
Improving the Efficiency and Reliability of
Text Messaging Gateways

Daniel Brahneborg

2022-11-22

It doesn’t matter who you are
It’s what you do that takes you far
And if at first you don’t succeed
Here’s some advice that you should heed

You get up again, over and over
You get up again, over and over
You get up again, over and over
You get up again, over and over

– Madonna

iii

Abstract

When software communicates, it typically uses some middleware. In this the-
sis we focus on the group of middleware called “messaging gateways”, which
normally uses the store-and-forward architecture. Our overall goal is to find
ways to improve the throughput and reliability of such gateways in general,
in particular the ones used for forwarding mobile text messages. In short, our
work resulted in a new anomaly detection algorithm, a reduction of the num-
ber of database operations in a commercial messaging gateway, and two new
highly performant data replication protocols.

In addressing the throughput, we first wanted a better understanding of
how the round-trip times for outgoing requests varied, in order to correctly
detect abnormal delays. This resulted in a generalized extension of exponential
smoothing, which we used in a novel algorithm to detect anomalies.

We then performed an architecture analysis of an industrial messaging
gateway based on its quality requirements. From this exploratory case study,
we deduced a somewhat unexpected plan to migrate the balance management
module to a set of microservices, and identified situations where database op-
erations could be batched in order to also provide higher throughput.

A common and easy way to improve the reliability of a system is to repli-
cate the stored data to one or more additional servers. However, we found that
this approach often leads to lower throughput due to extra network traffic re-
quired. We addressed this by first writing a problem formulation on how the
quality attributes of a messaging gateway would be affected by a multi-node
configuration, resulting in a review of state of the art and state of practice for
multi-node systems.

Building on this review, we developed a new data replication algorithm,
which we validated in a controlled experiment. Its proof-of-concept implemen-
tation showed that even in a geo-distributed configuration, replication through-
put can scale with the number of nodes.

Text messaging gateways often have a module for credit management, used
when billing the senders for their traffic. In a multi-node environment the

v

maintenance of the corresponding credit balances requires synchronization be-
tween the nodes, for which we designed and implemented an algorithm which
uses less network traffic than existing solutions in many real-world situations.

vi

Sammanfattning

All programvara kommunicerar på ett eller annat sätt, antingen med datorns
operativsystem, med annan programvara som körs på samma dator, eller över
ett nätverk. Vanligtvis används någon form av mellanmjukvara för att un-
derlätta kommunikationen, vid behov tillhandahålla protokollkonvertering och
med hjälp av buffring effektivisera bandbreddsanvändningen. Modellen med
avsändare � mellanmjukvara � mottagare är användbar på alla nivåer, från det
fysiska länklagret till applikationslagret, där skillnaderna huvudsakligen avser
detaljer.

Den här avhandlingen har fokus på applikationslagret, framför allt på grup-
pen mellanmjukvara kallad “messaging gateways”. För att validera våra re-
sultat använde vi en befintlig programvara skapad specifikt för att vidarebe-
fordra SMS över hela världen. Eftersom SMS debiteras per meddelande har
denna programvara också en modul för kredithantering, som ger underlag för
fakturering av trafiken. Vårt övergripande mål är att identifiera olika sätt att
förbättra kvalitetsattributen för sådan programvara, i synnerhet avseende pre-
standa och tillförlitlighet.

Till att börja med ville vi skaffa oss en bättre förståelse för variationen
i svarstiderna från mobiloperatörerna, i syfte att kunna identifiera onormala
beteenden. Arbetet med att nå denna förståelse resulterade i en ny variant av
exponentiell utjämning och en algoritm för avvikelsedetektering. Algoritmen
validerades därefter i en fallstudie.

Vidare står kraven på hög prestanda och tillförlitlighet i konflikt med varan-
dra, eftersom hög tillförlitlighet kräver att meddelanden replikeras till en eller
flera andra noder, vilket resulterar i ökad bearbetning och nätverkstrafik, och
därmed påverkar prestandan negativt. Vi adresserade detta problem genom att
först skriva en problemformulering för hur kvalitetsattributen skulle påverkas
i en konfiguration med flera noder, vilket resulterade i en översyn av modern
forskning och praxis. Därefter utvecklade vi en ny datareplikeringsalgoritm,
som validerades i ett kontrollerat experiment. Resultaten från experimentet
visade att även i en geografiskt utspridd konfiguration, kan prestandan öka i

vii

takt med antalet noder.
För att slutligen säkerställa att vi framöver skapar lösningar som

ger signifikanta förbättringar, utförde vi också en arkitekturanalys av
SMS-programvaran. Denna fallstudie utmynnade i en något oväntad insikt
om att en migrering av kredithanteringen till en uppsättning mikrotjänster
skulle resultera i förbättrad prestanda för de flesta av systemets olika
användarkategorier.

