
Schedulability Analysis of WSAN Applications:
Outperformance of A Model Checking Approach

Ehsan Khamespanah∗, Morteza Mohaqeqi†, Mohammad Ashjaei‡, Marjan Sirjani‡
∗University of Tehran, Tehran, Iran, e.khamespanah@ut.ac.ir

†Uppsala University, Uppsala, Sweden, morteza.mohaqeqi@it.uu.se
‡Mälardalen University, Västerås, Sweden, {mohammad.ashjaei,marjan.sirjani}@mdu.se

Abstract—Wireless sensor and actuator networks
(WSAN) are real-time systems which demand timing
requirements. To ensure this level of requirements,
different timing analysis approaches have been proposed
for WSAN systems. Among different alternatives, an-
alytical analysis and model checking approaches are
two common ones which are widely used for the timing
analysis of WSAN systems. Analytical approaches apply
worst-case response time analysis techniques, whereas
model checking generates explicit states of models to
analyze them. In this paper, we develop schedulability
analysis techniques based on two approaches, i.e., ana-
lytical and model checking approaches. We apply and
compare the proposed analysis approaches on WSAN
systems with an application in monitoring and control of
civil infrastructures implemented on the Imote2 wireless
sensor platform. We show that the highest possible data
acquisition frequency for this application is computed
while meeting the deadlines, and compare the results of
the two approaches in terms of scalability, extensibility,
and flexibility.

I. Introduction

Wireless sensor and actuator networks (WSANs) pro-
vide low-cost continuous monitoring as the infrastruc-
ture for control systems. Thanks to the use of wireless
communications and distributed architectures, WSANs
encompass many advantages compared to traditional hard-
wired networked control systems. In the design of control
systems that benefit from WSANs, interdependencies
between a control algorithm and communication have to be
considered. For example, while low sampling rate for sensor
data acquisition usually degrades control performance,
high sampling rate may increase resource contention in
bandwidth-constrained WSANs, which in turn may lead to
degrading the control performance. This makes the design
of WSAN systems more complicated and it is necessary to
develop techniques and methods that facilitate design and
verification of WSAN systems.

Nevertheless, trial and error is a widely used approach
for the WSAN applications design. For example, the work
in [1] presents an empirical test-and-measure approach
based on binary search to find configuration parameters,
including worst-case task runtimes and the communication
time-slot. Extending real-time scheduling theory [2], that
has been developed for the timing analysis of real-time
systems, is another approach for the timing verification of

WSAN systems. However, due to the use of event-driven
operating systems in WSANs with very limited scheduling
supports, e.g., TinyOS [3], many schedulability analysis
approaches cannot be effectively employed.

A. Related analysis approaches

A set of techniques have been proposed to provide
schedulability analysis, including utilization-based tests [4],
response-time analysis [5], and real-time calculus [6] as
well as model checking approaches [7], [8]. Considering
the analytical approaches, several works in the literature
addressed the schedulability analysis of WSANs considering
different settings and requirements. The work in [9] defined
three different task scheduling techniques, then presented
an analytical method to find the maximum schedulable
load. The work in [10] and [11] presented analytical analysis;
in [10] the target is the earliest deadline first scheduling
algorithm, and in [11] the target is the high energy first
scheduling algorithm.
Among the works that analyzed real-time systems

using model checking approaches, Petri Nets are used
to check the behavior of task executions in [12], [13]. In
the context of uniprocessor real-time systems, the work
in [14] developed a timed automata model for schedulability
analysis of preemptable tasks that have interactions with
each other through synchronization methods. A technique
in [15] is proposed to tackle similar problem in analyzing
tasks executing synchronously. The work in [16] extended
the reachability analysis on timed automata to consider
precedence and resource constraints in uniprocessor real-
time systems. In the domain of multiprocessor systems,
the work in [17] proposed a schedulability analysis based
on model checking for multiprocessor real-time systems.
The work in [18] performed exact schedulability analysis
of multi-core real-time systems using model checking.

B. Motivation and contributions

To the best of our knowledge, although each of the
above mentioned techniques widely used in the analysis
of WSAN systems, it is not clear which of them has to
be used for the analysis of a given WSAN system. In
other words, there is no work on comparing analytical and
model checking approaches to make their strengths and
weaknesses clear. The main reason is that the techniques

are normally optimized for specific applications, which
makes it difficult to globally compare the techniques.
In this paper, we develop an analytical approach and

a model checking approach and we compare them in the
analysis of a WSAN framework. The WSAN framework
in this paper is proposed for developing structural health
monitoring and control applications [1]. This framework has
been implemented on the Imote2 wireless sensor platform
and used in several long-term developments of highway and
railroad bridges. Note that applications of this framework
can be extended to a wide range of monitoring purposes
as it has a flexible and open architecture [19].

The results of our study show that the analytical analysis
for the application described in this paper, which is based
on conservative worst-case assumptions and empirical
measurements, may lead to schedules that do not utilize
resources in the most efficient way. By using model checking
we can get better utilization of resources. However, model
checking is more sensitive to the values which are set for
timings of the model and different values may result in
different memory and time consumption for model checking
of the models. Note that having different values for timings
do not affect the analysis cost of the analytical approach.
We also compare the extensibility and flexibility of the
two approaches by checking how each approach can be
reused for different network communication protocols and
different characteristics of tasks.

