
Journal of Object Technology | RESEARCH ARTICLE

Structural consistency between a system model and its
implementation: a design science study in industry

Robbert Jongeling
1
, Johan Fredriksson

2
, Jan Carlson

1
, Federico Ciccozzi

1
, and Antonio Cicchetti

1

1Mälardalen University, Sweden
2Saab AB, Sweden

ABSTRACT During the development of complex systems, several different development artifacts are created and maintained. It
is important to gain insight into the degree to which these artifacts are consistent, but this is challenging, especially in complex
industrial settings. In this study, we aim to help engineers in their consistency management efforts by creating consistency
checks between a system model and the corresponding code. To that end, we performed a design science study in which we
develop a consistency checking tool and integrate it into an existing industrial system and software engineering setting. We
evaluated the developed tool through a case study in which we measure the consistency before and after its introduction and
evaluate the experiences of engineers using it. Our results show that the introduction of lightweight consistency checks into
the continuous integration pipeline is beneficial for consistency management in the studied setting. Moreover, we discuss the
practical challenges of introducing consistency checks in an industrial setting and find that the majority is of a nontechnical
nature.

KEYWORDS Model-based development, Consistency management, Consistency checking, Continuous model-based development.

1. Introduction
During the development of complex systems, several different
development artifacts are iteratively created and maintained. We
study a setting in which both a system model and its correspond-
ing implementation code are manually defined. Consistency
between them is desired; the code shall be consistent with the
design prescribed by the system model, and, vice versa, the
model shall accurately describe the code so that it can be used
as a reference for maintenance tasks.

The literature on consistency checking is extensive and in-
cludes approaches focusing on, for example, scalability (Egyed
2001), efficiency (König & Diskin 2017), the ease of defining
and maintaining consistency rules (Feldmann et al. 2019), con-
sistency checking with formal guarantees (Leblebici et al. 2017),
or heterogeneous types of supported development artifacts (Vier-

JOT reference format:
Robbert Jongeling, Johan Fredriksson, Jan Carlson, Federico Ciccozzi, and
Antonio Cicchetti. Structural consistency between a system model and its
implementation: a design science study in industry. Journal of Object
Technology. Vol. vv, No. nn, yyyy. Licensed under Attribution 4.0
International (CC BY 4.0) http://dx.doi.org/10.5381/jot.yyyy.vv.nn.aa

hauser et al. 2012). Consistency checking is indeed a multisided
problem and remains challenging to implement in practice. One
of the reasons is the complex engineering settings and processes
in which the checks should be implemented. This study supple-
ments the existing literature by investigating the challenges of
creating consistency checks in an existing complex industrial
setting.

More specifically, we report on a design science (Wieringa
2014) study aimed at providing system and software engineers at
our industrial partner, Saab AB, with insights into the structural
consistency between system models and their corresponding
code. We provide a lightweight framework for consistency
checks across development artifacts and demonstrate its inte-
gration in our industrial setting. In addition, we describe expe-
riences from the implementation of checks and evaluate their
effectiveness in improving consistency.

The remainder of this paper is organized as follows. Section 2
includes background on continuous model-based development
and motivations for our study. Section 3 details our research
methodology. Section 4 describes the first cycle of our design
science study, including problem investigation, treatment design,

An AITO publication

http://dx.doi.org/10.5381/jot.yyyy.vv.nn.aa

treatment validation, and a first evaluation. Section 5 describes
the second cycle, starting with a problem investigation derived
from the evaluation of the first cycle, describes in more detail
the final consistency checking tool, and includes a case study for
its evaluation. Section 6 provides a discussion of the results and
experiences of the design science study conducted and reflec-
tions on the challenges related to the introduction of consistency
checking in an already established complex industrial setting.
Section 7 lists related work, focusing in particular on related
empirical studies. Section 8 concludes the article.

2. Background and Industrial Setting
The background of this work contains aspects of model-based
systems engineering and continuous model-based development.

2.1. Model-based systems engineering in our setting
Model-based systems engineering (MBSE) promotes model-
centric design over the traditional document-centric approach.
The current de facto standard language for systems engineering
in industrial applications is the Systems Modeling Language
(SysML) (Friedenthal et al. 2014). SysML is used at Saab to
create system models that cover both software and hardware
concerns.

In our industrial setting, a system model is created to capture
the high-level design of the system, its decomposition into sepa-
rate functionalities, and their allocation to software or hardware
blocks. In particular, function blocks consist of one or more
system components that are assigned to hardware or software
blocks. The behavior of the components is described at a high
level, focusing on operations captured in activity diagrams, in-
terfaces captured in proxy ports, and states captured in state
machines. Figure 1 provides a simplified overview of the ele-
ments that make up a system model. Despite a rather significant
conceptual gap between the model and code, the company is
interested in checking the consistency between them to facilitate
maintenance activities.

In this setting, minimal effort is spent maintaining consis-
tency between the system model and its implementation, and
consequently, the risk that they may diverge is fairly high. The
way of working is driven by modeling activities, i.e., typically
new functionality is added in the system model first and is then
implemented in code. Implementing a specific component of
the system starts with a handover meeting, in which system
engineers and software engineers discuss the part of the system
model to be implemented. In these meetings, the supporting
material consists of presentation slides on selected fragments of
the model. Software engineers typically do not have more inter-
action with the system model outside handover meetings, and
they very rarely investigate the system model due to its size and
complexity. After this initial handover, there is no further syn-
chronization between the model and the related code. However,
changes occur. For example, software engineers might notice
problems with the model while writing code; they typically
do not fix the model, but rather adjust their code to ensure a
correctly working system. Conversely, changes are made to the
system model and shall be propagated to the code, but currently

they are not. In both cases, it is easy to lose track of what has
changed in both the model and code and to what extent.

2.2. Continuous model-based development
In model-based development (MBD), we include practices in
which models are used as core development artifacts. With this
definition, we avoid the inclusion of informal artifacts, such
as whiteboard sketches, that are used only for informal com-
munication. The crucial aspect is that we expect models to be
maintained to accurately describe the system under development
and its implementation.

For the development of complex embedded systems, the
V-model (INCOSE 2015) with well-gated steps between the
subsequent phases is traditionally used. In contrast, modern
systems and software engineering practices tend to prefer short
development cycles in all different phases of the V-model, with
less prominent gates between phases. Typically, multiple engi-
neers collaborate to create the models. In Figure 2 we show the
stages of the V-model that we consider in the scope of continu-
ous MBD, selected based on where our industrial partners use
models the most.

When adopting short development cycles, one of the most
complex challenges is to establish and maintain consistency be-
tween various core development artifacts (Jongeling et al. 2019).
We distinguish between models (abstractions for a given pur-
pose, following an established syntax with defined semantics)
and other development artifacts (such as informal diagrams that
do not have an agreed syntax and semantics). MBD provides op-
portunities to improve consistency management, since it allows
more automated transformations between models. However,
our industrial partners typically leverage modeling partially and
supplement their models with other manually created artifacts,
such as natural language requirements, informal architecture
diagrams, or spreadsheets. Hence, consistency management of-
ten includes time-consuming manual analysis tasks and thereby
forms a considerable barrier towards continuous development.

3. Methodology
In this section, we describe the setup of our industry-academia
collaboration, the chosen research methodology, and our re-
search questions.

3.1. Research setup
In this study, we cooperate with Saab with the aim of iteratively
introducing and evaluating model and code consistency checks
in their industrial setting. The first author of this paper has
joined (in his role as a PhD student in software engineering)
the group of the second author (our main contact person, in
his role as a system engineer and software architect) at Saab’s
premises for approximately one day per week over a period of
six months. Before these six months, we collaborated remotely.
We had defined the research goal and arranged access for the
first author to the company’s premises and digital systems. Due
to the company’s strict security regulations, the access to the
digital systems was limited to small example models and a few
code repositories. To run the tooling developed on the real

2 Jongeling et al.

Function
Block

1..*

System
Component

Function
System

Interface
(Proxy port)

Operation
(Activity diagram)

State machine

Value type

1..*

1..*

1

0..*

1..*

1..* 1..*

Hardware
Block

Software
Block1..*

Interface
(Full port)

1

1..* Interface
(Full port)

1

1..*

Hardware
System

Software
System

1..* 1..*

Hardware
Definitions

Software
Definitions

Function
Definitions

Legend:

State
1..*

Operation

Signal
1..*

1..*

Figure 1 Simplified overview of meta-elements composing a system model. Not depicted are the native, foreign, and test inter-
faces of function blocks. Based on earlier version of this Figure (Jongeling et al. 2020).

Requirements

Architecture

Detailed Design

Implementation

Integration,
Testing

Continuous development of different phases of V

Challenge:
Consistency across development artifacts in

continuous and lightweight manner

Figure 2 Continuous model-based development entails short
development cycles for different phases of the V-model, as
well as for the complete V.

system, the engineers at Saab pulled in the latest version of the
solution and ran the code on their machines.