viii

Popular summary

As individuals, we can choose between a plethora of systems for sending short
messages. For messages sent from companies to their customers, such as meet-
ing reminders, tickets, and authentication codes, traditional text messages are
still commonly used, as this is a proven technology which works on all mobile
phones. The companies usually send these messages via SMS brokers, who in
turn forward them to each recipient’s mobile operator. Because brokers charge
the senders per message, they want to be able to handle a large number of mes-
sages for this traffic to be profitable. They also want to be sure the senders are
charged the correct amount. Senders, on their part, want to be able to trust that
their messages will reach the customers.

One of the software products that handle this kind of data traffic, which has
some unusual features and quality requirements, is the Enterprise Messaging
Gateway (EMG) from Braxo AB. Daniel Brahneborg, in a collaboration be-
tween Mälardalen University and Braxo, has built on current research to find
better ways to meet the sometimes conflicting requirements of both good per-
formance and high reliability. This has resulted in a new algorithm for finding
deviations in response times, which can vary from a few milliseconds to several
seconds and still be considered normal. It has also provided a more efficient
technique to keep data safe when using geographically dispersed computers. A
thorough analysis of EMG’s architecture finally showed how its balance man-
agement could be changed to handle the steadily increasing traffic volumes of
both larger and smaller SMS brokers.

ix

Populärvetenskaplig
sammanfattning

Privatpersoner kan idag välja bland många olika system för att skicka korta
meddelanden mellan varandra. För meddelanden som skickas från företag till
deras kunder, exempelvis mötespåminnelser, biljetter, och inloggningskoder,
är dock traditionella SMS fortfarande väldigt vanliga eftersom tekniken är väl-
beprövad och fungerar på alla mobiltelefoner. Företagen skickar oftast dessa
via SMS-mäklare, som i sin tur skickar dem vidare till mottagarnas respektive
mobiloperatörer. Eftersom mäklarna tar ut en avgift per meddelande av avsän-
darna, vill de kunna hantera stora trafikmängder för att det ska vara lönsamt.
De vill också vara säkra på att avsändarna debiteras rätt belopp. Avsändarna å
sin sida vill kunna lita på att deras meddelanden kommer fram till sina kunder.

En av de mjukvaruprodukter som finns för att hantera den här sortens data-
trafik, som har både speciella egenskaper och kvalitetskrav, är Enterprise Mes-
saging Gateway (EMG) från Braxo AB. I ett samarbete mellan Mälardalens
Universitet och Braxo har Daniel Brahneborg byggt vidare på aktuell forsk-
ning för att hitta bättre sätt att uppfylla de ibland motstridiga kraven av både
god prestanda och hög tillförlitlighet. Arbetet har resulterat i en ny algoritm
för att identifiera avvikelser i svarstider, trots att dessa kan variera från enstaka
millisekunder till flera sekunder och ändå anses normala. Det har också gett
en effektivare metod för att säkerhetskopiera data mellan geografiskt åtskilda
datorer. En djupgående analys av EMGs arkitektur visade slutligen hur dess
saldohantering skulle kunna ändras för att hantera de stadigt ökande trafikvoly-
merna hos både större och mindre SMS-mäklare.

xi

Acknowledgments

Looking back on the years that have passed since I started this work, I don’t
think I have ever felt so lonely so often. There is “a lot to read”, as Mats
said with a slight grin in one of our interviews before I started, and naturally
you have to do this all by yourself. You then use the new knowledge you get
from all this reading, to gradually dig yourself a deeper hole, at the same time
quickly reducing the number of people who understand and can relate to what
you are doing until there is almost nobody left. It is lunacy. Sheer lunacy.

Therefore, first and foremost: thank you Mia, for helping me not get com-
pletely lost.

Each one of my advisors, Daniel, Wasif, Adnan, Mats, and Saad, then
nudged and pushed me in various directions, gradually helping me understand
how to do proper research. Thank you, all, for not giving up on me. And, per-
haps even more, for not letting me quit when things got really frustrating with
reviewers that seemed to have a competition in who could write the harshest
rejection.

