
Aadam: A Fast, Accurate, and Versatile Aging-Aware Cell Library
Delay Model using Feed-Forward Neural Network
Seyed Milad Ebrahimipour1, Behnam Ghavami2, Hamid Mousavi1, Mohsen Raji3

Zhenman Fang2, Lesley Shannon2
1Shahid Bahonar University of Kerman, {miladebrahimi, hamidmousavi0}@eng.uk.ac.ir

2Simon Fraser University, {behnam_ghavami, zhenman, lesley_shannon}@sfu.ca
3Shiraz University, raji@shirazu.ac.ir

ABSTRACT
With the CMOS technology scaling, transistor aging has become
one major issue affecting circuit reliability and lifetime. There are
two major classes of existing studies that model the aging effects
in the circuit delay. One is at transistor-level, which is highly ac-
curate but very slow. The other is at gate-level, which is faster but
less accurate. Moreover, most prior studies only consider a limited
subset or limited value ranges of aging factors.

In this paper, we propose Aadam, a fast, accurate, and versatile
aging-aware delay model for generic cell libraries. In Aadam, we
first use transistor-level SPICE simulations to accurately charac-
terize the delay degradation of each library cell under a versatile
set of aging factors, including both physical parameters (i.e., initial
threshold voltage and transistor width/length ratio) and operat-
ing conditions (i.e., working temperature, signal probability, input
signal slew range, output load capacitance range, and projected
lifetime). For each library cell, we then train a feed-forward neu-
ral network (FFNN) to learn the relation between the input aging
factors and output cell delay degradation. Therefore, for a given
input circuit and a given combination of aging factors, we can use
the trained FFNNs to quickly and accurately infer the delay degra-
dation for each gate in the circuit. Finally, to effectively estimate
the aging-aware lifetime delay of large-scale circuits, we also inte-
grate Aadam into a state-of-the-art static timing analysis tool called
OpenTimer. Experimental results demonstrate that Aadam achieves
fast estimation of the aging-induced delay with high accuracy close
to transistor-level simulation.

KEYWORDS
Aging, Reliability, Delay Model, Machine Learning, Cell Library
ACM Reference Format:
Seyed Milad Ebrahimipour1, Behnam Ghavami2, Hamid Mousavi1,
Mohsen Raji3 and Zhenman Fang2, Lesley Shannon2. 2020. Aadam: A
Fast, Accurate, and Versatile Aging-Aware Cell Library Delay Model using
Feed-Forward Neural Network. In IEEE/ACM International Conference on
Computer-Aided Design (ICCAD ’20), November 2–5, 2020, Virtual Event, USA.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3400302.3415605

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICCAD ’20, November 2–5, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8026-3/20/11. . . $15.00
https://doi.org/10.1145/3400302.3415605

1 INTRODUCTION
With the CMOS technology scaling, the reliability of circuits has
become one of the major issues affecting digital circuit designs [1, 7].
In addition to the correct functionality of the circuit, a longtime
lifespan is also crucial in many application fields such as aerospace,
defense, and medical industries [5, 13]. Transistor aging is a key
source of failure that threatens the lifetime reliability of digital
circuits. It leads to a degradation of the electrical characteristics of
transistors and subsequently, a considerable increase of the device
delay [19]. For example, the Negative Bias Temperature Instability
(NBTI) aging phenomenon, a major parametric reliability issue,
may increase the circuit delay by up to 30% [14]. This impact may
eventually lead to violations of circuit timing constraints, reduction
of mean time to failure, and faster wear-out of the system.

To steer clear of the aging effects and guarantee the correct
functionality of the circuit for the projected lifetime (𝑡), designers
have to include a safety timing margin called timing guard band in
the design [6, 27]. This timing guard band may decrease the circuit
frequency, as shown in Equation 1.

𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
1

𝐷 (𝑡) ; 𝐷 (𝑡) = 𝐷 (0) + 𝐷𝐺𝐵 (𝑡) (1)

where 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 denotes the targeted frequency of the design and
𝐷 (𝑡) represents the lifetime delay. 𝐷 (0) and 𝐷𝐺𝐵 (𝑡) respectively
denote the initial delay of the circuit and the delay of the tim-
ing guard band. To reduce the performance overhead imposed by
𝐷𝐺𝐵 (𝑡), it is essential to accurately estimate the aging-induced
delay degradation of the circuit and apply a minimum 𝐷𝐺𝐵 (𝑡).

However, it is nontrivial to quickly and accurately estimate the
aging-induced delay degradation as there are many factors that
affect the delay degradation. They include both physical parame-
ters (i.e., initial threshold voltage and transistor width/length ratio)
and operating conditions (i.e., working temperature, signal proba-
bility, input signal slew range, output load capacitance range, and
projected lifetime), which will be explained in detail in Section 2.1.2.

As will be detailed in Section 2.2, the prior studies that model
the aging effects in the circuit delay can be divided into the fol-
lowing categories. The first category of work [34] uses full-circuit
transistor-level SPICE simulation to achieve high accuracy, but runs
at very slow speed. The second category of work [2, 28–30, 37, 40]
uses lookup table (LUT) based gate-level models to achieve faster
speed at the expense of lower accuracy. The third category of work
[16, 26] only performs SPICE simulation for a set of critical paths,
but is still slow for large-scale circuits. The last category of work
[20, 25, 38, 39] starts to use traditional machine learning techniques
such as support vector machine (SVM) and non-linear regression

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Seyed Milad Ebrahimipour1 , Behnam Ghavami2 , Hamid Mousavi1 , Mohsen Raji3 and Zhenman Fang2 , Lesley Shannon2

model to predict the delay caused by the NBTI effect at gate-level or
critical path level. In fact, most prior studies only consider a limited
subset of aging factors and/or limited value ranges of aging factors.

To address those issues in prior studies, in this paper, we propose
Aadam, an accurate yet fast aging-aware delay model for generic
cell libraries by considering a versatile set of aging factors that are
summarized in Section 2.1.2. The major idea behind Aadam is to
leverage 1) the high accuracy of transistor-level SPICE simulation
to characterize the delay degradation of library cells only; 2) the
learning power of feed-forward neural networks (FFNN) [18] to
accurately and quickly predict the aging-induced delay at gate-
level under the versatile combinations of aging effects; and 3) the
fast aging-aware static timing analysis (STA) of large-scale circuits
using the state-of-the-art STA tool called OpenTimer [21].

Aadam provides a fully automated framework for aging-aware
STA of large-scale circuits. In Aadam, we first characterize the
delay degradation of each library cell under a versatile set of aging
factors as mentioned earlier, using the accurate transistor-level
SPICE simulations. Based on these characterized data, we train an
FFNN to learn the relation between the input aging factors and
output delay degradation for each library cell. As a result, these
trained FFNNs can quickly and accurately predict the aging-induced
delay at gate-level. Finally, we integrate these trained FFNN models
to a state-of-the-art STA tool called OpenTimer [21] to effectively
estimate the aging-aware lifetime delay of large-scale circuits. We
plan to release our Aadam toolflow to the public in the near future.

