
Constant Execution Time Recording for Replay of Sporadic Real-Time Systems

Joel Huselius and Henrik Thane
Mälardalen Real-Time Research Centre

Mälardalen University, V̈aster̊as, Sweden
joel.huselius@mdh.se

Abstract

Due to intrinsic and non-deterministic interactions,
executions of multi-tasking real-time systems can-
not be reproduced without additional mechanisms –
record/replay is a technique that uses recording of exe-
cutions to facilitate off-line reproduction of executions,
but recording of an execution produces large amounts
of data. In this paper, we present a dynamic algorithm
that can organize the memory during recording so that
the amount of data that needs to be stored is reduced.

1 Introduction

Debugging is a time-consuming and therefore
costly activity [14], but the research interest in this
topic does not stand in proportion to the economical
cost – the field has seen little interest until recently.
It is our thesis that one reason for this high cost is
the lack of useable tools to facilitate debugging; de-
bugging multi-tasking systems in general, and multi-
tasking real-time systems in particular is not made pos-
sible just by the presence of debuggers – more tools are
needed.

The process of debugging a system using an ordi-
nary debugger (e.g.,gdb) is iterative in that it restarts
the system over and over again (with the same input)
to pinpoint the bug. Hence, a requirement for its suc-
cess is a repeatable execution – a requirement that
multi-tasking systems, distributed systems, real-time
systems, etc, cannot fulfill – which is one of the rea-
sons for why new tools are needed.

Deterministic reproduction of an execution through
record/replayhas been presented as plausible means
for to remedy this problem [8, 15]. We have shown

the applicability of record/replay in a recent case-study
[10].

The basic idea is similar to a video recorder used
to tape a television broadcast: After first having in-
sertedprobesinto the system, arecording of an ob-
servedreference executionis performed. The result-
ing log is then used to create areplay executionthat
is intended to be identical to the reference execution.
Non-deterministic choices encountered in the replay
execution are resolved according to the log.

The main drawback of record/replay lies in the fact
that the reference execution must be recorded – the
cost in memory and execution time overhead is poten-
tially considerable – which is one of the reasons why
new research results are needed.

It may be possible to reduce the cost of recording
by letting the replay execution start in the middle of
the reference execution. Previous work has shown
[10, 15] that this can be performed by regularly tak-
ing checkpoints of the system from where the replay
execution can start. These checkpoints can even be
memory excluding[4, 6], meaning that checkpoints are
in-complete – deterministic parts of the data is left out
as it can be derived offline.

However, in sporadic real-time systems (such as
fuel injection control in a combustion engine that has a
periodicity proportional to the engine revolutions [1])
distribution of resources to achieve the “best” replay
may be difficult. The control algorithms realized in
such systems places the additional constraint of known
and constant overhead on the system; the functionality
of the system will be severely degraded if the system
is non-deterministic in the temporal sense. Thus, re-
source distribution algorithms such as that presented
here should have a constant execution time.

1

In this paper, we present a constant execution time
logging algorithm named ECETES (Extended Con-
stant Execution Time Eviction Scheduler) that can
serve to reduce the space required to keep logs. We de-
fine a notion of “best” replay, and present an evaluation
comparing the algorithm with the – in the debugging
context – commonly used [8] FIFO-algorithm (e.g. a
circular queue).

The remainder of this paper is organized as follows:
Section 2 defines a notion of “best” replay. Section 3
presents a system model, related work, and our logging
algorithm ECETES. Following, Section 4 presents the
evaluation of ECETES according to that notion. The
paper is concluded in Section 5.

2 Logging algorithm requirements

In this section, we present a requirement for logging
algorithms that will later be used in our evaluation of
the presented ECETES.

2.1 Industrial debugging of real-time systems

As motivated in the previous section, debugging
real-time systems can be facilitated through the use of
record/replay (a solution similar to a video recorder).
The terminology used is as follows:Probesperform
a recording of a reference executionby monitoring
data and events andlogging that information for post-
mortem analysis. Thelog is then used to create are-
play executionthat is identical to the reference execu-
tion.

