided. For the 30000 instance task using other operators reduced the factor 
multiplied to the number of evaluations needed from 30 000 down to 17, O(n2) to O(n log n). In time 
the difference is from 40 minutes down to some seconds. Using strict equal is not very useful to start 
with. It is very rare that there are properties where something matches an exact probability. In most 
cases where it would be useful the comparison would be to a probability of 0 or 1. A tip for those 
cases would be to use >= 1 and <= 0 as those would give the same result but use a different algorithm. 
In general it is worth considering if the strict equal could not be replaced with a different operator.   
 
The main problem with these queries is that very large amounts of evaluations have to be performed. 
To come up with a different algorithm that does not require as many evaluations is the only way to 
reduce the time down towards the levels of queries without unbounded variables. No suggestion for 
how this could be done has been brought forth. However, two other thoughts, regarding data 
structures and further shortcut pointers, have been discussed under future development (Section 6.2). 
 

4.5 Test: SQL v PPL  
As we where to begin the work of defining the PPL language some tests were performed comparing 
PPL with SQL. We felt it would be interesting to see how much of the PPL language could be done 
with a query language like SQL. In addition it could prove useful to have shortly studied a different 
language when we defining PPL and implementing the tool. 
 
4.5.1 SQL introduction 
SQL, Structured Query Language, [10] is a query language for modifying and retrieving information 
from relational databases. Such databases are based on tables with columns and rows. Each row 
represents  a post in that table. The columns are named and represent the data fields of the posts. Using 
the SELECT statement we can retrieve columns from tables specified with the FROM statement. 
Using the WHERE statement we specify conditions that the rows of the selected columns should 
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fulfil. In our tests we make use of a function Count. It is used in the SELECT statement to count the 
number of rows in the selected columns.  
 
4.5.2 The tests 
We choose four simple queries as we believe SQL will have trouble solving more complex ones. 
Complexity in a PPL query would come from comparing instances with other instances or by adding 
unbounded variables. Just extracting instances based on a comparison with a constant should be no 
problem. We expect SQL to fail however when we need to compare instances with each other or 
when we compare relative instances.  
 
For the tests we created a database containing one table, Log, which is to represent a log file. This 
table has five columns, Task , Instance, Start, Resp , and Exec. Each row in the table is an instance of a 
task. The task-column shows what task and the instance-column shows what instance of that task. 
Start is the start-time, Resp the response-time and Exec the execution-time of the instance. We had to 
add the instance numbers as a column in the table in order to be able to compare instances using SQL.  
 
Here we present our four tests. First we present the problem and how it would be formulated using 
PPL. Then the SQL solution is presented and commented. 
 
A) Count occurrences of values 
What is the probability of an instance of a task t having a response time greater than 2? 
 

P(t(i), t(i).response > 2) = X 
 

Test query 4.1 count occurrences with PPL 

 
With each row of a database table being an instance of a task counting is quite easily done with SQL. 
The number of rows where the task name is t and the response time is greater than 2 is counted. To 
get a frequency seems to be more difficult using SQL. 
 

SELECT Count(*) 
FROM Log 
WHERE Log.Resp > 2 
AND Log.Task = “t”;  

 
Test query 4.2 count occurrences with SQL 
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B) Count occurrences of sequences  
What is the probability of two consecutive instances of a task t both having a response time greater 
than 2? 

 
P(t(i), t(i).response > 2 AND t(i+1).response > 2) = X 

 
Test query 4.3 count occurrences of sequences with PPL 

 
Similar to A) this can be done by counting rows. First two copies of the table are made using the AS-
command in order to compare rows. Then all rows are found where both task fields are t, the 
difference between the instances is 1 and the response times are greater than 2. The last line “AND 
L1.Instance<L2.Instance” is used to filter out doubles. The filtering could  also, more efficiently, have 
been done by removing the abs() function from a previous line.  

 
SELECT Count(*) 
FROM Log AS L1, Log AS L2 
WHERE L1.Task = “t” 
AND L2.Task = “t” 
AND abs(L1.Instance-L2.Instance)=1  
AND L1.Resp>2  
AND L2.Resp>2 
AND L1.Instance<L2.Instance; 

 
Test query 4.4 count occurrences of sequences with SQL 

 
C) Pre-emption.  
What is the probability of a task t1 being pre-empted by a task t2?  
 

P(t1(i), t1(i).start < t2(j).start AND t2(j).s tart < t1(i).end) = X 
 

Test query 4.5 pre-emption with PPL 

 
Two copies of the Log table are made in order to be able to compare rows. Then all combinations of 
rows are found where the first task is t1 and the second task is t2 and where the start time of t1 is 
greater than the start time and less than the end time of t 2. Those rows can then be counted. 
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SELECT Count(*) 
FROM Log AS L1, Log AS L2 
WHERE L1.Task = “t1” 
AND L2.Task = “t2” 
AND L1.Start > L2.Start  
AND L1.Start < (L2.Start+L2.Resp); 

 
Test query 4.6 pre-emption with SQL 

 
D) Separation 
Is the probability of instances of two tasks, starting within 3 time units, having a response time greater 
than 2, 0.9. 
 

P(t1(i), t1(i).resp > 2 AND t2(j).resp > 2 AND abs(t1(i).start – t2(j).start) < 3) = 0.9 
 

Test query 4.7 separation with PPL 

 
This also partially possible using SQL, like before the first step is copyin g the table. Then all 
combinations of rows are found where the first task is t1 and the other is t2, both response times are 
greater than 2 and the difference between the start times are less than 3. As in all previous tests only 
the number of occurrences is found. Here one more problem, if so related to the first one, was 
encountered. No method of comparing the result with 0.9 as asked in the PPL query could be found. 
 

SELECT Count(*) 
FROM Log AS L1, Log AS L2 
WHERE L1.Task = “t1” 
AND L2.Task = “t2” 
AND L1.Resp > 2 
AND L2.Resp > 2 
AND abs(L1.Start-L2.Start) < 3;  

 
Test query 4.8 separation with SQL 

 
4.5.3 Summary 
It seems we have underestimated SQL. When it comes to extracting sets of instances it suffices. One 
problem was when comparing sequences of instances. A query like t(i).exec < t(i+1).exec could not 
easily be asked in SQL as it has no way of asking for “the next row” or “two rows down”. Being 
intended for relational databases SQL has no need for such queries, the choice of adding a column for 
instances, at least in these test, solved that problem.  
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The problem of getting probabilities might be possible to solve. Integrating the query in some other 
environment would most definitely make it possible as it is merely the task of dividing the result from 
two SELECT COUNT queries.  
 
From what we learned from these tests it is possible that SQL could be used as a back end for a PPL 
evaluation tool. 
 
4.5.4 Follow-up 
When defining PPL we made some changes that affect the test made in our comparison between PPL 
and SQL. Most noticeably we added the working set to the query in order to avoid ambiguity, see 
Section 3 for details. This would be handled in the SQL queries by specifying the copy of the log 
table that represent the set rather than * in the SELECT statement.  
 
More problematic is the evaluation of probes over time. The table for probes would have columns for 
start time, data and how long that value was held. A query containing a single probe could be solved. 
Those would be solved similar to a task query. The events, i.e. rows, where the condition was fulfilled 
would be extracted using SQL. The probability would then easily be calculated from the time held 
row. If the query contains several probes, like Example 4.6, this can not always be done. The two 
probes do not change value at the same time. For example the values could be such that the condition 
is false at first. But then probe20 change value to one where it is true. After a while probe30 also 
change value to one such that the condition is false again. In this case we would need to extract a part 
of the time held field of one of the rows. This cannot, at least not easily, be done.  

 
P(*, *.probe20 > *.probe30) = X 

 
Example 4.6 a probe query 

 
Furthermore the task of creating a translator from PPL to SQL is not always easy. A PPL construct 
can not always be simply changed to a counterpart in SQL. This is most noticeable for queries with 
several instance operators and especially for relative instances. Although not impossible it would be a 
quite complex task. The gain of simplifying our PPL tool with a SQL backend would be lost in the 
work on translating the queries. 
 
In conclusion we decided that using SQL is not suitable.  
 
According to our tests using SQL would not be faster than our non SQL implementation. The first two 
test cases, A and B, are solved instantly both by SQL and PPL. Other more heavy queries take more 
time for both. PPL was faster solving test C while SQL solved test D faster. Both test C and D was 
run several times with slight modifications in the values to get worst, average and best cases in terms 
of how many evaluations would be needed by PPL. The only noticeable difference between the two 
languages was when test D was changed such that the response time of t2 should be less than 0 
instead of greater than 2. This causes a worst case for PPL since it is never true. SQL however 
managed to solve this instantly, probably by somehow seeing that this would never be true. In all 
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other cases the difference was small and overall neither could be considered faster. When looking at 
this result we should however take into consideration that our SQL implementation is probably not 
optimal. 
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5 Testing the tool 
Testing was done in order to verify the functionality of the tool. The approach used was to first 
manually calculate the query and then comparing that result with the result from the tool. See 
Appendix D for some examples of test calculations. The results for the test queries were stored so that 
the tests could be redone every time bug fixes or other changes was made, i.e. regression testing. If 
the test queries, the trace and the results for those queries for that trace are kept then this method 
could also be used in the future.  
 