In our experiments, we use the open-source Nangate 45nm
generic cell library [31], and a few circuits from the ISCAS’85 [10],
ISCAS’89 [9], ITC’99 [12], and OpenTimer [21] benchmark suites.
Compared to the accurate transistor-level SPICE simulation [35, 36],
Aadam achieves almost identical accuracy for predicting the lifetime
delay of a gate while achieving four orders-of-magnitude speedup.
Compared to the prior LUT-based model [2] and SVM-based model
[38, 39] that predict the lifetime delay at gate-level, Aadam achieves
better accuracy and can accurately predict for input aging factor
combinations that are not captured in these models. Compared to
the prior critical path based model [20] that performs aging-aware
STA at circuit-level, Aadam also achieves better accuracy in predict-
ing the circuit lifetime delay. In addition, Aadam can consistently
provide high prediction accuracy when there are perturbations to
the circuit, while the prediction accuracy of the critical path based
model [20] significantly decreases after the circuit perturbation.
Finally, for large-scale circuits with 138.9K to 255.3K gates, our
aging-aware delay estimation with Aadam only adds around 5 to
12 seconds extra runtime overhead, which can be well tolerated.

2 RELATEDWORK AND OUR NOVELTY
2.1 Aging Effects and Factors
2.1.1 Transistor-Level. The transistor aging phenomenon occurs
due to the formation of interface traps (breaking of 𝑆𝑖 −𝐻 bonds at
the 𝑆𝑖 − 𝑆𝑖𝑂2 interface) and oxide traps (capturing of charges in the
oxide vacancies within the dielectric). First, during the operation of
the transistor, the horizontal electric field over the gate dielectric
increases the kinetic energy of the carriers. This results in charge
build-up near the transistor drain, leading to defect formation in the
drain. These interface traps interact with the charge carriers inside

the channel and degrades the transistor’s mobility (𝜇). Second,
because of the non-epitaxial structure of 𝑆𝑖𝑂2, the vertical electric
field leads to defect generation in the interface of the transistor
and the formation of defects inside the 𝑆𝑖𝑂2. These defects cause
accumulated charges around and within the gate dielectric, which
ultimately increases the threshold voltage (𝑉𝑡ℎ) of the transistor.

For a projected lifetime (𝑡), the delay of a transistor (𝐷 (𝑡)) is
inversely proportional to its drain current (𝐼𝐷 (𝑡)), and 𝐼𝐷 (𝑡) is a
function of the transistor’s mobility (𝜇 (𝑡)) and threshold voltage
(𝑉𝑡ℎ (𝑡)), as shown in Equation 2 (where 𝑉𝑑𝑑 denotes the supply
voltage). As a result, with 𝜇 (𝑡) decreasing and 𝑉𝑡ℎ (𝑡) increasing
during the operation of the transistor, 𝐼𝐷 (𝑡) decreases and the
transistor delay (𝐷 (𝑡)) increases.

𝐷 (𝑡) ∝ 1
𝐼𝐷 (𝑡) ; 𝐼𝐷 (𝑡) ≈ 𝜇 (𝑡)

2 (𝑉𝑑𝑑 − 𝑉𝑡ℎ (𝑡))2 (2)

2.1.2 Gate-Level. Each gate in the circuit is exposed to different
operating conditions that can lead to different aging-induced delay
degradations over the projected lifetime (t).
1. The working temperature (T) has a great impact on the trap

generation of transistors in a gate. As 𝑇 increases, the rate of
interface and oxide trap generation increases [3, 4], i.e., 𝑉𝑡ℎ (𝑡)
increases faster and 𝜇 (𝑡) decreases faster. This includes both
Positive Bias Temperature Instability (PBTI) effect in NMOS
transistors and Negative Bias Temperature Instability (NBTI)
effect in PMOS transistors.

2. The signal probability (𝜆) also has a great impact on the trap
generation. The higher the signal probability of the inputs of a
gate, the greater the operation cycle (duty cycle) of its transistors.
As a result, more interface traps and oxide trapswill be generated
inside the transistors of the gate, i.e., the aging rate of the gate
will increase.

3. The input signal slew range ([𝑆𝑚𝑖𝑛, 𝑆𝑚𝑎𝑥]) and output load ca-
pacitance range ([𝐶𝑚𝑖𝑛, 𝐶𝑚𝑎𝑥]) of a gate can lead to different
interface trap generations and different values for 𝑉𝑡ℎ (𝑡) and
𝜇 (𝑡) of each transistor in a gate [24].

4. Physical parameters, such as initial threshold voltage (𝑉𝑡ℎ (0))
and transistors’ width/length ratio (𝑊 /𝐿 𝑟𝑎𝑡𝑖𝑜), also affect the
aging-induced gate delay.

2.1.3 Circuit-Level. Stemming from the transistor-level, aging can
lead to timing violations at the circuit-level. Since each gate of the
circuit is operated under a different combination of the above fac-
tors, the aging-induced delay degradation of each gate is different.
As a consequence, a critical path of the circuit might become non-
critical and vice versa over the projected lifetime. Since the lifetime
delay of each circuit path is changing due to the aging effects, eval-
uating aging impacts on the circuit lifetime cannot be determined
by only analyzing the critical paths of the circuit. Instead, all of the
paths that may violate the timing constraints of the circuit should
be jointly considered.

2.2 Aging-Aware Delay Modeling
Although there are a lot of studies that try to model the 𝑉𝑡ℎ degra-
dation due to aging effects, there are only a few studies that aim to
compute the aging-induced gate and/or circuit delay degradation,
which can be classified as the following categories.

Aadam: A Fast, Accurate, and Versatile Aging-Aware Cell Library Delay Model using Feed-Forward Neural Network ICCAD ’20, November 2–5, 2020, Virtual Event, USA

2.2.1 Full-Circuit Transistor-Level Modeling. An aging-aware
transistor-level timing analysis method is introduced in [34]. First,
the initial circuit without aging effect is simulated under different
operating conditions of each transistor. Then, using the collected
information, the 𝑉𝑡ℎ shift due to aging is computed for every tran-
sistor in the entire circuit. Finally, the lifetime 𝑉𝑡ℎ is applied to
each transistor and the circuit delay for the projected lifetime is
calculated. Despite the high accuracy, this method is very slow due
to transistor-level simulation, which makes it infeasible to be used
for large-scale industrial circuits.

2.2.2 LUT-based Gate-Level Modeling. To compensate for the run-
time overhead of transistor-level simulations, some studies use gate-
level simulation models at the expense of lower accuracy. In [30, 37,
40], a Look-Up Table (LUT) based gate delay model is introduced
to correlate the NBTI-induced 𝑉𝑡ℎ shift of PMOS transistors to
the corresponding gate delay degradation. However, it considers
neither the PBTI effect in NMOS transistors nor the slope of rising
and falling signals of a gate. Kiamehr et. al. [28] propose to use an
aging-aware standard cell library. They extend the cell library and
provide multiple copies of each library cell considering different
input signal probabilities. Then, according to the expected input
signal probability of each gate, technology-mapping is done and
a robust cell from the extended cell library is used to replace the
initial gate. However, they only consider the input signal probability.
In [2, 29], an accurate LUT based method is introduced to estimate
both NBTI-induced and PBTI-induced delay degradations of each
gate. However, all these methods are limited to model the operating
conditions under which the LUT is built.