In our previous work [10], we have implemented
this for an industrial robot application where we use
checkpointsof task state to allow the replay to start
from a state other then the starting state of the system.
These checkpoints arememory excluding[4, 6], mean-
ing that they are in-complete – deterministic parts of
the data is left out as it can be derived offline. These
checkpoints require us to make use of a special algo-
rithm to initiate replay [4].

2.1.1 Starting replay

The method (presented in a previous publication [4])
stipulates that, for each task in the system that is to be
replayed,potential starting pointsare identified in the

-����
S1

��
�- -����

S2

� �
��

Figure 1. Two potential starting points.

code offline by an expert. During the reference exe-
cution, memory excluding checkpoints (see above) are
taken of the task-state at the potential starting points.

The replay is started by restarting the individual
tasks with the same input as during the reference exe-
cution and replacing the contexts of tasks with a check-
point from the log as they reach their first potential lo-
cal starting points. Thus, that particular starting point
is aused starting point. When all tasks have encoun-
tered used starting points, the replay can continue [4].

Note that this method requires the execution of the
individual task, up until it reaches its used starting
point, to be deterministic [5].

However, depicting the task as a finite state-
machine (FSM), where potential local starting points
are vertices and the possible execution paths between
them are edges, a problem namedmultiple consec-
utive starting pointsis illustrated by the example in
Figure 1: In preparation for the replay, the task will
be restarted and come toS1 from where it should
be induced with a checkpoint (the execution is non-
deterministic past this point as it can either continue in
S1 or leave forS2). But without insurance from the
logging algorithm, it is not guaranteed that a check-
point remains that can describe a task-state valid inS1.
In order to clarify, we provide two examples:

Example 1: Using one fixed-size queue per starting
point would lead to external fragmentation as
some records will be unused because the execu-
tion pattern between states is non-deterministic –
S2 may never be reached, in which case it serves
no purpose to allocate resources to it.

Example 2: Using one global fixed-size queue per
task may lead to that onlyS2 is described – as
the information aboutS2 cannot be used until the
replay execution has been shepherded there from
S1, that would result in a situation where the re-
play cannot be performed.

2

We formulate the following requirement:The log-
ging algorithm must ensure that the reference execu-
tion can reproduce also the most recently monitored
entry.

2.2 Testability of the end-product

Thane and Hansson [12] determines that execution
time jitter, or differences in execution time, is bad for
testability: An instance of a multi-tasking system can
be seen as one sequential program – it is a serializa-
tion (compare to database transactions etc.) of a multi-
tasking system into a single-tasking system. Thus, a
multi-tasking system can be seen as a set of single-
tasking systems of which all members must be tested
– a larger set requires more testing. The size of the
set is increasing with the jitter, wherefore jitter will in-
crease the required testing effort. Thus, the logging
algorithm should not add any jitter to the system. One
way to ensure this is to show that the logging algorithm
has a constant execution time.

Regarding implementations with constant execu-
tion times, Puschner and Burns [7] proposed WCET-
oriented programming to facilitate WCET analysis,
thus making scheduling easier and more efficient. Due
to the effects of hardware, this should be supported by
a platform such as SPEAR [2]. However, the nega-
tive effect of jitter has exponential characteristics [13],
wherefore any reduction will have significant impact.

Thus, the requirement is extended to read:The log-
ging algorithm must, while maintaining testability, en-
sure that the reference execution can reproduce also
the most recently monitored entry.

2.3 Comparison by replay length

As the method to start a replay will treat each task
independently, this will lead to a situation where tasks
may start their replay at different points in the vir-
tual time of the replay execution. However, the re-
play cannot be considered to be correct until all tasks
are started – from there on, bugs can be found. We
name the interval in which all tasks are concurrently
replayed: theshortest interval of replay(SIR).

Theoretically, the SIR must cover the period of time
from the infection of the system (the execution of a
bug) to the failure of the system (when the infection

is observed) [11]. We label this period theincubation
period of the system. In practice however, it is the
amount of memory assigned to house the log, and the
efficiency of its use, that limit the SIR.

2.4 Logging algorithm requirement

Thus, the final requirement reads:
The logging algorithm must, while maintaining

testability, ensure that the reference execution can re-
produce also the most recently monitored entry and
then extend the SIR as far as possible.Hence, we
can use the length of the SIR as a measure of the log-
ging efficiency. Below, we show simulations suggest-
ing that ECETES delivers a better SIR than FIFO in
sporadic real-time systems.

