
 1

© Elham Mirzaei, Carmen Cârlan, Carsten Thomas, Barbara Gallina, 2022.
Published by the Safety-Critical Systems Club. All Rights Reserved

Design-time Specification of
Dynamic Modular Safety Cases in Support of
Run-Time Safety Assessment

Elham Mirzaei 1, Carmen Cârlan 2, Carsten Thomas 1, Barbara Gallina 3

1 HTW Berlin, University of Applied Sciences, Berlin, Germany

2 fortiss GmbH, Munich, Germany

3 Mälardalen University, Västerås, Sweden

Abstract Open Adaptive Complex Systems – such as road vehicle platoons or
fleets of cooperative robots – may use dynamic reconfiguration to adapt to system
or environment changes. One approach enabling this feature is Service-oriented
Reconfiguration, where new configurations are created by composing the available
services in an unconstrained manner. Due to the high number of possible service
compositions, not all configurations can be pre-assured at design-time. Despite re-
cent progress, there is no satisfactory approach for specifying safety cases in sup-
port of their re-evaluation at run-time, after system reconfiguration. To this end, in
previous work, we introduced Dynamic Modular Safety Cases (DMSC). A DMSC is
a modular safety case, which can be dynamically re-constructed and re-assessed
given service reconfiguration. In continuation of the previous work, in this paper
we provide guidelines for specifying safety cases at design-time, whose modular
structure mirrors the system service decomposition, to enable their re-construction
and re-evaluation at run-time in the event of a system reconfiguration. Aiming to
support the specification of DMSC, we extend FASTEN, an engineering tool for the
design and verification of safety-critical systems. We exemplify the specification of
DMSCs in FASTEN for an illustrative example from the smart factory domain.

1 Introduction

System safety, i.e., the fact that the system deployment does not pose an unaccepta-
ble risk of harm, needs to be assured. Assurance here is interpreted as "grounds for
justified confidence that a claim has been or will be achieved" (ISO/IEC/IEEE
2019). In most safety-critical domains, such as automotive, or nuclear, or rail sys-
tem safety assurance also assumes the creation of a system safety case. A Safety
Case (SC) is defined as “a reasoned and compelling argument, supported by a body

2 Elham Mirzaei, Carmen Cârlan, Carsten Thomas, Barbara Gallina

of evidence, that a system, service or organisation will operate as intended for a
defined application in a defined environment” (Ministry of Defence 2007). Despite
some criticism against SCs (Leveson 2020), they are widely applied in various do-
mains, and their provision may be even required (e.g., air traffic control
(Eurocontrol 2006), road and rail transportation (CENELEC 2007)). Typically, SCs
are created at design-time and maintained throughout the life of the system.

Open adaptive complex systems (often encompassing Systems of Systems), such
as road vehicle platoons within the automotive domain and fleets of cooperative
robots within the robotics domain, are characterized by dynamic evolution/recon-
figuration and emergent behaviour (Boardman and Sauser 2006). Very often, these
systems are safety-critical. Hence, maintaining the safety assurance of such system
after dynamic changes that are imposed by reconfiguration is necessary (Kelly
2003).

In the literature, reconfiguration is often classified into three types, namely pre-
defined, constrained, and unconstrained selection (Bradbury, et al. 2004). Uncon-
strained selection provides more flexibility in terms of adaptation at run-time
amongst all possible variations for creating a new configuration. Open adaptive
complex systems use reconfiguration to adapt their structure and behaviour to
changes in constituent systems or in their environment. In earlier work, we have
introduced the Service-oriented Reconfiguration (SoR) approach (Wudka, et al.
2020) (Thomas, et al. 2021), which supports unconstrained reconfiguration at run-
time based on the Service-oriented Architecture (SoA) concept and blueprints.

The SCSC1 Service Assurance Working Group (SAWG) provides guidance on
challenges related to the safety assurance of services, e.g., inter-service interference,
mapping from service decomposition to modules within modular assurance, and
deviation to the reference architecture due to the change in configuration during
deployment (SAWG 2020). They highlight the necessity of extending beyond the
traditional approaches in system safety engineering to address those challenges,
considering that the future developments in business and technology are likely to
adopt this service paradigm in the next generation of safety-critical complex sys-
tems.

In the context of reconfiguration classifications, unconstrained reconfiguration
is the most challenging approach from the safety assurance perspective. This is
mainly because, in the current practice, an SC is developed manually, by a safety
engineerat design-time, compiling evidence produced during the execution of safety
assurance activities. As the argumentation structure comprised by the SC largely
depends on the system configuration, the current manual approach for SC develop-
ment at design-time is inappropriate for SoR-based systems, for which knowing all
possible configurations prior to operation is difficult. There is a need to enable au-
tomated development and assessment of the system safety case at run-time, consid-
ering the run-time system reconfiguration.

1 Safety Critical Systems Club

Design-time Specification of DMSC in Support of Run-Time Safety Assessment 3

To this end, in our previous work, we introduced the DMSC approach (Mirzaei,
Thomas and Conrad 2020), which combines two state-of-the-art approaches for de-
veloping safety cases: Modular Safety Case (MSC) and Dynamic Safety Case
(DSC). MSC address challenges such as system complexity (Kelly 2003) and fre-
quent system evolution by breaking down a safety case into several connected mod-
ules, and DSC aim at re-evaluating the validity of design-time safety assumptions
at run-time (Denney, Pai and Habli 2015). The DMSC approach unites the modular
structure concept and the concept of dynamic update and re-evaluation at run-time.

In this paper, we provide guidelines for constructing DMSC. The core idea be-
hind these guidelines is to construct the SC at design-time in a manner that enables
automatic SC re-construction and re-evaluation at run-time. Further, we also show
how FASTEN – an engineering platform for the creation and maintenance of safety
cases – has been extended to support the specification of DMSC and the manage-
ment of their relations with the structural elements of open adaptive complex sys-
tems. Finally, we show how to develop DMSC following our proposed guidelines
and using the FASTEN tool for an illustrative example from the smart factory do-
main.