The feeling of loneliness was partly mitigated by the research school ITS
ESS-H, which also helped fund this work. We actually did not meet that often,
but it was a nice little community where we could see each other improve in
various ways. I am glad to have met you all, even though Per and Mahshid
have extra special places in my heart.

I am also thankful to Seb, Åsa, Hannes, and Lotta, who showed me that
getting a PhD is possible even for mere mortals. Do not get me wrong, you
are all better than most. However, as far as I know, none of you can neither fly
nor walk through walls, things that seemed to be on the same difficulty level
as getting a PhD.

In a recent interview, Hans-Olov Adami at Karolinska Institutet said that
you should only become a researcher if there are no other alternatives. He also
said that you should only do research that would never get done if you did not
do it yourself. Again, looking back, that was indeed my situation. I still think
that doing what is needed to get a PhD is lunacy, but I am nothing but grateful

xiii

for getting the opportunity to actually try.
Gradually another feeling of community has started to become clear to

me, both from everybody I met at MDU, but also from other researchers at the
various conferences I attended. To be honest, I do not really understand what
any one of you actually do. That is probably normal. Still, at this point I am
starting to understand how you do it. It is like being a member of a magicians’
guild, and it is quite amazing.

Daniel Brahneborg
Stockholm, 2022

xiv

Abbreviations

The abbreviations used in this thesis are provided here for convenient refer-
ence.

ATAM
Architectural Trade-off Analysis Method, a way to analyze a software
architecture, with a focus on quality attributes.

CRDT
Conflict-Free, Commutative and Convergent Replicated Data Types.
These are data types where the order of the applied operations has no
effect on the end result. Some of these data types even allow a subset of
the operations to be ignored. For example, the natural numbers N under
the max() operation support both these conditions.

EMG
Enterprise Messaging Gateway, our demonstration system.

GSM
Global System for Mobile communications, a digital system for mobile
telephony.

HTTP
HyperText Transfer Protocol, the primary communication protocol used
for web traffic.

IA5 International Reference Alphabet number 5, a 7 bit character encod-
ing scheme often used for mobile text messages. In the SMS domain,
the character set referred to as “IA5” is however more correctly named
“GSM-7”.

ICAB
Infoflex Connect AB, the company that developed and maintains EMG.
In 2021 this company changed its name to Braxo AB.

xv

MPS
Messages Per Second, the unit we use for measuring throughput of a
messaging system. When the incoming and outgoing throughput differ,
we use the smallest of these values as the throughput of the system.

NoSQL
A common name for databases which do not use the relational paradigm
of SQL databases.

PDU
Protocol Data Unit, a single data packet used for SMS traffic. Each PDU
contains a login request with a username and password, a single SMS of
up to 160 characters, or the acknowledgement of a received message.

QR Quality Requirements, how well a system behaves. ISO/IEC 25010 [45]
expresses this in terms of performance efficiency, compatibility, reliabil-
ity, etc. Each of these are then divided further, e.g., reliability consists
of maturity, availability, fault tolerance, and recoverability.

RTT
Round-Trip Time, the time between sending a request to a remote system
and getting an acknowledgement back.

SMPP
Short Message Peer-to-Peer, a communication protocol used for SMS.

SMS
Short Message Service, traditional text messaging in the GSM, 3G, 4G,
and 5G networks.

SQL
Structured Query Language, the standard language for accessing rela-
tional databases.

TCP Transmission Control Protocol, providing reliable and ordered delivery
of network packets over IP networks.

UCP
Universal Computer Protocol, a communication protocol used for SMS.

UCS Universal Character Set, a way to encode character codes. Common
variants of this encoding are UCS-2, which uses 2 bytes per character
and UCS-4, which uses 4 bytes per character.

xvi

UTF Unicode Transformation Format, a set of ways to serialize UCS val-
ues. The most commonly used variant is UTF-8, using between one and
four bytes for each character. Some systems, e.g., some modern SMPP
implementations, use UTF-16. This format uses two or four bytes per
character, and is compatible with UCS-2 for most character codes up to
65535.

xvii

Contents

I Thesis 1

1 Introduction 3
1.1 System Model . 5
1.2 Thesis Goal . 5
1.3 Research Challenges in Brief 6
1.4 Thesis Contributions in Brief 7
1.5 Impact of Contributions . 8
1.6 Thesis Outline . 9