3 Logging algorithms

In this section, we present the technical contribution
of the paper: the logging algorithm.

3.1 System model and terminology

We assume an instrumented, preemptive, spo-
radic, online scheduled, multi-tasking real-time sys-
tem where probes are implemented in software and
are allowed to have their execution protected from
interrupts. Taskscan communicate with each other
and with the environment. Each task emits a single
new instance, a newjob, at a time. The periodicity
(p) of the jobs varies in the interval described by the
task basic deadline (bdl) andsporadicity(sp) such that
p = [bdl, bdl + sp]. A new job of a task cannot be
released prior to the completion of a previous.

It is assumed that execution time jitter (differences
in execution time) has a negative effect on the func-
tionality of the end system (e.g. fuel injection control
in a combustion engine that has a periodicity propor-
tional to the engine revolutions [1]).

The recording effort probescontrol-flowevents (i.e.
context-switches) anddata-flowevents (i.e. communi-
cation and checkpoints of task data-state). Eachevent
observed by a probe results in anentrythat is logged in
memory in one or morerecords. The recording effort
is assigned a memory-space on which both the imple-
mentation of the logging algorithm and the logs are to

3

be kept (thus, smaller implementations will have larger
space to keep logs).

3.2 Related work

Surveying the field of available logging algorithms,
one finds that only a few alternatives are known: As
noted by Stewart Gentleman [8], the commonly used
solution is a First-In-First-Out (FIFO) logging algo-
rithm. There is also a method calledadaptive log-
ging, presented by Zambonelli and Netzer [15], but the
online decision-maker of that method has substantial
jitter-properties. Sultan et al. presented a lazy garbage
collection for distributed systems [9]. As the check-
pointing process does not require a distributed solu-
tion to facilitate replay [4], and the checkpointing and
garbage collection of their proposed method is trans-
parent and unrelated to the application (thus inferring
jitter in to the system), their method is not adaptable to
the situation described here.

3.3 FIFO logging algorithms

Three approaches seem feasible for fixed-size First-
In-First-Out logging algorithms:

Global FIFO (GFIFO, FIFO within the system): all
memory available for logging is used in one sin-
gle FIFO-queue. (May be difficult to implement
as several different entry-sizes must be accommo-
dated.)

Local FIFO (LFIFO, FIFO within tasks): each task
will log entries to dedicated queues, one separate
queue is reserved for entries relevant for all tasks.

Starting point FIFO (SFIFO, FIFO within starting
points), each starting point will log entries to ded-
icated queues, one separate queue is reserved for
entries relevant for all starting points.

3.4 ECETES

Due to the dynamic properties of the underlying
system, there are significant difficulties with using
non-dynamic logging algorithms to solve this prob-
lem. As the distribution of required resources is con-
stantly changing during the operation of the system, a

static assignment will often be found to have an non-
appropriate distribution that wastes limited memory
resources. The difficulty of distributing the resources
so that the distribution is always the best-fit constitutes
the motivation for using dynamic logging algorithms.

The basic functionality of the dynamic logging al-
gorithm ECETES is as follows: Similar to SFIFO, one
queue per starting point is maintained. Logging an
entry of a number of records is preceded by the act
of evicting the same number of records from a single
queue. The output from the eviction process is a chain
of emptied records that are then filled with the new en-
try and inserted to the designated queue.

3.5 The ECETES algorithm

Our algorithm-proposition, ECETES, for the pro-
cess of inserting a new entry ofn records to queueJ
functions as follows:

Let the labelE describe the queue to evict from,
there is a default assignment to the label. One-by-one,
each queue in the system is examined. For each exam-
ined queueI, the following items are respected: prop-
erties ofI, the time stamp of the(n + 1):th record
counted from the back end of queueI, and the time
stamp of the(n + 1):th record counted from the back
end of queueE. If I is found to be a better candi-
date thanE (if the properties ofI allows the eviction,
and if the record examined inI is older than the record
examined inE) the labelE is modified to indicateI,
otherwiseE is modified to indicateE.1 Thereafter,
n records are removed from the back end ofE, filled
with the new entry, and inserted into the front end of
J .