II. Application Model and Design Objectives
WSANs provide a new communication technology for

a wide range of cyber-physical applications. A WSAN in-
volves feedback control loops between sensors and actuators
through a wireless network. Sensors of WSANs measure
process variables and deliver the set of gathered data to a
controller through the network. The controller sends control
commands to the actuators, which then operate the control
and safety components. Structural health monitoring and
control (SHMC) of civil infrastructure [1] is an instance of
WSANs, used in several long-term development of several
highway and railroad bridges [19]. SHMC application devel-
opment has proven to be particularly challenging as it has
the complexity of a large-scale distributed system with real-
time requirements, while having the resource limitations
of low-power embedded WSAN platforms. Sensing and
control in these systems need to meet stringent real-time
performance requirements on communication latency in
harsh environments. Violation of these requirements may
result system failure or significant costs.
A WSAN application is a distributed system with

multiple sensor nodes, each comprised of the independent
concurrent entities. It contains a CPU and several sensors
which bridged together via a wireless communication device
that uses a transmission control protocol. Interactions
between entities, both within a node and among nodes,
are concurrent and asynchronous. Moreover, WSAN ap-
plications are sensitive to the timing of events, with soft

Figure 1. The sequence diagram of the main scenario of a WSAN for
Structural Health Monitoring and Control

deadlines at each step of the process that are required
to ensure correct and efficient operation. Due to the
performance requirements, coordination among sensing,
data processing, and communication activities is required
in WSANs. In particular, once a sample is acquired from
a sensor, its corresponding radio transmission activities
must be performed. At the same time, data processing
tasks must be executed. For example, because of the
environmental changes in the temperature, a kind of
data compensation must be applied on sensor data to
adjust the acquired values. Moreover, the timing of radio
transmissions from different nodes must be coordinated
using a wireless communication protocol.

A. The System Model of a WSAN for Structural Health

Monitoring and Control

As shown in Figure 1, we use a UML sequence diagram
to present how WSAN applications work. To this end, we
need to have a look into the interaction of the components
and events which are triggered and serviced by them. Based
on the specification of the WSAN applications, there are
many nodes which have the role of data acquisition and
data transmission. Note that all of the message calls in
this model are asynchronous, thus they are shown by open
arrows in Figure 1 and they do not have any return value.
For data acquisition, a node has a set of sensors which

periodically acquire data from the environment (messages
1 and 3 in Figure 1) and send the data to the processing
unit of the node (message 2 in Figure 1). The processing
unit is responsible for validating the data and storing
it into an internal buffer. Upon receiving enough data
(the guard on message 4 in Figure 1), the processor unit
puts the data in one packet and sends it to the radio
communication unit (message 4 in Figure 1). The radio
communication unit tries to send data via a wireless
medium (message 5 in Figure 1), considering a predefined
communication protocol (message 6 to 9 in Figure 1). In
this work, we assumed that the communication protocol of
nodes is Time Division Multiple Access (TDMA). Note that
TDMA [20] is a MAC-level communication protocol which
is widely used in WSAN applications. But it can be replaced
by other MAC-level protocols (e.g. by B-MAC [21]). In
addition to the mentioned components, one additional
component for carrying out miscellaneous tasks unrelated

to sensing or communication is needed in the model of
WSAN application. This additional component is necessary
for making the model close to its real configuration.
Regarding the implementation, each node employs a

single-core processing unit. The mentioned functionalities
are assumed to be implemented by two real-time tasks,
referred to as sensor task and miscellaneous task. Further,
the corresponding jobs are scheduled and executed by a
non-preemptive FIFO scheduling policy.

B. Design Objective

In the WSAN application the goal is that each node
reaches its maximum sampling rate. This way the resource
is fully utilized and the cost is reduced. Meanwhile, system
buffer size as well as its processing capacity are the main
limitations. In summary, the problem is to compute the
maximum achievable sampling rate of sensors for a given
system specification without missing any data.
The constraints which have to be satisfied in finding

the maximum sampling rate can be divided into two
requirements. The first requirement focuses on the timely
execution of the tasks inside a node, which is expressed in
Requirement 1.

Requirement 1. All instances of sensors tasks as well

as those of any other miscellaneous tasks should be served

prior to the arrival of a new instance of that task.

The second requirement, Requirement 2, is related to
the communication protocol parameters. Once a packet is
ready in a node, this packet should be sent before another
packet becomes ready for sending in that node.

Requirement 2. The transmission of any packet should

be finished before the next packet becomes ready.

III. Analytical Analysis Approach
In this section, we present an analytical approach to

obtain the maximum sampling rate of data collection. Our
solution provides a rate by which both requirements are met
(but maybe it is not the maximum possible rate); hence, the
solution is a safe (but possibly pessimistic) approximation.

Based on the description of the previous section, a node
contains two tasks, namely τM and τS . Both tasks are
assumed to be periodic with period of TM and TS , although
their activation sources are an event for τM and a timer
for τS . The tasks have a known worst-case execution time,
which is denoted by CM for τM and CS for τS . Whenever
any of these tasks is activated, it is inserted to a FIFO
queue to be scheduled non-preemptively. Each task has a
relative deadline that is equal to its period. In other words,
we consider the model to be implicit deadline. Note that
the tasks do not have activation jitter and they have no
dependency, such as sharing resources or communication
between each other. In this model, the Sensor task τS
collects data from the environment. When N data samples
are collected and processed by this task, a packet is created
for sending the data through the network.

As mentioned before, the network access protocol is
assumed to be TDMA and each sender node has a dedicated
time-slot for transmission of its data. In this model, we
define a super-frame with the length of Ttdma that all time-
slots are allocated within that. If the packet is not ready at
the beginning of the dedicated time-slot, it will be unused.
Figure 2 demonstrates the execution of N jobs of task τS ,
preparing a packet of the collected data, and sending the
packet in the dedicated time slot.

t

t0

0 TS 2TS (N − 1)TS

.

Ttdma

Preparing a packet

Sending the packet

Execution of τS (ignoring τM) Dedicated TDMA time slot

Figure 2. Creating a packet out of N data samples. The packet is
sent in the first dedicated TDMA time slot.