2 Background & Related Work 11
2.1 SMS Protocols . 11
2.2 SMS Gateway Log Files . 12
2.3 Round-Trip Time Distribution 13
2.4 Architectural Approaches . 15
2.5 Related work . 17

3 Research Summary 21
3.1 Challenges . 21
3.2 Papers . 22
3.3 Contributions . 25
3.4 Process and Framework . 32
3.5 Future Work . 35

4 Thesis Summary 39
4.1 Discussion . 39
4.2 Validity Threats . 40
4.3 Conclusions . 41

xix

II Included Papers 51

Paper A: Round-Trip Time Anomaly Detection 53
5.1 Introduction . 55
5.2 Background and Terminology 57
5.3 Related work . 59
5.4 Approach . 61
5.5 Case Study Design . 64
5.6 Case Study Results . 66
5.7 Validity Threats . 69
5.8 Conclusions and Future Work 72

Paper B: A Lightweight Architecture Analysis of a Monolithic
Messaging Gateway 77
6.1 Introduction . 79
6.2 Method . 81
6.3 Results . 83
6.4 Discussion . 91
6.5 Threats to Validity . 93
6.6 Conclusions and Future Work 94

Paper C: Towards a More Reliable Store-and-forward Protocol
for Mobile Text Messages 99
7.1 Introduction . 101
7.2 System Model . 103
7.3 Requirements . 103
7.4 Solution Space . 109
7.5 Related Work . 110
7.6 Summary . 113

Paper D: GeoRep – Resilient Storage for Wide Area Networks 119
8.1 Introduction . 121
8.2 Proposed Solution . 127
8.3 Reliability Analysis . 133
8.4 Failover Verification . 139
8.5 Throughput Evaluation . 143
8.6 Discussion . 151
8.7 Related Work . 152
8.8 Conclusions and Future Work 154

xx

Paper E: Resilient Conflict-free Replicated Data Types without
Atomic Broadcast 161
9.1 Introduction . 163
9.2 Method . 165
9.3 Proposed Technique . 166
9.4 Evaluation . 171
9.5 Discussion . 174
9.6 Related Work . 175
9.7 Conclusions . 175

Index 181

xxi

Part I

Thesis

1

Chapter 1

Introduction

Communication has been an important concept in computer science for a long
time, even though it did not always involve networking. In earlier days the
communication was mainly between the applications and what is now called
the operating system kernel [64]. Over time, applications started communi-
cating with each other, both within the same computer and across a network.
This communication would sometimes require a separate software component
sitting between the communication endpoints, providing protocol conversion
when one or both applications could not be changed [24]. In other cases,
such a component could provide a bridge between new applications and legacy
databases when there was a mismatch in the data [80], e.g., whether prices are
specified with or without tax, or whether locations use town names or postal
codes. The names used for the software in the middle has varied, but “middle-
ware” [64], “gateways” [24] and “mediators” [80] seem to be the most com-
mon. In this thesis, we will use “gateways”.

Many gateways use a variant of the store-and-forward architecture [32] in
order to isolate producers and consumers of data from each other, leading to
a more resilient system than if all operations were done in lockstep. Further-
more, by storing data in the gateway for a short time before forwarding it,
the incoming data packets can be merged so that the outgoing bandwidth can
be utilized more effectively. The store-and-forward architecture is also useful
when there is a human on at least one end, e.g., for email and instant messag-
ing [10], as this allows the human’s computer or mobile phone to temporarily
be switched off. For such systems involving humans, we will use the term
“messaging gateway”, even though this term is sometimes used by others for
application-to-application gateways.

Gateways specialized for mobile text messages are of particular interest in
this thesis. Text messages, often referred to as SMS (Short Message Service),

3

are still popular despite being a relatively old technology, as such messages can
be both sent and received by all mobile phones without any additional software
installed. Therefore, SMS is frequently used all over the world by companies
for sending their customers meeting reminders, authentication codes, tickets,
and more. In 2019, on average about 300 000 text messages were sent every
second1. Different sources claim slightly different numbers for 2022, but all are
around this level.

Text messages from companies are typically not sent from mobile phones,
but from applications running on computers connected to the internet. Send-
ing an SMS directly over the internet to the network operators is surprisingly
non-trivial. First, the right operator must be selected for each message. This
could previously be done by just checking the first few digits of the phone
number, but due to number portability this is now much more complex. Next,
the operators use different communication protocols and can have very specific
requirements on the traffic.