The properties that can be posted to queues are:
temporal spanthat ensures that a queue has coverage
during an interval of time,spatial sizethat ensures the
queue to hold a minimum number of records, andpri-
ority. A queue cannot be forced to evict any entries if
it means violating the properties of the queue.

3.6 Example

With the intent to clarify, we provide an example of
the operation: See Figure 2, where we have a system of

1This assignment is a patch to ensure the constant execution
time.

4

Queue A H A�

6

A6A5-�A4A3-�A2-�A1

Queue B H B�

6

B4� -B3�-B2� -B1

Figure 2. ECETES example.

two ECETES-queues (A andB). Each queue receives
entries to log into records, and has a vector of logged
records associated to it. The further left in the figure
the record is placed, the older the record is. There is a
header for each of the queues (H A andH B), these
contain the properties posted on the queue, and point-
ers to the first and last element in its vector of records.
Also, each record contains some information (i.e. a
time stamp and the identities of the neighbors to the
record).

To store a new entry consisting of two records in
queueA, we must identify a queue from where to evict
two records. This identification is performed by exam-
ining the two queue-headers, and one record from each
queue (A3 andB3). These records are picked as they
are the oldest records that will remain in the respec-
tive queue if two records are evicted from it. Essen-
tially, provided that it will not lead to a violation of the
queue-constraints, the queue to which the oldest of the
two records belong will the subjected to the eviction.
Here,B3 is the oldest, soB will have to surrender its
two oldest records (B1 andB2). The two new records
(A7 andA8) can then be inserted, and the new records
are then linked with their designated queue.

Thus, the ECETES algorithm results in a SIR with
the length of the difference between the timestamps of
B3 andA8.

An LFIFO algorithm in the corresponding situation
would evictA1 andA2 resulting in a SIR no longer
than the difference between the timestamps ofA3 and
A8.

A feasible solution would be to let an algorithm
evict A1 andB1, resulting in a SIR equal to the dif-
ference between the timestamps ofB2 andA8 which
is obviously the longest SIR possible. However, our
efforts to construct an algorithm that would make that
choice, while working efficiently, has failed due to the
constraints on execution time (see Section 2.2).

ecetes() :f
?

S1

?
L1

� �
�

?
S2

?
L2

� �
�

?
S3

?
L3

� �
�

?
S4 f
end

Figure 3. ECETES instruction-flow: S-
segments represents sequential code exe-
cuted once per function call, L-segments rep-
resents sequential code executed as a loop.

3.7 Implementation

Figure 3 describes the assembler instruction-flow of
the implementation, the source code is available in [3],
each loop in the function is performed a fixed number
of times for an entry of a given size. Assuming that an
entry produced by a given probe will produce an entry
of a given size, this is sufficient ensuring a constant
execution time.

4 Evaluation

We have evaluated ECETES with respect to the re-
quirement formulated in Section 2.4, the result of that
evaluation is presented in this section.

Concerning the maintenance of system testability,
as shown in Figure 3, this is accomplished by enforc-
ing a constant execution time. As the program flow
consists of either sequential code or loops with con-
stant iterations, the same instructions will be executed
each function call – assuming that an instruction al-
ways takes the same time to execute, this will lead to
a constant execution time. It is true that the underly-
ing hardware may use heuristics (e.g. branch predic-
tion or caches) that may cause the execution time of

5

Properties Task A Task B

Deadline [time units (tu)] 2000 8000
Execution time [tu] 990 - 999 3960 - 3999
Data-state [bytes] 1100 1100

Table 1. Simulator taskset 1.

Properties Task A Task B Task C

Deadline 2000 4000 8000
Execution time 990 - 999 990 - 999 990 - 999
Data-state 1100 1100 1100

Table 2. Simulator taskset 2.

a given instruction to vary, but there are architectures
that avoid this [2]. Also, as the negative effect of jitter
has exponential characteristics [13], any jitter reduc-
tion (such as that of using ECETES in the place of an
algorithm with jitter) will have significant impact.

Concerning the ability to reproduce also the most
recently monitored entry, this is possible as ECETES
maintains one queue per starting point.