Regarding the design objective, we are interested in
finding the maximum allowable rate of activation of task
τS . A sampling rate is valid to be used if it respects system
constraints, specified in Requirements 1 and 2. To treat the
mentioned requirements, we define the notion of response
time of a job. Consider the i-th job of the Sensor task, that
is the instance of τS which is responsible for processing the
i-th data. The difference between the release time of this
job and the point at which the data is completely processed
is defined as the response time of the job, denoted by Ri.
A. Addressing Requirement 1

To decide schedulability of the tasks, i.e., to fulfill
Requirement 1, we need to ensure that all instances of
both tasks meet their deadlines. In the following, we derive
a relation which guarantees tasks schedulability.

Each sender node has two periodic non-preemptive tasks
which are scheduled with a FIFO queue. As there is no
other priority levels in the system, the only interference
for the tasks is from the same priority tasks waiting in
the same queue. Therefore, in a schedulable system with
implicit deadlines, when a task is queued in the FIFO queue
at most one instance of other tasks can be ahead of the
task under analysis [22]. This means that if there are two
instances of a task ahead of the task under analysis, the
system is not schedulable. According to the assumptions,
a task suffers from the worst-case execution time of the
other task, only. Therefore, in our system model with two
periodic non-preemptive tasks, the task τS is schedulable
if CM + CS ≤ TS . Similarly, the task τM is schedulable
if CM + CS ≤ TM . Putting these together, the system is
schedulable if,

CM + CS ≤ min(TM , TS) (1)
Condition (1) serves as a sufficient schedulability test,

i.e., a sufficient condition for fulfilling Requirement 1.

B. Addressing Requirement 2

In order to address the second requirement, we first
compute the time when the j-th packet becomes ready. Let
mj denotes this time instant. Figure 3 depicts the relation
between mj and the execution of τS ’s jobs.

0 TS 2TS (N − 1)TS ((j − 1)N)TS (jN − 1)TS

.

First packet j-th packet

mj

Figure 3. The execution of any N jobs of τS results a packet.

According to the figure, mj can be computed as:

mj = (jN − 1)TS +RjN , (2)

where RjN denotes the response time of the jN -th job of τS .
Note that the jN -th job is released at (jN − 1)TS .In order
for a packet to be sent before the next one becomes ready,
there must be at least one dedicated time slot between the
points in which the packets are ready. Formally, between
the instants mj and mj+1, for all j > 0, there must be a
time slot in which the j-th packet can be sent.

To fulfill this requirement, it is sufficient to have Ttdma <
mj+1 −mj , which, according to Eq. (2), means:

Ttdma < mj+1 −mj (3)
= ((j + 1)N − 1)TS +R(j+1)N − ((jN − 1)TS

+RjN)
= ((j + 1)N)TS +R(j+1)N − (jN)TS −RjN
= NTS +R(j+1)N −RjN

This inequality forces a lower bound on the sampling
period TS as follow:

TS >
Ttdma +RjN −R(j+1)N

N
(4)

Hence, for an exact timing analysis (for the second prob-
lem), we need to precisely calculate the response times of
the Sensor jobs.

C. Response-Time Analysis

As shown above, to compute the value of mj , we need
to accomplish a response-time analysis of a job that is
scheduled by a non-preemptive FIFO scheduling scheme.
As exact response-time of the jobs are not known, we use
upper bound and lower bound of the response time to
derive a (sufficient) condition which satisfies Ineq. (4).

Proposition 1. Let W and B denote, respectively, an

upper bound and lower bound for the response time of a job

of τS. Then,

Ttdma < NTS +B −W (5)

implies Eq. (3).

Proof. Based on the definition of W and B, it holds that

B ≤ R(j+1)N , (6)
RjN ≤ W,

or equivalently,

B ≤ R(j+1)N (7)
−W ≤ −RjN .

This leads to

B −W ≤ R(j+1)N −RjN . (8)

With adding NTS to both left-hand side and right-hand
side of (8), it follows that NTS+B−W ≤ NTS+R(j+1)N−
RjN . Writing this together with (5), we have

Ttdma < NTS +B −W
NTS +B −W ≤ NTS +R(j+1)N −RjN

This means that Ttdma < NTS +B −W implies Ttdma <
NTs +R(j+1)N −RjN , by which the proof completes.

In other words, Eq. (5) provides a sufficient condition
to ensure that the messages are sent in a timely manner.
Next, we consider calculating the parameters B and W .
The (minimum) execution time of a single job of the Sensor
task can be considered as (a lower bound on) B. Besides, an
upper bound for the response time of a job isW = CS+CM .
Substituting these values of B and W in Eq. (5) reveals:

Ttdma < NTS − CM . (9)

D. Maximum Sampling Rate

Eqs. (1) and (9) provide two lower bounds on the period
of the Sensor task, i.e., TS . Based on this, to ensure timing
constraints are met, TS needs to satisfy:

TS ≥ max(CM + CS ,
Ttdma + CM + CS

N
) (10)

This relation provides a limit on TS , or equivalently, on
the sampling rate, which fulfills the requirements.

IV. Model Checking Approach
Real-time Maude [23] and Timed Automata [24] are two

widely used modeling languages which are equipped with
model checking facilities. Real-time Maude is a high level
declarative programming language supporting specification
of real-time and hybrid systems in timed rewriting logic. A
network of timed automata models the behavior of timed
systems using a set of automata that is equipped with the
set of clock variables, which their values are increased in
the same rate to model progress in time. Although either
of real-time Maude and timed automata can be used as
the modeling formalism of the WSAN framework, their
faithfulness [25] to the WSAN framework is poor. This
results in increasing the cost of modeling and model check-
ing. To avoid this inefficiency, we used Timed Rebeca [26]
as the modeling language and benefit from Afra, its model

checking toolset [27]. Timed Rebeca is an extension on
Rebeca [28] modeling language with time features for
modeling and verification of time-critical systems. Rebeca
is an actor-based language for modeling concurrent and
reactive systems with asynchronous message passing. This
characteristics conforms the characteristics of the WSAN
framework which consists of a set of concurrently executing
components which are communicating by asynchronous
message passing. Note that in the development of the
Timed Rebeca model of the WSAN framework we do our
best to consider the same level of details in comparison
with the analytical model. This is necessary to be able to
fairly compare the results of the two approaches.