2.2.3 Critical-Path Transistor-Level Modeling. With an eye toward
analyzing the effects of aging on complex designs such as proces-
sors, Karimi et.al. [26] consider the effects of aging on the critical
path only (using the SPICE simulation). However, since the aging
effects may change the critical paths into non-critical ones and
vice versa, only considering the critical path of the circuit is not
sufficient. Another method in [16] considers the effects of the top
20% critical paths. However, this method is infeasible to analyze
the aging effects on very large-scale integrated circuits used in the
industry. For example, as shown in [14], the b19 benchmark circuit
[12] has more than 108 paths, and considering the paths with only
5% relative slack time may lead to more than 107 paths, which are
intractable for analyzing.

2.2.4 Machine Learning based Modeling. Recently, applying ma-
chine learning techniques in EDA (Electronic Design Automation)
tools has gained increasing attention [22, 23, 32], and machine
learning based aging estimation for the circuit is not an exception
[20, 25, 38, 39]. In [38, 39], a two-stage workload-dependent NBTI
model has been introduced. First, a method is proposed to find
a set of representative flip flops that are important to be tracked
with regard to the aging effects. And then, they calculate the aging-
induced delay degradation of these flip flops by sensing their actual
signal probabilities at runtime. They use a Support Vector Machine
(SVM) model to map the signal probabilities of these flip flops to
the delay degradation of the circuit. However, they assume other
parameters such as supply voltage and temperature as constants
and only consider the signal probability.

In [25], a non-linear regression model has been introduced to
estimate the delay degradation of a circuit due to NBTI effects.
This method exploits the critical path set, which consists of the
critical path and near-critical paths with delays higher than 80% of
the critical path delay. Then, using a non-linear regression model,
various NBTI operating conditions are mapped to the delays of the
critical path set. An extension of this model is presented in [20] to
estimate the lifetime delay of the circuit considering time variant
operating conditions. As stated before, due to the large number of
paths to be considered, both of these methods are impracticable to
analyze the aging effects of the large-scale industrial circuits.

2.2.5 Summary. In summary, prior studies for aging-aware delay
modeling usually suffer from at least one of the following issues:
low speed, low accuracy, or limited consideration of aging factors.

2.3 Our Novelty
In this paper, we propose a feed-forward neural network (FFNN)
based method to model the aging-induced delay degradation, which
1) considers a versatile set of aging factors as summarized in Sec-
tion 2.1.2, 2) achieves high accuracy that is close to transistor-level
modeling, and 3) achieves high speed that is close to the gate-level
modeling. Moreover, once our FFNN models (one model per library
cell) are trained for a cell library at a specific process technology,
they can be used to estimate the lifetime delay of any circuit under
different aging effects without the need of retraining. Finally, we
achieve fast aging-aware static timing analysis (STA) for large-scale
circuits by integrating our model with a state-of-the-art STA tool
called OpenTimer [21].

3 DESIGN OF AADAM
The overall design of our Aadam framework is shown in Figure 1,
which consists of three major phases. First, we use transistor-level
SPICE simulation to accurately characterize the delay degradation
of each cell from a generic cell library, under a versatile set of aging
factors summarized in Section 2.1.2. Second, using the characterized
aging-aware cell delay dataset, we train a feed-forward neural
network (FFNN) for each cell in a generic cell library 1 to learn
the relation between its input aging factors and output cell delay
degradation. Using the trained FFNN models, we can infer the
circuit delay degradation caused by a versatile set of aging effects
with high accuracy and fast runtime, without the need of model
retraining. Finally, to effectively estimate the lifetime delay of a
large-scale circuit under specified aging effects, we implement an
aging-aware Static Timing Analysis (STA) toolflow by extending a
state-of-the-art STA tool called OpenTimer [21] with our trained
FFNN models.

3.1 SPICE Characterization of Cell Library
The left part of Figure 1 presents our proposed flow to characterize
the aging-induced delay for each library cell using accurate SPICE
simulation. First, we characterize the threshold voltage (𝑉𝑡ℎ) degra-
dation of a transistor in the technology library using SPICE sim-
ulation. Here we consider the transistor characteristics, including

1A typical generic cell library has around 100 cells, which is much smaller than the
number of gates in a typical industrial circuit.

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Seyed Milad Ebrahimipour1 , Behnam Ghavami2 , Hamid Mousavi1 , Mohsen Raji3 and Zhenman Fang2 , Lesley Shannon2

Test Accuracy of
Model

Enough
Accuracy

SPICE
Simulation

Degraded
Transistor Model

Aging-aware Cell
Delay Dataset

Technology Library

SPICE
Simulation

e.g. T, λ, Vth(0), W/L, t

NO YES

Cell Library Characterization FFNN Model Training

e.g. [Cmax,Cmin],
[Smin,Smax]

Cell Operating
Conditions

e.g. [Cmax,Cmin],
[Smin,Smax]

Cell Operating
Conditions

Test Data Training Data

`

Transistor
Characteristics

`̀
`̀

`̀

`
`

`

Activity
Estimator

Signal
Probability and
Activity Factor

of each Cell

Parasitic
Information
Extraction

Parasitic Information of
each Cell (SPEF File)

 Static Tim
ing

Analysis (STA)

Aging-Aware Static Timing Analysis

Gate-Level Netlist
of the Circuit

Circuit Timing Reports
Training Process

Cell
Library

Cell
Library

Figure 1: Overview of our aging-aware Static Timing Analysis (STA) framework

the temperature (𝑇), signal probability (𝜆), initial threshold voltage
(𝑉𝑡ℎ (0)), transistor sizes (𝑊 /𝐿 𝑟𝑎𝑡𝑖𝑜𝑠), and projected lifetime (𝑡)
of the transistor. For each combination of these aging factors, a
degraded transistor model is created using the SPICE simulation
results, including both NMOS and PMOS transistors. Second, for
each cell from the cell library, we perform another round of SPICE
simulation to calculate the lifetime delay and the slope of the cell.
Here we consider the the degraded transistor models for the cell
and other cell characteristics, including the input signal slew range
([𝑆𝑚𝑖𝑛, 𝑆𝑚𝑎𝑥]) and output load capacitance range ([𝐶𝑚𝑖𝑛, 𝐶𝑚𝑎𝑥]).
Finally, we get an accurate aging-induced delay degradation for
each library cell under different combinations of the aging factors.

3.2 FFNN Model for Cell-Level Aging Delay
Influencing the aging-induced delay degradation of a cell from
a given combination of its operating conditions and physical pa-
rameters (as summarized in Section 2.1.2) can be considered as a
regression problem. Therefore, we propose to solve this problem
using a feed-forward fully-connected neural network (FFNN) [18].