To evaluate the last part of the requirement,
ECETES is compared to LFIFO in a simulator – the in-
tention is to validate the hypothesis that ECETES out-
performs LFIFO in sporadic real-time systems. The
validation is performed by measuring, given a certain
memory budget, which of the methods that will pro-
vide the longest SIR (see Section 2.3).

4.1 Overhead

We can measure overhead in two ways; spatial size
describes the amount of memory consumed by an im-
plementation, temporal overhead describes the execu-
tion time required to execute it. We display the spatial
size measured on the Intel platform, the same platform
used for the simulations.

For the test cases described in tables Table 1, and
Table 2, the overhead of the current ECETES imple-
mentation on an Intel platform is as follows: The tem-
poral overhead is described by Table 3, whereIt de-
scribes the number of times a block of code is executed
for each call to the function, andInst describes the size
in assembler code instructions of each blockLab as
described by Figure 3. Note that the instruction count

of loop L2 does not include the body of the function
memcopy() , which is called from within that loop
(also note that all calls to the functionmemcopy()
has the same size-parameter: the maximum record
size). Regarding the iterations,queuesis a constant de-
scribing the number of queues that are defined in the
monitoring activity,recordsis the number of records
required to log the entry, andmax recordsis a constant
describing the maximum number of records required
to log an entry in the system.

Lab Inst It Lab Inst It

S1 26 1 L1 92 ECETES queues
S2 43 1 L2 36 ECETES records
S3 35 1 L3 34 ECETES max records
S4 7 1

Table 3. Temporal overhead in assembler in-
structions of the Intel implementation (see Ta-
ble 4 for constants and Figure 3 for labels).

Post TS 1 TS 2

ECETES queues 3 pcs. 4 pcs.
ECETES records 72 pcs. 102 pcs.
ECETES max records 3 pcs. 3 pcs.

Assembler code 389 389
Queue headers 96 128
Entry index 36 48
Records 74752 105472
TOTAL ECETES 75273 106037

TOTAL LFIFO 76214 106662

Table 4. Listing of system resources, and re-
sulting spatial size in bytes.

The spatial size of an Intel implementation is de-
scribed by Table 4, whereTSis taskset. In the same ta-
ble, also the corresponding LFIFO overhead is shown.
Note that the test was configured in favor of the LFIFO
logging algorithm; the spatial LFIFO size is strictly
larger than the corresponding ECETES overhead.

6

4.2 The simulator

The simulator used was tailor-made for the eval-
uation, source code is provided with the source of
ECETES [3]. The task model is a fixed-priority sched-
uled sporadic task (priorities are set according to rate-
monotonic) and complies to the system model of this
paper. As the simulator has no notion of multiple
consecutive starting points, LFIFO can be expected to
work properly.

4.3 Simulation setup and configuration

We performed simulations with different tasksets,
two of which will be examined more carefully. The
properties of the two sets that we survey here are dis-
played in Table 1 and Table 2. As described by the
system model, the periodicity of the jobs varies in the
interval described by the task deadline andsporadicity.
Each taskset was subjected to23 suites of simulation
with different values on the sporadicity of the tasks of
the taskset. Each suite was simulated in100, 000 in-
stances.

In the setup for both ECETES and LFIFO, for each
task, a queue was assigned to log the data-flow, and the
monitored checkpoints. One queue was also assigned
to monitor the control-flow of the entire system (i.e.
context-switches).

The LFIFO logging algorithm requires some pa-
rameterization regarding individual queue-lengths,
both for checkpoints and for control-flow entries. Note
however that the size of a control-flow entry is likely
to be much smaller than a data-flow entry [10]. In our
setup, as we use the same entry size for all entries, a
gained control-flow entry for ECETES will therefore
reflect unrealistically in the results; if all entries are of
the same size, a gained control-flow entry for ECETES
can be directly transferred to a data-flow entry, but in a
real system it would probably take several control-flow
entries to do the same. Therefore, in our simulation
setup, we have decided not to consider the memory al-
located for logging the control-flow of the system as
this would unjustly favor ECETES.

Thus, only the count of checkpoints from each task
under an interval must be calculated. This is per-
formed by assuming periodicities according to the
worst-case sporadicity and calculating the number of

jobs under a period equal to the Least Common Multi-
ple (LCM) of these periods.