To create an approach and evaluate its effect in a real set-
ting, we considered the two research methods of action re-
search (Staron 2020) and design science (Wieringa 2014). Com-
plete integration of the researcher in the industrial setting, as
required for action research, could not be achieved and the ac-
cess of practitioners to participate in the creation of the artifact
was limited. Therefore, we chose the design science methodol-
ogy.

3.1.1. Design Science The purpose of design science (also
known as engineering science (Ralph 2021)) as described by
Wieringa is to design an artifact and study it in its context. This
purpose makes the methodology suitable for studies in industrial
settings in which we build knowledge through the engineering
of an artifact and its evaluation in the setting in which it is
deployed. The advantage of the real setting is that knowledge
is built under realistic conditions and unrealistic idealizations
(spherical cows) are avoided.

Design science research starts by refining a research goal into
design problems and knowledge goals. Design problems state
how a particular problem context can be improved by design-
ing an artifact that satisfies requirements to help stakeholders
achieve their goals. In parallel, knowledge questions are formu-
lated that aim to achieve knowledge goals, which are formulated
to help understand the context, the artifacts developed, or their
interaction.

The methodology is structured in cycles of four steps. The
start of the cycle is an initial problem investigation step. In this
step, stakeholders and their goals are identified. Moreover, the
problem to be solved is defined. The second step of the cycle
is treatment design, in which the requirements are specified,
existing solutions are evaluated, and if no existing solution is
deemed suitable, a design for a new solution is created. The
third step of the cycle is treatment validation, in which the
proposed design is validated (note that the validation of the
proposal does not require it to be developed). The fourth step of
the cycle is treatment implementation, which refers to deploying
the designed and developed artifact in its context. Thus, this
step is not limited to the development of the designed software
artifact. In the second iteration of the cycle, instead of an initial
problem investigation, now an implementation evaluation is

Experiences of establishing consistency checks in industry 3

performed. This evaluation can lead to new goals or problems
that need to be solved in the cycle in which this evaluation is
the first step.

3.1.2. Design Science in this paper In the following, we
describe how we followed the guidelines (Wieringa 2014) for
design science studies.

In this paper, we describe two engineering cycles, each in-
cluding “Problem investigation”, “Treatment design”, “Treat-
ment validation”, “Treatment implementation”, and “Implemen-
tation evaluation”. The latter affects the problem investigation
phase for the forthcoming cycle. The term “treatment” is used to
indicate an approach or tool to address the problem investigated
in the studied setting. Our two cycles are illustrated in Figure 3,
where we summarize the activities involved in each of the two
cycles.

(1a) Initial problem
investigation

(1e/2a) Initial treatment
evaluation

(2e) Case study to
evaluate Cycle 2

(1b) Initial treatment
design

(2b) Extended treatment
design

(1c) Focus group for
initial treatment validation

(2c) Validation of
extended design

(1d) Initial treatment
implementation

(2d) Extended treatment
implementation

Figure 3 Our steps throughout two engineering cycles (1)
and (2), based on the diagrams in Design Science Methodol-
ogy (Wieringa 2014).

3.2. Design problem and knowledge questions
We now discuss our research questions as we formulated them
at the beginning of the first engineering cycle. Details on how
we deviated from these based on the results of the steps in each
cycle are discussed in Section 4 and Section 5.

Our scope was limited from the start to structural consistency
checking. Specifically, the objective was to verify that the
architectural guidelines as set by the software architects were
followed by both the system and software engineers and thereby
that the structure of the system model accurately reflected the
structure of the code and vice versa. The system model does not
specify the intended behavior of the system in enough detail to
enable code generation or to check consistency with the behavior
specified in the code. Therefore, to achieve consistency, in this
study, we aim to maximize the portion of matched elements
between the system model and the source code.

As prescribed by the design science methodology, we split
our research goal into design problems and knowledge questions.
Following the template, we formulate the design problem for
our study as: “To

– improve the insight into structural consistency between the
system model and code

– by providing consistency checks in the IDE
– that shows model fragments matched to code fragments

based on previously agreed architectural rules
– so that system engineers and software engineers can see

at which places the system model and code structurally
differ.”

Our knowledge questions about the designed treatment are
an effect question and a requirement satisfaction question:

a. What is the effect on the degree of consistency measured
after the introduction of the developed consistency checks?

b. Is our method usable by system and software engineers
with minimal impact on their workflows?

We describe the execution of the two engineering cycles
in Section 4 and Section 5. An engineering cycle includes
the implementation and evaluation of a treatment, and thereby
differs from a design science cycle, which includes only problem
investigation, treatment design, and treatment validation.

4. Engineering cycle 1

In this section, we describe the stages of problem investigation,
treatment design, treatment validation, and treatment implemen-
tation of the first engineering cycle of our study. We describe the
steps chronologically and outline the aspects of the treatment
design that were later changed during the treatment validation.

4.1. Initial problem investigation

In the description of the problem investigation phase, we first
describe the background of our industrial setting, including
stakeholders and their goals.

4.1.1. Adopting structural consistency checks The
team of system and software engineers aims at maintaining
consistency between the system model and the code, i.e., the
code should conform to the model and, vice versa, the model
must conform to what is implemented. The latter is crucial for
allowing the model to be a reliable source of documentation so
that it can be used for change impact analysis, analyzing the
possibilities of reuse of components across different products,
and, in general, a reference artifact for maintenance activities.

The current workflow is inadequate to achieve the team’s
consistency goals due to the lack of tracking changes across
the model and code. Therefore, the team could benefit from
automated consistency checks between the two artifacts. Our
goal is to provide information about any discrepancies between
the two artifacts to engineers so that they can be resolved if
and when needed. The goal is not to establish complete consis-
tency at all times, since the system model is usually ahead of
implementation, and therefore there is generally a need to tem-
porarily tolerate inconsistency (Stevens 2014). Moreover, we
establish our approach in an existing setting where we initially
expect a large number of inconsistencies, since these were never
checked.

4 Jongeling et al.

The focus in identifying these discrepancies is on the struc-
ture of the model and the code. In particular, architects formu-
late architectural guidelines that can be formulated as consis-
tency rules to give an initial indication of consistency. In this
study, the structural consistency between the system model and
code is defined as the adherence to the following three rules:

– Each system component should be implemented in a sepa-
rate repository.

– Each state should be implemented in a separate class.
– Each reception event (signals; these are used in state ma-

chines in system components) should be implemented as a
case in a switch statement.

In summary, the company is interested in investigating how to
adopt consistency checks in their current workflow, if the results
provide useful insights and if the results can be used to improve
the overall consistency between their development artifacts.
Therefore, the two main stakeholders are system engineers and
software engineers. Additionally, monitoring consistency over
time can provide engineers and managers with data to sharpen
otherwise vague refactoring efforts.

4.1.2. Goal definition In this cycle, we formulate the fol-
lowing goal definition: “Improve the understanding of software
and system engineers about the consistency between the system
model and its implementation by providing structural consis-
tency checks that are frequently executed for engineers to get
fast feedback on the consistency between the system model and
code, and potentially shorten their development cycles”.

4.2. Initial treatment design
We now describe the requirements as elicited by the stakehold-
ers. Furthermore, we discuss several existing treatments, the
need for a new treatment, and its design in our setting.

4.2.1. Requirements The main requirement is that our tool
should implement three consistency checks corresponding to
the rules mentioned above. We further formulate requirements
related to the execution of the consistency checks and the visu-
alization of their results. It shall be possible to run consistency
checks for a particular part of the system on demand. At the
same time, the consistency checks shall be run in the back-
ground and the results shall be observable without users running
the checks. A final requirement is that the results of the consis-
tency checks shall be accessible to both the software and system
engineers using the very same tools that they are already using,
thus avoiding adding yet another tool to an already complex
development setting.

In our setting, we signal an inconsistency between the model
and the code and do not automatically resolve it. One reason
is that the model is typically ahead of the code. Therefore,
inconsistencies are expected and usually resolved when the im-
plementation catches up. The second reason is that, in principle,
in case of inconsistencies, we do not know which of the two
artifacts is correctly capturing the intention of the engineers.
Our mechanism will thus necessarily fall short of being a bidi-
rectional transformation, since it can not restore consistency

due to the partial consistency relationship between model and
code, and due to the absence of an authoritative side among the
two (Stevens 2020).

4.2.2. Available treatments Below, we discuss several
available treatments and why they do not completely match
our setting. Therefore, we decided to design a new treatment,
which is described in Section 4.2.3.

Despite the required model-code consistency, code genera-
tion was not a suitable option in our setting since the system
model does not contain enough detail to generate code, and
the team does not want to change this. In the past, the team
has experimented with generated code in different projects, but
never fully adopted this practice due to the low quality of the
generated code. The problems observed were with debugging
(“we could run the model on the host, but we could not debug
properly on target devices where we can only run the code”) and
long-term maintenance (“projects need to be maintained a long
time, up to thirty years, and so we want to make sure the code
itself can be maintained so that we do not rely on a modeling
tool that may no longer exist”). Furthermore, there appears to
be a need to modify the generated code, which may then result
in required updates to the model (“if you make a change, the
round-trip is broken”). Therefore, the current process involves
the manual implementation of parts of the system model in C++
code.