We illustrate the Timed Rebeca language with the
simplified model of the WSAN framework, shown in
Listing 1. A Timed Rebeca model consists of a set of
reactive classes and the main block. In the main block,
actors which are instances of the reactive classes are
declared (five actors in this model which are medium, cpu,
misc, snsd, and rcv). The body of the reactive class
includes the declaration of its known rebecs (line 3), state
variables (line 4), and message servers (lines 9 to 12).
A message server declaration consists of specifying its
signature and a body which contains its corresponding
Rebeca statements. The statements in the body can be
assignments, conditional statements, enumerated loops,
non-deterministic assignment, and method calls. Method
calls are sending asynchronous messages to other actors
(or to itself in line 11). A modeler can express progress in
time using the delay function and communication delay
by associating after to method calls.

Listing 1. The Simplified Timed Rebeca implementation of the WSAN

1 env int samplingRate = 25; // Hz
2 reactiveclass Sensor(2) {
3 knownrebecs { CPU cpu; }
4 statevars { int period; }
5 Sensor() {
6 self.sensorLoop();
7 period = 1000 / samplingRate;
8 }
9 msgsrv sensorLoop() {

10 cpu.sensorEvent() deadline(period);
11 self.sensorLoop() after(period);
12 }
13 }
14 reactiveclass CPU(10) { ... }
15 reactiveclass Misc(2) { ... }
16 reactiveclass WirelessMedium(5) { ... }
17 reactiveclass CommunicationDevice (10) { ... }
18 main {
19 WirelessMedium medium():();
20 CPU cpu (snsd, rcv, sensor):();
21 Sensor sensor(cpu):();
22 Misc misc(cpu):();
23 CommunicationDevice snsd(medium):(1);
24 CommunicationDevice rcv(medium):(0);
25 }

A. Addressing Requirement 1

The first requirement of this model is implemented in
the model of Sensor in Listing 1. The behavior of Sensor
is to acquire data and send it to CPU periodically, which is
implemented using the message server sensorLoop (lines
10-11). Note that the timing values in this model are exact
values as they are specified as period of events. To address
Requirement 1 we have to make sure that the sent data
is served before the start time of the next period of data
acquisition, which is specified by the value of period as
the parameter of deadline in line 10. A similar approach
is used in the implementation of Miscellaneous.

B. Addressing Requirement 2

To address the second requirement of the WSAN frame-
work, we have to add the remaining part of the model and
put a constraint in a message server which handles sending
data to the radio communication device.
The behavior of CPU as the target of messages of

Sensor and Misc is more complicated (Listing 2). Upon
receiving miscEvent, CPU has to represent computation
cycles consumed by miscellaneous tasks which is imple-
mented by waiting nondeterministically for one to ten
units of time (this value is represented by CM in the
analytical approach in the previous sections). Similarly,
after receiving the sensorEvent message from Sensor,
CPU waits nondeterministically for one or two units of
time, which is the required computation timed for the
intra-node data processing. The processed data has to
be packed in a packet which has the capacity of storing
bufferSize number of data (this value is represented by N
in the analytical approach in the previous sections). When
the threshold of number of data in a packet is reached
(line 17), CPU asks senderDevice, to send the collected
data as one packet (line 18). The type of senderDevice is
RCD (the short name for the radio communication device
actor). In the model of Listing 2 the required computation
time of sensorEvent and miscEvent are implemented by
nondeterministic values as the worst-case execution time
(WCET) is 2 and 10. So, one of the values from 1 to those
worst-case values may needed at each round of execution,
which are modeled by nondeterministic expressions. Note
that putting the WCET as the delay values of Listing 2 may
result in incorrect analysis results as the model may have
timing anomaly. As shown in [29], timing analysis methods
which assume that considering the WCETs corresponds to
the worst-case timing behavior of the system do not work
for all types of applications and shorter computation times
may result in the worst-case timing behavior.

Listing 2. The Timed Rebeca implementation of CPU reactive class

1 env int bufferSize = 3; // samples
2
3 reactiveclass CPU(10) {
4 knownrebecs {RCD senderDevice, receiverDevice;}
5 statevars { int collectedSamplesCounter; }
6

7 CPU() { collectedSamplesCounter = 0; }
8
9 msgsrv miscEvent() {

10 //Worst-case execution time is 10
11 delay(?(1, 2, 3, 4, 5, 6, 7, 8, 9, 10));
12 }
13 msgsrv sensorEvent() {
14 //Worst-case execution time is 2
15 delay(?(1, 2));
16 collectedSamplesCounter += 1;
17 if (collectedSamplesCounter == bufferSize) {
18 senderDevice.send(receiverDevice, 1);
19 collectedSamplesCounter = 0;
20 }
21 }
22 }

To fulfill Requirement 2, we have to make sure that in the
case of sending a senderDevice message in line 18, there is
no ongoing sending data in RCD. As we show in Listing 4 of
Appendix A, this requirement is implemented in the body
of the senderDevice message server of RCD. Developing
the radio communication device actor requires that the
wireless communication medium Ether be specified and
a communication protocol is implemented. The detailed
implementation of Ether and TDMA protocol in RCD are
presented in Appendix A.

V. Experimental Results and Discussion

For the aim of better understanding of trade-offs of the
approaches, comparison between the analytical analysis
and model checking in calculating the maximum sampling
rate of the sensor is presented in this section. We defined
a set of configurations and prepare the analysis result of
each approach on it and provide a discussion on different
types of criteria.