The rest of this paper is organized as follows. In Section 2, we discuss the lan-
guage we use in this paper for the specification of SC, and we briefly describe the
reconfiguration approach we consider, highlighting the requirements it imposes
with respect to the system safety assurance. Section 3 provides a brief overview of
available methods for the creation and management of the SC. Section 4 outlines
our proposed solution for the specification of DMSC. In Section 5, we present tool-
support for the proposed solution, and we exemplify its usage for a small use case
involving two robots in a factory. Finally, in Section 6, we summarize our contri-
butions and outline the next steps.

2 Fundamentals

2.1 The GSN/SACM Metamodel

To better structure the SC, graphical notations have emerged over the past years,
one of the most frequently used notations being the Goal Structuring Notation
(GSN) (ACWG-GSN 2021). In GSN, structured SC arguments are constructed by
goals, strategies, solutions, assumptions, and context definitions. Usually, a top-
level safety goal is first defined, which is later decomposed to sub-goals and the
step of goal decomposition is re-iterated until the evidence for the satisfaction of
the sub-goals is referenced.

GSN supports the specification of MSC (Industrial Avionics Working Group
2012), a concept on which our DMSC approach relies, by introducing away goals,

4 Elham Mirzaei, Carmen Cârlan, Carsten Thomas, Barbara Gallina

which are repeating a claim presented in other modules, thereby creating a reference
from one argument to another. Fig.1 presents an MSC using GSN elements.

Fig. 1. A Modular Safety Case modelled in GSN using an Away Goal

MSC have been proposed to address challenges such as system complexity
(Kelly 2003) and frequent system evolution by breaking down a safety case into
several connected modules. If the safety case modularization is done appropriately,
the modular structure of the safety case limits the change impact propagation only
to a certain part of the safety case. Consequently, to update the safety case in the
event of system changes, it may be only necessary to change certain modules, rather
than the entire SC. This leads to the reduction in the cost and efforts on SC changes
(Kelly and Bates 2005).

To improve standardization and interoperability between tools which support the
modelling of GSN-based safety cases, the GSN/SACM metamodel was introduced
(ACWG-GSN-MM 2021). GSN/SACM maps the GSN constructs to the SC ele-
ments described by the Structured Assurance Case Metamodel (SACM) (Object
Management Group 2020) proposed by the Object Management Group (OMG).
Among others, the GSN/SACM metamodel allows the specification of traces from
safety case elements to other artefacts. As an example for the relation between the
GSN notation and SACM, see the mapping of a GSN SC fragment (Goal G1 in
Fig.2) to its SACM representation (Fig.3), taken from (ACWG-GSN-EX 2021).

Fig. 2. An example SC fragment using GSN notation (ACWG-GSN-EX 2021)

Design-time Specification of DMSC in Support of Run-Time Safety Assessment 5

Fig.3. SACM representation equivalent to the SC fragment shown in Fig. 2
 (ACWG-GSN-EX 2021)

2.2 Service-oriented Reconfiguration (SoR)

In this subsection, we recall basic elements of our Service-oriented Reconfiguration
(SoR) approach to provide the context for the DMSC specifications, which will be
introduced in Section 4.

Service-oriented Architecture (SoA) is a software design pattern that supports
system modularization and interaction between system components (Richardson
2018). Applying this pattern to open adaptive complex systems (Siefke, et al. 2020),
we perceive these as to be composed of constituent systems (e.g., a fleet of robots
consisting of individual autonomous robots), where the constituent systems realize
their intended functions by sets of interconnected services for sensing, computation
and actuation. Open complex adaptive systems may react to internal changes (e.g.,
malfunction behaviour) and changes in their environment by flexibly adapting the
interconnections between services at run-time, within individual constituent sys-
tems or across several constituent systems. The SoR approach (Thomas, et al. 2021)
builds on the SoA pattern to define a reconfiguration mechanism that – at run-time
– creates new configurations for open adaptive systems using service blueprints to
specify potential service network configurations.

6 Elham Mirzaei, Carmen Cârlan, Carsten Thomas, Barbara Gallina

Fig. 4. An example service blueprint inheritance and decomposition hierarchy

A service blueprint is a template defining potential services, either as basic ser-

vices or as service compositions. Depending on the type of blueprints, the specifi-
cations may include interface, parameters, internal structure, and other elements.
Like classes in object-oriented programming, blueprints build a specialization hier-
archy. This concept enables polymorphic instantiation of services (specialized ser-
vices can be used as substitute of their more generic ancestors) and is the key con-
cept supporting unconstrained reconfiguration at run-time.

Fig.4 illustrates an example of blueprint inheritance and decomposition hierar-
chy for a specific service named “Obstacle mapping”, which is decomposed into
three constituent service blueprints, “Distance sensor”, Obstacle detection”, and
“Occupancy map generation”. While in this example “Distance sensor” and “Ob-
stacle map generation” are always basic service blueprint, “Obstacle detection” may
be either a basic service blueprint or a service composition blueprint.

SoR is implemented by means of two basic components: System Discovery and
Reconfiguration as illustrated in Fig.5.The availability of service instances is super-
vised via the System Discovery component, which allows all the available services
to register themselves as available services at run-time, managing related infor-
mation such as the corresponding service blueprint. The Reconfiguration compo-
nent uses this information to create new configurations by traversing top-down
through the service blueprints and instantiating service compositions and invoking
available instances of basic services.