Incremental consistency checking approaches (Egyed et al.
2018) were proposed, among other settings, for model-code
consistency (Riedl-Ehrenleitner et al. 2014). Since our main
objective was at first to see whether consistency checks are
helpful in this setting, we decided not to adopt this approach,
since it requires considerable implementation effort. Moreover,
we aim to interfere minimally with the existing development
setting and notice that the initial challenge of establishing con-
sistency checks in it is related to agreeing on the consistency
rules that should hold. Therefore, instead of applying existing
approaches or tools, we developed and implemented our own
approach, which had the benefit of seeing early results. Anyhow,
we keep in mind the theory behind related consistency checking
approaches such that in later stages we may extend our approach
to benefit from them.

We further consider an available tool that can provide the re-
quired consistency checks: IncQuery Suite1. This tool provides
features to analyze models created using disparate tools in a
complex development setting. However, it does not yet seem to
provide integration with IBM Rhapsody (as used in the studied
setting), and it also does not seem to allow source code to be
used among the analyzed artifacts.

Software reflexion modeling (Murphy et al. 1995) tools such
as JITTAC (Buckley et al. 2013) are capable of building a model
of the architecture currently implemented and comparing it with
a design provided in real time. A challenge to their adoption in
our setting is the need to provide a separate architectural design,
in parallel to the already existing system model, on which the
reflexion modeling tool can work. Since we want to minimize
the overhead for system and software engineers, we opted not to

1 https://incquery.io/

Experiences of establishing consistency checks in industry 5

https://incquery.io/

introduce such an artifact, since it would itself need to be kept
consistent with the system model.

4.2.3. Design of new treatment Since no suitable available
treatment was found, we propose a new one. Our treatment
design can be divided into the consistency checking mechanism
and the visualization of the results. The consistency checks will
match elements across artifacts, and the visualization will show,
for a given code or model element, its matched model or code
element, respectively.

A lightweight consistency checking mechanism An overview
of the created consistency checking mechanism is shown in
Figure 4. We consider the mechanism to be lightweight due to
the limited requirements for its implementation and integration
in an existing setting. At the same time, we acknowledge the
limitations of the mechanism (in Section 6).

The checks are made possible by establishing traceability
links between the concrete elements, which is acieved by first
indexing the system model and a set of repositories to obtain
the model and code elements, respectively. From the codebase,
we then index the repositories and the classes and cases within
them. From the system model, we index system components,
states, and event receptions. Only the elements defined in the
consistency rules are indexed; the remainder of the artifacts are
not involved. The evaluated consistency rules are those defined
in Section 4.1.1. This indexing allows us to check completeness
in two directions; we can find elements that are in the model but
do not have corresponding code elements and vice versa.

Folder containing
repositories

SysML

System
model

Concrete
elements

Code
indexer

Conceptual
elements

Code
Element

Model
Element

Consistency
rules

Repository
System
component

ClassState

CaseEvent
reception

Model
indexer

Dictionary Rewrite
rules

Figure 4 Our approach to structural consistency checking
between part of the system model and code.

To evaluate the consistency rules on indexed elements, we
rely on name-equivalence. In our implementation, the consis-
tency rules are expressed directly programmed in the consis-
tency checker. We introduce rewriting rules, since the names
in the code and the model cannot always be the same due to,
for example, white spaces in the names of the model elements.

Rewriting is performed on all indexed elements as part of the
preparation step before running a consistency check and re-
places, e.g., spaces with underscores and removes all casing
from names. Moreover, names written out fully in the model
are commonly abbreviated in code. Therefore, we also need to
provide a dictionary that can extend the abbreviated names of
code elements to their full form. In the same preparation step,
we introduced this dictionary that, for example, expands the
name “hw_mon” in the code into its full form “hardware moni-
toring” in models. Both these rewrite rules and the dictionary
can be seen as a means to accept existing naming misalignments
despite the introduced consistency rules.

Conceptual framework for consistency checking We gener-
alize the approach diagram as shown in Figure 4 and show in
Figure 5 our proposed lightweight consistency checking frame-
work between various development artifacts. The figure shows
a framework for consistency checks between concrete devel-
opment artifacts, such as a “system component” in the SysML
model and a “repository” in the codebase. The framework can
be instantiated in the same way to check the consistency be-
tween, e.g., states in the model and classes in the code. Figure 4
is such an instantiation, where we show how the consistency
rules are implemented for particular concrete development arti-
facts.

The bottom layer of Figure 5 denotes concrete elements that
can be part of development artifacts. In our setting, the con-
crete elements are those of the system model and the codebase.
Reasoning about consistency between elements is done in terms
of conceptual elements, rather than check between a specific
model element and a specific code element. Indeed, the de-
sired consistency is expressed in terms of, for example, “each
system component shall be implemented in a separate reposi-
tory”, rather than “system component x shall be implemented in
repository y.”

The indexers represent a mapping from a set of concrete
elements to conceptual elements. In the example, the model
indexer retrieves concrete elements from the system model that
are considered system components. To do so, we require a
definition of what a system component is exactly; in our setting,
it is defined as a block with a stereotype “system component”.
Similar definitions are required to mine the other elements and
store them in the element structure, as shown in the upper level
of Figure 5. This structure allows storing elements in a hierarchy.
Storing the parent of elements is needed to match, e.g., a state
to a class inside the repository that is matched to a system
component and not to a class in a different repository. We
cannot assume that the names of concrete elements are unique.
Therefore, during mining, for each state and event reception, the
parent system component is kept as the parent model element.

The proposed framework is instantiated here to illustrate
a consistency check between two elements, but can also be
extended to include more elements from other development
artifacts. In future work, we intend to extend the current imple-
mentation to include other artifacts that the team develops and
wants to keep consistent with the system model, such as XML
files containing interface definitions and VHDL code.

6 Jongeling et al.

Model

Concrete
elements in

development
artifacts

Meta
elements

Code

System
component Repository

Example
consistency rule

"Indexers"

Model Element Code Element

Element

containedElements0..*

"Rules"

Conceptual
elements

Figure 5 Conceptual framework for light-weight consistency checking of diverse development artifacts.

In the framework, we can regard the conceptual elements as
a metamodel of the concrete elements that conform to them. We
can further generalize the conceptual elements to denote that
they are model or code elements, which are again generic ele-
ments. This structure shows how we can benefit from modeling
techniques for the creation of consistency checks across diverse
artifacts. One of the reasons why we consider this framework
to be lightweight is that it does not require formal or complete
transformations between artifacts. Rather, the indexers are used
to cherrypick from the concrete elements exactly those of inter-
est for consistency checking. Thereby, the consistency rules can
deal with development artifacts that are not necessarily well-
behaved models in the MDE sense. Instead, since the indexers
are not attempting a complete or formal transformation of the
concrete elements, they allow for the development artifacts to
be incomplete, informal, or even not well-formed. Dealing with
such artifacts is crucial in continuous MBD settings, since all
development artifacts are continuously evolving and demand-
ing their correctness at all times would be too onerous for the
development process.

Results visualization We provide only a high-level descrip-
tion of the initial visualization design since it was changed after
the first validation of the treatment, as discussed in Section 4.3.
Our initial visualization design showed the results of consis-
tency checks inside the IDE for software engineers and inside
the modeling tool for system engineers. To achieve this, plug-ins
for CLion and IBM Rhapsody were planned that, when selecting
a code or model element, would show its related model or code

element, respectively. For example, when opening a C++ class,
the plug-in would include a graphical view of the related portion
of the state machine in the system model. Software and system
engineers would then interact with the consistency checks from
their respective tools that they already use for the majority of
their tasks.

4.3. Focus group for initial treatment validation

Validation here refers to an upfront investigation (i.e., before
implementation) of the suitability of the designed treatment for
the problem it aims to solve. Evaluation of the implemented and
deployed artifact is performed at a later stage of the engineering
cycle. We have validated the proposed treatment by expert
opinion. Due to the considerable effort required to implement
even a minimal prototype, it was deemed better to invite a
panel of representative users to share their opinion on the initial
treatment design and then adjust when needed.

To validate the treatment design, we organized a one-hour
session with four engineers from the company and one re-
searcher (the first author). In addition to our main contact, the
other three engineers (two software engineers and one system
engineer) were new to our study and the proposed design. The
researcher first introduced the background and motivation of the
project and then the treatment as described earlier in this sec-
tion. A round of questions from the engineers ensured that the
presented design was clear to all participants. Lastly, engineers
were asked to imagine the solution being implemented and to
answer the validation questions mentioned above. The company

Experiences of establishing consistency checks in industry 7

has strict security regulations and does not allow audio/video
recording on site. Hence, the researcher took extensive notes
during the meeting and worked them out immediately after-
wards. We now discuss the results of the meeting based on four
types of knowledge questions used to validate the treatment.