A. Results of Applying the Analysis Approaches

For the case of analytical approach, we consider the
following values for the parameters of the model: Ttdma =
10 ms, CM = 10 ms, TM = 120 ms. Then, we evaluate
the model for different values for the WCET of τS and
the internal buffer size (N), as CS ∈ {2, 10, 20, 30}ms and
N ∈ {1, . . . , 10}. As a result, according to equation (10)
we obtain the minimum feasible sampling periods, i.e., TS ,
as shown in Table I and the maximum sampling rates as
shown in Table II. These tables also contain the minimum
sampling periods and maximum sampling rates which are
computed using the model checking approach. For this
case, we model check the Timed Rebeca model using the
same set of configurations and valuation. Comparing the
values of these tables shows that in all cases, the maximum
possible sampling rates which are calculated by the model
checking approach are higher than that of the analytical
analysis approach. So, it seems that the analytical analysis
approach is a more conservative approach and computes
sampling rates based on more pessimistic assumptions.

Table I
The minimum feasible sampling periods (milliseconds),

computed by both approaches in different configurations

WCET of τS (CS)
Analytical Model Checking

2 10 20 30 2 10 20 30

In
te
rn
a
l
B
u
ff
e
r
S
iz
e
(N

) 1 20 20 30 40 11 11 22 33
2 12 20 30 40 11 11 22 33
3 12 20 30 40 11 11 22 33
4 12 20 30 40 11 11 22 33
5 12 20 30 40 11 11 22 33
6 12 20 30 40 11 11 22 33
7 12 20 30 40 11 11 22 33
8 12 20 30 40 11 11 22 33
9 12 20 30 40 11 11 22 33
10 12 20 30 40 11 11 22 33

Table II
The maximum sampling rates (samples per second), computed

by both approaches in different configurations

WCET of τS (CS)
Analytical Model Checking

2 10 20 30 2 10 20 30

In
te
rn
a
l
B
u
ff
e
r
S
iz
e
(N

) 1 50 50 33 25 90 90 45 30
2 83 50 33 25 90 90 45 30
3 83 50 33 25 90 90 45 30
4 83 50 33 25 90 90 45 30
5 83 50 33 25 90 90 45 30
6 83 50 33 25 90 90 45 30
7 83 50 33 25 90 90 45 30
8 83 50 33 25 90 90 45 30
9 83 50 33 25 90 90 45 30
10 83 50 33 25 90 90 45 30

B. Discussion

Different modeling approaches affect the complexity and
flexibility of the modeling process and the models. It can
also affect the analyzability and precision of the results [25].
In the following, we discuss three criteria for comparing
the two approaches: (i) flexibility and extensibility, i.e., the
effort needed for modifying and extending models, (ii) ac-
curacy of results, and (iii) the resource consumption for the
analysis process, which concerns how much computation
power are needed for approaches.

1) Flexibility and Extensibility.: For comparing the ana-
lytical and model checking approaches, from the flexibility
and extensibility point of view, we study how changing
the communication protocol of the model from TDMA
to B-MAC is realized in two approaches. Changing the
communication protocol does not affect the task model
and resource model which are introduced in Section III. But,
the algorithm of using the resource (the communication
medium as a critical section) has to be modified. Based on
the model of this paper, the behavior of communication
protocols is abstracted to a value which shows the worst-
case delay between requesting for a data transmission
to its corresponding successful data transmission. Thus,
changing the communication protocol only changes this
value. In order to show this, we have modified the analysis
to accommodate B-MAC communication protocol by using
the schedulability analysis of B-MAC given in [30].

According to the analysis, the communication delay of a
sender node is composed by several parameters, including
(i) the initial backoff time tb1; (ii) the frozen time between
every sequential retransmission tf1; (iii) the congestion
backoff time tb2; and (iv) the frozen time during the
congestion backoff tf2. The congestion can occur multiple
times in a network, thus the times for them should be
accounted as well. The packet transmission time (tpkt)
should be also added to the communication delay. Eq (11)
calculates the communication delay of a sender node in
B-MAC, denoted by tsd [30], where k is the maximum
number of retransmission in the case of congestion. This
equation is representative of B-MAC transmission delay,
thus Ttdma in Eq (10) must be replaced with tsd.

tsd = tb1 + tf1 + k(tb2 + tf2) + Tpkt (11)

Considering the same experimental setup as in Sec-
tion V-A, we compute the minimum sampling periods
and maximum sampling rate of sensors. Note that in B-
MAC communication we assumed the maximum number
of retransmission for a successful transmission is 4 (the
maximum number of sender nodes in the sample network).
Although changing the communication protocol looks

minor and easy to apply in Eq (11), the worst-case delay
is computed based on an assumption on the maximum
number of retransmissions which is not easy to compute
accurately. The accurate timing behavior of B-MAC proto-
col is illustrated in collaboration between network nodes
in runtime. So, a very complicated formula is needed to
express the accurate value of the worst-case delay in B-
MAC, or it has to be approximated to a value which
corresponds to the very pessimistic configuration of the
application (for some cases it is infinity), which is unreal
for the majority of the cases.

In contrast, using Timed Rebeca, no expertise in finding
delays is needed and the protocol has to be modeled using
the language statements. Using B-MAC protocol, a radio
communication device tries to detect when the channel is
free and sends data upon receiving a request from CPU.
The detailed implementation of this protocol and how
collisions are handled are depicted in Appendix A,

Changing the behavioral type of sensor or miscellaneous
tasks is another modification which can be used to compare
flexibility in two approaches. Assume that we want to
modify the models in a way that miscellaneous task is no
more periodic but aperiodic. In this case, all the formulas
which are used in Section III to specify the task model
have to be modified. As we will discuss in the following
subsection, the current formulation of the model does not
support non-periodic tasks and new modeling formalism
has to be used to address aperiodic tasks. In contrast, the
only modification needed in the Timed Rebeca model is in
the statements of the miscLoop message server.