Figure 2 presents the architecture of our proposed FFNN. The
input layer corresponds to the input operating conditions and phys-
ical parameters of a gate. The input feature vector 𝑋 that feed to
the input layer can be defined as:

𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑑]
= [𝑇, 𝜆, 𝑆𝑚𝑖𝑛, 𝑆𝑚𝑎𝑥 ,𝐶𝑚𝑖𝑛,𝐶𝑚𝑎𝑥 ,𝑊 /𝐿,𝑉𝑡ℎ (0), 𝑡]

(3)

The output layer just has one neuron that corresponds to the es-
timated aging-induced delay degradation of a cell, i.e., 𝐷 (𝑡) = 𝑌 .
We use three hidden layers in our FFNN and each hidden layers
consists of 256 neurons. The relation between the output 𝑌 and
input feature vector 𝑋 can be expressed as:

𝑌 =𝑊4 ·
(
𝑓 (3)

(
𝑊3·

(
𝑓 (2)

(
𝑊2·𝑓 (1) (𝑊1·𝑋+𝑏1) + 𝑏2

))
+ 𝑏3

))
(4)

b1 b2 b3Input

Output
x1

xp

xd

Y

Figure 2: Architecture of our Feed-Forward Neural Network.
The input corresponds to the input operating conditions and
physical parameters of a cell, and the output corresponds to
the estimated aging-induced delay degradation of the cell.

where𝑊1,𝑊2,𝑊3, and𝑊4 are the weights matrices of each layer,
𝑏1, 𝑏2, and 𝑏3 are the bias vectors of each hidden layer, which need
to be trained for the FFNN. 𝑓 (1) , 𝑓 (2) , and 𝑓 (3) are three nonlinear
functions; in this paper, we use the ReLU (Rectified Linear Units)
nonlinear activation functions.

For each cell in the cell library, we will train one such FFNN
model to learn the relation between the input operating conditions
and physical parameters of the cell and the output delay degradation
of the cell. Then for each gate in the circuit, we can use our trained
FFNN models to inference its aging-induced delay degradation. To
train each FFNN model using the aging-aware cell delay dataset
from Section 3.1, we take the following steps:
1. Normalization of input feature vector 𝑋 . As described in Equa-

tion 3, each feature 𝑥𝑖 in our input feature vector 𝑋 is on a
different scale. For example, the temperature 𝑇 ranges from
20◦𝐶 to 120◦𝐶 , while the signal probability 𝜆 ranges from 0 to 1.
Such different scaling of the features makes the FFNN training
more difficult and it would make the trained model more depen-
dent on the choice of units used in the input features. To address
this issue, we normalize our input features from the training

Aadam: A Fast, Accurate, and Versatile Aging-Aware Cell Library Delay Model using Feed-Forward Neural Network ICCAD ’20, November 2–5, 2020, Virtual Event, USA

data set using the normalization technique [33], i.e.,

∀ 𝑋 ∈ 𝑖𝑛𝑝𝑢𝑡𝑆𝑒𝑡 : 𝑥 ′𝑖=
𝑥𝑖− 𝜇𝑋

𝜎𝑋
(5)

where 𝑥 ′
𝑖
denotes the normalized value of the 𝑖th feature in input

feature vector 𝑋 . 𝜇𝑋 and 𝜎𝑋 respectively represent the mean
and standard deviation of the input feature vector 𝑋 .

2. Initialization of weight matrices and bias vectors. We set the
weight matrices (𝑊1,𝑊2,𝑊3, and𝑊4) according to Xavier ini-
tialization [15], and initialize the bias vectors (𝑏1, 𝑏2, and 𝑏3) of
the hidden layers to zero.

3. Fine tuning using back propagation. Finally, we fine tune the
weight matrices and bias vectors, so that the predicted delay
degradation 𝑌 from our FNN model approaches to the actual
characterized delay degradation 𝑌 from Section 3.1. To calculate
the difference between 𝑌 and 𝑌 , we use Mean Squared Error
(MSE) for 𝑁 sample training datasets, i.e.,:

𝑀𝑆𝐸 =
1
𝑁

𝑁∑
𝑖=1

𝑌𝑖−𝑌𝑖2 (6)

To minimize the MSE, we use standard back propagation with
the gradient descent algorithm [8].

3.3 Aging-Aware Static Timing Analysis
Timing analysis is the process of determining the circuit delay and
analyzing its timing issues. There are two major approaches for tim-
ing analysis of a circuit at logic-level: timing simulation and Static
Timing Analysis (STA). Timing simulation is done by exercising the
circuit using a set of input vectors and gates’ parameters [11]. The
comprehensiveness of this method depends on the number of input
vectors and gates’ parameters used for simulation. As a result, it
is almost infeasible to do a complete verification of all timing con-
straints of modern industrial circuits which may have more than
100 million gates. In contrast, STA is carried out statistically which
makes it independent of the number of input vectors and gates’
parameters [11, 21]. By analyzing the entire circuit once, it provides
a simpler and faster way to analyze the timing of the circuit.

A standard STA tool [11, 21] requires the following inputs from
a circuit: 1) the gate-level circuit netlist, 2) the parasitic information
contained in the Standard Parasitic Exchange Format file (SPEF
file), and 3) the timing table of the cells. Logic level STA utilizes the
timing data obtained from annotations in standard delay format,
and establishes look-up tables of gate delays to quickly retrieve a
constant propagation delay. In these tools, the delay of the circuit
is a function of the input slew range and output load capacitance
(for a specific temperature).

Incorporating aging-aware analysis into a standard STA tool
makes the complexity of the timing description for the cells grow
quickly, due to a versatile set of aging factors that affect the delay
degradation as summarized in Section 2.1.2. Therefore, we modify
the standard STA toolflow to integrate our trained FFNN models
for fast aging-induced delay inference. The revised aging-aware
STA flow is shown in the right part of Figure 1, with the follow-
ing two major changes. First, the gate-level netlist of the circuit is
fed to a logic simulator to compute the signal probability (𝜆) pro-
files according to the running workload. This provides the signal
probability (𝜆) of each transistor inside each gate, which affects

the aging-induced delay degradation. Second, the trained FFNN
models for each library cell are used inside the STA tool to infer the
aging-induced delay of the circuit at the projected lifetime (𝑡). Note
that all other aging factors are already available in the standard
STA tool and do not need a separate extraction.

While our aging-aware STA toolflow is generic for any standard
STA tools, for illustration purpose, we have used a state-of-the-art
STA tool called OpenTimer [21] for the integration. The original
OpenTimer is unaware of aging effects but uses a block-based
approach for fast STA. As a result, our aging-aware STA flow based
on OpenTimer can avoid the slow speed issue of prior critical-path
based approaches summarized in Section 2.2.3 and 2.2.4, and achieve
fast static timing analysis for large-scale industrial circuits (results
in Section 4.5).

4 EXPERIMENTAL RESULTS
4.1 Experimental Setup
We use Google’s Tensorflow [17] machine learning framework
to build our proposed FFNN for aging-aware delay modeling. As
described in Section 3.2, our FFNN has three hidden layers, each of
which has 256 neurons. It is implemented in Python and runs on
a desktop machine with an Intel Core i7 (2.5 GHz) processor and
8GB of DRAM. To get the training and testing datasets, we use the
following setup.

At the transistor-level, we use the 45nm predictive technology
model [41] for both NMOS and PMOS transistors. The HSPICE
MOSFET Model Reliability Analysis (MOSRA) [35, 36] has been
used under different working temperatures (𝑇), signal probabili-
ties (𝜆), initial threshold voltage (𝑉𝑡ℎ (0)) values, transistor𝑊 /𝐿
ratios, and projected lifetime (𝑡). The ranges for the variables are:
𝑇 : [20:120]◦𝐶 , 𝜆: [0:1], 𝑉𝑡ℎ (0): [-0.5:-0.1] V for PMOS transistors
and [0.1:0.5] V for NMOS transistors, and 𝑡 : [0:10] years. We also
consider 6 different𝑊 /𝐿 ratios: 1X (minimum sized), 2X, 4X, 8X,
16X, 32X (maximum sized).