4.3.1. Effect questions The purpose of effect questions is
to investigate the effect of an artifact once it has been deployed
in its context, i.e., is it useful? Since the artifact has not yet been
deployed, this validation relies on the predictions of the engi-
neers based on their mental model of the design. The engineers
foresee several benefits of introducing the designed treatment
in their current project for preventing process and architecture
erosion, and for an improved insight into model-and-code con-
sistency. We elaborate in the following.

The first benefit foreseen is to counteract process erosion.
Engineers indicated that visualizing inconsistencies can prevent
deviation between model and code caused by not following
the development process or the preagreed architectural guide-
lines. “When we started this project in 2015, there was a better
feedback loop between system and software engineers. This
tool could enhance or reinstate that feedback loop again, by
indicating inconsistencies over time, as the model and code
are updated.” One system engineer also mentioned the long
time interval between model and code updates and the diffi-
culty in keeping track of changes. “Now, things are improved in
the code and then forgotten about. Then six months later, you
see that the model is not at all updated. So some reminder is
needed to show that the model is not correct anymore.” Indeed,
consistency checks were deemed helpful, even for parts of the
system. “To just have these structural checks for even half the
system components would be beneficial.” Another area of inter-
est was the connection between the code and the model. This
was particularly of interest to software engineers, who noted
that they currently have limited knowledge of the system model.
“This will help me to learn to know the model and understand
the model better. Currently, I do not look at the model.” An-
other software engineer said: “This will help me to see what
has changed in the model and will give some help to see how
complete the implementation is.”

4.3.2. Trade-off questions The purpose of trade-off ques-
tions is to determine the effect that alternatives to the designed
artifact would have in the context; what is the difference be-
tween them? Since we did not find suitable treatments, we
can only compare with the current state of practice, which in-
volves manual checks, not driven by the development process
or supported by tooling. Essentially, after the handover between
the system and software engineers, the consistency between
the model and code is no longer checked. In some cases, soft-
ware engineers provide feedback to system engineers, e.g., to
mention a mistake in the system model, but the model is then
usually not updated to reflect the code change; this introduces
inconsistencies.

4.3.3. Requirements satisfaction questions The purpose
of requirements satisfaction questions is to determine whether
the effects produced by the artifact actually satisfy the require-

ments. The discussion of the satisfaction of functional require-
ments as we listed before was short; the engineers agreed that
the design meets the requirements. We then had a longer discus-
sion about non-functional requirements that were not formulated
before, related to the maintenance and the scope of consistency
checks.

The main objection foreseen was related to the maintenance
of the consistency checks themselves. “As a system engineer, I
would be unhappy with maintaining rules if it means to change
a term in multiple places.” Indeed, we should ensure that the
definition of consistency rules does not create a burden on sys-
tem and software engineers. Related to the maintenance of
the artifacts, the engineers identified the need for a filtering of
the results to prevent an overwhelming list of inconsistencies.
Moreover, it was identified that starting with a tool earlier would
result in fewer inconsistencies. “If started from the beginning,
there wouldn’t be so many errors. But now there will be many
and many errors.” Similarly, it was discussed that some filters
are needed to select the elements that need to be checked (e.g.,
everything within this particular package).

The engineers furthermore expressed a desire to check only
part of the model. “It is important to be able to select what
part of the model and what part of the code you want to check.”
At the same time, there was a desire to extend the scope of
consistency checks beyond the system model and the C++ code.
“Not all implementation is in C++, there are also parts of the
system implemented in e.g. VHDL.” The need to eventually
support more types of artifacts than only the system model and
code is one of the reasons why we eventually set out on a slightly
different path for the implementation, as we shall see later.

Finally, some new opportunities also emerged from the dis-
cussion. In particular, engineers noted that the overview of the
consistency checks could also be very useful for communication.
“Some percentage, summarizing number, or KPI for consistency
would be very useful for tracking the progress over time and
to be able to communicate in a simple way to management the
improvements (and to make a case for a need to refactor).”

4.3.4. Sensitivity questions The purpose of sensitivity
questions is to determine how the artifact would respond to
changes to the context, such as larger or different projects.

We discussed the applicability of the proposed tool to other
projects in the company. One concern was related to the models
involved, which are not everywhere of the same depth and
structure: “In other projects were I worked we did not model in
such a formal way. If you just have some Visio diagrams, you
cannot check much.” However, there is a project in the company
that has a much larger scale than the project we are working
with in this study, and for that the engineers saw no objections to
using the same approach, provided the aforementioned means to
filter the results. If we further change the context, for example,
by changing the MBSE way of working or the programming
language, then the application of the proposed treatment will be
more difficult.

4.3.5. Conclusions from the meeting We did a validation
workshop for the proposed bridge between CLion and Rhapsody.
The result was a change in the prioritization of features for two

8 Jongeling et al.

main reasons: (i) consistency across more artifacts should be
checked, and (ii) a complete overview of all inconsistencies
and some statistics should be prioritized over the inclusion of a
visualization of system model parts in the IDE. Hence, we have
changed the scope considerably and, in particular, limited the
requirements that we will include in our tool to the minimum
required for evaluating the effect of consistency checks. There-
fore, we adjusted our goal and aim at first indexing model and
code elements, then running the consistency checks according
to three predefined rules by the stakeholders, and eventually to
present the results in a single overview page.

4.4. Initial treatment implementation
Implementation here does not refer to developing the proposed
tool, but rather to applying it in our industrial setting. Neverthe-
less, we first briefly describe how the tool was developed.

4.4.1. Developed tool The tool follows the approach shown
in Figure 4, which is an instantiation of the generic framework
shown in Figure 5. In particular, we have implemented a model
indexer that retrieves system components, states, and event
receptions from the system model, and a code indexer that
retrieves repositories, classes, and case statements from the
code base. The matching of elements follows the maintained
hierarchy. In our case, a class C is only matched to a state
S if the repository that contains C is matched to the system
component that contains S. This hierarchy allows distinguishing
between components with the same name in different parts of
the system, and thereby facilitates their correct matching.

Consistency checking The model indexer uses an API pro-
vided by Rhapsody that allows opening a model in a headless
instance and performing a depth-first traversal of all model el-
ements. For each type of model element for which we have
defined a consistency rule (i.e., “system component”, “state”
and “event reception”), we create a “model element” object.
During mining, we keep track of the hierarchy of model ele-
ments, i.e., which system component is the parent of the mined
states and event receptions.

The code miner recursively traverses all folders in a provided
root folder. Folders containing “.git” are considered reposito-
ries, and within repositories, system components are identified
by those folders that contain definitions of states and attributes
header files. When a folder is deemed to be a repository con-
taining the implementation of a system component, a “code
element object” is created for it. Then, within that repository,
we traverse all code and header files, line by line, to find class
declarations and case statements (in switch statements). For
each of these classes or cases, a “code element” object is created
and the hierarchy is maintained too, meaning that we keep track
of the repository that this class or case was found in.

The consistency checks, similar to the indexers, are imple-
mented in Java. We use the user-provided dictionary and the
rewriting rules as discussed in Section 4.2.3 before to match
elements. First, we try to match the top-level elements, i.e.,
“system component” model elements, and “repository” code
elements. Once the top-level elements are matched, we try to
match the elements contained within them. As a side note, for

+ H:\git\project.component
Contained Classes

+ H:\git\project.component\public_include\componentstates.h\aMatchedState
+ H:\git\project.component\public_include\componentstates.h\anUnmatchedState
+ H:\git\project.component\public_include\componentstates.h\aClassAddedInCode
Contained Events

+ H:\git\project.component\src\componentstates.cpp\anUnmatchedEvent
+ H:\git\project.component\src\componentstates.cpp\aMatchedEvent

Figure 6 Anonymized sample of consistency check results,
showing code elements and if they are (green) or are not (red)
matched to a model element. The top-level element is col-
ored yellow to indicate its contained elements are partially
matched.

testing and quick rerunning of the consistency checks, it is ad-
visable to store the indexed model and code elements such that
the indexing task does not have to be repeated. In our case, we
persist a model index and a code index each time we mine the
model or code, which proved to be very useful during debugging
and for creating new visualizations of the results.

Results visualization An HTML page is generated with a vi-
sualization of the results; an example is shown in Figure 6. We
show the top-level elements (system components and reposito-
ries) and allow us to expand and collapse them to show and hide
the elements contained in them. The contained elements are
marked in green (for matched code/model elements) or red (not
matched). The top-level elements are shaded between green and
red, indicating the range from a higher to lower degree of con-
sistency, based on the number of matched containing elements.
When top-level elements are not matched, they are red since
none of the containing elements will be matched. The page
also contains a list of system components and their matched
repositories, and vice versa, for easy lookup. Lastly, the page
shows statistics on the number of mined elements of each type
and the percentage of matched and non-matched elements.

Roll-out We developed our tool and deployed it in the project
in our industrial setting. For the initial deployment, we executed
the tool only on the machine of one system engineer, to gather
a first feedback.

4.4.2. First feedback Once we created the first consistency
check results, there were immediately some useful insights to be
gathered. The engineers could see some parts of the model and
code that were inconsistent, even though they were expected to
be consistent. The results page gave them a way to explore the
model and code from a different perspective.