2) Results Accuracy.: As shown in the experimental
result, the model checking approach provided better (more

accurate) results. This is because our analytical approach
exhibits an approximate solution. One of the main sources
of needs for such approximation is in the low expressiveness
of the chosen task model (our modeling was not exact).
To make the result of the analytical approach more

accurate, we have to change the task model to a model
with a higher level of expressiveness. In this paper, we
employed a periodic task model for the analytical approach.
As a result, we could not model the possible initial offset
of the activation of tasks; we assumed a pessimistic case
where the tasks are released synchronously while there
are task models with a higher level of expressiveness. In
particular, the DRT task model, proposed by Stigge et
al. [31], allows non-deterministic initial offset of a task
release. This means that we can take into account more
details of the system behavior with such task models,
possibly resulting in a more accurate solution. This is
a potential future work to model and analyze the problem
with such a task model. In addition, the inherent complexity
of the problem enforces some relaxation in the model,
results in pessimistic approximations. Fersman et al. [32]
have shown that the feasibility problem is undecidable if
the following conditions hold: (1) the scheduling method
is preemptive; (2) execution time of jobs is not fixed,
this value is picked from a range; (3) the completion
time of a job can influence the release of a next job. On
the other hand, if even one of these conditions does not
hold, the problem is decidable. Such complexities leads to
using approximation in our analysis. Specifically, to verify
Relation (3), we need a specific response time analysis
which can compute (a lower bound on) the difference of
the response time of a job and its Nth successor. To the
best of our knowledge, there is not such analysis for the
known real-time task models in the literature. However,
to avoid a complex analysis, we replace exact values with
lower and upper bounds (Eq. (5)). While this relaxation
does not compromise soundness of the analysis, it may
lead to pessimistic results. We have made an attempt to
make use of more expressive task models for which pseudo-
polynomial time feasibility tests exists. This appeared
that using such models still cannot increase the analysis
accuracy.

3) Effort needed for doing the Analysis.: As the last
criterion, we compare the computational power needed for
the two approaches to do the analysis. For the case of
analytical approach, the computation power is negligible
as the result is computed by setting parameters of the
schedulability formula. This argument is valid for any
possible values of parameters. But, in the model checking
approach the state space of the model has to be generated
and explored. For the case of Timed Rebeca model of this
paper, the needed time is 2 seconds and 2039 states are
generated on a desktop computer with 1 CPU (2 cores)
and 8 GB of RAM storage, running High Sierra OS X
10.13.5, which are not too much resources. However, as
mentioned in Section IV-B, we used non-deterministic

expressions to address worst-case execution times in CPU
and increasing the value of worst-case execution time
increases the options of the non-deterministic expression.
Increasing the options of non-deterministic expressions
may exponentially increase the size of the state space.
Therefore, in this sense, model checking approach is less
scalable comparing to the analytical approach.

VI. Conclusions and Future work
In this paper, we presented a comparison study between

using an analytical analysis approach and a model checking
approach on a WSAN application, to obtain the highest
possible data acquisition frequency of nodes. Configuring
the highest possible frequency in nodes leads to achieve
more efficient use of resources and in turn reducing costs. As
for the analytical analysis approach we used a response time
analysis technique and for the model checking approach
we used Timed Rebeca, which is a modeling language for
time-critical systems. The comparison study shows that the
model checking approach delivers more accurate results
compared to the analytical approach for the presented
WSAN application. In order to improve the analytical
approach, the task model has to be improved to give a
better expressiveness and more behavioral details, however
at the same time it makes the model more complex to
analyze. Future work aims at study the effects of other task
models, e.g., DRT task model, on the analytical approach
compared to model checking approaches.

References
[1] L. Linderman, K. Mechitov, and B. F. Spencer, “TinyOS-Based

Real-Time Wireless Data Acquisition Framework for Structural
Health Monitoring and Control,” Structural Control and Health
Monitoring, 2012.

[2] L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker,
A. Burns, G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K.
Mok, “Real time scheduling theory: A historical perspective,”
Real-time systems, 2004.

[3] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System architecture directions for networked sensors,” SIG-
PLAN Notices, 2000.

[4] C. Liu and J. Layland, “Scheduling algorithms for multipro-
gramming in a hard-real-time environment,” Journal of the
Association for Computing Machinery, 1973.

[5] M. Joseph and P. Pandya, “Finding response times in a real-time
system,” The Computer Journal, 1986.

[6] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus
for scheduling hard real-time systems,” in International Sympo-
sium on Circuits and Systems. Emerging Technologies for the
21st Century, 2000.

[7] L. Waszniowski and Z. Hanzálek, “Formal verification of multi-
tasking applications based on timed automata model,” Real-Time
Systems, 2008.

[8] P. Krčál and W. Yi, “Decidable and undecidable problems in
schedulability analysis using timed automata,” in Tools and
Algorithms for the Construction and Analysis of Systems, 2004.

[9] X. Xu, X. Y. Li, and M. Song, “Distributed scheduling for real-
time data collection in wireless sensor networks,” in IEEE Global
Communications Conference, 2013.

[10] C. Xia, X. Jin, L. Kong, and P. Zeng, “Bounding the demand
of mixed-criticality industrial wireless sensor networks,” IEEE
Access, 2017.

[11] B. C. Cheng, H. H. Yeh, and P. H. Hsu, “Schedulability analysis
for hard network lifetime wireless sensor networks with high
energy first clustering,” IEEE Transactions on Reliability, 2011.

[12] A. Furfaro and L. Nigro, “Modelling and schedulability analysis
of real-time sequence patterns using Time Petri Nets and Uppaal,”
in International Multiconference on Computer Science and
Information Technology, 2007.

[13] D. Xu, X. He, and Y. Deng, “Compositional schedulability
analysis of real-time systems using Time Petri Nets,” IEEE
Transactions on Software Engineering, 2002.