Design-time Specification of DMSC in Support of Run-Time Safety Assessment 7

Fig. 5. The SoA-based concept of Service-oriented Reconfiguration (SoR)

In the basic SoR approach, this results in creating a set of possible configurations,
from which the most suitable configuration is chosen based on evaluation of per-
formance functions. For safety-related applications, one needs to ensure that only
configurations are chosen for which their safety is assured. To achieve this, the
DMSC concept proposed in this paper enables run-time creation and evaluation of
SCs for each of the possible configurations.

3 Related Work

Several state-of-the-art approaches propose the automated development of SC
based on the automated instantiation of arguments patterns. An SC pattern specifies
an abstract, reusable structure of a successful argumentation structure, containing
placeholders for system-specific information, which can be filled in later, during
pattern instantiation, i.e., during the usage of the pattern in the argument of a certain
system (Kelly and McDermid 1998).

Denney and Pai provide formal semantics for creating SC patterns within GSN
models, clarifying their restrictions and specifying a generic data model and pattern
instantiation algorithm (Denney and Pai 2013). Following their work, they extended
patterns with pattern metadata (Denney and Pai 2015), to capture the notion of trac-
ing between pattern elements, e.g., informal claims. They further proposed formal
foundations for composing different GSN arguments developed by patterns instan-
tiation (Denney and Pai 2016). They defined arbitrary patterns composition, by tak-
ing the union of all links in the respective patterns, using shared identifiers as the
points at which to join.

Finally, they implement their developed concepts in AdvoCATE (Denney and
Pai 2018), a modelling tool which provides tool support for GSN-based SC pattern

8 Elham Mirzaei, Carmen Cârlan, Carsten Thomas, Barbara Gallina

instantiation. However, the pattern instantiation is not a fully automated activity due
to the usage of instantiated data table, which is manually specified by the safety
engineer at design-time. Despite the provided formalization, they do not define the
algorithmic checks for the evaluation of composed patterns at run-time.

Šljivo et al. (Šljivo, et al. 2020) propose extended design pattern templates with
contractual specifications, providing clear understanding of designed patterns com-
patibility with a given system environment, checking whether they fulfil the guar-
anteed safety claims. In particular, they define PatternAssumptions, representing
conditions that shall be met for the correct usage of the design pattern, while the
PatternGuarantees represent the conditions that the correct application of the pat-
tern yields. The approach is implemented within the AMASS platform (De La Vara,
et al. 2020), where contract-based reasoning via OCRA is enabled. Nevertheless,
their approach has not been exploited for the dynamic re-construction of SC.

Vierhauser et al. (Vierhauser, et al. 2021) introduce a mechanism for unmanned
aerial vehicles (UAV) based on composable Safety Assurance Case (SAC). Their
system assurance case is composed of: 1) an Infrastructure Safety Assurance Case
(ISAC), which argues about the satisfaction of infrastructure-level safety goals, and
2) Pluggable Safety Assurance Cases (pSACs), which specify the safe operation of
individual systems within a Complex open and adaptive system. They extend GSN
with interlock points to dynamically plug at run-time sub-trees of pSAC to ISAC's
interlock points. By combining their approach to monitoring methods at run-time,
they check the validity of the entire SC. Their method similarly supports the idea of
module assembly in SC for complex open and adaptive systems considering opera-
tional data. Nonetheless, they do not address the re-evaluation of composed mod-
ules patterns dynamically at run-time.

As explained earlier in this paper, DSC have been proposed to support the re-
evaluation of the validity of design-time safety assumptions at run-time (Denney,
Pai and Habli 2015), (Asaadi, et al. 2020). To this end, Denney and Pai propose that
the SC is machine-comprehensible and hence, formalized.

Calinescu et al. introduced ENTRUST (Calinescu, et al. 2018), an end-to-end
methodology for the engineering of trustworthy self-adaptive software systems, also
implementing the DSC approach. They propose the development of a system safety
assurance using SC patterns, which are partially instantiated with placeholders for
the assurance evidence that cannot be obtained until the uncertainties associated
with the system are resolved at run-time. One proposed pattern argues about the
satisfaction of a set of safety requirements by the current system configuration.
Given a system reconfiguration, ENTRUST proposes the re-verification of all
safety requirements and, based on the obtained verification evidence, the re-instan-
tiation of the respective SC pattern. Still, the re-verification of all requirements is
time-consuming and not in line with the need for the rapid assurance of the new
configuration required by open adaptive complex systems.

Cheng et al. (Cheng, et al. 2020) introduced the AC-ROS approach, which ena-
bles Robot Operating System (ROS) based platforms to conform to GSN models at

Design-time Specification of DMSC in Support of Run-Time Safety Assessment 9

run-time, thereby assuring that the system continues to satisfy its safety require-
ments after system reconfiguration. Despite this approach provides first steps to-
wards DSC, its scope is limited to ROS-based systems.

Although state-of-the-art approaches enable initial support for dynamic SC man-
agement, they do not provide specific guidelines to develop SC elements such as
modules and patterns to enable their composition in line with structural changes of
open complex and adaptive systems.

4 DMSC Specifications

In this section, we propose an automated approach for constructing the SC of open
complex and adaptive systems in a modular manner, reflecting the current system
configuration.

4.1 General concepts

First, to allow the automated construction of SC, there is a need for a formal speci-
fication of SC, following a certain structure, with certain semantics. On the one
hand, GSN is one of the most frequently used notations for structuring SCs. On the
other hand, Yan et al. reviewed the current Model Based Engineering (MBE) tech-
niques for generating SCs and they suggested that the SACM metamodel can sup-
port automatic SC generation, which they claim reduces the workload and the po-
tential for errors, and supports SC evolution along with the system development
(Wei, et al. 2019) , (Yan, Foster and Habli 2021). Consequently, for the specifica-
tion of DMSC, we use the GSN/SACM metamodel, presented in Section 2.1.

The DMSC approach differentiates between the SC construction at design-time
and at run-time. It proposes module-based assembly of SC, in correspondence to
the open complex and adaptive systems reconfiguration. In other words, for each
new configuration, the system SC is re-constructed based on automated composi-
tion of SC modules.