A small trace was created specially for this. This trace contains four tasks, Task_ZERO, Task_ONE, 
Task_TWO and Task_FF. The tasks were given the ids 0, 1, 2 and 255. A task id is represented by an 
unsigned char making 255 the highest value. Normally tasks have a low id so here we gave one the 
highest possible to make sure it did not cause any unsuspected problems. The tasks were given 
various properties such that various special cases would occur. In addition they were kept small, 
between 6 and 16 instances, so that it would be possible to perform the queries by hand. The trace also 
contains  six probes with different number of events. Two of them have only one event. One of those 
two is also the very last event of the trace. Like the tasks the probes was made with a number of 
possible problems in mind.  
 
First the basic unary and binary operators needed to be tested. This was done by running simple 
queries applying them on a task and a constant. These kinds of queries are quite trivial and thus a 
relatively small number of examples were considered enough to verify their correctness.  
 
The first major part to be tested was instances and the various cardinality problems involved with 
them. The most basic version of that problem is when arithmetic’s is applied in the instance operator. 
This was tested by a number of queries applying binary operators on a task instance and the same task 
instance with a number added or subtracted in the instance operator. With minus the n first instances 
was exc luded and with plus the last n instances was excluded. This was checked by debugging the 
tool and making sure that the result from evaluating the condition of the P function was INVALID for 
the instances that should be excluded. 

 
The next version of the cardinality problem is when comparing the same instance of different tasks 
with different rates. This likewise was tested by checking that the result from the P was INVALID for 
those instances that should be excluded. 
 
The cardinality problem involving AND and OR is a bit special as they are not applied directly to 
tasks. They instead need to handle invalid values in general. The most common reason for these 
invalid values are however the cardinalities. AND is done the same way as the other binary operators 
and thus required no extra testing. For OR however it needed to be tested that it would give the result 
INVALID if both its operands are invalid and not if only one is. This was tested by looking at OR 
nodes and make sure they returned the expected result for any combination of operands. 
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The following  function was tested for two things. First to make sure it could properly handle the case 
were some instances do not follow any instance. The result for those instances should be INVALID. 
Like the cardinality problem this was tested by watching the result for each instance of P functions. 
This could specially be tested using Task_ONE as the first instance in the trace belongs to that task. 
Hence there is no instance of any task that its first instance follows. The second issue is to test that the 
function returns the correct instance. The expected result was calculated manually from the end times 
of the involved tasks. These results were then matched with the results given from the function. 
 
The operators are no different if they are applied to tasks or probes. Thus there is no need to test them 
especially for probes. What needed to be tested for probes is their loop function. That it sets values 
and calculates time correctly and that the common start time of the probes in a query is found 
correctly. Some special cases that needed to be looked at were a probe that never changed value and a 
probe whose only event is the last event of the log. The last event ends the log, thus that probe will set 
its only value on the end time. This could have cause problems as it had a value for 0 time units. This 
was tested by watching the time true, total time and then the end result calculated by the function. The 
same values was calculated manually and then compared.  
 
The probes also needed to be tested when used as a data member of a task. Firstly to make sure that 
the correct probe is used, but more that all cases where a probe did not have a value for some task 
instances was handled correctly. This is handled by the function that gets  all values from data 
members of tasks. Thus testing this for probes also tested that all the other data members, start, end, 
resp or exec, was retrieved correctly. This was tested by watching the values returned from this 
function to see that they were the expected ones. 
 
The statistical functions when not using a subset is quite straightforward. The only testing required 
there is to make sure they give the correct result. Like many other features this was tested by manually 
calculating the results and comparing with the results returned from the function. For a function with a 
subset it also needed to be verified that this subset was constructed properly. This was tested by 
watching the subset passed to the function and comparing it to what the subset was expected to be. 
One thing learned from this was that it is possible to get empty subsets.  
 
Unbounded instance variables are not noticeably different from the bounded instance variables as far 
as most of the functionality is concerned. During evaluation all instance variables are treated the same 
no matter if they are bounded or unbounded. What mainly needed to be tested for these was the loop 
function. To make sure that it stopped looping when, and only when, a true result is found or every 
possibility has been tried. And also to make sure that the way invalid and false results were treated did 
not cause any errors. The handling of invalids had been known to cause trouble. Thus great time was 
spend on testing numerous queries that would result in invalid values for varying instances. Part of the 
problem with the invalid values was how they are passed from the source of the invalidity up to the 
loop function. Thus the evaluation was stepped through node for node for some queries. That is 
however quite time consuming and not something that could be done for a large quantity of queries. 
Hence most of the testing here had to be done by watching the result from the loop function or results 
from the evaluation to the loop function.  
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Unbounded variables have been the most error prone feature of the tool. To find the values that are 
valid bindings are relatively simple. As explained in Section 4.3, this process uses the same functions 
as when evaluating queries without unbounded variables. The complexity lies in the assigning process 
for inner unbounded variables. Assigning an outer unbounded is not complex as it only assign one 
value depending on one operator. For an inner unbounded there can be several values. They also 
depend on a combination of two operators. Thus there are far more possible ways of assigning. 
Furthermore the amount of combinations is  quadrupled because of the ways the query can be 
constructed. The meaning of the outer operator varies depending on if the P with the unbounded is the 
left or right operand of the property. The same way the meaning of the inner operator vary depending 
on if the unbounded variable is its left or right operand. Apart from all these possible combinations 
there is also numerous special cases that need to be considered. For example if all values are true or 
false then values outside the set of values must be tried for some combinations. Because of all this the 
inner unbounded variables was the most extensively tested feature. Testing this was done by 
calculating results and constructing bindings by hand. These intervals were then compared to the ones 
constructed by the tool. 
 
As mentioned this test trace was quite small in order to make it possible to manually calculate the 
results for queries. Such a small trace is however not realistic. Thus to test the speed and robustness of 
the tool some tests on larger traces was also needed. During these tests queries was run on tasks with 
up to 30000 instances. The results of these tests showed some serious time issues. Some of what could 
be considered standard queries would take several minutes or even hours to evaluate. This led to 
several optimisations, most noticeably the quick version of the unbounded evaluation algorithm, see 
Section 4.3.4, and the shortcut pointers when accessing data members of task instances , see Section 
4.3.3.  
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6 Development of PPL 
In this section we present the development of PPL from where we started to where it is today. We 
present how we first planned it and what changes was made and why they where made. Our 
development of PPL has been an iterative process. Changes have been made up to quite late stages. 
The latest of the changes however not as noticeable as the earlier as they where merely tweaks or 
minor features. We also discuss future development. Looking at what could have been done 
differently as well as features that could be added on. 

 
6.1 Current development 
As mentioned PPL had previously been outlined [13][14]. Naturally our work was based on this. This 
outline was quite restrictive in what was allowed. Originally we followed in that path. For probes, or 
message queue as they where considered at this point, we allowed very little. They could only be used 
in a comparison with a constant or unbounded variable. No logical or arithmetic operations were 
allowed. Unbounded variables were restricted similarly. They could be compared to a task or a probe. 
No arithmetic’s could be applied to them and they were not allowed to be part of logical operations. 
Furthermore they could not be combined with unbounded instances. When it came to the structure of 
the queries we went the other direction making it less restrictive. The originally suggested grammar 
was quite inflexible. For example the P function was defined as always being the left operand of the 
property and probes was defined as always being the left operand in the comparison. The P could also 
only be compared to a constant or unbounded variable. There where no reason for this so we made our 
grammar more flexible in these regards. We even went one step further as well allowing logical 
operations between P functions . That feature however was soon scrapped as it was deemed useless. 
Some small functions like abs, min, max and avg was added. To finalise the basis of our grammar we 
extended the arithmetic’s allowed. Originally only the operators ‘+’ and ‘-’ was  allowed. Those could 
be applied to a task and a constant or two tasks. We introduced ‘/’, ‘*’ and unary minus and allowed 
any arithmetic expression that could be constructed using those five operators, parenthesises, 
constants and tasks.  
 
With that the first version of our grammar was complete. When the work of defining the semantics for 
this grammar begun we soon realised some changes was needed. The first problem was encountered 
already when defining the P function. We could get ambiguous queries! The solution was the simple 
but effective choice of explicitly stating what task the query should be asked on. With that the 
working set was added to P.  
 
The unbounded variables were the next feature to cause changes. An outer unbounded was always 
clear, simply evaluate the expression it was compared to and assign the result. The inner unbounded 
variables needed a bit more work. Strict equal had been foreseen to be more troublesome and was thus 
saved for later. Starting with the other operators it was soon clear that the two suggested semantic 
rules were not enough. What we found out was that not only the outer relation decided the result but 
the combination of the outer and inner. This doubled the amount of rules up to four. The problem with 
using strict equal was that we could get undecidable queries. When considering this we came to the 
conclusion that we did not need to re strict the use of strict equal as had been suggested. It would not 
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be difficult to attempt to evaluate a possibly undecidable query. If the query turned out to be 
undecidable we could give an answer saying that. This was the first of what would turn out to be 
several times we relaxed the restrictions on the unbounded variables. The second one was soon to 
follow. Looking at the semantic rules it was clear that allowing logical operators in queries would not 
cause any trouble. The process of binding an unbounded variable would not at all be affected by 
allowing this.  
 