At the gate-level, we use the open-source Nangate 45nm generic
cell library [31] and its SPICE netlists to get realistic netlists of
different combinations of cells (gates). Parasitic information is in-
cluded based on the layout at the 45nm technology node. The 𝑆𝑚𝑖𝑛

and 𝑆𝑚𝑎𝑥 are set to 5ps and 950ps, respectively. The𝐶𝑚𝑖𝑛 and𝐶𝑚𝑎𝑥

are set to 0.25fF and 25fF, respectively. The supply voltage (𝑉𝑑𝑑) is
set to 1.1V and the HSPICE tool is used to measure gate delays.

The dataset used for each library cell can be denoted as
𝑑𝑎𝑡𝑎𝑃𝑎𝑖𝑟 =

[
𝑋 𝑖 , 𝑌 𝑖

]
, where i denotes the sample index in the

dataset, 𝑋 𝑖 denotes the input feature vector defined in Equation 3,
and 𝑌 𝑖 denotes the corresponding lifetime delay calculated by
HSPICE simulation (i.e., the ground true label for our FFNN). For
each library cell, we first randomly shuffle all its datasets and then
split them into two disjoint sets: the training set and the validation
set. In this paper, we use 1000 samples for the training dataset. For
the results presented in Section 4.2 and 4.3, we use 600 samples for
the validation set.

4.2 Validation for Our Cell Delay Model
We verify the accuracy of our proposed model by comparing the
predicted delay of a gate with the true delay obtained from SPICE

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Seyed Milad Ebrahimipour1 , Behnam Ghavami2 , Hamid Mousavi1 , Mohsen Raji3 and Zhenman Fang2 , Lesley Shannon2

0 10 20 30 40 50 60 70 80
True Delay Val es (x10−11 s)

0

10

20

30

40

50

60

70

Pr
ed
ict
ed
 D
el
ay
 V
al
 e
s (

x1
0−

11
 s)

SPICE_Res lts O r_Res lts

(a) NAND

0 25 50 75 100 125 150 175 200
True Delay Values (x10−11 s)

0

25

50

75

100

125

150

175

Pr
ed

ict
ed

 D
el
ay

 V
al
ue

s (
x1

0−
11
 s)

SPICE_Results Our_Results

(b) NOR

0 5 10 15 20 25 30 35 40
True Delay Values (x10−11 s)

0

5

10

15

20

25

30

35

Pr
ed

ict
ed

 D
el
ay

 V
al
ue

s (
x1

0−
11
 s)

SPICE_Results Our_Results

(c) NOT

0 50 100 150 200 250 300
True Delay Values (x10−11 s)

0

50

100

150

200

250

Pr
ed

ict
ed

 D
el
ay

 V
al
ue

s (
x1

0−
11
 s)

SPICE_Results Our_Results

(d) XNOR

Figure 3: Accuracy comparison of our predicted gate delay to the true delay of SPICE simulation

Table 1: Runtime comparison of our model compared to
HSPICE MOSRA for NOT, NAND, NOR, and XNOR gates

Gate Our Model SPICE Simulation
NAND 7.14 ×10−4s 7.05s
NOR 7.61 ×10−4s 7.31s
NOT 7.55 ×10−4s 5.70s
XNOR 7.74 ×10−4s 13.97s
Average 7.51 ×10−4s 8.48s

simulation. We use 600 samples for the validation. Figure 3 illus-
trates the scatter plots of our FFNN prediction results for NAND,
NOR, NOT, and XNOR gates. The x-axis and red line show the true
delay values from the SPICE results. The y-axis and blue scatter dots
show the predicted delay value from our FFNN model. The closer
the blue scatter dots is to the red line (i.e., the 𝑦 = 𝑥 line), the more
accurate our predicted results are. As shown in Figure 3, our FFNN
models are very accurate, with predicted delay values at gate-level
almost identical to the simulated delay values at transistor-level.

Moreover, as shown in Table 1, on average, our FFNN model
prediction is about 104x faster than the transistor-level SPICE sim-
ulation. The runtime of the training phase of the proposed method
for each cell is less than 3,500s.

4.3 Comparison to LUT- & SVM-based Models
To demonstrate the effectiveness of our proposed model, we also
implement the LUT-based (LookUp Table) model [2] as discussed
in Section 2.2.2 and an extension of the SVM-based (Support Vector
Machine) model discussed in Section 2.2.4, and compare our model
to them. For the SVM-based model, we first extended the model
to capture the versatile aging factors discussed earlier, and then
trained the SVM model using the same 1000-samples training set.
Finally, we applied the trained SVM model to the same 600-samples
validation set for inference. For the LUT-based model, creating a
comprehensive LUT for all combinations of the aging factor values
is very time consuming, since it is based on the SPICE simulation
which is very slow. For a fair comparison, we use the same 1000-
samples training set to build the LUT. For each input aging factor
vector in the same 600-samples test set, we first search the LUT
to find the exact matching entry. If it is not found in the LUT, we
find the entries that have the closest aging factor combination to

Table 2: Model accuracy comparison for primitive gates us-
ing RMSPE: the lower, the more accurate

Gate Our Model LUT Model [2] SVM Model [38, 39]
NOT 0.34 3.78 1.11
NAND 0.31 4.10 1.08
NOR 0.25 3.63 1.37
AND 0.29 3.96 0.87
OR 0.26 3.81 1.07
XOR 0.18 4.95 1.12
XNOR 0.27 3.56 0.93

the input one, and then use the interpolation value of those delay
values of nearby entries as the final delay value.

To compare the prediction accuracy of these models, we calculate
the Root Mean Squared Percentage Error (RMSPE) between the
predicted delay values (𝑌𝑖) and true delay values (𝑌𝑖) from the
SPICE simulation. RMSPE is a robust indicator of the accuracy
for predicted delay values [20] and can be computed as:

𝑅𝑀𝑆𝑃𝐸 =

√√√
1
𝑁

𝑁∑
𝑖=1

𝑌𝑖−𝑌𝑖𝑌𝑖

2 × 100 (7)

where 𝑁 denotes the number of test samples, and 𝑖 denotes the 𝑖th
sample. The lower RMSPE is, the more accurate the model is.

Table 2 compares the obtained RMSPE results of the three mod-
els for a set of primitive gates. Compared to the LUT-based model
and SVM-based model, our model achieves lower prediction errors.
The LUT-based model achieves the worst accuracy since it cannot
accurately predict for the input feature vectors that fall outside
the pre-built LUT entries. Our FFNN based model achieves better
accuracy than the SVM-based model because the FFNN learns more
adaptive bias functions than the SVM. To cast more light on the
prediction accuracy of these models, we also include a scatter plot
for the AND gate in Figure 4. It shows that our predicted delay val-
ues are much closer to the true delay value from SPICE simulation,
compared to the LUT-based model and SVM-based model.

Finally, we also compare the average speed of the three models
in Table 3. Although our model is about 2.2x and 3x slower than
the LUT-based model and SVM-based model, their execution times
are on the same 10−4𝑠 order.