To facilitate this, the composition of SC modules must mirror the architecture of
the open complex adaptive system, i.e., the composition of the network of services.
For each service and each safety property that the service needs to satisfy, one mod-
ule is constructed. The goal decomposition within such an SC module corresponds
to the service composition specified by the blueprint implemented by the respective
service. Such module has a direct trace link to the related blueprint.

We categorize SC modules based on the service blueprint it addresses as follows:
 Composed module: specifies the safety argument corresponding to a ser-

vice composition. The argumentation within such module can be further de-
veloped in other basic and/or combined modules, arguing about the com-
posed services.

10 Elham Mirzaei, Carmen Cârlan, Carsten Thomas, Barbara Gallina

 Basic module: specifies the safety argument associated to a basic service.

Fig. 6. Mapping between safety case and service blueprint architecture

Fig. 6 describes the mapping between SoR and SC architecture and Fig. 7 illus-

trates an overview of the proposed approach for DMSC development.

In the next subsections, we describe how to develop the SC of a SoR-able system,

by differentiating the steps that need to be taken at design-time and the one to be
taken at run-time.

Fig. 7. General overview of the DMSC approach application at design-time and run-time

Design-time Specification of DMSC in Support of Run-Time Safety Assessment 11

4.2 Design-time SC specifications

In order to support the generation of SC modules, we use SC patterns. Each pattern
and the modules instantiating that pattern provide a trace link to a service blueprint,
and, respectively, to the available services. Such a mapping enables automatic mod-
ule composition respective to the service composition within each configuration.
Consequently, a concrete SC can be re-constructed and instantiated at run-time for
each possible system configuration.

First, to ease the specification of SC modules arguing about the assurance of
basic services, for each property type, we propose an SC pattern, which can be in-
stantiated for each available basic service. Such module entails a top-level Goal
about the satisfaction of one safety property (e.g., the failure rate of the addressed
service). This module provides a fully developed argumentation, namely they ref-
erence the evidence on which the argumentation is based. We assume that the argu-
mentation about safety properties of basic services is not subject to change during
reconfiguration (since the reconfiguration, as realized in SoR, affects structure
only), so that the design-time argumentation related to basic services remains un-
touched and valid during run-time reconfiguration.

Similarly, we propose an SC pattern for each composed module, which addresses
the service composition blueprint and each safety property that needs to be demon-
strated. In comparison to the basic modules, the argumentation within composed
modules is not completely developed, but it is based on the argumentation about the
safety assurance of the composed services. To achieve this, these patterns entail
Away Goals, each pointing at instantiation to an SC module arguing about the safety
assurance of a constituent service of the service composition. Further, these patterns
entail a strategy explicitly indicating how different Away Goals support the top-
level Goal. The top-level Goal guarantees the satisfaction of a certain safety prop-
erty only if the assumptions correspondent to these properties, which are supported
by Away Goals, are valid. Such a strategy may specify a safety property as a func-
tion that takes the qualitative or quantitative guarantees of the safety properties cor-
responding to the constituent services as inputs and combines them to compute the
valid result for the service composition blueprint. For instance, for the failure rate
as a safety property, assuming the service composition blueprints are decomposed
to a series of basic service blueprints, the top-level Goal guarantees will be com-
puted as the sum of all failure rates provided by the pointed Away Goals (see Fig.8).

12 Elham Mirzaei, Carmen Cârlan, Carsten Thomas, Barbara Gallina

Fig. 8. Safety property function embedded into strategy to calculate the provided guarantees
from basic service blueprints

For open complex adaptive systems, constructing SC modules following the pre-
vious specification leads to creation of the SC structure. The key information to
determine which basic and/or composed modules can be assembled later at run-time
are the instantiation mapping data linking the SC to the service blueprint architec-
ture.

At design-time, the SC of the initial nominal configuration is developed by con-
necting the SC module scoping a nominal service composition with basic and/or
composed SC modules via Away Goals.

We extend the GSN/SACM metamodel having a claim associated to a certain
type of service composition blueprint. This Away Goal is supposed to point to a
Goal, which supports a claim associated to a certain type of basic and/or service
composition blueprint. This leads to automatic instantiation of different Away Goals
along with service composition blueprint instantiation. Fig. 9 presents an overview
of our proposed extension for GSN/SACM metamodel.

Design-time Specification of DMSC in Support of Run-Time Safety Assessment 13

 Fig. 9. The extended GSN/SACM metamodel supporting DMSC

To this end, we need to be able to specify a direct trace link between a Goal and one
of the available service blueprints. To enable the specification of such direct trace
links, we make use of the modelling capabilities offered by SACM (Selviandro,
Hawkins und Habli 2020). In the following, we explain how SACM supports the
specification of direct trace links, leaving out any other modelling concepts that are
not relevant for this specification.

According to the GSN/SACM, all GSN constructs extend the ArtifactEle-
ment SACM class, which extends the ModelElement SACM class. Conse-
quently, inheriting from the ModelElement SACM class, any GSN construct has
a description. The GSN/SACM relationship is illustrated in (ACWG-GSN-
MM 2021).

The description specifies the claim of a GSN construct in MultiLang-
String, i.e., different languages (e.g., various natural languages such as English
or German, or more formal languages such as Linear Temporal Logic). Further, a
description may entail one or more Terms. A Term actually specifies a direct
trace link or a placeholder for a direct trace link to a certain type of artefact. Each
Term has an externalReference to a referenced artefact (i.e., models and
model elements) of the type specified by the type attribute. Terms with empty ex-
ternalReference can be used as to-be-instantiated parameters of abstract
claims in parametrized safety case patterns (Matsuno and Taguchi 2011) i.e., place-
holders for concrete trace links. Consequently, in our approach we use Terms in
the claims of SC elements to establish mappings between the SC model and the
service blueprint models.