We found that the rules provided by the domain experts only
matched a tiny fraction of indexed elements (in the order of 30
out of 1000). There are two main causes for this discrepancy;
the first is the incomplete dictionary, which accounts for a por-
tion of missed matches, and the second is that the architecture
erodes and does not follow the rules exactly. Throughout the
system evolution, engineers have made many decisions on the
structure of the model and code; some of them follow the ar-
chitectural guidelines, some may be acceptable deviations, and

Experiences of establishing consistency checks in industry 9

some inconsistencies. Consequently, it is now challenging to
capture these decisions appropriately in a set of consistency
rules. In some cases, matches that should be made even with-
out dictionary entries were not made because of this lack of
adherence to the architectural guidelines. The results confirm
the initial expectations of the engineers about a large number
of inconsistencies. With many errors to be displayed, filtering
is required to properly navigate the results. To support filter-
ing, we display the results as collapsible rows in a table so that
the overall size of the collapsed list is smaller and more easily
navigable.

4.4.3. Changes to the treatment made during implemen-
tation We made some changes during the implementation of
our proposed treatment, in particular related to the indexing of
concrete elements. More specifically, we encountered an unex-
pected challenge in creating the model and code indexers due to
the need for several iterations to define clearly how the concep-
tual elements (system component and repository) map to con-
crete development artifacts. For example, according to domain
experts, the top-level code components should be Git reposito-
ries, and hence each system component in the model (a block
with stereotype “system component”) should be matched to a
Git repository. Soon, exceptions to this rule appeared, because
in some cases multiple system components were included in a
single repository. Then we considered whether these inconsis-
tencies are due to an incorrect rule or an incorrect code structure.
In this case, the domain experts agreed that the rule should be re-
fined and, hence, the miner was changed to consider a different
heuristic for mining the top-level code elements. We changed
it to identify as top-level code elements all folders that are in a
Git repository and themselves contain a “public_include” folder
that contains <x>states.h and <x>attributes.h files, where x
is the name of the system component. It was interesting that
this mapping was not at all easy to determine and took several
iterations for the model elements, too.

4.5. Initial treatment evaluation
As seen in Figure 3, the evaluation at the end of the first cy-
cle is at the same time the first step and problem investigation
of the second cycle. Now, we describe only the implementa-
tion evaluation. This evaluation focuses on the treatment after
implementation in our industrial setting.

Since we have iteratively developed the approach and tested
it with the help of system engineers, we did not do a separate
evaluation at the end of the implementation phase. Throughout
development, we have improved the number of mined elements
by improving the definition of conceptual elements. We also
included increasingly more entries in the dictionary, leading to
more matched elements. The researcher and system engineer
then performed a manual evaluation, sampling some of the
results, and looking at the corresponding code. In all cases,
inconsistencies were correctly identified.

The results were considered very useful: “Without this, we
wouldn’t even know that there was an inconsistency. Having
an aid, especially a visual aid, really helps us verify structural
consistency, ensuring that things are named correctly.” It is

exactly that kind of structural inconsistency that we aimed to
identify with our approach. This iterative development-and-
evaluation approach has led to new desired features, which we
will discuss at the beginning of the second engineering cycle, as
elaborated in Section 5.

5. Engineering cycle 2: continuous checking
In the second cycle, we focus on the necessary improvements
to the consistency checks as emerged from the evaluation of the
first cycle.

5.1. Problem investigation (coincides with the initial
treatment evaluation)

The evaluation of the first cycle showed that the results of the
consistency checks could be useful. Therefore, we continued
our work and in the second cycle addressed some problems that
were identified too. In particular, we focus on the accessibility
of the consistency checks and their results to software and sys-
tem engineers without being interrupted in their development
tasks. To prevent consistency checks from being neglected or
their results not being visible to stakeholders, a new goal was
formulated on top of the one from Cycle 1, as follows.

Goal definition: Improve the availability of the consistency
check results, such that all software and system engineers of
the team can, at any time, explore the latest state of consistency
between system model and implementation, without having to
run the tool locally.

5.2. Extended treatment design
To improve on locally run consistency checks as created so far,
we proposed to include their execution in the Continuous Inte-
gration (CI) pipeline. For the development of the code, the team
uses the Git-based tool Bitbucket and Jenkins to automatically
run builds and tests. To minimally intrude, we propose to cre-
ate a Jenkins job that calls our miner and runs the consistency
checks after each build. We implement the consistency check as
a post-build step to ensure that we do not slow down any of the
other automated checks. This also ensures that the execution
time of the checks is not particularly important. The miners can
take quite some time if the model or other artifact is very large.
We do not fail the build based on the results of the consistency
check, since it is intended as an overview to be provided to the
engineers.

5.3. Validation of extended design
In this cycle, the treatment validation was less extensive than in
the first one, mostly because we already had gathered the needed
input then. Therefore, the validation in Cycle 2 consisted only
of informal discussions with the engineers. No changes to the
designed treatment were made based on this validation.

5.4. Extended treatment implementation
Due to difficulties in setting up Jenkins with correct permissions
and access to the required tools, we could not yet include consis-
tency checks in the CI pipeline. Since the most important aspect

10 Jongeling et al.

was to provide access to the results to all engineers, we simu-
lated instead this effect by having our main contact share the
consistency check results once a day with the other engineers
involved in the case study.

5.5. Case study to evaluate Cycle 2

For the reasons listed in Section 4.2.2, adopting existing treat-
ments in the studied setting was not possible. Hence, a compar-
ative evaluation with existing treatments was impractical too.
Therefore, we limited our evaluation to a case study in which
we observed the use of our tool, as implemented in Cycle 2, in
the real setting. This evaluation was more extensive than the
evaluation after Cycle 1 and it included both a quantitative and
qualitative evaluation of the tool. The quantitative evaluation
focused on measuring the effect of consistency checking when
letting an engineer work on refactoring tasks using our tool. The
qualitative evaluation focused on studying the usefulness of the
results and the usability of the tool for engineers in their current
setting.

5.5.1. Quantitative evaluation To measure the effect of us-
ing the consistency checking tool, we first measured consistency
in the past, i.e., we executed our consistency checking tool for
checked-out past revisions of the model and code. We measured
the consistency every week for six weeks prior to the intro-
duction of the tool to observe what happens to the consistency
if no particular attention is paid to it and no tool is available
to show inconsistencies. Thereafter, to see the effect after the
introduction of our tool, we asked engineers to work with the
tool and record the time they spent on refactoring model or code.
Subsequently, we again measured the consistency to observe
the effects.

Figure 7 shows the percentage of correctly matched model
and code elements in six weeks prior to the introduction of our
tool, and the improvement after its introduction. The percentage
of matched code elements (dashed lines) is higher than the
percentage of matched model elements (solid lines) because
the total number of matched elements is greater (in the last
week, 48 top-level code elements and 219 system components
are indexed). Throughout the past weeks, we see a fairly stable
degree of inconsistency between the model and code. There are
minor changes after smaller iterations, but the only significant
change is seen after the introduction of our tool in week 7.

The engineers put in cumulatively 2 hours of work using the
tool and working on resolving inconsistencies. The result was
an increase in the number of mapped system components from
15 to 22 (out of 219 components), the number of mapped states
from 40 to 49, and the number of mapped event receptions from
42 to 62. In summary, the effect is an increase in consistency
between the model and the code from 7% to 10% after 2 hours
of work with our tool. The numbers shown correspond to the
number of indexed model elements and the number of matched
code elements. We also measured in the other direction and
observed the same improvements in the last week. As expected,
overall consistency is low, due to a lack of feedback between
the developers working on either artifact.

1 2 3 4 5 6 7

0
10

20
30

40
50

60

weeks

%
 o

f m
at

ch
ed

 e
le

m
en

ts

model elements (solid)
system components
states
reception events
code elements (dashed)
repositories
classes
cases

Figure 7 Consistency as expressed in the percentage of
matched elements in last 6 weeks before introducing the tool,
and in week 7, after introducing the tool.

5.5.2. Qualitative evaluation In addition to the measured
effect of introducing consistency checks, we evaluated the de-
veloped tool in a one-hour focus group session including the
researcher and four software and system engineers. During
the meeting, the researcher first introduced the purpose of the
meeting and the developed tool. One of the engineers, who
worked with our tool before, demonstrated its use to the other
engineers. We then discussed with the engineers their thoughts
on four aspects: (i) the usefulness of the consistency checks
themselves, (ii) the usefulness of the integration of the checks
in the CI pipeline, (iii) the usefulness of the presentation of the
results (consistency check outcomes), and (iv) the most useful
next steps.

Usefulness of results During the introduction and demo, a
discussion about the desired consistency between model and
code was already started. An engineer remarked: “this puts a
requirement on following a specific naming convention. Not ev-
erybody does this.” We found a similar result that was obtained
earlier in the study; overall, it is a challenge to find an agreement
among engineers on how precise consistency checks should be
and to what extent architectural guidelines and naming conven-
tions should be enforced. One of the identified uses of the tool
was to serve as an incentive for improving consistency.