Comparing instances of a task with the same instance of a different task is not very useful if the tasks 
have different rates. This was not new to us. But we had not considered allowing more useful 
comparison between different tasks until such a feature was requested. We came up with two 
possibilities. The first was to redefine the instance operator such that comparing the same instance of 
two tasks would be to compare instances that were close in time. The second was to use some 
function to perform this mapping. The latter option was chosen and resulted in the following function. 
It was at this time that we also came up with the idea of adding the sequencing feature to the instance 
operator. 
 
At this point the probes were quite different than they turned out to be in the end. As mentioned they 
where not considered probes but message queues. On these queues we could ask queries about their 
size. Before we got as far as considering the semantics for these queues they had already turned into 
probes. These probes were tied to task instances. The observations from the probe would be written to 
the currently executing instance. In a query the probe value would be accessed as a data member of a 
task instance. A problem soon arose in the fact that queues, or other probes for that matter, can be 
shared among tasks. How do we say that a probe should never be 0 if the observations from that probe 
are spread over instances of several tasks? The solution was the feature of using the union of all tasks, 
‘*’. For this construct the old message queue restrictions lived on, i.e. no arithmetic’s and no logical 
operators. Not too long after yet another question was raised about the probes. How useful was it to 
look only at the values from the observations? Would it not be better to look at time? The probability 
of a probe having a certain value would be evaluated quite strangely if looking only at the observed 
values. For example if a message queue is given the size 0 on half of the observations does not mean 
it has size 0 half the time. It might perhaps be that the size is only 0 a short time between two other 
values that are kept for longer periods of time. Thus the probabilities we would calculate using 
observations would be wrong. The probes were once again changed, now to represent the value over 
time.  
 
A final addition before implementation begun was to allow the small statistical functions, min, max, 
avg and median  to be used as stand alone queries and not only as  part of a P.  
 
As the tool was implemented one thing eventually became clear. Many of our restrictions were  not 
needed. In fact for several of them it would be more work to restrict them than to allow it. This was 
especially true for the probes. More or less all restrictions on them were removed so that they could be 
used in expressions just like task instances in general. The same was true for unbounded instances. 
We now allowed combining them with unbounded variables. A main problem with combining 
unbounded instances and variables had not been how to solve them but how to solve them efficiently. 
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In most cases this is still not possible. However restrictions would only remove the possibility not 
make it more efficient. 
 
The assign process when evaluating unbounded variables provided plenty of work. It turned out that 
the new semantic rules we had added for this previously was not enough. We needed to create one 
rule for every combination on the inner and outer operator. Luckily it turned out that some of the 
combinations resulted in the same rules. However not in the general fashion that we had first said. 
Furthermore our decision of allowing flexibility in the structure of the query came back to haunt us. 
Since the unbounded variable could be both left and right operand of the inner operator and the P both 
left and right operand of the outer operator the number of possibilities was quadrupled.  
 
The last implemented change, except for what seemed like a never ending stream of tweaks to the 
unbounded variables, was some changes to the statistical functions. Instead of applying the function to 
an entire set it was suggested that a subset could be first be chosen and the function then applied to 
this subset. This was done by allowing the statistical functions to imitate the P function. Apart from a 
set, which in the case of the statistical includes a data member as well as a task, a condition should be 
given as an argument. The function would then be applied only to the subset that fulfilled the 
condition. Spawned from this was the idea of a subset function. We already had the functionality to 
create a subset. Why not allow this to be used directly?! It could be interesting to be able to extract a 
subset of, or all, response times or some other value. This resulted in the subset function that prints a 
subset to a file.  
 

6.2 Future development 
Despite, or perhaps just because of, being the most changed feature during our development of PPL, 
the probes could be done differently. We say in the semantics, Section 3.4, that we cannot reason 
about instances on probes. Initially that statement was true but at this point it is somewhat 
questionable. The probes could be done like instances. If we considered everything events , then we 
would have task events and probe events. The same way task events are compiled into task instances, 
probe events could be compiled into probe instances. From there we could remove the use of the 
construct *.probeX to represent all observations of a probe over time. We would also remove the 
probe data members from the task instances. From this we get two types of events that could be 
treated equal. The probe instance would have start and end time just like the task instances. It would 
have its value and some equivalents of execution time representing how long that value was kept, i.e. 
its end time minus its start time. These probe instances would be used exactly like task instances with 
the instance operator etc. The only difference would be the slightly different data members in the two 
types. In a P or statistical function we would still get differences depending on the type of event in the 
working set. If it is a probe event we would get the probability over time like we get now using ‘*’ as 
the working set. This would allow more powerful queries to be formulated. An example that has come 
up is to see if probes change value during the execution of some task. Currently such a query is 
impossible to formulate. As we have defined it the probe data member of a task instance represent the 
value that probe had at the start of that instance. In general it would be much more straightforward to 
formulate a query on a relation between a task and a probe. The drawback is that this also opens up 
several possibilities to formulate strange queries. For example comparing start times of a probe with 
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start times of a task. Such possibilities already exist in a lesser degree. It would not cause any trouble 
and is not necessarily something that needs to be taken care of. The only effect would be that the 
answer from such a strange and pointless query might likely be equally strange and pointless.   
 
One of the few remaining restrictions on unbounded variables is that the query may only contain one 
of them. With the restriction that we may not compare two unbounded variables with each other it 
would not be impossible to allow any amount of unbounded variables. To evaluate this would be no 
different than evaluating a query with several unbounded instances. The problem lies in assigning 
them. The as sign process for inner unbounded variables is  already the most complex part of the 
language. To redefine the semantic rules to handle tuples etc would not be impossible but require a 
great deal of effort. Another problem would be the time it would require to evaluate such a query. To 
combine unbounded instances and unbounded variables was initially restricted because we can not do 
it in an efficient way. To evaluate a query containing a few unbounded variables and tasks with a 
decent amount of instances would possibly take several hours.  
 
As the time issues when evaluating queries containing unbounded instance variables are directly 
related to the large amounts of evaluations needed a small improvement in the evaluation function can 
make a big difference. Changing data types from double to long wherever possible made a big 
difference for time consuming queries. With that in mind it could be possible to further improve 
performance by optimizing the various data structures and algorithms used.  
 
To speed up the evaluation time when using unbounded instance variables the shortcut pointer 
concept could be applied to the loop function in the tool. The instances are sorted on start and end 
times. If we remembered the last instance that made a property true we would have to search less for 
those two data members. For the other data members, exec, resp  and probes, there would be no 
difference. As those members are not sorted it does not matter at what instance we begin the search. 
We would however have to start over with the first instance if we did not find a valid one before the 
last instance. This would not affect the worst case then as we still need to try for every possibility for 
those unsorted members. For queries using the start and end members the average time required to 
evaluate the query would be lowered.  
 
Of the two possible additional features suggested in the problem description, Section 1.2, neither was 
implemented. The first feature was to add macros to allow more complex queries to be written more 
easily. Before being evaluated any macros in a query would be translated to pure PPL. Hence this 
feature could quite easily be added onto the existing tool as it would not require any changes. The 
translation of the macros is merely one additional step to be taken before parsing the query. This 
could be done in the PPL evaluation tool but also in another application that uses it. In that case the 
macro would be translated before running the tool at all. 
 
The other feature was to use several sets of data. We have considered two versions of this. The 
simplest one would be to evaluate the query repeatedly on different traces and then give one answer 
from each trace. These answers could possibly be merged to give some average answer. This could be 
done outside the tool by simple running it for the same query on various traces.  The other way to do 
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simultaneously work on several traces would be to combine the traces before evaluating queries on 
them. For this we have two ideas. The first would be to connect all the traces making one long trace 
out of them. With this one would need to deal with that the various times, start time etc, would reset at 
the connection points. A straightforward solution to that would be to add the total time from all 
previous logs to each start and end times. That way the times would never reset and there would not 
be any noticeable difference between the merged log and a single larger log. Another possibility 
would be to merge the traces into some average of them. From all the traces we create one trace that 
has its properties derived from the traces we merge. For this to be useful it would have to be assumed 
that the various traces were somewhat similar. That is however probably the case for all versions 
working with several sets of data. Only in this case it is a necessity to be able to even perform the 
merger.  
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7 Conclusions 
In this work we have defined the PPL language. We have explained the syntax of all the operators  and 
defined their exact semantics. From the previously suggested version of PPL [14] we have extended 
the arithmetic operations allowed. Statistical functions have been added to be used both inside a 
property as well as on their own. The data model has been defined with the four time members and 
probe members. For probes the use of ‘*’ as working set has been introduced to look at the values 
over time rather than at the start of task instances. As discussed in Section 6.2 those probes could have 
been done differently, treating them as instances, which would make it possible to formulate more 
properties than now. For unbounded variables we have defined the semantics explaining how they are 
bounded to intervals depending on the operators used in the query.  
 