14 Elham Mirzaei, Carmen Cârlan, Carsten Thomas, Barbara Gallina

4.1 Run-time SC construction and evaluation

For the purpose of run-time re-evaluation of each composed SC module, we for-
malise the design-time SC to be machine readable using the SysML v2.0 textual
notation2, with some minor extensions. Once the reconfiguration is triggered, the
SC modules will be re-assembled following the provided mapping between SC and
blueprint architecture at design-time, which facilitates the instantiation of blueprints
alongside with their SC modules per each new created configuration.

Further, for verifying the validity of new constructed SC, we check assume/guar-
antee relations, where the assumptions specify safety-related properties assumed in
the current module that are expected to be demonstrated as valid by the modules
pointed to by the Away Goals, and the guarantees specify safety-related properties
that are demonstrated by the current module, given the satisfaction of its assump-
tions. The SC evaluation algorithm re-assesses each possible new configuration by
verifying the assume/guarantee relation through traversing in the new composed SC
modules. Eventually, if no violation is identified in the guarantees, the configuration
is assessed as valid. Consequently, the configuration becomes part of the set of valid
configurations, from which the SoR Reconfiguration component selects the most
suitable configuration as the target configuration to be implemented.

5 Tool Support and Example

In our proposed approach, part of the development and assurance artefacts is done
at design-time, such as the specification of service blueprints, safety case patterns,
and SC modules. Hence, tool support for the specification of these artefacts would
be beneficial.

5.1 Tool implementation

In this section, we discuss how we extended the FormAl SpecificaTion Environ-
ment (FASTEN)3 in order to offer the needed tool support. FASTEN is an open-
source environment for the specification, verification and assurance of safety criti-
cal systems. One characteristic of FASTEN is that it allows the deep integration
between models of different aspects of the system (Ratiu, et al. 2021), e.g., a safety

2 https://github.com/Systems-Modeling/SysML-v2-Release
3 https://sites.google.com/site/fastenroot/home

Design-time Specification of DMSC in Support of Run-Time Safety Assessment 15

case model and the system architecture. FASTEN is built on JetBrains Meta Pro-
gramming System (MPS), which is an open-source language workbench that targets
Domain-specific Languages (DSLs). In contrast to general-purpose languages
(GPLs), DSLs support the specification of systems in languages that directly use
the concepts and logic from a specific application domain. Basically, FASTEN is a
stack of DSLs, easily extensible via the specification of new DSLs. Among others,
FASTEN has DSLs for the specification of system architecture, GSN-based safety
cases, and of GSN-based SC patterns.

To enable the modelling of service blueprints presented in Subsection 2.2, and
the mapping between SC and service blueprint models, we extend the FASTEN
platform with a new stack of DSLs – FASTEN.DMSC. To enable the specification
of direct trace links from safety case elements to the specified service blueprints,
we extend the IWord interface from the FASTEN platform, which enables the
specification of direct trace links from one model element to another. Examples of
such trace links can be seen in Fig.6.

5.2 Example

We next illustrate how we apply the DMSC development guidelines, which are pro-
posed in Section 4, to a simple, but clear example, while using FASTEN for the
modelling activities. The example considers a scenario in a factory layout, where a
group of two transport robots, robot R1 and robot R2, collaborate with each other.
We focus on the service composition blueprint of obstacle mapping – a service,
which is provided by both robots from our example. In Fig.10 we show a screenshot
from FASTEN tool, with the editor where we modelled the obstacle mapping ser-
vice blueprint. According to the blueprint, an obstacle mapping service is composed
of three other services, namely the distance sensor service, the obstacle detection
service, and the occupancy map generator service.

16 Elham Mirzaei, Carmen Cârlan, Carsten Thomas, Barbara Gallina

Fig. 10. The obstacle mapping service composition blueprint modelled in FASTEN

Design-time Specification of DMSC in Support of Run-Time Safety Assessment 17

Next, we present the steps taken for the modelling of a modular SC arguing about
the safety assurance of the obstacle mapping service provided by robot R1. The SC
justifies the safety of associated failure rate to this service being sufficiently low,
where the failure rate of the composed service is computed from the failure rates of
the composing services. For simplification purposes, we assume that the failure
rates of each service are independent.

As a first step, we model in FASTEN an SC pattern arguing about the failure rate
met by a given basic service (see Fig.11.a) The top-level goal (G1) of this pattern
has a placeholder for a direct trace link to the addressed blueprint, using an exten-
sion of the IWord interface. The argument is supported by the results of a Fault
Tree Analysis (FTA). Based on this pattern, at design-time, we create a set of SC
basic modules, each corresponding to an available basic service. For our example,
we create the SC modules corresponding to the available basic services of both ro-
bot R1 and robot R2: the basic distance sensor, the basic obstacle detection, and the
basic occupancy map generation. Further, we also create a pattern arguing about the
fact that the failure rate met by a service composition is sufficiently low (see
Fig.11.b).

Fig. 11.a Safety case pattern for argu-
ing about the sufficiency of the failure
rate of a basic service

Fig. 11.b Safety case pattern for argu-
ing about the sufficiency of the failure
rate of a service composition

18 Elham Mirzaei, Carmen Cârlan, Carsten Thomas, Barbara Gallina

Next, we model an SC module developed by partially instantiated pattern for
arguing that a system implementing the composed obstacle mapping service has a
failure rate that is sufficiently low. The structure of this SC module mirrors the
composition of services presented by the service blueprint model (see Fig.12).