Nevertheless, the engineers agreed that if model-and-code
consistency is desired, then the provided consistency checks are
effective. “A tool like this is absolutely needed. This refactoring
work can not be done manually. And this implementation seems
to be the best first step towards it.” The checks were found par-
ticularly useful in identifying specific locations in large models
and code bases that needed maintenance. “The tool indicates
where to look, something is up over there, I should investigate.”

Experiences of establishing consistency checks in industry 11

The use of these consistency insights could also be used to
track implementation progress. “We could use these checks to
see how far we are from implementing the model. To see if
we are done or very far from it.” Moreover, the engineers saw
practical value in consistency checks for refactoring tasks. “We
have an additional use case for this tool in the next sprint when
we are going to refactor a component (in the code) to better
match its design in the model.”

Usefulness of integration in CI pipeline The engineers found
the integration in the CI pipeline valuable, thanks to its enabling
for a longer term monitoring of consistency. The web page
with results is available to all engineers and does not require
any specific tool to view. The engineers indeed appreciated
this accessibility and proposed several ideas for visualizing
more aspects of the results. For example, it was proposed to
include a colored box stating the consistency percentage as part
of the build results, perhaps separated for model-to-code and
code-to-model consistency.

Unexpectedly, the engineers even discussed the possibility
of failing the build, upon newly identified inconsistencies. “If
you want to enforce consistency you can fail the build step
if anything is inconsistent.” Eventually, the engineers agreed
that there are several scenarios in which inconsistency must
be tolerated, and hence strict gating on the checks was not
sought. We did not even expect the discussion because of the
commonly agreed view in the literature that inconsistencies must
be tolerated so as to not interfere with development (Stevens
2014).

Usefulness of results presentation The presentation of the
results was not prioritized in the tool development. The engi-
neers proposed several ideas to improve the visualization of the
results. Among them, there were suggestions for showing, in
the build results, colored boxes with consistency numbers for
different teams and for function blocks. Another suggestion
was to return to our initial idea and include the links to model
elements within CLion. Software engineers also expressed their
challenges with the system modeling tool and their preference
not to have to deal with it.

Useful next steps During the evaluation sessions, the soft-
ware and system engineers appreciated the consistency checking
framework to illustrate the implementation (“simple is good”),
particularly because they were worried about maintainability of
such a tool. “It remains to be seen if the overhead of maintaining
this is worth the results.” None of the engineers have worked on
the tool yet, but several expressed interest in further developing
it. In particular, we are discussing to adapt the tool to be used in
a different and notably larger project. The need for adaptation
comes from the fact that the targeted project uses different ar-
chitectural guidelines for implementing system components and
state machines. Hence, there are different consistency rules, but
also different indexers required, since different top-level code
elements need to be considered.

6. Discussion
The consistency checking approach presented is lightweight.
Minimal interference with the existing industrial setting is
needed. In our setting, the limitations brought about by this
lightweightness are currently acceptable, since the aim was to
provide engineers with consistency information and to under-
stand whether it would help them improve consistency. During
our study, we collected several take-away messages for engi-
neers and other stakeholders that aim to address consistency
checking in an existing setting; the remainder of this section
discusses them.

6.1. Take-away from developing consistency checks in
an existing setting

The process of developing consistency checks in the company
has been helpful to software and system engineers for reasoning
about the structure of the project and the desired architectural
consistency. In particular, the conceptual framework (Figure 5)
provided a good starting point for discussions about the defini-
tion of indexers. Indeed, defining mappings from conceptual to
concrete elements to index them turned out to be one of the main
challenges of implementing the approach in the existing setting.
It took several iterations to arrive at suitable definitions of the
concrete elements denoting “system components” in the model
and their counterparts in the code. A suitable definition requires
us to capture the intended structure of the model and code, but
at the same time it should handle the existing way things are
implemented if those ways are acceptable too. It is challenging
to get all stakeholders to agree on what the scope of concepts
such as “system component” is exactly, as it is a domain-specific
and setting-dependent concept; there is no concept of a system
component in SysML.

Similarly, there is a challenge of agreeing on the consistency
rules themselves. For example, in our setting, stakeholders may
not agree that each system component must be implemented in
a separate repository. Indeed, also here, the challenge is rooted
in the collaborative nature of engineering large systems. In our
setting, we followed the architectural guidelines that the engi-
neers had designed at the beginning of their project. However,
during the implementation and evaluation of consistency checks,
the list of exceptions to the rule continued to grow. Then, there
is a need for expert engineers to decide if something is an in-
consistency or if it should be allowed as an exception to the
rules.

An interesting observation from the early implementation is
that there is a trade-off to be made between how good consis-
tency checks should be at identifying correspondences between
model and code elements versus the usefulness of the outcomes,
i.e., consistency checks should not be too good at matching
elements. Indeed, if consistency checks are too lenient and
identify consistency between elements that are named only ap-
proximately the same, it does not help the human understanding
of the artifacts. In the extreme case, consistency checks could
judge specific model elements and code elements as consistent
for reasons that a human engineer does not understand. Then,
the checks would defeat their purpose.

Our approach differs from concepts in which consistency is

12 Jongeling et al.

aimed at being restored (Stevens 2020). In our setting, consis-
tency checks provide a quality metric for a set of interrelated
development artifacts. In contrast to other views, we do not
consider consistency restoration as a driving force in the engi-
neering phase.

6.2. Framework implementation choices
Once the relationships between concrete and conceptual ele-
ments are clear and the consistency rules to be checked are
clear, the implementation of the framework can be done in
many ways. For expressing and evaluating the consistency rules,
even existing constraint languages can be used, provided that
the conceptual elements are expressed in forms that those con-
straint languages can reason over. In this study, we used a
general-purpose language (Java) to implement the miners and
consistency checks. The main reason for this choice is that we
used the Rhapsody API to mine the model elements from the
system model. To visualize the results, different approaches can
be taken.

Including consistency checks in the CI pipeline is expected
to work well in this setting, given the feedback of the engineers
on our work-around scenario. Real-time feedback is not really
needed for system components in the model that will be imple-
mented much later. Moreover, we are deploying this approach
in an existing industrial setting. The engineers have indicated
their expectation that, initially, a large number of inconsistencies
will be identified because consistency has not been prioritized
thus far. In that sense, engineers prefer to have an overview to
be checked on demand (pull) rather than being continuously
notified of all inconsistencies (push). Moreover, in our evalu-
ation, we showed that introducing even a few simple checks
already provides engineers with new insights about the relations
between the system model and the code.

Our main goal was to provide consistency checks to assess
whether it would be beneficial in this setting. Therefore, during
the programming of the proposed approach, we made several
design decisions aimed at keeping the development time low, in
favor of having early results to guide the way forward. Limita-
tions of the tool include the lack of incrementality of the consis-
tency checks; i.e., each time they are run, both the model and
code need to be indexed from scratch. In Egyed’s work (Egyed
2010), instant consistency checking is achieved by instantiat-
ing consistency rules for each pair of elements that should be
consistent and then reevaluating only those rule instances that
are affected by a change. Even if we did not focus on incre-
mentality, we could utilize the hierarchy of conceptual elements
to determine their scope. For example, if a state is changed,
we only need to re-index the elements in its containing system
component. In this sense, the miners can be made incremental,
provided that we can access the changes to an artifact compared
to its previous version and maintain an index of mined elements
for each artifact.

6.3. Experiences of performing a design science study
We were studying a real industrial setting and soon realized the
need for the development of a new solution. There is a danger
of such endeavors becoming very informal, which threatens the

validity of the created knowledge. Therefore, our choice for
design science was mainly motivated by the wish for a struc-
tured research method involving the engineering of a software
solution and its evaluation in a real setting.

The cyclic nature of the methodology has the advantage of
producing some results in early phases, which can be good,
especially in industrial collaborations where researchers may
need to motivate their use of company resources. Moreover,
the methodology allows us to create a solution that fits in the
studied industrial setting while producing knowledge that can be
applicable beyond the specific setting. For us, the value of the
methodology followed lies in the ability to study the problem
in a real context, thereby supplementing the academic literature
that often necessarily relies on constructed examples.

In our experience, any industry-academia collaboration re-
quires a significant start-up period in which the problem to be
studied is defined. If researchers are external, this start-up time
may be extended due to potentially time-consuming activities
such as getting access to the company premises and digital
systems. During the collaboration, further challenges can be
encountered due to confidentiality, researchers working at com-
pany premises, licensing and ownership of developed products,
and changing of preagreed time commitments from either side.
Later, conflicts between the required confidentiality of the in-
dustrial setting and the required openness of research may pose
challenges during the dissemination of the work. Unfortunately,
there is no silver bullet to avoid these challenges, but of crucial
importance is timely and frequent communication.