A PPL tool has been implemented that given a batch of PPL queries produces a file with results. This 
tool is fully able to evaluate any query allowed by our definition of the PPL language. The tool is 
robust and in most cases fast. The special constructions that can not be solved fast have been 
discussed in Section 4.4. In that section we explain the reason for the issues as well as how they can 
be avoided. We had two suggestions for additional features in the tool, support for macros and to be 
able to simultaneously work on several execution traces. Neither was implemented and instead left as 
possible future developments as shortly discussed in Section 6.2.  
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Appendix A. The grammar of PPL 
in BNF (Backus Naur Form) 
 
<query>  ::= <property> ";" <query> 
   | <property> 
 
<property> ::= <value> <relop> <value> 
   | <function> 
   | subset "(" <arg> ")" ">" FILENAME 
 
<value>  ::= "P" "(" ID "(" ID ")" "," <cond> ")" 
   | "P" "(" "*" "," <cond> ")" 
   | PROB 

  | <unbounded> 
 
<cond>  ::= <expr> <moreexpr> 
   | <expr> 
 
<moreexpr> ::= <logop> <expr> <moreexpr> 
   | <logop> <expr> 
 
<expr>  ::= <exp> <relop> <exp> 

  | <exp> <relop> <unbounded> 
   | NOT "(" <cond> ")" 
   | "(" <cond> ")" 
 
<exp>  ::= <term> <moreterms> 

  | <term> 
 
<moreterms> ::= + <term> <moreterms> 
   | - <term> <moreterms> 
   | + <term> 

  | - <term> 
 
<term>  ::= <factor> <morefactors> 
   | <factor> 
 
<morefactors> ::= * <factor> <morefactors> 

  | / <factor> <morefactors> 
   | * <factor> 
   | / <factor> 
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<factor>  ::= "(" <exp> ")" 

  | abs "(" <exp> ")" 
   | <function> 
   | CONST 

  | <task> 
  | "*" "." probe NUM 

   | - <factor> 
 
<function> ::= min "(" <arg> ")" 

  | max "(" <arg> ")" 
   | avg "(" <arg> ")" 
   | median "(" <arg> ")" 
 
<arg>  ::= ID "." <data member>  
   | ID "(" ID ")" "." <data member>  

  | ID "(" ID ")" "." <data member> "," <expr> 
   | "*" "." probe NUM  

  | "*" "." probe NUM "," <expr> 
 
<unbounded> ::= ID 
 
<task>  ::= ID "(" <instance> ")" "." <data member> 
   | ID "(" <following> ")" "." <data member> 
 
<instance> ::= ID 

  | ID + <num> 
   | ID - <num> 
 
<num>  ::= "[" NUM ".." NUM "]" 

  | "[" - NUM ".." NUM "]" 
   | "[" - NUM ".." - NUM "]" 
   | NUM 
 
<following> ::= following "(" ID "(" <instance> ")" ")"  

  | following "(" ID "(" <instance> ")" ")" + <num> 
   | following "(" ID "(" <instance> ")" ")" - <num> 
 
<data member> ::= start 

  | end 
   | resp 
   | exec 

  | probe NUM 
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<relop>  ::= <  
   | >  
   | <=  

  | >= 
   | = 
 
<logop>  ::= AND 
   | OR 
 
 
 
PROB  ::= {x: x∈R && 0 <= x <= 1} 
CONST ::= {x: x∈R} 
NUM  ::= {x: x∈Z} 
ID  ::= LETTER(DIGIT|LETTER|’_’)* 
FILENAME ::= ’”’ID(’.’ID)*’”’ 
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Appendix B. The abstract syntax tree nodes 
 
All nodes have the same type, treeNode. 
 

treeNode 
A node in the AST. 
kind An identifier for what kind of node this is. 
unbounded A flag showing if this node or one of its sub trees 

contains an unbounded variable. 
Node A union of the various node types. Which one is used 

here decide what kind of node it is.  
 
Node is a union of the following structures.  
 

tQuery 
The root node of each query in the list of queries from a query file. 
property The property that make up this query. 
pNext  The next query. 

 
tProperty 
The root node of a property. A relation between two probabilities. 
left_operand The sub tree containing the left  operand of this 

property. 
right_operand The sub tree containing the right operand of this 

property. 
op The operator in this property. 
symbols  The symbol table for the property. Only for any outer 

unbounded variable. 
 

tP 
The node for a P function on tasks. 
task_name Name of the task in the set. 
task_id Id of the task in the set. 
instance Name of the instance variable in the set.  
expr The sub tree containing the conditional expression of 

this P function. 
symbols  The symbol table for this P function. 
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tPlt 
The node for a P function on probes. 
expr The sub tree containing the conditional expression of 

this P function. 
symbols  The symbol table for this P function. 

 
tUnary 
The node for a unary operator. 
op The operator.  
expr The sub tree for the operand. 

 
tBinary 
The node for a binary operator. 
left_operand The sub tree containing the left operand of this 

operator. 
right_operand The sub tree containing the right operand of this 

operator. 
op The operator. 

 
tFunction 
The node for a statistical function. (plus abs and subset) 
function_name Identifier for what function it is. 
argument The sub tree containing the argument to the function.  
subset_file_name  The name of the file that the result should be written 

to if the node is for the function subset. 
is_calculated A flag to notify if the result of this function is already 

calculated. 
value The result of this function. To be used when the 

is_calculated flag is set. 
symbols  The symbol table for this function. 
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tFunctionSubset 
The node for a subset argument to a function, i.e. an argument 
containing a condition.  
task_name Name of the task in the working set of this subset. 
task_id Id of the task in the working set of this subset.  
instance Name of the instance variable in the set of this subset. 
field Name of the data member of the instances from the 

subset that the function should be applied to. 
field_id Id of the data member. 
expr The conditional expression of this subset. 
pTask A shortcut pointer to the task in the working set. 
pInstance A shortcut pointer to the previously used instance of 

the task in the working set. 
pProbe A shortcut pointer to the previously used probe event 

when the data member in the set is a probe. 
 

tTask 
The node for a task. 
task_name Name of this task. 
task_id Id of this task. 
field_name Name of the data member to be accessed. 
field_id Id of the data member to be accessed. 
instance The sub tree for the instance operator of this task. 
pTask A shortcut pointer to this task. 
pInstance A shortcut pointer to the last used instance. 
pProbe A shortcut pointer to the last used probe event when 

the data member is a probe. 
 

tProbe 
The node for a Probe. 
probe_name  Name of this probe. 
probe_id Id of this probe. 

 
tInstance 
The node for a instance operator. If no arithmetic’s is used then op is ‘+’ 
and num a constant with value 0. 
variable_name Name of the variable used in this instance operator. 
variable_id Id of the variable used in this instance operator. 
op The arithmetic operator to be applied in this instance 

operator. 
num A sub tree containing the constant or sequence that op 

is applied to. 
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tFollowing 
The node for a following function. 
followed_task Name of the task to be followed. 
followed_task_id  Id of the task to be followed. 
followed_instance Instance of that task to be followed. 
op Arithmetic operator to apply to followed_instance. 
num The constant or sequence op should be applied on. 
pTask A shortcut pointer to followed_task. 
pInstance A shortcut pointer to followed_instance. 
pProbe A dummy probe pointer. (Required by the get task 

member value function but never actually used.) 
pFollowingTask A shortcut pointer to the task that is to follow 

followed_task. 
pFollowingInstance A shortcut pointer for the instances of the task 

following.  
 

tFloatConst 
The node for a float constant. 
value The value of this constant. 

 
tIntConst 
The node for an integer constant. 
value The value of this constant. 

 
tUnbounded 
The node for an unbounded variable. 
variable_name The name of the unbounded variable. 

 
tSequence 
The node for an instance operator sequence. 
start The first value of the sequence. 
end The last value of the sequence. 
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Appendix C. Summary of the code 
 
_ppl.lex.c 
Contains the scanner generated from _ppl.lex. 
 