Fig. 12. The concrete safety case for the nominal configuration instantiated from the obsta-

cle mapping service composition blueprint at design-time

Design-time Specification of DMSC in Support of Run-Time Safety Assessment 19

As discussed in Section 4, considering the nominal configuration, the top-level

safety Goal is instantiated at design-time with a reference to the composed service
blueprint. Since the obstacle mapping service is composed by basic and/or service
compositions blueprints, the satisfaction of the top-level Goal is demonstrated by
arguing that the failure rates of the components implementing the service blueprints
are sufficiently low. Therefore, the argumentation within this SC pattern is sup-
ported by Away Goals, which, after instantiation, point to SC modules arguing about
the failure rates met by the services composing the obstacle mapping service. At
design time, the Away Goals are instantiated considering the nominal configuration.
At run-time, whenever a reconfiguration occurs, whereas the instantiated top-level
Goal does not undergo any other changes, the Away Goals are to be re-instantiated,
i.e., they will point to different SC modules, depending on the chosen composing
services in the new configuration.

In Fig.12, we show how the SC for the nominal configuration is modelled in
FASTEN, based on the instantiated patterns. The nominal configuration of robot R1
implements the obstacle mapping service by composing three basic services for dis-
tance sensor, occupancy map generator and obstacle detection service. Therefore,
the Away Goals AG2.1, AG2.2, AG2.3 in the safety case arguing about the failure
rate of the obstacle mapping service point to G2.1, G2.2 and G2.3, which argue
about the fact that the failure rates associated to these basic services are sufficiently
low.

Once we create the design-time patterns and modules, we formalized the mod-
ules using SysML v2.0 textual notation for the SC instantiation and evaluation at
run-time. As a reconfiguration is triggered, a new SC fragment composing the mod-
ules scoping the composing services is created. For all the new possible configura-
tions, a re-evaluation will be done verifying the assume/guarantee relations between
the obstacle mapping module and the distance sensor basic and/or composed mod-
ules.

In our example, for the obstacle mapping modules pattern, we assume the option
to instantiate either basic or cooperative services for the distance sensor, obstacle
detection, and occupancy map generation. According to the combination formula
(Cameron 1994), the three options out of six available services result in 20 possible
configurations – which is a considerable number for such simple example. Whilst
concrete safety cases for these 20 configurations could be created and evaluated at
design-time, this is impossible for any complex open adaptive system of meaningful
size and complexity. Here, the number of possible configurations easily reaches
thousands.

6 Conclusion and future work

In this paper, we continue our ongoing line of work on developing DMSC to support
SoR within the context of complex open and adaptive systems. In particular, we

20 Elham Mirzaei, Carmen Cârlan, Carsten Thomas, Barbara Gallina

describe how to develop a design-time SC in a structured manner to facilitate safety
assessment during reconfiguration at run-time. To this end, we outline the guide-
lines for the design-time specification of DMSC, while also using SC patterns. Fur-
ther, we enable the co-evolution between system and safety architectures by defin-
ing trace links between the service blueprint architecture in SoR and the SC hierar-
chy established using the DMSC method and patterns. This also facilitates more
purposeful and systematic SC maintenance by restricting the propagation of change
impact only to certain SC modules.

Together with the proposed design-time SC, we additionally propose the formal-
ization of SC modules with the purpose of automated pattern instantiation and re-
construction of a concrete SC at run-time for each new created configuration. The
SC automatically created at run-time can be evaluated by validating the as-
sume/guarantee relations between modules and assuring the module composition.
Further, we provide tool-support for our proposed safety case development guide-
lines by extending FASTEN – a system and safety engineering platform with capa-
bilities for modelling service blueprints, service-oriented architectures based on
those blueprints and DMSCs. Finally, we applied the proposed DMSC specification
guidelines to an example from the smart factory domain.

In this paper, we propose the development of a DMSC at run-time, via the com-
position of SC modules specified at design-time. As a next step, we will elaborate
on how to define formalised assume/guarantee contracts for each SC module and
we will propose an automatic analysis of the compatibility of these contracts.

Acknowledgments Barbara Gallina is partially supported by the by Sweden’s Knowledge Foun-

dation via the SACSys (Safe and Secure Adaptive Collaborative Systems) project. Elham Mirzaei

and Carsten Thomas are supported by the German Ministry for Education and Research in frame

of the ITEA3 research project CyberFactory#14 under funding ID 01IS18061D.

References

ACWG-GSN. 2021. “Goal Structuring Notation Community Standard.” Vers. 3. Safety-Critical
Systems Club (SCSC) Assurance Case Working Group (ACWG).
https://scsc.uk/r141C:1?t=1.

ACWG-GSN-EX. 2021. “GSN-SACM Argumentation Example.” Vers. 2.1. Safety-Critical
Systems Club (SCSC) Assurance Case Working Group (ACWG).
https://scsc.uk/file/gc/GSN2SACM_examples-1084.pdf.

ACWG-GSN-MM. 2021. “GSN Metamodel Specification.” Vers. 2.2. Safety-Critical Systems
Club (SCSC) Assurance Case Working Group (ACWG).
https://scsc.uk/file/gc/GSN_metamodelV2-2-1210.pdf.

4 https://www.cyberfactory-1.org/home/

Design-time Specification of DMSC in Support of Run-Time Safety Assessment 21

Asaadi, Erfan, Ewen Denney, Jonathan Menzies, Ganesh J Pai, and Dimo Petroff. 2020.
“Dynamic Assurance Cases: A Pathway to Trusted Autonomy.” Computer 53 (12): 35
- 46.

Boardman, John, and Brian J Sauser. 2006. “The Meaning of System of Systems.” Edited by
IEEE. IEEE/SMC International Conference on System of Systems Engineering. Los
Angeles, CA, USA: IEEE. doi:10.1109/SYSOSE.2006.1652284.

Bradbury, Jeremy S, James R Cordy, Juergen Dingel, and Michel Wermelinger. 2004. “A survey
of self-management in dynamic software architecture specifications.” WOSS '04:
Proceedings of the 1st ACM SIGSOFT workshop on Self-managed systems. New
York, NY, USA: Association for Computing Machinery. 28–33.