6.4. Threats to validity
Unfortunately, constraints by the industrial partner limits us in
sharing the developed tool. Moreover, we were not allowed
to record the interviews, and therefore the quotes are based on
extensive notes by the first author. We now discuss internal
validity (are the effects really caused by our treatment or are
there other factors in play?) and external validity (can our
treatment and results be generalized to other settings) of our
study (Feldt & Magazinius 2010).

Internal validity To ensure internal validity, we want to ensure
that it is our approach and not other external factors or random
noise that leads to improved consistency. To do so, we compared
the consistency between the model and the code before and after
the introduction of our tool. Throughout the revision history, we
observed a steady or gradual decrease in inconsistency. Indeed,
consistency seems to follow Lehman’s seventh law of software
evolution (Lehman 1996), and only deteriorates when nothing
is done to counteract it.

External validity A consequence of the chosen research
methodology is that the generated knowledge is not universally
generalizable, but falls within the “middle range” (Wieringa
2014). In the best case, generalization is limited to settings sim-
ilar to that studied in this article. We believe that our approach
can indeed be generalized to other settings, since it can be ap-
plied to check the consistency between any type of artifacts.
The specific instance shown in the study is hard to apply to
other settings, since it is based on consistency rules for concrete

Experiences of establishing consistency checks in industry 13

elements in the specific setting. However, the MBSE setting at
the company is based on common standards, so there are likely
similar settings that our approach can be adopted in.

The validity of the result is further dependent on the qual-
itative and quantitative evaluation. We attempt to prevent the
threat of taking a snapshot of the consistency state by measuring
consistency in the weeks leading up to the introduction of the
tool, in which no particular attention was paid to consistency
management. The engineers indicated that consistency manage-
ment was virtually impossible without tool support, but there is
still a risk that during these weeks improvements would have
been found if they had been trying their best to resolve incon-
sistencies. The improvement in week 7 indicates that the tool
can result in a higher proportion of matched elements, which is
what we wanted to evaluate. We expect further improvements
beyond week 7, when the developers continue to use our tool,
are more aware of inconsistencies, and slowly start to resolve
them whenever they are making changes to related elements of
the code or the model.

7. Related Work
In addition to the discussion of available treatments in Sec-
tion 4.2.2, here we discuss other related works. Since our
focus in this paper is specifically on the introduction of con-
sistency checks in an existing industrial setting, we avoid an
elaborate discussion of the related work on consistency check-
ing approaches. Instead, we refer to recent secondary studies
in this and related domains, e.g., (Cicchetti et al. 2019; Muram
et al. 2017; Torres et al. 2020). Moreover, in the remainder
of this section, we focus on other studies involving practical
evaluations on consistency checking approaches in industry.

A study in which consistency checks are introduced in an
industrial setting found that one of the main challenges is to
interact with domain-specific and proprietary tools in an existing
setting (Demuth et al. 2016). We see similar challenges in our
setting, but foresee that our generic framework requires minimal
features in any existing tool. What we need in all cases is to
mine the information either from the tool in which an artifact is
created or from its persisted form. Since we in particular want
to support artifacts that are not necessarily well-formed models,
we consider mining information as a minimal step to enable a
consistency checking mechanism.

A similar study as ours has looked at improving the way
of creating and maintaining consistency checks in an MBSE
setting by using a linking language based on triple graph gram-
mars (Feldmann et al. 2019). Their findings indicate that their
approach is more usable than writing textual rules (in EVL). In
our study, we discuss the creation of the rules as an architectural
challenge and do not consider that each engineer will create and
maintain links individually.

The questions we are posing in a real industrial setting have
recently also been studied in a controlled experiment, where
inconsistency feedback was shown to help developers in co-
evolution tasks (Kanakis et al. 2019). While our study also
considers model-code consistency, the difference is that in our
case, the abstraction gap between model and code is large and,

therefore, in the normal way of working, there is a longer time
between the change in the model and the corresponding change
in the code. This is also the reason that many of the related
UML-to-code consistency checking work (Usman et al. 2008;
Lucas et al. 2009) is not directly applicable in our setting, the
code is expressively not generated from the model in our setting.
If it could, then we would not need to perform these consistency
checks.

A study on architectural consistency among practitioners
identified as one of the challenges the reluctance to accept
formal consistency checking approaches due to a perceived
large effort in adopting them (Ali et al. 2018). Our approach
can help practitioners set the first steps towards consistency
checking by using a lightweight framework. If and when it is
proven useful, practitioners can then opt to use more formal
approaches and more extensive tools.

8. Conclusion

In this section, we summarize the main learning outcomes and
discuss future work based on the findings of this study.

8.1. Main learning outcomes

In this paper, we report on two design science cycles in which
we introduce structural consistency checks between a SysML
system model and its corresponding C++ code base in an in-
dustrial setting. We have addressed the design problem by
providing software and systems engineers with insight into the
consistency between a system model and its implementation.
Through the evaluation of our implemented artifact, we have
seen that it has a positive effect on the quality of the artifacts
(i.e., the number of identified inconsistencies decreased). More-
over, we have designed the artifact in a way that minimally
disrupts the current way of working of engineers when adopted
in their existing setting. Our implementation is an instantiation
of a more general framework for consistency checking between
diverse development artifacts, which we also present in this
paper.

During the collaboration with the industrial partner, we found
that a great challenge is to define the mapping from conceptual
to concrete elements. Although it was quite clear what the con-
sistency rules should be at the conceptual level, it took several
iterations to formulate a mapping from those conceptual ele-
ments to the concrete elements that represent them. Moreover,
we found that for the definition of consistency rules, it can be
challenging to reach an agreement between different stakehold-
ers. We find that developing the consistency checking approach
therefore already has benefits during its creation, as a vehicle for
facilitating discussions among engineers on how their project
should be structured. Hence, the experiences shared in this
paper can be useful for both companies and academics working
with companies in their efforts to initially introduce consistency
checks. The developed framework gives a starting point for dis-
cussions around consistency and a template for implementing a
first simple approach.

14 Jongeling et al.

8.2. Future work

The work in this paper is the starting point for improving con-
sistency management in our industrial setting. Now that the
proof-of-concept is completed and the initial results were found
helpful, the next step is to extend the checks further in three or-
thogonal directions. The first direction is to introduce more rules
that check consistency between the currently studied artifacts,
to more completely cover the architectural guidelines of the
company. The second direction is to include more artifacts, of
which engineers expressed two of particular interest. Hence, we
aim to add checks between interface specifications in the system
model and manually created XML documents specifying them
(from these XML documents a part of the code is generated), as
well as add checks between VHDL code and hardware blocks in
the system model. The third direction is to improve the presen-
tation of the results. Since the initial evaluation has shown the
potential benefit of these consistency checks, we aim to return
to our initial idea and study the possibilities of extending the
consistency checks towards a blended modeling (Ciccozzi et al.
2019) setup, where the software engineers could view -and edit-
parts of the system model from inside their IDE. Moreover, by
further studying the adoption of consistency checks, we aim to
identify which of the gathered statistics is a good indicator for
model-and-code consistency.

Acknowledgments

This research was supported by Software Center — www
.software-center.se. The authors also thank the system and
software engineers of the industrial partner for their time and
input in our discussions.

References

Ali, N., Baker, S., O’Crowley, R., Herold, S., & Buckley, J.
(2018). Architecture consistency: State of the practice, chal-
lenges and requirements. Empirical Software Engineering,
23(1), 224–258. doi: 10.1007/s10664-017-9515-3

Buckley, J., Mooney, S., Rosik, J., & Ali, N. (2013). Jittac: a
just-in-time tool for architectural consistency. In 2013 35th
International Conference on Software Engineering (ICSE)
(pp. 1291–1294). doi: 10.1109/ICSE.2013.6606700

Cicchetti, A., Ciccozzi, F., & Pierantonio, A. (2019). Multi-view
approaches for software and system modelling: a systematic
literature review. Software and Systems Modeling, 18(6),
3207–3233. doi: 10.1007/s10270-018-00713-w

Ciccozzi, F., Tichy, M., Vangheluwe, H., & Weyns, D. (2019).
Blended modelling-what, why and how. In 2019 acm/ieee
22nd international conference on model driven engineering
languages and systems companion (models-c) (pp. 425–430).
doi: 10.1109/MODELS-C.2019.00068

Demuth, A., Kretschmer, R., Egyed, A., & Maes, D. (2016).
Introducing traceability and consistency checking for change
impact analysis across engineering tools in an automation
solution company: an experience report. In 2016 IEEE Inter-
national Conference on Software Maintenance and Evolution
(ICSME) (pp. 529–538). doi: 10.1109/ICSME.2016.50

Egyed, A. (2001). Scalable consistency checking be-
tween diagrams-the viewintegra approach. In Proceed-
ings 16th Annual International Conference on Automated
Software Engineering (ASE 2001) (pp. 387–390). doi:
10.1109/ASE.2001.989835

Egyed, A. (2010). Automatically detecting and tracking
inconsistencies in software design models. IEEE Trans-
actions on Software Engineering, 37(2), 188–204. doi:
10.1109/TSE.2010.38

Egyed, A., Zeman, K., Hehenberger, P., & Demuth, A. (2018).
Maintaining consistency across engineering artifacts. Com-
puter, 51(2), 28–35. doi: 10.1109/MC.2018.1451666

Feldmann, S., Kernschmidt, K., Wimmer, M., & Vogel-Heuser,
B. (2019). Managing inter-model inconsistencies in model-
based systems engineering: Application in automated produc-
tion systems engineering. Journal of Systems and Software,
153, 105–134. doi: 10.1016/j.jss.2019.03.060

Feldt, R., & Magazinius, A. (2010). Validity threats in empirical
software engineering research-an initial survey. In Proceed-
ings of the software engineering and knowledge engineering
conference (pp. 374–379).