_ppl.yac.tab.c -.h 
Contains the main function and the parser generated from _ppl.yac. 
 
ast.c -.h 
Contains the structure for the abstract syntax tree nodes, tTree, and a create function for each node 
kind.  
 

key global variables 
tree_root The root node of the ast.  

 
key functions 

tTree copyTree(tTree node) 
Creates a copy of a tTree.  
node  The root of the tree to be copied  
return  The root of the copy 

 
void freeTree(tTree tree) 
Deallocates the memory for a tree by recursing the tree and freeing nodes bottom up. 
node  The root of he tree to be freed 

 
 
ast_check.c -.h 
Contains various functions for validating an abstract syntax tree. 
 

key functions 
bool_t typecheck(tTree node) 
Check that all expressions in the tree have valid types. The error found is set with setError. 
node  The root of the ast to check. 
return  TYPE_ERROR if an error was found 

 
bool_t namecheck(tTree node, char **error) 
Checks that all task and probe names in the queries exist in the log. Inserts id of found tasks 
into nodes and symbol tables 
node  The root of the ast. 
error  Is set to the name that is not found. Will not be set if we return TRUE. 
return  TRUE if no error was found, FALSE otherwise. 
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int unboundedcheck(tTree node) 
Counts number of unbounded variables in an ast. Marks the sub trees that contain an 
unbounded variable. Sets an error if we find an unbounded variable in a function. 
node  The root of the ast. 
return  Number of unbounded variables found. 

 
ast_translate_sequence.c -.h 
Contains various functions used to translate instance sequences into several expressions connected 
with AND. The function translateSequences is called to start the process. The work is done by 
repeated calls of the function translateSequence. 
 

key functions 
void translateSequences(tTree node) 
Translate all sequenced instances to ANDs. Loops calling translateSequence repeatedly until it 
return that it is done. 
node  The root of the tree in witch sequence nodes are to be translated. 

 
bool_t translateSequence(tTree node) 
Translate a sequenced instance to ANDs. Once one sequence is translated it returns.  
node  The root of the tree in which sequence nodes are to be translated. 
return  TRUE when not done, FALSE when done. 

 
 
evaluate.c -.h 
Common functions for evaluating queries. 
 

key functions 
double evaluate(tTree node, FILE *output_file) 
Evaluates a PPL query. This function is used to start evaluation of any query. 
node  The root of the ast for the query to be evaluated. 
output_file The file that the result is to be written to. Used for subset and unbounded  
  variables. 
return  If P then TRUE or FALSE, if a function then its result. For unbounded  
  variable queries the returned value is ignored. 

 
void assignOuter(double value, int op, FILE *output_file) 
Constructs the interval of valid bindings for an outer unbounded variable and writes it to the 
result file. 
value  The threshold value in the interval to be assigned. 
op  Id of the assign operator. 
output_file The result file. 
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void assignInner(tTree node, bool_t *unbounded_bool_set, double* unbounded_values_set,  
   long nof_instances, long threshold, FILE *output_file) 
Constructs the interval of valid bindings for an inner unbounded variable and writes it to the 
result file. 
node   The P or Plt node that called this function. Used when we need to  
   check for values outside unbounded_values_set. 
unbounded_bool_set A list with the results from evaluating with each value. Is connected to 
   unbounded_values_set such that unbounded_bool_set[1] is the result  
   for the value unbounded_values_set [1]. 
unbounded_values_set A list with all the values we tried as bindings. 
nof_instances  Length of the lists 
threshold  The threshold in the unbounded_bool_set list, i.e. the index where it  
   switch between true and false. -1 if not already found. 
output_file  The result file. 

 
double* evalUnboundedCompareExprP(long *nof_instances, tTree expr) 
Evaluates the expression an unbounded variable is compared to in a P. Creating a list of the 
results to be used as possible bindings for the unbounded variable. 
nof_instances  Number of instances in the task in the set of the P. After this function  
   the number of instances that evaluated to invalid has been subtracted. 
expr   The node for the start of the expression. 
return   A list containing the result from each instance. 

 
void evalUnbCmpExprP(tTree expr, symbol_t *instances, double_t **tmp_result_set_start,  
    double_t **tmp_result_set_end) 
Used by evalUnboundedCompareExprP to evaluate the expression an  unbounded variable is 
compared to in a P. 
tTree   Root node of the expression to evaluate. 
instances  A list of all instance variables used in this expression. 
tmp_result_set_start A pointer to the start of the list were all values are to be put. 
tmp_result_set_end A pointer to the end of the list were all values are to be put. 

 
double* evalUnbCmpExprPlt(tTree expr, symbol_t *probe_names, long *set_len) 
Evaluates the expression an unbounded variable is compared to in a Plt (P with probes). 
Creating a list of the results to be used as possible bindings for the unbounded variable. 
expr  The node for the start of the expression. 
probe_names  List of all probes in this Plt. 
set_len  Is increased once for every element in the returned list. 
return  A list of all the results 

 



 
 

 80 

evaluate_p.c -.h 
Functions for evaluating P with task. 
 

key functions 
double loopFuncP(symbol_t *unbounded_instances, tTree node) 
Creates nested loops for all unbounded instances in a P or a function subset on a task. Each 
loop sets a value for an unbounded instance. Only loops until values are found that make the 
expression true. 
unbounded_instances A list of all unbounded instance variables. 
node   The node for the function subset or P. 
return   The result from the function if the subset/P. If a subset then the value  
   from the function. If P then TRUE, FALSE or INVALID. 

 
bool_t evalBoolP(tTree node) 
Evaluates a boolean expression in a condition of a P with tasks.  
node  The root node of the expression to be evaluated 
return  The result of the expression. TRUE, FALSE or INVALID 

 
double evalNumP(tTree node) 
Evaluates a numeric expression in the condition of a P with tasks. 
node  The root node of the expression to be evaluated. 
return  The evaluated value 

 
long evalInstanceP(tTree node) 
Evaluates a instance expression. 
node  The root of the expression. 
return  The evaluated value for the instance. This function could return negative  
  values. Such invalid instances must be handled by the calling function. 

 
evaluate_p_functions.c -.h 
Contains functions to evaluate the statistical functions and the subset to file function for tasks. 
 
evaluate_plt.c -.h 
Functions for evaluating P on probes. 
 

key functions 
double loopFuncPlt(tTree node) 
Evaluates a P with probes and calculates the probability of its condition being true. This is 
done by calling evalBoolPlt for all values the probes in the condition can have. The probability 
is calculated by dividing the time that the condition is fulfilled with the total time the probes 
involved are active. 
node  The node for a P with probes. 
return  The probability of the condition in the P being true. 
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bool_t evalBoolPlt(tTree node) 
Evaluates a boolean probe expression. 
node  The root of the expression. 
return  The result of the expression; TRUE or FALSE 

 
double evalNumPlt(tTree node) 
Evaluates a numeric probe expression. 
node  The root of the expression. 
return  The value of the expression. 

 
 
evaluate_plt_functions.c -.h 
Contains functions to evaluate the statistical functions and the subset to file function for probes. 
 
boolean.h 
Contains the enumeration bool_t with the values FALSE, TRUE and INVALID. 
 
double.c -.h 
A linked list of doubles. Contains structure and functions to add and remove elements as well as 
sorting etc.  
 
error.c -.h 
Contains error handling. Constants for various error messages as the enumeration error_t. 
 

key global variables 
bool_t has_errors Set to TRUE when an error has been set. 
error_t error_code The error code of the last set error. 

 
key functions 

void setError(error_t code) 
Used throughout the application when an error has been found. Sets the error code and raises 
the error flag unless an error has already been set. 
code   The error code of the error we're setting. 

 
log.c -.h 
Contains structures for lists of tasks and probes. Functions for reading and compiling a trace and for 
accessing the lists. 
 

key global variables 
taskType task_list   The task list. 
probelistType probe_list The probe list . 
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key functions 
int readLog(char* filename) 
Reads all events from a log file. 
filename Name of the log file. 
return  1 if success, 0 otherwise (failed to open file) 

 
bool_t compileEvents() 
Compiles the event list into task and probe lists. 
return  FALSE if an error during compilation, TRUE otherwise. 

 
double getTaskFieldValue(short task_id, long instance, unsigned char field_id, task_t**  
    pTask, task_instance_t** pInstance, probe_t** pProbe) 
Finds the value for a data member of an instance of a task. Updates the shortcut pointers to 
remember previous task, instance and probe to cut down on iterations as commonly this 
function is called for the same task repeatedly with consecutive instances. 
task_id  Id of the task. 
instance Index of the instance. 
field_id  Id of the field. 
pTask  A pointer to the task, possibly set by a previous run of this function. If not then 
  it is set.  
pInstance A pointer to the instance, possibly set by a previous run of this function. If not 
  then it is set.  
pProbe  A pointer to the probe, possibly set by a previous run of this function. If not  
  then it is set.  
return  The value of the data member. If instance is not found then the invalid_value  
  flag in the symbol table on top of the stack is set to TRUE. 

 
long varNameToId(char* name) 
Creates an id from a variable name using the ASCII values of the characters 
name  Name to turn into an id. 
return  Id for the variable. 

 
string2.c -.h 
Contain a function for creating a string.  
 
symbol.c -.h 
Contain functions and structures for symbol tables. 
 

key global variables 
frst_symbol_table The bottom of the symbol table stack. 
last_symbol_table The top of the symbol table stack. 
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key functions 
void addSymbolTable(symbol_table_t *table) 
Adds a symbol table to the symbol table stack. 
table   The symbol table to add. 
 
first_symbol_table If the stack was empty this is set to the table we add. 
last_symbol_table Is set to the table we add. 

 
void removeSymbolTable() 
Removes the symbol table on top of the table stack. 
first_symbol_table Set to NULL if we removed the last table on the stack. 
last_symbol_table Moved to the previous table.  