Calinescu, Radu, Danny Weyns, Simos Gerasimou, Muhammad Usman Iftikhar, Ibrahim Habli,
and Tim Kelly. 2018. “Engineering Trustworthy Self-Adaptive Software with
Dynamic Assurance Cases.” IEEE Transactions on Software Engineering 44 (11):
1039 - 1069. doi:10.1109/TSE.2017.2738640.

Cameron, Peter J. 1994. Combinatorics: Topics, Techniques, Algorithms. Cambridge University
Press.

CENELEC. 2007. EN 50129: Railway applications - Communication, signalling and processing
systems - Safety-related electronic systems for signalling. Standard, International
Electrotechnical Commission.

Cheng, Betty H C, Robert Jared Clark, Jonathon Emil Fleck, Michael Austin Langford, and
Philip K McKinley. 2020. “AC-ROS: assurance case driven adaptation for the robot
operating system.” MODELS '20: Proceedings of the 23rd ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems. New York, NY,
USA: Association for Computing Machinery. 102–113.

De La Vara, Jose Luis, Eugenio Parra, Alejandra Ruiz, and Barbara Gallina. 2020. “The AMASS
Tool Platform: An innovative solution for assurance and certification of cyber-
physical systems.” Joint Proceedings of REFSQ-2020 Workshops, Doctoral
Symposium, Live Studies Track, and Poster Track co-located with the 26th
International Conference on Requirements Engineering: Foundation for Software
Quality (REFSQ 2020),. Pisa, Italy: CEUR Workshop Proceedings, CEUR-WS.

Denney, Ewen, and Ganesh Pai. 2013. “A Formal Basis for Safety Case Patterns.” In Computer
Safety, Reliability, and Security, by Guiochet J., Kaâniche M. Bitsch F., 21-32. Berlin
& Heidelberg, Germany: Springer.

Denney, Ewen, and Ganesh Pai. 2016. “Composition of Safety Argument Patterns.” In Computer
Safety, Reliability, and Security. SAFECOMP, by Guiochet J., Bitsch F. Skavhaug A.,
51-63. Springer.

Denney, Ewen, and Ganesh Pai. 2015. Safety Case Patterns: Theory and Applications.
Technical, NASA.

Denney, Ewen, and Ganesh Pai. 2018. “Tool support for assurance case development.”
Automated Software Engineering (Springer) 25 (3): 435-499.

Denney, Ewen, Ganesh Pai, and Ibrahim Habli. 2015. “Dynamic Safety Cases for Through-Life
Safety Assurance.” IEEE/ACM 37th IEEE International Conference on Software
Engineering. Florence, Italy: IEEE. 587-590.

Eurocontrol. 2006. “Safety Case Development Manual, ed. 2.2.” Eurocontrol (European
Organisation for the Safety of Air Navigation).

Industrial Avionics Working Group. 2012. “Modular Software Safety Case Process Description.”
Accessed November 2021. https://www.amsderisc.com/wp-
content/uploads/2013/01/MSSC_201_Issue_01_PD_2012_11_17.pdf.

ISO/IEC/IEEE. 2019. “ISO/IEC/IEEE 15026-1: Systems and software engineering - Systems and
software assurance - Part 1: Concepts and vocabulary.” Standard.

Kelly , Tim, and J McDermid. 1998. “Safety case patterns-reusing successful arguments.” IEE
Colloquium on Understanding Patterns and Their Application to Systems Engineering
(Digest No. 1998/308). London, UK: IET. 3/1-3/9.

22 Elham Mirzaei, Carmen Cârlan, Carsten Thomas, Barbara Gallina

Kelly, Tim. 2003. “Managing Complex Safety Cases.” In Current Issues in Safety-Critical
Systems, by Anderson T. Redmill F., 99-115. London: Springer. doi:10.1007/978-1-
4471-0653-1_6.

Kelly, Tim, and Simon Bates. 2005. “The Costs, Benefits, and Risks Associated With Pattern-
Based and Modular Safety Case Development.” UK MoD Equipment Safety
Assurance Symposium.

Leveson, Nancy. 2020. “White Paper on Limitations of Safety Assurance and Goal Structuring
Notation (GSN).” http://sunnyday.mit.edu/safety-assurance.pdf.

Matsuno, Yutaka, and Kenji Taguchi. 2011. “Parameterised Argument Structure for GSN
Patterns.” 11th International Conference on Quality Software. Madrid, Spain: IEEE.
96-101. doi:10.1109/QSIC.2011.35.

Ministry of Defence. 2007. Defence Standard 00-56: Safety Management Requirements for
Defence Systems. Standard, UK: Ministry of Defence.

Mirzaei, Elham, Carsten Thomas, and Mirko Conrad. 2020. “Safety Cases for Adaptive Systems
of Systems: State of the Art and Current Challenges.” Workshops. EDCC 2020.
Communications in Computer and Information Science. Munich, Germany: Springer,
Cham. 127-138. doi:10.1007/978-3-030-58462-7_11.

Object Management Group. 2020. “Structured Assurance Case Metamodel (SACM), Version
2.1.” https://www.omg.org/spec/SACM/2.1/PDF.

Ratiu, Daniel, Arne Nordmann, Peter Munk, Carmen Carlan, and Markus Voelter. 2021.
“FASTEN: An Extensible Platform to Experiment with Rigorous Modeling of Safety-
Critical Systems.” In Domain-Specific Languages in Practice, by Cicchetti A.,
Ciccozzi F., Pierantonio A. Bucchiarone A., 131-164. Springer, Cham.
doi:doi.org/10.1007/978-3-030-73758-0_5.

Richardson, Chris. 2018. Microservices Patterns: With Examples in Java. New York: Manning
Publications.