Aadam: A Fast, Accurate, and Versatile Aging-Aware Cell Library Delay Model using Feed-Forward Neural Network ICCAD ’20, November 2–5, 2020, Virtual Event, USA

0 20 40 60 80 100 120 140 160
True Delay Values (x10−11 s)

0

20

40

60

80

100

120

140

Pr
ed

ict
ed

 D
el
ay

 V
al
ue

s (
x1

0−
11
 s)

SPICE_Results Our_Results

(a) Our Model

0 20 40 60 80 100 120 140
True Delay Values (x10−11 s)

0

20

40

60

80

100

120

Pr
ed

ict
ed

 D
el
ay

 V
al
ue

s (
x1

0−
11
 s)

SPICE_Results SVM_Results

(b) LUT Model

0 20 40 60 80 100 120 140
True Delay Values (x10−11 s)

0

20

40

60

80

100

120

Pr
ed

ict
ed

 D
el
ay

 V
al
ue

s (
x1

0−
11
 s)

SPICE_Results SVM_Results

(c) SVM Model

Figure 4: Model prediction accuracy comparison for AND Gate: a) Our Model, b) LUT Model and c) SVM Model

Table 3: Model runtime comparison for primitive gates

Gate Our Model LUT Model [2] SVM Model [38, 39]
NOT 7.55 ×10−4s 3.12 ×10−4s 2.62 ×10−4s
NAND 7.14 ×10−4s 3.85 ×10−4s 2.67 ×10−4s
NOR 7.61 ×10−4s 3.53 ×10−4s 2.37 ×10−4s
AND 7.32 ×10−4s 3.41 ×10−4s 2.32 ×10−4s
OR 7.78 ×10−4s 3.42 ×10−4s 2.68 ×10−4s
XOR 7.13 ×10−4s 3.26 ×10−4s 2.19 ×10−4s
XNOR 7.74 ×10−4s 3.08 ×10−4s 2.57 ×10−4s
Average 7.50 ×10−4s 3.34 ×10−4s 2.50 ×10−4s

4.4 Accuracy for Circuit-Level STA
4.4.1 Overall Circuit Lifetime Delay Prediction. To evaluate the ef-
fectiveness of our proposed model for predicting the lifetime delay
of a circuit, we calculate its cumulative RMSPE that includes the ac-
cumulation and propagation of all errors for estimating the delay of
each individual gate throughout the circuit. The cumulative RMSPE
is calculated by comparing our predicted circuit lifetime delay with
the true circuit lifetime delay from SPICE simulation using Equa-
tion 7. Since the SPICE simulation is very time consuming, we only
demonstrate the prediction accuracy for a few small circuits from
ISCAS’85 [10], ISCAS’89 [9], and ITC’99 [12] benchmark suites.

We also compare our proposed model to the critical path based
approach [20] that uses a non-linear regression model for the life-
time delay prediction, which is discussed in Section 2.2.3 and 2.2.4.
For the path-based model [20], to compute the circuit lifetime delay
in a tractable manner, we first extract the top 20% critical paths of
each circuit. Then we randomly select 1000 sample paths from these
critical paths and run SPICE simulations to calculate each path’s
true lifetime delay. We train the the non-linear regression model
used in [20] using the 1000 samples. Finally, we use the trained
model to predict the lifetime delay of each path (𝐷𝑒𝑙𝑎𝑦𝑃𝑎𝑡ℎ) in the
top 20% critical paths. We compute the lifetime delay of the circuit
(𝐷𝑒𝑙𝑎𝑦𝐶𝑖𝑟𝑐𝑢𝑖𝑡) as the maximum delay of all these paths:

𝐷𝑒𝑙𝑎𝑦𝐶𝑖𝑟𝑐𝑢𝑖𝑡 = max
1≤𝑖≤ |𝑃𝑎𝑡ℎ𝑠 |

{
𝐷𝑒𝑙𝑎𝑦𝑃𝑎𝑡ℎ (𝑖)

}
(8)

Note that our model is built on top of the block-based STA tool
OpenTimer [21], so we avoid the issue of calculating for a large
number of paths in the path-based model.

C17 C432 B01 B02 B06 S27 S208
Benchmark Circuit

0
1
2
3

Cu
m
ul
at
iv
e
RM

SP
E Our_Model Path_Based_Model

Figure 5: Accuracy comparison of ourmodel and path-based
model [20] for aging-aware static timing analysis: the lower
the y-axis (cumulativeRMSPE), themore accurate themodel

Figure 5 compares the accuracy of our model and the path-based
model [20]. The y-axis shows the average result of cumulative
RMSPEs for predicting the lifetime delay of each circuit under 10
different combinations of aging factors. Compared to the path-based
model, our model achieves much lower cumulative RMSPEs and is
more accurate in predicting the circuit lifetime delay.

4.4.2 Path Lifetime Delay Prediction with Perturbation. To better
understand the accuracy difference of our model and the path-based
model [20], we also compare their accuracy when predicting the
aging-induced delay for an individual path. Moreover, we also evalu-
ate how these two models perform when one or more perturbations
are made to the circuit; a good model should be stable to provide
high prediction accuracy after a circuit perturbation. To perform
these analysis, we randomly choose five different paths from the
C880, C1908, C3540, C5315 benchmark circuits [10] and estimate
each path’s lifetime delay. For the circuit perturbation, we randomly
changed the transistor𝑊 /𝐿 ratio for a number of gates in the path.

Table 4 compares the cumulative RMSPE of our model and the
path-based model [20] for the five randomly selected paths, both
before and after the perturbation. First, before the perturbation,
our model achieves better accuracy than the path-based model,
which accumulates to the larger accuracy gap at the circuit level as
presented in Figure 5 of Section 4.4.1. Second, after the perturbation,
our model’s accuracy is stably high, while the path-based model’s
accuracy significantly decreases. The main justification is that the
coarse-grained prediction of a path (i.e., path-based model) is harder
than the fine-grained prediction of a gate (i.e., block-based model
in our tool). As a result, after a perturbation, the path-based model
may need a model retraining to improve its accuracy, while our
model does not need model retraining.