 
void addBoundedInstance(char *name) 
Sets the bounded instance in the symbol table on top of the symbol table stack. 
name   Name to give the instance variable. 

 
last_symbol_table The bounded instance is reset and given the new name. 

 
void addUnboundedInstance(char *name) 
Adds an unbounded instance to the symbol table on top of the stack. 
name   Name of the instance variable to add. 

 
last_symbol_table The new unbounded instance is added if it did not already exist. 

 
void addUnboundedVariable(char *name) 
Sets the unbounded variable in the symbol table on top of the symbol table stack. 
name   Name to give the unbounded variable. 

 
last_symbol_table The unbounded variable is reset and given the new name. 

 
void setSymbolInstanceValue(long variable_id, long value) 
Sets a value for an instance variable (bounded or unbounded) in the symbol table on top of the 
symbol table stack. 
variable_id Id of the variable to set. 
value  The value to give the variable. 

 
void setProbeValue(short probe_id, unsigned char value) 
Sets the value of a probe in the symbol table on top of the symbol table stack. 
probe_id Id of the probe to set a value for. 
value  The value to set. 
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long getSymbolInstanceValue(long variable_id) 
Gets the current value of a symbol (a bounded or unbounded instance) in the symbol table on 
top of the stack. 
variable_id  Id of the instance variable. 
return   The current value of the symbol. 

 
unsigned char getProbeValue(short probe_id) 
Gets the current value of a probe in the symbol table on top of  the stack. 
probe_id Id of the probe. 
return  The value of the probe. 

 
tokentype.c -.h 
Contain id constants for operators and functions used in tokens and then throughout the tool. Also 
some functions to check the type of an operator. 
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Appendix D. Test calculations 
 

1. First two similar queries, in the P function we say that the response time of Task_FF should be 
between 25000000 and 75000000. In Test query D.1 we say that the probability of that should be 
greater than 0.75. In Test query D.2 we assign the true probability to the unbounded variable X. This 
is done following Semantic rule 3.31 and Semantic rule 3.14. 

 
P(Task_FF(i), Task_FF(i).resp > 25000000 AND Task_FF(i).resp < 75000000) > 0.75 

 
Test query D.1 

 
P(Task_FF(i), Task_FF(i).resp > 25000000 AND Task_FF(i).resp < 75000000) = X 

 
Test query D.2 

 
Task_FF.resp > 25 000 000 < 75 000 000 AND 

912  FALSE TRUE FALSE 

3 283 455 FALSE TRUE FALSE 

72 298 761 TRUE TRUE TRUE 

22 718 521 FALSE TRUE FALSE 

41 080 759 TRUE TRUE TRUE 

493 655 046 TRUE FALSE FALSE 
 

Table D.1 truth table for the instances 

 
In Table D.1 we can see that the condition is  fulfilled for two out of the six instances giving us a 
probability of 2/6 or 0.333. As 0.333 is not greater than 0.75 the result from Test query D.1 should 
be FALSE. The result for Test query D.2 should be 0.333. 

 
 

2. Here two queries where we in the P say that the combined response times of Task_FF and the 
following Task_TW O should be less than or equal to 75000000. This is done with combinations of 
Semantic rule 3.2, Semantic rule 3.5 and Semantic rule 3.14. 

 
P(Task_FF(i), Task_FF(i).resp + Task_TWO(following(Task_FF(i))).resp <= 75000000) > 0.75 

 
Test query D.3 
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P(Task_FF(i), Task_FF(i).resp + Task_TWO(following(Task_FF(i))).resp <= 75000000) = X 
 

Test query D.4 

 
First we find out what instance of Task_TWO follow each of the instances in Task_FF by comparing 
their end times as shown in Table D.2. Once that is done we simply add the two data members 
together and then make the comparison as in Table D.3. 
 

Task_FF.end Task_TWO.end i Task_TWO(following(Task_FF(i))) 

4 596 5 486 546 0 0 

31 800 000 86 315 613 1 1 

204 754 884 555 550 564 2 2 

644 218 521 1 000 564 654 3 3 

901 235 413 1 068 452 486 4 3 

1 562 107 532 2 225 541 232 5 5 

 2 751 326 842   

 3 525 556 456   

 4 156 874 684   
 

Table D.2 calculating following instance  

 
Task_FF(i).resp Task_TWO(following(Task_FF(i))).resp + <= 75 000 000 

912 5 486 423 5 487 335 TRUE 

3 283 455 41 190 068 44 473 523 TRUE 

72 298 761 460 445 019 532 743 780 FALSE 

22 718 521 25 333 108 48 051 629 TRUE 

41 080 759 25 333 108 66 413 867 TRUE 

493 655 046 104 329 111 597 984 157 FALSE 
 

Table D.3 calculating results for the instances 

 
As we can see in Table D.3 this was true for four out of the six instances, i.e. a probability of 4/6 or 
0.666. Thus the result for Test query D.3 should be FALSE and the result from Test query D.4 
should be 0.666. 

 
3. Here we have a test of unbounded instance variables using a pre-emption query. We say that no 

more than half of the instances of Task_FF may pre-empt Task_TWO.  Here we use Semantic rule 
3.8 and Semantic rule 3.32. 
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P(Task_FF(i), Task_FF(i).start > Task_TWO(j).start AND Task_FF(i).start  < Task_TWO(j).end) <= 0.5 
 

Test query D.5 

 
First we list all the values, Table D.5 and Table D.4, and assign each of the instances in Task_TWO 
to a j. Then we make a truth table, Table D.6, for each of the expressions and for AND. The two 
expressions on their own are TRUE for all instances of Task_FF. It is however only for certain j. In 
order to get TRUE from in the AND column both must be TRUE for the same j. 
 
 

Task_TWO.start Task_TWO.end j 

123 5 486 546 0 

45 125 545 86 315 613 1 

95 105 545 555 550 564 2 

975 231 546 1 000 564 654 3 

1 000 580 000 1 068 452 486 4 

2 121 212 121 2 225 541 232 5 

2 525 352 525 2 751 326 842 6 
2 845 699 994 3 525 556 456 7 

4 026 430 015 4 156 874 684 8 
 

Table D.4 list values for the unbounded instance variable 

 
Task_FF.start i 

3 684 0 

28 516 545 1 

132 456 123 2 

621 500 000 3 

860 154 654 4 

1 068 452 486 5 
 

Table D.5 list values for the bounded instance variable 
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Task_FF(i).start > Task_TWO(j).start Task_FF(i).start < Task_TWO(j).end AND 

TRUE ( j < 1 ) TRUE ( j >= 0 ) TRUE ( j = 0 ) 

TRUE ( j < 1 ) TRUE ( j > 0 ) FALSE 

TRUE ( j < 3 ) TRUE ( j > 1 ) TRUE (  j = 2 ) 

TRUE ( j < 3 ) TRUE ( j > 2 ) FALSE 

TRUE ( j < 3 ) TRUE ( j > 2 ) FALSE 

TRUE ( j < 5 ) TRUE ( j > 4 ) FALSE 
 

Table D.6 result for each instance 

 
This was true for two out of the six instances. Thus the result for the query should be TRUE as 0.333 
is less than or equal to 0.5. 

 
4. Here we calculate an average function on probe30. 

 
avg(*.probe30) 

 
Test query D.6 

 
First we list all events for this probe, the time and data of the event. By subtracting the start time 
from the start time of the following event we get the time the probe had each value. The last value is 
held until the end of the trace which in this case is the time 4294967295. We multiply each value 
with the time it was held and then sum up these values. This gives us the sum of the value for each 
time unit. We calculate the total time this probe has values as the end time – the start time of the first 
event. The average value for this probe is found by dividing the sum of data with the total time.  
 

data start time duration time  data * duration time 

1 302 50 486 241 50 486 241

6 50 486 543 49 519 121 297 114 726

156 100 005 664 879 306 990 137 171 890 440

255 979 312 654 21 487 345 5 479 272 975

139 1 000 799 999 3 294 167 296 457 889 254 144

 4 294 967 295   

  sum: 600 888 018 526
  total time: 4 294 966 993

  avg: 139,905154
 

Table D.7 calculating a probe 
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5. Here we have a P where we say that probe30 should have a value greater than 100 and at the same 

time probe255 should have a value less than 60. The probability of this we will bind to the 
unbounded variable X. This is done with a combination of Semantic rule 3.12, Semantic rule 3.14 
and Semantic rule 3.31. 