The length of each instance of simulation was al-
lowed to vary randomly between high numbers (rel-
ative to the amount of memory allocated) so that the
logging algorithm had to prioritize between the entries
logged in every simulation.

4.4 Evaluation criteria

For each simulation performed, the shortest interval
of replay (SIR) was measured based on the log con-
tents from each of the algorithms. The result from a
simulation is the relation between the ECETES and
LFIFO SIR’s; a result of100% describes a tie between
the subjects of the evaluation, a result below100% in-
dicates a win in favor of LFIFO, a result exceeding
100% is a win in favor of ECETES.

4.5 Simulation results

The results of the evaluation are displayed in: Fig-
ure 4 for taskset 1 and Figure 5 for taskset 2. Accord-
ing to Formula 1 below, we display the function ofs,
which is the behavior of ECETES as it relates to the
behavior of LFIFO while the sporadicity varies.

s =
SIR for ECETES

SIR for LFIFO
(1)

With increasing sporadicity, there are23 simulation
suites for each taskset, each of these suites has a col-
umn of five marks representing the four quartiles and
the minimum value ofs from the100, 000 simulations
(Q0, Q1, Q2, Q3, and Q4, from the bottom and up).
For example, the next-to lowest mark in each column
is Q1, the25th percentile. Thus,25% of the100, 000
calculatess’s of that suite are smaller than that mark.
Correspondingly, Q0 is the minimum value measured.

Hence, the graphs should be interpreted so that
when Q2 (the median, the50th percentile) has crossed
the100% barrier, ECETES wins over, or out-performs,
LFIFO in a majority of cases (assuming the current set-
ting). In order to ease comprehension of the figures,
we have marked the Q2 function as a continuos line.

The profile of Q0-values (i.e. the minimum SIR’s
observed) maintains a close-to-constant value in a

7

given taskset-simulation, thus indicating that the num-
ber of simulations performed for each simulation setup
is sufficient to provide a sound result.

The simulation of taskset 1, accounted for in Figure
4, shows that ECETES wins already at low sporadicity
relative to the periodicities of the tasks in the set (Q2
breaks the100%-barrier at a sporadicity between 700
and 800 tu).

As we can see, this result is then further confirmed
by the simulation of taskset 2, the simulation is ac-
counted for in Figure 5: When a third task is added

-

6
percent

100%

sporadicity
1000 tu

p̀p p̀p p̀p p̀p p̀p p̀p p̀p p̀p p̀p p̀p p̀p p̀p p̀p p̀p p̀p p̀p p̀p p̀
p p̀

p p̀
p p̀

p
p̀
p

p̀
p

Figure 4. Taskset 1: ECETES performance in
relation to LFIFO, marks in column represent
quartiles of the test-result (Q0, Q1, Q2, Q3,
Q4).

-

6
percent

100%

sporadicity
1000 tu

p̀p p̀
p

p̀
p p̀

p

Figure 5. Taskset 2: ECETES performance in
relation to LFIFO, marks in column represent
quartiles of the test-result (Q0, Q1, Q2, Q3,
Q4).

to the taskset, the sporadicity of the system execution
is increased, and the ECETES performs even better in
relation to LFIFO.

In order to concretize, we examine a particular sim-
ulation instance: With taskset 2, when the sporadicity
is set to1000 time units (tu), Task A has a periodicity
in the closed interval[2000, 2999] tu, the same closed
interval for Task B is[4000, 4999] tu, and[8000, 8999]
tu for Task C. In this particular simulation run, we
measured that the Q2 SIR of ECETES was39362 tu,
and the same value for LFIFO was37867 tu. Thus, the
gain from using ECETES, in this particular simulation
instance, seems clear.

The results presented here give a clear indication
that ECETES will indeed outperform its competitor al-
ready at small sporadicities, it also seems that this gain
will be increased as the taskset grows.

5 Conclusions

In the context of sporadic real-time systems, we
have:

• shown the need for dynamic structures to orga-
nize memory during recording of executions.

• defined a measure for comparing algorithms used
for this purpose based on the usefulness of their
output. Note that this measure can be used
also when comparing other sub-algorithms (for
checkpointing, for to start replay, etc.) used in
record/replay.