Friedenthal, S., Moore, A., & Steiner, R. (2014). A practical
guide to SysML: the systems modeling language. Morgan
Kaufmann. doi: 10.1016/C2013-0-14457-1

INCOSE. (2015). Systems engineering handbook: A guide for
system life cycle processes and activities, 4th edition.

Jongeling, R., Carlson, J., & Cicchetti, A. (2019). Impediments
to introducing continuous integration for model-based devel-
opment in industry. In 2019 45th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA)
(pp. 434–441). doi: 10.1109/SEAA.2019.00071

Jongeling, R., Fredriksson, J., Ciccozzi, F., Cicchetti, A., &
Carlson, J. (2020). Towards consistency checking between
a system model and its implementation. In International
conference on systems modelling and management (pp. 30–
39). doi: 10.1007/978-3-030-58167-1_3

Kanakis, G., Khelladi, D. E., Fischer, S., Tröls, M., & Egyed,
A. (2019). An empirical study on the impact of in-
consistency feedback during model and code co-changing.
The Journal of Object Technology, 18(2), 10–1. doi:
10.5381/jot.2019.18.2.a10

König, H., & Diskin, Z. (2017). Efficient consistency checking
of interrelated models. In European Conference on Mod-
elling Foundations and Applications (pp. 161–178). doi:
10.1007/978-3-319-61482-3_10

Leblebici, E., Anjorin, A., & Schürr, A. (2017). Inter-model
consistency checking using triple graph grammars and linear
optimization techniques. In International conference on fun-
damental approaches to software engineering (pp. 191–207).
doi: 10.1007/978-3-662-54494-5_11

Lehman, M. M. (1996). Laws of software evolution revisited.
In European workshop on software process technology (pp.
108–124). doi: 10.1007/BFb0017737

Lucas, F. J., Molina, F., & Toval, A. (2009). A system-
atic review of UML model consistency management. In-
formation and Software technology, 51(12), 1631–1645. doi:
10.1016/j.infsof.2009.04.009

Experiences of establishing consistency checks in industry 15

www.software-center.se
www.software-center.se
https://doi.org/10.1007/s10664-017-9515-3
https://doi.org/10.1109/ICSE.2013.6606700
https://doi.org/10.1007/s10270-018-00713-w
https://doi.org/10.1109/MODELS-C.2019.00068
https://doi.org/10.1109/ICSME.2016.50
https://doi.org/10.1109/ASE.2001.989835
https://doi.org/10.1109/TSE.2010.38
https://doi.org/10.1109/MC.2018.1451666
https://doi.org/10.1016/j.jss.2019.03.060
https://doi.org/10.1016/C2013-0-14457-1
https://doi.org/10.1109/SEAA.2019.00071
https://doi.org/10.1007/978-3-030-58167-1_3
https://doi.org/10.5381/jot.2019.18.2.a10
https://doi.org/10.1007/978-3-319-61482-3_10
https://doi.org/10.1007/978-3-662-54494-5_11
https://doi.org/10.1007/BFb0017737
https://doi.org/10.1016/j.infsof.2009.04.009

Muram, F. u., Tran, H., & Zdun, U. (2017). Systematic review of
software behavioral model consistency checking. ACM Com-
puting Surveys (CSUR), 50(2), 1–39. doi: 10.1145/3037755

Murphy, G. C., Notkin, D., & Sullivan, K. (1995). Software
reflexion models: Bridging the gap between source and high-
level models. In Proceedings of the 3rd ACM SIGSOFT
symposium on Foundations of software engineering (pp. 18–
28). doi: 10.1145/222124.222136

Ralph, P. e. a. (2021). Empirical standards for software
engineering research. arXiv:2010.03525 [cs.SE]. doi:
10.48550/arXiv.2010.03525

Riedl-Ehrenleitner, M., Demuth, A., & Egyed, A. (2014). To-
wards model-and-code consistency checking. In 2014 IEEE
38th Annual Computer Software and Applications Conference
(pp. 85–90). doi: 10.1109/COMPSAC.2014.91

Staron, M. (2020). Action research in software engineering.
Springer. doi: 10.1007/978-3-030-32610-4

Stevens, P. (2014). Bidirectionally tolerating inconsistency:
Partial transformations. In International Conference on Fun-
damental Approaches to Software Engineering (pp. 32–46).
doi: 10.1007/978-3-642-54804-8_3

Stevens, P. (2020). Maintaining consistency in networks of
models: bidirectional transformations in the large. Software
and Systems Modeling, 19(1), 39–65. doi: 10.1007/s10270-
019-00736-x

Torres, W., Van den Brand, M. G., & Serebrenik, A. (2020). A
systematic literature review of cross-domain model consis-
tency checking by model management tools. Software and
Systems Modeling, 1–20. doi: 10.1007/s10270-020-00834-1

Usman, M., Nadeem, A., Kim, T.-h., & Cho, E.-s. (2008). A
survey of consistency checking techniques for UML models.
In 2008 Advanced Software Engineering and Its Applications
(pp. 57–62). doi: 10.1109/ASEA.2008.40

Vierhauser, M., Grünbacher, P., Heider, W., Holl, G., & Lettner,
D. (2012). Applying a consistency checking framework
for heterogeneous models and artifacts in industrial product
lines. In International Conference on Model Driven Engi-
neering Languages and Systems (MODELS) (pp. 531–545).
doi: 10.1007/978-3-642-33666-9_34

Wieringa, R. J. (2014). Design science methodology for in-
formation systems and software engineering. Springer. doi:
10.1007/978-3-662-43839-8

About the authors

Robbert Jongeling is a PhD student at Mälardalen Univer-
sity, Department of Innovation, Design and Engineering in
Västerås – Sweden. His current research is focused on the
industrial adoption of continuous model-based development
and the consequent challenges of consistency management
across evolving models and other development artifacts. You
can contact the author at robbert.jongeling@mdu.se or visit
https://robbertjongeling.com.

Johan Fredriksson received his doctorate from Mälardalen Uni-
versity in 2008 and is currently a system engineer and software

architecture specialist at Saab AB. You can contact the author
at johan.fredriksson@saabgroup.com.

Jan Carlson is a professor in Computer Science, specializing
in Software Engineering, at Mälardalen University. His current
research focuses on model-based software and systems develop-
ment, addressing areas such as artifact consistency, model-level
timing analysis, and the combination of model-based develop-
ment and continuous integration practices. You can contact the
author at jan.carlson@mdu.se.

Federico Ciccozzi is an associate professor in Computer Sci-
ence at Mälardalen University. His research interests cover
many aspects of automated software and software language en-
gineering, with a focus on model-driven and component-based
software engineering for real-time embedded systems. You can
contact the author at federico.ciccozzi@mdu.se.

Antonio Cicchetti is an associate professor at Mälardalen Uni-
vesity. His research interests target component-based and model-
driven software engineering in industrial settings, including
continuous modelling and related challenges, notably model
versioning, languages and model transformations engineering
and maintenance, and multiview/distributed development. You
can contact the author at antonio.cicchetti@mdu.se.

16 Jongeling et al.

https://doi.org/10.1145/3037755
https://doi.org/10.1145/222124.222136
https://doi.org/10.48550/arXiv.2010.03525
https://doi.org/10.1109/COMPSAC.2014.91
https://doi.org/10.1007/978-3-030-32610-4
https://doi.org/10.1007/978-3-642-54804-8_3
https://doi.org/10.1007/s10270-019-00736-x
https://doi.org/10.1007/s10270-019-00736-x
https://doi.org/10.1007/s10270-020-00834-1
https://doi.org/10.1109/ASEA.2008.40
https://doi.org/10.1007/978-3-642-33666-9_34
https://doi.org/10.1007/978-3-662-43839-8
mailto:robbert.jongeling@mdu.se?subject=Your paper "Structural consistency between a system model and its implementation: a design science study in industry"
https://robbertjongeling.com
mailto:johan.fredriksson@saabgroup.com?subject=Your paper "Structural consistency between a system model and its implementation: a design science study in industry"
mailto:jan.carlson@mdu.se?subject=Your paper "Structural consistency between a system model and its implementation: a design science study in industry"
mailto:federico.ciccozzi@mdu.se?subject=Your paper "Structural consistency between a system model and its implementation: a design science study in industry"
mailto:antonio.cicchetti@mdu.se?subject=Your paper "Structural consistency between a system model and its implementation: a design science study in industry"