 
P(*, *.probe30 > 100 AND *.probe255 < 60) = X 

 
Test query D.7 

 
We begin with listing all events, data and timestamps, for both probes in Table D.8. In Table D.9 we 
then merge the two event list so that we can see what value each probe had at all the times. The first 
event for probe255 occur at time 4 308. Thus it does not have any value when probe30 gets its first 
value at time 302. The time before 4 308 must be excluded. We make the comparisons to find out 
during what times values was set that makes the expression true.  
 

probe30 data probe30 start time probe255 data probe255 start time 

1 302 40 4 308 

6 50 486 543 60 70 567 456 

156 100 005 664 10 625 048 658 

255 979 312 654 20 1 070 211 330 

139 1 000 799 999 60 2 876 700 005 

  60 3 964 446 434 
 

Table D.8 list all values 
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time probe30 probe255 probe30 > 100 probe255 < 60 AND 

302 1 - FALSE - - 

4 308 1 40 FALSE TRUE FALSE 

50 486 543 6 40 FALSE TRUE FALSE 

70 567 456 6 60 FALSE FALSE FALSE 

100 005 664 156 60 TRUE FALSE FALSE 

625 048 658 156 10 TRUE TRUE TRUE 

979 312 654 255 10 TRUE TRUE TRUE 
1 000 799 999 139 10 TRUE TRUE TRUE 

1 070 211 330 139 20 TRUE TRUE TRUE 

2 876 700 005 139 60 TRUE FALSE FALSE 

3 964 446 434 139 60 TRUE FALSE FALSE 

4 294 967 295     
 

Table D.9 truth table 

 
We calculate the number of total time units it was true: (979312654 - 625048658) + (1000799999 - 
979312654) + (1070211330 - 1000799999) + (2876700005 - 1070211330) = 2251651347. We 
calculate the total time that both probes had values as the last timestamp of the log minus the first 
timestamp when both have value: 4294967295 – 4308 = 4294962987. Finally we calculate the 
probability as 2251651347 / 4294962987 = 0.524. So the result for this query should be to bind X to 
0.524. 

 
6. A calculation for an inner unbounded variable. In the query we ask what deadlines will Task_FF 

miss with a probability greater than 0.75.  
 

P(Task_FF(i), Task_FF(i).resp > X) > 0.75 
 

Test query D.8 

 
We begin by listing all the values we are to try as values for the unbounded variable. In this query 
those values are simply all the response times of Task_FF. We sort those values and then compare 
each of them with each instance. Then counting those who are TRUE we find the probability for 
each binding. Comparing these probabilities we find out what values makes the query true. In this 
case only the first value did that. Of the probabilities only 0.833 is  greater than 0.75. According to 
the semantic rule for this query, Semantic rule 3.20, the interval should be from -8 up to the smallest 
of the values that did not make the query true, i.e. (-8..3283455). 
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Task_FF.resp X 
912 3 283 455 72 298 761 22 718 521 41 080 759 493 655 046 

Probability 

912 FALSE TRUE TRUE TRUE TRUE TRUE 5/6 = 0.833 

3 283 455 FALSE FALSE TRUE TRUE TRUE TRUE 4/6 = 0.666 

22 718 521 FALSE FALSE TRUE FALSE TRUE TRUE 3/6 = 0.500 

41 080 759 FALSE FALSE TRUE FALSE FALSE TRUE 2/6 = 0.333 

72 298 761 FALSE FALSE FALSE FALSE FALSE TRUE 1/6 = 0.166 

493 655 046 FALSE FALSE FALSE FALSE FALSE FALSE 0/6 = 0.000 
 

Table D.10 truth table for all tested values 

 
7. A calculation for another inner unbounded variable. Here we have an outer strict equal. The query 

asks for the deadlines that all instances of Task_FF will meet with a margin of 5000. 
 

P(Task_FF(i), Task_FF(i).resp + 5000 <= X) = 1 
 

Test query D.9 

 
We begin, in Table D.11, by listing all the values we are to try as values for the unbounded variable. 
In this case those are the response times + 5000. We sort those values and then compare each of 
them with each instance. Then counting those who are TRUE we find the probability for each 
binding. Here we find that we have one value that makes the query true, 493660046. As this value is 
the last in the set we have encounter one of the special cases in assigning. We must now find out if 
this value is the only valid binding or if greater values also work. To do so we try fo r 493660046 + 1 
= 493660047. As shown in Table D.12 that value we also get the probability 1. Hence the interval of 
deadlines that will always be met with a margin of 5000 is [493660046..8). Here we used Semantic 
rule 3.3 and Semantic rule 3.27 

 
Task_FF.resp + 5 000 X 

5 912 3 288 455 72 303 761 22 723 521 41 085 759 493 660 046 
Probability

5 912 TRUE FALSE FALSE FALSE FALSE FALSE 1/6 = 0.166 

3 288 455 TRUE TRUE FALSE FALSE FALSE FALSE 2/6 = 0.333 

22 723 521 TRUE TRUE FALSE TRUE FALSE FALSE 3/6 = 0.500 

41 085 759 TRUE TRUE FALSE TRUE TRUE FALSE 4/6 = 0.666 

72 303 761 TRUE TRUE TRUE TRUE TRUE FALSE 5/6 = 0.833 

493 660 046 TRUE TRUE TRUE TRUE TRUE TRUE 6/6 = 1.000 
 

Table D.11 truth table for the tested values 
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493 660 047 TRUE TRUE TRUE TRUE TRUE TRUE 6/6 = 1.000 
 

Table D.12 truth table for the extra tested value 

 
8. One more test with an inner unbounded variable. Here we want the deadlines that half of the 

instances will meet.  
 

P(Task_FF(i), Task_FF(i).resp <= X) = 0.5 
 

Test query D.10 

 
Like before we list the bindings and make the comparisons. Here we have one value that makes  the 
query true, 22718521. Looking at the semantic rule for a query like this, Semantic rule 3.27, we see 
that we should create an interval from the least of the values that makes it true up to the least of the 
greater values that make it false. In this case the interval would be [22718521..41080759).  
 

Task_FF.resp X 
912 3 283 455 72 298 761 22 718 521 41 080 759 493 655 046 

Probability 

912 TRUE FALSE FALSE FALSE FALSE FALSE 1/6 = 0.166 

3 283 455 TRUE TRUE FALSE FALSE FALSE FALSE 2/6 = 0.333 

22 718 521 TRUE TRUE FALSE TRUE FALSE FALSE 3/6 = 0.500 

41 080 759 TRUE TRUE FALSE TRUE TRUE FALSE 4/6 = 0.666 

72 298 761 TRUE TRUE TRUE TRUE TRUE FALSE 5/6 = 0.833 

493 655 046 TRUE TRUE TRUE TRUE TRUE TRUE 6/6 = 1.000 
 

Table D.13 truth table for the tested values 

 
9. In Test query D.11 we calculate an inner unbounded variable with an inner strict equal. We ask for 

the exact deadlines that are met with a probability of 0.1. 
 

P(Task_FF(i), Task_FF(i).resp = X) > 0.1 
 

Test query D.11 

 
Like always when calculating inner unbounded variables we list the bindings and make the 
comparisons. As no instances have the same response times in this example the P will be true for one 
instance for each value, i.e. when we compare a response time with it self. Thus all values will give 
us a probability of 0.166. 0.166 is greater than 0.1 so all values are true. According to Semantic rule 
3.30 we should not create an interval but a set containing all values that made the query true. Hence 
we bind X to the set [912, 3283455, 72298761, 22718521, 41080759, 493655046]. 
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Task_FF.resp X 

912 3 283 455 72 298 761 22 718 521 41 080 759 493 655 046 
Probability 

912 TRUE FALSE FALSE FALSE FALSE FALSE 1/6 = 0.166 

3 283 455 FALSE TRUE FALSE FALSE FALSE FALSE 1/6 = 0.166 

22 718 521 FALSE FALSE FALSE TRUE FALSE FALSE 1/6 = 0.166 

41 080 759 FALSE FALSE FALSE FALSE TRUE FALSE 1/6 = 0.166 

72 298 761 FALSE FALSE TRUE FALSE FALSE FALSE 1/6 = 0.166 

493 655 046 FALSE FALSE FALSE FALSE FALSE TRUE 1/6 = 0.166 
 

Table D.14 truth table for the tested values 
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Appendix E. User Guide 
The program takes three parameters. First the name of the trace to analyse, secondly the name of the 
query file and finally the name of the result file. The query and result file are optional. If not given the 
standard files query.ppl and result.ppl will be used. The query file contains the PPL queries to 
evaluate. If it contain several queries they should be separated with ‘;’. The result file is where the 
results from the queries will be written.  
 

PPL trace.log query_file.txt result_file.txt 
 

Example E.1 starting the program 

 
There are two kinds of queries: a property or a single function. There are two kinds of functions that 
can be used as queries. The statistical functions and the subset function. 
 
A property is a comparison between two probabilities. A probability is a P function, a constant or an 
unbounded variable.  
 
A P function calculates the probability of an instance of a set, a task, fulfilling a condition. It takes 
two arguments. The first is the working set and the second is the condition. The working set argument 
is the name of the task and an instance operator. The variable in this instance operator is the one and 
only bounded instance variable of the query. The condition is a Boolean expression. 
 

P(T1(i), <condition>) 
 

Example E.2 P function 

 
A task instance has  five data members. The start time, start, the end time, end, the response time, 
resp, and the execution time, exec. Finally the name of a probe can be used as a data member to get 
the value that probe had when the instance begun its execution.  
 