[14] E. Fersman, P. Pettersson, and W. Yi, “Timed automata with
asynchronous processes: Schedulability and decidability,” in Tools
and Algorithms for the Construction and Analysis of Systems,
2002.

[15] G. Li, X. Cai, and S. Yuen, “Modeling and analysis of real -time
systems with mutex components,” in International Symposium
on Parallel Distributed Processing, Workshops and Phd Forum,
2010.

[16] E. Fersman and W. Yi, “A generic approach to schedulability
analysis of real-time tasks,” Nordic Journal of Computing, 2004.

[17] W. Sheng, Y. Gao, L. Xi, and X. Zhou, “Schedulability anal-
ysis for multicore global scheduling with model checking,” in
International Workshop on Microprocessor Test and Verification,
2010.

[18] N. Guan, Z. Gu, M. Lv, Q. Deng, and G. Yu, “Schedulability
analysis of global fixed-priority or EDF multiprocessor scheduling
with symbolic model-checking,” in International Symposium on
Object and Component-Oriented Real-Time Distributed Comput-
ing, 2008.

[19] B. F. Spencer, H. Jo, K. A. Mechitov, J. Li, S.-H. Sim, R. E.
Kim, S. Cho, L. E. Linderman, P. Moinzadeh, R. K. Giles
et al., “Recent advances in wireless smart sensors for multi-scale
monitoring and control of civil infrastructure,” Journal of Civil
Structural Health Monitoring, vol. 6, no. 1, pp. 17–41, 2016.

[20] A. El-Hoiydi, “Spatial TDMA and CSMA with preamble
sampling for low power ad hoc wireless sensor networks,” in
Symposium on Computers and Communications, 2002.

[21] J. Polastre, J. L. Hill, and D. E. Culler, “Versatile low power
media access for wireless sensor networks,” in International
Conference on Embedded Networked Sensor Systems, 2004.

[22] R. Davis, S. Kollmann, V. Pollex, and F. Slomka, “Controller
Area Network (CAN) schedulability analysis with FIFO queues,”
in Euromicro Conference on Real-Time Systems, 2011.

[23] P. C. Ölveczky and J. Meseguer, “Real-Time Maude 2.1,” Electr.
Notes Theor. Comput. Sci., vol. 117, pp. 285–314, 2005.

[24] R. Alur and D. L. Dill, “A Theory of Timed Automata,” Theor.
Comput. Sci., vol. 126, no. 2, pp. 183–235, 1994.

[25] M. Sirjani, “Power is overrated, go for friendliness! expressiveness,
faithfulness, and usability in modeling: The actor experience,”
in Principles of Modeling - Essays Dedicated to Edward A. Lee
on the Occasion of His 60th Birthday, ser. Lecture Notes in
Computer Science, M. Lohstroh, P. Derler, and M. Sirjani, Eds.,
vol. 10760. Springer, 2018, pp. 423–448.

[26] A. H. Reynisson, M. Sirjani, L. Aceto, M. Cimini, A. Jafari,
A. Ingólfsdóttir, and S. H. Sigurdarson, “Modelling and simu-
lation of asynchronous real-time systems using timed Rebeca,”
Science of Computer Programming, 2014.

[27] E. Khamespanah, M. Sirjani, M. Viswanathan, and R. Khosravi,
“Floating time transition system: More efficient analysis of
timed actors,” in International Conference in Formal Aspects of
Component Software, 2015.

[28] M. Sirjani, A. Movaghar, A. Shali, and F. S. de Boer, “Modeling
and Verification of Reactive Systems using Rebeca,” Fundamen-
tal Information, 2004.

[29] T. Lundqvist and P. Stenström, “Timing anomalies in dy-
namically scheduled microprocessors,” in Real-Time Systems
Symposium, 1999.

[30] S. Jung, N. Choi, and T. Kwon, “An iterative analysis of
single-hop b-mac networks under poisson traffic,” Journal of
Communications and Networks, February 2012.

[31] M. Stigge, P. Ekberg, N. Guan, and W. Yi, “The digraph real-
time task model,” in Real-Time and Embedded Technology and
Applications Symposium, 2011, pp. 71–80.

[32] E. Fersman, P. Krcal, P. Pettersson, and W. Yi, “Task automata:
Schedulability, decidability and undecidability,” Information and
Computation, 2007.

[33] “Rebeca Modeling Language,” http://www.rebeca-lang.org/.

http://www.rebeca-lang.org/

Appendix

The reactive class of Ether (Listing 3) has three message
servers: these are responsible for sending the status of the
medium, broadcasting data, and resetting the status of the
medium after a successful transmission. Broadcasting data
takes place by sending data to an RCD which results in
setting the values of senderDevice and receiverDevice
to their corresponding actors. So, the status of Ether can
be easily examined by the value of receiverDevice (i.e.,
using null as the value of receiverDevice is interpreted
as medium is free, line 7). This way, as shown in lines 22
and 23, upon successfully data transmission, the value of
receiverDev and senderDev have be set to null to show
that the transmission is completed. The main behavior
of Ether is data broadcasting which is implemented in
lines 9 to 20. Before the start of broadcasting, the Ether
status is checked (line 11) and data-collision error is raised
in the case of trying for more that one simultaneous data
broadcasts (line 18). With a successful data broadcast,
Ether sends an acknowledgment to itself (line 14) and the
sender (line 15), and informs the receiver of the number of
packets sent to it (line 16).