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Seyed Milad Ebrahimipour1 , Behnam Ghavami2 , Hamid Mousavi1 , Mohsen Raji3 and Zhenman Fang2 , Lesley Shannon2

10 15 20 25 30
True Dela Values (x10−10 s)

10

15

20

25

30

35

Pr
ed

ict
ed

 D
el
a

 V
al
ue

s (
x1

0−
10
 s)

SPICE_Results Our_Method

(a) Our Model
before Perturbation

10 15 20 25 30
True Delay Values (x10−10 s)

10

15

20

25

30

35

Pr
ed

ict
ed

 D
el
ay

 V
al
ue

s (
x1

0−
10
 s)

SPICE_Results Path_Based

(b) Path-based Model
before Perturbation

10 15 20 25 30
True Dela Values (x10−10 s)

10

15

20

25

30

35

Pr
ed

ict
ed

 D
el
a

 V
al
ue

s (
x1

0−
10
 s)

SPICE_Results Our_Method

(c) Our Model
after Perturbation

10 15 20 25 30
True Delay Values (x10−10 s)

10

15

20

25

30

35

Pr
ed

ict
ed

 D
el
ay

 V
al
ue

s (
x1

0−
10
 s)

SPICE_Results Path_Based

(d) Path-based Model
after Perturbation

Figure 6: Comparison of accumulated error for predicting the aging-induced delay for path P1 with perturbation to the path

Table 4: Model accuracy comparison for predicting the
aging-induced delay for each path with perturbation to the
path. Prediction error is in terms of cumulative RMSPE: the
lower, the better

Path # Gates Before Perturbation After Perturbation
Our

Model
Path-based
Model [20]

Our
Model

Path-based
Model [20]

P1 38 0.86 1.57 0.78 5.26
P2 37 0.64 1.49 0.74 4.79
P3 34 0.71 1.52 0.86 4.33
P4 35 0.67 1.38 0.61 4.86
P5 40 0.79 1.47 0.83 4.51

Table 5: Manageable runtime of our aging-aware STA com-
pared to standard aging-unaware STA for large-scale circuits

Circuit # Gates Our Aging
Aware STA

OpenTimer: Aging
Unaware STA [21]

des_perf [21] 138.9K 28.01s 22.96s
vga_lcd [21] 139.5K 28.07s 23.05s
b19 [12] 255.3K 53.71s 41.87s

To cast more light on the path delay prediction using our model
and the path-based model before and after the perturbation, we also
include a scatter plot for path P1 in Figure 6. As shown in Figure 6a
and Figure 6c, our model can accurately predict the path delay
both before and after the perturbation, which is close to the SPICE
simulation results. On the other hand, the path-based model already
introduces quite some errors before the perturbation, as shown
in Figure 6b. After the perturbation, as shown in Figure 6d, the
predicted delays of the path-based model are significantly different
to the SPICE simulation results.

4.5 STA Runtime for Large-Scale Circuits
Finally, to demonstrate the runtime efficiency of our aging-aware
static timing analysis (STA) flow that integrates our FFNN models,
we also calculate the circuit delay of three large-scale circuits from
ITC’99 [12] and OpenTimer [21] benchmarks. For the standard
aging-unaware STA tool, we use a state-of-the-art STA tool called
OpenTimer [21]. As presented in Section 3.3, our aging-aware STA

is built on top of OpenTimer with the integration of our FFNN
models to predict the aging-induced gate delays. Table 5 compares
the runtime of our tool to the original OpenTimer: our aging-aware
delay calculation only adds around 5 to 12 seconds extra runtime
for a circuit with 138.9K to 255.3K gates, which is manageable for
large-scale circuit analysis.

5 CONCLUSION
Bringing accurate and fast aging-aware timing analysis to existing
EDA toolflows is essential in obtaining reliable large-scale circuit
designs. In this paper, we present Aadam, a fast, accurate, and versa-
tile aging-aware delay model for generic cell libraries, and integrate
it with the widely used open-source static timing analysis (STA)
tool called OpenTimer. Aadam characterizes the delay degradation
of each library cell under a wide range of aging factors with the
transistor-level SPICE simulation. Based on the characterized data,
Aadam trains an FFNN to learn the relation between the input
aging factors and output delay degradation for each library cell.
As a result, the trained FFNNs inside Aadam can quickly and ac-
curately predict the gate and circuit lifetime delay degradations
under a versatile combination of aging factors. Experimental results
demonstrate that Aadam achieves almost identical accuracy to the
transistor-level simulation in predicting the aging-induced delay
of a circuit, which is more accurate than prior lookup table based
model, support vector machine based model, and critical path based
model. Moreover, it enables aging-aware STA for large-scale circuits
with manageable runtime overhead, i.e., 5 to 12 seconds runtime
overhead to analyze a circuit with 138.9K to 255.3K gates. We plan
to open source our entire Aadam toolflow in the near future to
trigger more research in applying machine learning techniques to
aging-aware circuit analysis.

ACKNOWLEDGEMENTS
We acknowledge the support from Government of Canada Tech-
nology Demonstration Program and MDA Systems Ltd; Natural
Sciences and Engineering Research Council of Canada (NSERC Dis-
covery Grant RGPIN-2019-04613 and DGECR-2019-00120); Canada
Foundation for Innovation John R. Evans Leaders Fund; Simon
Fraser University New Faculty Start-up Grant; Xilinx, Huawei and
Nvidia.

Aadam: A Fast, Accurate, and Versatile Aging-Aware Cell Library Delay Model using Feed-Forward Neural Network ICCAD ’20, November 2–5, 2020, Virtual Event, USA

REFERENCES
[1] M Alam, K Kang, BC Paul, and K Roy. 2007. Reliability-and process-variation

aware design of vlsi circuits. In 2007 14th International Symposium on the Physical
and Failure Analysis of Integrated Circuits. IEEE, 17–25.

[2] Hussam Amrouch, Behnam Khaleghi, Andreas Gerstlauer, and Jörg Henkel. 2016.
Reliability-aware design to suppress aging. In 2016 53nd ACM/EDAC/IEEE Design
Automation Conference (DAC). IEEE, 1–6.

[3] Hussam Amrouch, Javier Martin-Martinez, Victor M van Santen, Miquel Moras,
Rosana Rodriguez, Montserrat Nafria, and Jörg Henkel. 2015. Connecting the
physical and application level towards grasping aging effects. In 2015 IEEE Inter-
national Reliability Physics Symposium. IEEE, 3D–1.

[4] Hussam Amrouch, Victor M van Santen, Thomas Ebi, Volker Wenzel, and
Jörg Henkel. 2014. Towards interdependencies of aging mechanisms. In 2014
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE,
478–485.

[5] W. T. Anderson. 2001. Semiconductor device reliability in extreme high temper-
ature space environments. In 2001 IEEE Aerospace Conference Proceedings (Cat.
No.01TH8542), Vol. 5. 2457–2462 vol.5.

[6] Senthil Arasu, Mehrdad Nourani, John M Carulli, and Vijay K Reddy. 2015. Con-
trolling aging in timing-critical paths. IEEE Design & Test 33, 4 (2015), 82–91.

[7] Shekhar Borkar, Tanay Karnik, Siva Narendra, Jim Tschanz, Ali Keshavarzi, and
Vivek De. 2003. Parameter variations and impact on circuits and microarchitec-
ture. In Proceedings of the 40th annual Design Automation Conference. 338–342.

[8] Léon Bottou. 1998. Online learning and stochastic approximations. On-line
learning in neural networks 17, 9 (1998), 142.

[9] F. Brglez, D. Bryan, and K. Kozminski. 1989. Combinational profiles of sequential
benchmark circuits. In Circuits and Systems, 1989., IEEE International Symposium
on. 1929–1934 vol.3.

[10] F. Brglez and H. Fujiwara. 1985. A Neutral Netlist of 10 Combinational Benchmark
Circuits and a Target Translator in Fortran. In Proceedings of IEEE Int’l Symposium
Circuits and Systems (ISCAS 85). IEEE Press, Piscataway, N.J., 677–692.

[11] Rakesh Chadha and J Bhasker. 2009. Static Timing Analysis for Nanometer Designs:
A Practical Approach. Springer.