PPL have five relational operators. Greater than ‘>’, greater than or equal ‘>=’, strict equal ‘=’, less 
than or equal ‘<=’ and less than ‘<’. All four basic arithmetic operators, ‘+’, ‘-‘, ‘*’ and ‘/’ can be 
used. The absolute value function abs and parenthesises are also allowed in arithmetic expressions. 
There are three logical operators. The binary AND and OR and the unary NOT. 
 
The instance operator binds instances of the task it is part of. It consists of a variable to represent the 
instance it is currently bounded to. To compare relative instances a numeric value can be added or 
subtracted to this variable. Here for example we calculate the probability of two consecutive instances 
of the task T1 having response times greater than 50. 
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P(T1(i), T1(i).resp > 50 AND T1(i+1).resp > 50) 

 
Example E.3 relative instances 

 
A P like that on several consecutive instances can be simplified by adding or subtracting a sequence 
instead of a single numeric value. Here we use a sequence to calculate the probability of three 
consecutive instances having a response time greater than 50. 
 

P(T1(i), T1(i+[0..2]).resp > 50) 
 

Example E.4 sequencing 

 
When comparing different tasks we can use the function following to find relative instances. 
Following finds the instance of a task that execute closest after some other instance. For example we 
can say that T1 and the closest following T2 should have a combined response time of less than 500.  
 

P(T1(i), T1(i).resp + T2(following(T1(i))).resp < 500) 
 

Example E.5 following 

 
If the variable of an instance operator is not the bounded instance variable then it is an unbounded 
instance variable. While the bounded instance variable will be bounded to all instances of the task in 
the set of the P, an unbounded instance is only bounded once for each instance in that set. That one 
binding should be such that the condition is fulfilled. For example we can calculate the probability of 
the execution times of T1 being greater than some execution time for T2. 
 

P(T1(i), T1(i).exec > T2(j).exec) 
 

Example E.6 unbounded instance variable 

 
The unbounded instance variables are useful for example when calculating probabilities of pre-
emption. The probability of T1 being pre-empted by T2 could be formulated as the probability of 
some instance of T2 starting after the start and before the end of a T1.  
 

P(T1(i), T2(j).start > T1(i).start AND T2(j).start < T1(i).end) 
 

Example E.7 pre-emption 

 
The working set of a P could also be the union of all tasks, ‘*’. With this set no single task can be 
used in the condition and only probe data members can be accessed. Furthermore the instance 
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operator can not be applied to this set. That is because with this set the probability is not calculated on 
instances but over time. Normally the probability is calculated as the number of instances that fulfil 
the condition divided by the total number of instances. Here the instances are replaced by time units. 
For example we could calculate the probability of probe20 always being greater than 0 as the number 
of time units it is  greater than 0 divided by the total number of time units it has a value. 
 

P(*, *.probe20 > 0) 
 

Example E.8 P on probes 

 
Unbounded variables can be used as either a probability or as part of a condition in a P. Normally a 
property is evaluated as true or false. If the property contains an unbounded variable the result will 
instead be the interval of values that, in the place of the variable, make the property true. For example 
we can use an unbounded variable X as the probability of T1 having a response time greater than 50. 
 

P(T1(i), T1(i).resp > 50) = X 
 

Example E.9 unbounded probability 

 
Placed in the condition the unbounded variable could for example be used to find what deadline T1 
would meet with a probability of at least 0.8. 
 

P(T1(i), T1(i).resp < X) >= 0.8 
 

Example E.10 inner unbounded variable 

 
There are four statistical functions in PPL: min, max, avg and median. They take as argument the set 
of data it is to be applied to. The set is written as the name of the task and what data member of that 
task. Like with the P function the set ‘*’ can be used to calculate on a probe over time. For examp le 
we can calculate the average response time of T1. 
 

avg(T1.resp) 
 

Example E.11 statistical function 

 
Like the P function the statistical functions can take a condition as an argument. In that case the 
function will be applied to the subset of the set that fulfil the condition. For example the minimum of 
the response times who are greater than 50. 
  

min(T1(i).resp, T1(i).resp > 50) 
 

Example E.12 statistical function with a condition 
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Those four statistical functions can be used alone as queries or they can be part of a condition in a P or 
another statistical function. For example we could calculate the probability of the response times of 
T1 being greater than the average response time of T2.  
 

P(T1(i), T1(i).resp > avg(T2.resp)) 
 

Example E.13 statistical function in the condition of a P 

 
Like the statistical functions the subset function takes a set and a condition as arguments. But instead 
of performing any calculation on the subset that fulfils  the condition it writes all the values of that 
subset to a file. It is possible to leave the condition argument out to write all values from a set to a file. 
We can for example write all response times of T1 that are greater than 50 to the file “T1_resp.txt”. 
The greater than operator is in this context used as a pipe between the function and the filename. If the 
set is a probe, *.probeX, then the values of that probe and the number of time units the probe had that 
value is written. 
 

subset(T1(i).resp, T1(i).resp > 50) > “T1_resp.txt” 
 

Example E.14 the subset function 

 
Finally we list the different error messages. The error code is written in the result file. For some errors 
it is impossible to continue when they occur. In those cases only one error code will be written to the 
result file. Other errors only affect the query that causes  them. In those cases the result from the rest of 
the queries will be written as usual while the result from the faulty query will be the error code. For 
name errors the faulty name will be written along with the error code. Furthermore there are several 
other errors that can only occur as a result of bugs and thus should never happen. 
 

Error code ERROR 2 
Error name ERR_DIVISION_BY_ZERO 
Description An arithmetic expression resulted in a division by zero. 

 
Error code ERROR 10 
Error name ERR_EMPTY_SET 
Description A set of instances is empty. Typically because of a 

statistical function with a condition where no instance 
fulfilled the condition.  

 
Error code ERROR 11  
Error name ERR_NO_PROBES 
Description The condition of a function with the working set ‘*’ does 

not contain a probe. 
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Error code ERROR 16 
Error name ERR_NO_VALID_BINDINGS 
Description There where no values to try as bindings for an 

unbounded variable. 
 

Error code ERROR 18 
Error name ERR_NO_QUERY 
Description The query file was not found. 

 
Error code ERROR 19 
Error name ERR_ILLEGAL_SEQUENCE 
Description Illegal values in a sequence. (Must be ascending.) 

 
Error code ERROR 20 
Error name ERR_TASK_IN_PROBE_QUERY 
Description The condition of a P with the working set * contains a 

task. 
 

Error code ERROR 21 
Error name ERR_PROBE_IN_TASK_QUERY 
Description The condition of a P with a single task as working set 

contains the construct *.probeX. 
 

Error code ERROR 22 
Error name ERR_PARSE_ERROR 
Description A syntactical error in a query. 

 
Error code ERROR 23 
Error name ERR_UNBOUNDED_IN_SUBSET 
Description An unbounded variable in the condition of some function 

other than P. 
 

Error code ERROR 24 
Error name ERR_ILLEGAL_PROBE 
Description An illegal probe id. Must be between 16 and 255. 
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Error code ERROR 25 
Error name ERR_TOO_MANY_UNBOUNDED 
Description More than one unbounded variables in a query. 

 
Error code ERROR 26 
Error name ERR_NAME_ERROR 
Description A task or probe name does not exist in the trace or a 

illegal variable name. Variables must be alphanumeric 
(plus ‘_’) and no more than four characters long. Note 
that the name check is case sensitive. 

 
Error code ERROR 27 
Error name ERR_COMPILE_ERROR 
Description An error occurred while compiling the events from the 

trace. 
 

Error code ERROR 28 
Error name ERR_ READ_LOG_ERROR 
Description Failed to open the trace. Because the file does not exist 

or is of an unknown version. 
 

Error code ERROR 29 
Error name ERR_INVALID_PROBABILITY 
Description A probability constant is greater than 1 or less than 0 or 

such a comp arison. 
 

Error code ERROR 30 
Error name ERR_TYPE_ERROR_P 
Description The condition in a P is of wrong type. (Should be 

boolean.) 
 

Error code ERROR 31 
Error name ERR_TYPE_ERROR_NOT 
Description The operand of a NOT operator is of wrong type. 

(Should be boolean.) 
 

Error code ERROR 32 
Error name ERR_TYPE_ERROR_LOGOP 
Description The operand of a binary logical operator is of wrong 

type. (Should be boolean.) 
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Error code ERROR 33 
Error name ERR_TYPE_ERROR_ARITOP 
Description The operand of an arithmetic operator is of wrong type. 

(Should be numeric.) 
 

Error code ERROR 35 
Error name ERR_TYPE_ERROR_FUNCTION_SUBSET 
Description The condition of a statistical function is of wrong type. 

(Should be boolean.) 
 

Error code ERROR 36 
Error name ERR_TYPE_ERROR_UMINUS 
Description The operand of a unary minus operator is of wrong type. 

(Should be numeric.) 
 

Error code ERROR 37 
Error name ERR_TYPE_ERROR_RELOP 
Description The operand of a relational operator is of wrong type. 

(Should be numeric.) 
 

Error code ERROR 39 
Error name ERR_NO_PROBE_TIME 
Description One of the used probes has  a value for 0 time units. 

 
 