• introduced ECETES, the first dynamic structure
that does not compromise the testability of the
system.

• evaluated ECETES compared to a FIFO algo-
rithm - the conclusion that ECETES distributes
resources better in sporadic systems with limited
memory.

The research presented here has served to connect
many of the various results produced by our research
group during the past four years.

5.1 Future work

Future improvements to ECETES includeunneeded
records: Records that are not part of a consistent

8

checkpoint, or has an older consistent checkpoint in
the queue, can be evicted without SIR-penalty, these
should be considered first by ECETES. Further, the
effectiveness of ECETES is dependent of the relative
sizes of logged entries; if these sizes are multiples of
each other, performance will be better. This issue is
not reflected in the validation performed.

References

[1] K. Åström and B. Wittenmark.Computer-Controlled
Systems, Theory and Design. Prentice-Hall Interna-
tional,2nd edition, 1990. ISBN 0-13-172784-2.

[2] M. Delvai, W. Huber, P. Puschner, and A. Steininger.
Processor support for temporal predictability - the
SPEAR example. InProceedings of the15th Euromi-
cro Conference on Real-Time Systems, pages 169–
176, July 2003.

[3] J. Huselius. Source-code to the ECETES logging
strategy. Technical Report, M̈alardalen University,
Department of Computer Science and Engineering,
August 2003. Available at www.idt.mdh.se/˜jhi.

[4] J. Huselius, D. Sundmark, and H. Thane. Starting
conditions for post-mortem debugging using deter-
ministic replay of real-time systems. InProceedings
of the15th Euromicro Conference on Real-Time Sys-
tems, pages 177–184, July 2003.

[5] R. Milner. Communication and Concurrency. Inter-
national Series in Computer Science. Prentice Hall,
1989.

[6] J. Plank, Y. Chen, K. Li, M. Beck, and G. Kingsley.
Memory exclusion: Optimizing the performance of
checkpointing systems.Software - Practice and Ex-
perience, 29(2):125–142, 1999.

[7] P. Puschner and A. Burns. Writing temporally pre-
dictable code. InProceedings of the Seventh Interna-
tional Workshop on Object-Oriented Real-Time De-
pendable Systems, pages 85–91. IEEE, January 2002.

[8] D. Stewart and M. Gentleman. Non-stop monitor-
ing and debugging on shared-memory multiproces-
sors. InProceedings of the 2nd International Work-
shop on Software Engineering for Parallel and Dis-
tributed Systems, pages 263–269. IEEE Computer So-
ciety, May 1997.

[9] F. Sultan, T. Nguyen, and L. Iftode. Lazy garbage
collection of recovery state for fault-tolerant dis-
tributed shared memory.IEEE Transactions on Paral-
lel and Distributed Systems, 13(10):1085–1098, Oc-
tober 2002.

[10] D. Sundmark, H. Thane, J. Huselius, A. Pettersson,
R. Mellander, I. Reiyer, and M. Kallvi. Replay de-
bugging of complex real-time systems: Experiences

from two industrial case studies. InProceedings of
the5th International Workshop on Automated Debug-
ging, pages 211–222, September 2003.

[11] H. Thane.Monitoring, Testing and Debugging of Dis-
tributed Real-Time Systems. PhD thesis, Kungliga
Tekniska Ḧogskolan, Sweden, May 2000.

[12] H. Thane and H. Hansson. Testing distributed real-
time systems.Journal of Microprocessors and Mi-
crosystems, Elsevier, 24(9):463–478, February 2001.

[13] H. Thane, A. Pettersson, and H. Hansson. Integra-
tion testing of fixed priority scheduled real-time sys-
tems. In IEEE/IEE Real-Time Embedded Systems
Workshop, December 2001.

[14] S. J. Vaughan-Nichols. Building better software
with better tools.Computer, 36(9):12–14, September
2003.

[15] F. Zambonelli and R. Netzer. An efficient logging
algorithm for incremental replay of message-passing
applications. InProceedings of the 13th International
and 10th Symposium on Parallel and Distributed Pro-
cessing, pages 392–398. IEEE, April 1999.

9