[12] F. Corno, M. S. Reorda, and G. Squillero. 2000. RT-level ITC’99 benchmarks and
first ATPG results. IEEE Design Test of Computers 17, 3 (July 2000), 44–53.

[13] Balbir S Dhillon. 2000. Medical device reliability and associated areas. CRC Press.
[14] Mojtaba Ebrahimi, Fabian Oboril, Saman Kiamehr, and Mehdi B Tahoori. 2013.

Aging-aware logic synthesis. In 2013 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 61–68.

[15] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics. 249–256.

[16] Dennis Gnad, Muhammad Shafique, Florian Kriebel, Semeen Rehman, Duo Sun,
and Jörg Henkel. 2015. Hayat: Harnessing dark silicon and variability for aging
deceleration and balancing. In 2015 52nd ACM/EDAC/IEEE Design Automation
Conference (DAC). IEEE, 1–6.

[17] Google. 2020. Tensorflow: An end-to-end open source machine learning platform.
(2020). https://www.tensorflow.org/

[18] Marco Gori. 2018. Chapter 5 - Deep Architectures. In Machine Learning, Marco
Gori (Ed.). Morgan Kaufmann, 236 – 338. http://www.sciencedirect.com/science/
article/pii/B9780081006597000051

[19] Jörg Henkel, Lars Bauer, Nikil Dutt, Puneet Gupta, Sani Nassif, Muhammad
Shafique, Mehdi Tahoori, and Norbert Wehn. 2013. Reliable on-chip systems in
the nano-era: Lessons learnt and future trends. In 2013 50th ACM/EDAC/IEEE
Design Automation Conference (DAC). IEEE, 1–10.

[20] Ke Huang, Xinqiao Zhang, and Naghmeh Karimi. 2019. Real-Time Prediction for
IC Aging Based on Machine Learning. IEEE Transactions on Instrumentation and
Measurement 68, 12 (2019), 4756–4764.

[21] Tsung-Wei Huang and Martin DF Wong. 2015. OpenTimer: A high-performance
timing analysis tool. In 2015 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 895–902.

[22] Andrew B Kahng. 2018. New directions for learning-based IC design tools and
methodologies. In 2018 23rd Asia and South Pacific Design Automation Conference
(ASP-DAC). IEEE, 405–410.

[23] Andrew B Kahng, Uday Mallappa, and Lawrence Saul. 2018. Using Machine
Learning to Predict Path-Based Slack from Graph-Based Timing Analysis. In 2018
IEEE 36th International Conference on Computer Design (ICCD). IEEE, 603–612.

[24] Mehdi Kamal, Qing Xie, Massoud Pedram, Ali Afzali-Kusha, and Saeed Safari.
2012. An efficient reliability simulation flow for evaluating the hot carrier injec-
tion effect in CMOS VLSI circuits. In 2012 IEEE 30th International Conference on
Computer Design (ICCD). IEEE, 352–357.

[25] Naghmeh Karimi and Ke Huang. 2016. Prognosis of NBTI aging using a ma-
chine learning scheme. In 2016 IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT). IEEE, 7–10.

[26] Naghmeh Karimi, Arun Karthik Kanuparthi, Xueyang Wang, Ozgur Sinanoglu,
and Ramesh Karri. 2015. Magic: Malicious aging in circuits/cores. ACM Transac-
tions on Architecture and Code Optimization (TACO) 12, 1 (2015), 1–25.

[27] John Keane and Chris H Kim. 2011. Transistor aging. IEEE Spectrum 48, 5 (2011),
28–33.

[28] Saman Kiamehr, Farshad Firouzi, Mojtaba Ebrahimi, and Mehdi B Tahoori. 2014.
Aging-aware standard cell library design. In 2014 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 1–4.

[29] Saman Kiamehr, Farshad Firouzi, and Mehdi B Tahoori. 2013. Aging-aware
timing analysis considering combined effects of NBTI and PBTI. In International
Symposium on Quality Electronic Design (ISQED). IEEE, 53–59.

[30] Dominik Lorenz, Georg Georgakos, and Ulf Schlichtmann. 2009. Aging analysis of
circuit timing considering NBTI and HCI. In 2009 15th IEEE International On-Line
Testing Symposium. IEEE, 3–8.

[31] Mayler Martins, Jody Maick Matos, Renato P Ribas, André Reis, Guilherme
Schlinker, Lucio Rech, and Jens Michelsen. 2015. Open cell library in 15nm
FreePDK technology. In Proceedings of the 2015 Symposium on International
Symposium on Physical Design. 171–178.

[32] Spencer Millican, Yang Sun, Soham Roy, and Vishwani Agrawal. 2019. Applying
Neural Networks to Delay Fault Testing: Test Point Insertion and Random Circuit
Training. In 2019 IEEE 28th Asian Test Symposium (ATS). IEEE, 13–135.

[33] Pierre Sermanet, Soumith Chintala, and Yann LeCun. 2012. Convolutional neural
networks applied to house numbers digit classification. In Proceedings of the 21st
International Conference on Pattern Recognition (ICPR2012). IEEE, 3288–3291.

[34] Robert H Tu, Elyse Rosenbaum, Wilson Y Chan, Chester C Li, Eric Minami,
Khandker Quader, Ping K Ko, and Chenming Hu. 1993. Berkeley reliability tools-
BERT. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 12, 10 (1993), 1524–1534.

[35] Bogdan Tudor, Joddy Wang, Weidong Liu, and Hany Elhak. 2011. MOS de-
vice aging analysis with HSPICE and CustomSim. Synopsys, White Paper
(2011). https://www.synopsys.com/content/dam/synopsys/verification/white-
papers/mosra-wp.pdf

[36] Bogdan Tudor, Joddy Wang, Charly Sun, Zhaoping Chen, Zhijia Liao, Robin Tan,
Weidong Liu, and Frank Lee. 2010. MOSRA: An efficient and versatile MOS aging
modeling and reliability analysis solution for 45nm and below. In 2010 10th IEEE
International Conference on Solid-State and Integrated Circuit Technology. IEEE,
1645–1647.

[37] Jyothi Bhaskarr Velamala, Venkatesa Ravi, and Yu Cao. 2011. Failure diagnosis
of asymmetric aging under NBTI. In 2011 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 428–433.

[38] Arunkumar Vijayan, Krishnendu Chakrabarty, and Mehdi B Tahoori. 2019. Ma-
chine Learning-Based Aging Analysis. In Machine Learning in VLSI Computer-
Aided Design. Springer, 265–289.

[39] Arunkumar Vijayan, Abhishek Koneru, SamanKiamehr, Krishnendu Chakrabarty,
and Mehdi B Tahoori. 2016. Fine-grained aging-induced delay prediction based
on the monitoring of run-time stress. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 37, 5 (2016), 1064–1075.

[40] Wenping Wang, Shengqi Yang, Sarvesh Bhardwaj, Rakesh Vattikonda, Sarma
Vrudhula, Frank Liu, and Yu Cao. 2007. The impact of NBTI on the performance
of combinational and sequential circuits. In Proceedings of the 44th annual Design
Automation Conference. 364–369.

[41] Wei Zhao and Yu Cao. 2006. New generation of predictive technology model for
sub-45 nm early design exploration. IEEE Transactions on Electron Devices 53, 11
(2006), 2816–2823.