Listing 3. The Timed Rebeca implementation of Ether reactive class

1 reactiveclass Ether(5) {
2 statevars { RCD senderDev, receiverDev; }
3
4 Ether() {
5 senderDev = null;
6 receiverDev = null;
7 }
8 msgsrv getStatus() {

((RCD)sender).receiveStatus(receiverDev !=
null); }

9 msgsrv broadcast(RCD receiver, int packets) {
10 byte OnePacketTT = ?(5, 6, 7); // ms(transmission

time)
11 if(senderDev == null) {
12 senderDev = (RCD)sender;
13 receiverDev = receiver;
14 self.broadcastingIsCompleted() after(packets *

OnePacketTT);
15 ((RCD)sender).receiveResult(true) after(packets *

OnePacketTT);
16 receiver.receiveData(receiver, packets);
17 } else {
18 ((RCD)sender).receiveResult(false);
19 }
20 }
21 msgsrv broadcastingIsCompleted() {
22 senderDev = null;
23 receiverDev = null;
24 }
25 }

The Timed Rebeca implementation of the TDMA pro-
tocol in RCD is depicted in Listing 4. It shows that sending
a packer, the send message server of RCD has to be called.
As shown in line 18 and 19, upon receiving a request for
sending data, receiverDevice and sendingData are set
to the input parameters and data transmission is started.

These state variables are set to null values upon finishing
the transmission. So, to fulfill Requirement 2, we have to
make sure that receiverDevice is set to null, i.e. there
is no ongoing sending data, as implemented in line 17.
The TDMA protocol defines a cycle, over which each

node in the network has one chances (a time slot) to
transmit a packet or a series of packets. If a node has data
available to transmit during its alloted time slot, it may
be sent immediately. Otherwise, packet sending is delayed
until reaching the next time slot. In the Timed Rebeca
model of Listing 4 the periodic behavior of TDMA slot
is implemented in the body of handleTDMASlot message
server. As depicted in line 23, the value of inActivePeriod
is toggled to show that whether the node is in its associated
time slot. Upon starting an associated time slot of node, the
existing pending data are sent (line 27) a handleTDMASlot
is scheduled for terminating the time slot (line 28). Using
this implementation, when CPU sends a packet to RCD, the
packet is appended to the list of pending packets which
are waiting for the next time slot of the node. For the sake
of simplicity, some details of RCD are omitted in Listing 4.
The complete source code of this model is available on the
Rebeca homepage [33].

Listing 4. The Timed Rebeca implementation of the TDMA protocol
in RCD
1 reactiveclass RCD (10) {
2 knownrebecs { Ether medium; }
3 statevars {
4 int id, slotSize, sendingData;
5 boolean busyWithSending, inActivePeriod;
6 RCD receiverDevice;
7 }
8
9 RCD(byte myId) {

10 id = myId;
11 inActivePeriod = false;
12 sendingData = 0;
13 receiverDevice = null;
14 ...
15 }
16 msgsrv send(RCD receiver, int data) {
17 assertion(receiverDevice == null);
18 receiverDevice = receiver;
19 sendingData = data;
20 self.checkPendingData();
21 }
22 msgsrv handleTDMASlot() {
23 inActivePeriod = !inActivePeriod;
24 if(inActivePeriod) {
25 int remainedTime = tmdaSlotSize -

currentMessageWaitingTime;
26 assertion(remainedTime > 0);
27 self.checkPendingData();
28 self.handleTDMASlot() after(remainedTime);
29 } else {
30 self.handleTDMASlot() after((slotSize *

(numberOfNodes - 1))-
currentMessageWaitingTime);

31 }
32 }
33 ...

34 }

As shown in Listing 5, using B-MAC protocol, a radio
communication device tries to detect when the channel is
free and sends data upon receiving a request from CPU
(line 19 of Listing 5). In the case of busy channel, retrying
for transmission takes place in line 20. If the channel is
free, the requested packet is sent immediately (line 22)
regardless of the status of the other nodes of the network.
This way, collisions may occur. To resolve collision, the
receiveResult message server has been changed to be
aware of the result of sent data. In the case of collision,
the state of the transmitter is reset and sending process
is started from the beginning (line 32). In comparison
with the TDMA protocol, B-MAC protocol does not need
complicated and expensive synchronization methods. It also
avoids data fragmentation. So, it would be more inefficient
to coordinate long messages and B-MAC expects short
messages, which is common for the passing packets of
WSAN applications.

Listing 5. The Timed Rebeca implementation of B-MAC protocol in
RCD
1 reactiveclass RCD (10) {
2 knownrebecs { WirelessMedium medium; }
3 statevars {
4 int id, sendingData;
5 RCD receiverDevice;
6 }
7 RCD(int myId) {
8 id = myId;
9 sendingData = 0;

10 receiverDevice = null;
11 }
12 msgsrv send(RCD receiver, int data, int

packetsNumber) {
13 assertion(receiverDevice == null);
14 receiverDevice = receiver;
15 sendingData = data;
16 medium.getStatus();
17 }
18 msgsrv receiveStatus(boolean result) {
19 if (!result) {
20 medium.getStatus() after(OnePacketTT);
21 } else {
22 medium.broadcast(receiverDevice, sendingData,

packetsNumber);
23 delay(OnePacketTT * packetsNumber);
24 }
25 }
26 msgsrv receiveResult(boolean result) {
27 if (result) {
28 sendingPacketsNumber = 0;
29 receiverDevice = null;
30 sendingData = 0;
31 } else {
32 medium.getStatus() after (OnePacketTT);
33 }
34 }
35 msgsrv receiveData(RCD receiver, int data, int

recPacketsNumber) { ... }
36 }

	Introduction
	Related analysis approaches
	Motivation and contributions

	Application Model and Design Objectives
	The System Model of a WSAN for Structural Health Monitoring and Control
	Design Objective

	Analytical Analysis Approach
	Addressing Requirement 1
	Addressing Requirement 2
	Response-Time Analysis
	Maximum Sampling Rate

	Model Checking Approach
	Addressing Requirement 1
	Addressing Requirement 2

	Experimental Results and Discussion
	Results of Applying the Analysis Approaches
	Discussion
	Flexibility and Extensibility.
	Results Accuracy.
	Effort needed for doing the Analysis.

	Conclusions and Future work
	References
	Appendix