SAWG, SCSC. 2020. “SCSC Publications.” Vers. V1.0. SCSC. Edited by Mike Parsons. Service
Assurance Working Group (SAWG). February. Accessed November 2021.
https://scsc.uk/scsc-156.

Selviandro, Nungki, Richard Hawkins, and Ibrahim Habli. 2020. “A Visual Notation for the
Representation of Assurance Cases Using SACM.” In IMBSA 2020: Model-Based
Safety and Assessment, by Marc Zeller and Kai Höfig, 3-18. Springer.
doi:10.1007/978-3-030-58920-2_1.

Siefke, Lennart, Volker Sommer, Björn Wudka, and Carsten Thomas. 2020. “Robotic Systems of
Systems Based on a Decentralized Service-Oriented Architecture.” Robotics 9 (4): 78.
doi:10.3390/robotics9040078.

Šljivo, Irfan, Garazi Juez Uriagereka, Stefano Puri, and Barbara Gallina. 2020. “Guiding
Assurance of Architectural Design Patterns for Critical Applications.” Journal of
Systems Architecture 110: 101765. doi:10.1016/j.sysarc.2020.101765.

Thomas, Carsten, Elham Mirzaei, Björn Wudka, Lennart Siefke, and Volker Sommer. 2021.
Service-Oriented Reconfiguration in Systems of Systems Assured by Dynamic Modular
Safety Cases. Vol. 1462, in Dependable Computing - EDCC 2021 Workshops. EDCC
2021. Communications in Computer and Information Science, by Rasmus Adler,
Amel Bennaceur, Simon Burton, Amleto Di Salle, Nicola Nostro, Rasmus Løvenstein
Olsen, Selma Saidi, Philipp Schleiss, Daniel Schneider and Hans-Peter Schwefel, 12-
29. Munich, Germany: Springer. doi:10.1007/978-3-030-86507-8_2.

Vierhauser, Michael, Sean Bayley, Jane Wyngaard, Wandi Xiong, Jinghui Cheng, Joshua
Huseman, Robyn Lutz, and Jane Cleland-Huang. 2021. “Interlocking Safety Cases for
Unmanned Autonomous Systems in Shared Airspaces.” Edited by IEEE. IEEE
Transactions on Software Engineering 47 (5): 899-918.
doi:10.1109/TSE.2019.2907595.

Wei, Ran, Tim P Kelly, Xiaotian Dai, Shuai Zhao, and Richard Hawkins. 2019. “Model based
system assurance using the structured assurance case metamodel.” Journal of Systems
and Software 154: 211-233. doi:10.1016/j.jss.2019.05.013.

Design-time Specification of DMSC in Support of Run-Time Safety Assessment 23

Wudka, Björn, Carsten Thomas, Lennart Siefke, and Volker Sommer. 2020. “A Reconfiguration
Approach for Open Adaptive Systems-of-Systems.” 2020 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW). Coimbra,
Portugal: IEEE. 219-222. doi:10.1109/ISSREW51248.2020.00076.

Yan, Fang, Simon Foster, and Ibrahim Habli. 2021. “Safety Case Generation by Model-based
Engineering: State of the Art and a Proposal.” The Eleventh International Conference
on Performance, Safety and Robustness in Complex Systems and Applications.
International Academy, Research, and Industry Association.
https://eprints.whiterose.ac.uk/172352/.

In order to publish your article, we need your agreement in writing. Please take a
moment to read the terms of this license, sign the form and return it to us as quickly
as possible.

………………………..

24 Elham Mirzaei, Carmen Cârlan, Carsten Thomas, Barbara Gallina

Title of Article: Design‐time Specification of Dynamic Modular Safety Cases In

Support of Run‐Time Safety Assessment
__

Name of Author(s): Elham Mirzaei, Carmen Cârlan, Carsten Thomas, Barbara
Gallina

__
Name of Copyright Owner (if not author):
__
Address of Copyright Owner:
__
Signature
__

1. Safety‐Critical Systems Club and SCSC are trading names of the Safety‐
Critical Systems Club C.I.C. a Community Interest Company limited by
guarantee and registered in England and Wales with company number
13084663. Registered Office: Southgate Chambers, 37/39 Southgate
Street, Winchester, SO23 9EH.

2. The remit of the Safety‐Critical Systems Club is to support the Safety En‐
gineering Community through the dissemination of technical and educa‐
tional information. To ensure this information is available to the commu‐
nity it will be published under the Creative Commons Attribution 4.0 Li‐
cense (CC BY 4.0) which allows it to be used and reused providing appro‐
priate credit it given. To view a copy of this license, visit http://crea‐
tivecommons.org/licenses/by/4.0/ or send a letter to Creative Commons,
PO Box 1866, Mountain View, CA 94042, USA.

3. By signing this form, you (the copyright owner or authorized representa‐
tive of the owner):

a. Agree to grant to the Safety Critical Systems Club (the publisher)
the non‐exclusive right to publish, distribute or broadcast your
paper in printed or digital form e.g. in the SCSC Newsletter, SCSC
eJournal, SCSC books or online through our website.

b. Assert that the paper is your original work. If it contains material
which is someone else’s copyright, you assert that you have ob‐
tained the unrestricted permission of the copyright owner and
that the material is clearly identified and acknowledged in the
text.

c. Assert that the paper does not, to the best of your knowledge,
contain anything which is libelous, illegal or infringes anyone’s
copyright or other rights.

Design-time Specification of DMSC in Support of Run-Time Safety Assessment 25

d. Assert your Moral Rights to be identified as the author, if appro‐
priate.

4. We confirm that we will respect the rights of the author(s) and will make
sure that their name(s) are always closely associated with the paper.

5. Copyright remains with the author(s) and we will acknowledge this. How‐
ever, you authorize the Safety Critical Systems Club, if we wish, to act on
your behalf to defend copyright.

…………………………………..