In the spirit of “encapsulating the concept that varies” [34], the complexity
of communicating with the operators is normally contained within a gateway
specifically designed to handle SMS traffic. Such a gateway, simply referred
to as an SMS gateway, is often run by a category of companies known as
SMS brokers. The gateways and the brokers both offer a simplification for
the senders, the gateways on a technical level and the brokers on a business
level. This provides added value which senders are willing to pay for, and also
creates many business opportunities to provide additional services.

This thesis is centered around messaging gateways in general and SMS
gateways in particular, exploring ways to make these gateways more efficient
and reliable, and thereby possibly also more profitable. The efficiency is ad-
dressed in research challenges 1 and 2, focused on network round-trip times
and the software architecture, respectively. Our work on these challenges led to
research contribution 1 on exponential smoothing, contribution 2 on anomaly
detection, and contribution 3 on architecture analysis. The reliability is then
addressed in research challenge 3, on the issues that appear when using mul-
tiple servers. This resulted in a review of the state of the art and practice in
contribution 4, and two data replication protocols in contributions 5 and 6.

1https://visualcapitalist.com/what-happens-in-an-internet-
minute-in-2019

4

1.1 System Model

We define our system model as comprising one or more entities sending mes-
sages to a messaging gateway. This gateway stores the messages and sends
back acknowledgements for each one. The messages get picked up from the
message storage, are sent to a selected recipient, and then deleted from the stor-
age when the acknowledgement from the recipient comes back. This matches
what Petriu et al. [47] calls “Pipeline with buffer”, but with a buffer that is
persisted in some form of storage, to avoid data loss in case of a software fault.
We assume that the gateway is sufficiently effective in its CPU usage, i.e., us-
ing fast and scalable data structures and algorithms, as well as a minimum of
memory allocations and locks.

There are no end-to-end acknowledgements, and the senders typically
cannot resend lost messages. All message flows are independent and
asynchronous, and all communication to and from the gateway is carried
out using standard communication protocols which cannot be modified.
All remote systems are authenticated and well behaved, so there are no
denial-of-service attacks or byzantine failures [55].

1.2 Thesis Goal

Previous research has shown that the existing solutions for increasing system
reliability often limit the achievable throughput. Dahlin et al. [29] examined
the different types of failures which can cause server unavailability. They con-
cluded that by using a combination of techniques, e.g., data caching on the
client side, routing via separate networks, and server replication, unavailabil-
ity can be decreased by up to two orders of magnitude. One way of achieving
this combination is to use geographically distanced servers. WanKeeper [3],
by Ailijiang et al., is a service for distributed coordination of such servers.
WanKeeper is based on ZooKeeper [41], extending it by using a hierarchical
design, providing low latency when operations on the same client read or write
the same key-value pair multiple times. In their evaluation, they reach about
100 operations per second. This is a factor of between 5.6 and 18 more than
ZooKeeper in the same configuration, but still a factor of 100 less than what
we aim for in this thesis. Our earlier (not published) experiments indeed con-
firm that existing data replication techniques typically result in a throughput
several orders of magnitude lower than when using only local operations. Fur-
thermore, the impossibility result by Didona et al. [30] says that systems which
support write transactions with more than one object, will get read operations
that either block, require multiple network round-trips, or return multiple val-

5

ues.
We see execution time predictability and stability as closely related to both

reliability and throughput, as unusually long response times could indicate
some sort of issue that must be addressed. For the response time distribution
we had observed, we needed a solution based on collective anomalies [26],
adjusted to a more detailed model than a simple exponential smoothing, even
extended with a seasonal component [81] or two [75].

For data that should be identical on all servers in a distributed system, such
as the message senders’ credit balance, the best solutions seem to be based
on Conflict-free Replicated Data Types (CRDTs) [73]. However, they often
lead to excessive network and storage usage [4, 79], and we found no variant
well suited for the case when the replicated data stays constant for an extended
period of time, and therefore does not need to be replicated over and over.

The overall goal in this thesis is to understand and improve both the
throughput and the reliability of a messaging gateway consistent with our
system model. Primarily, this means increasing the throughput, measured as
the number of processed messages per second, and the reliability, represented
by the ratio of messages which would still be delivered to the correct recipient
even in case of a server failure. To minimize risk and development costs, the
improvements should be achieved while keeping the required changes of the
existing system architecture to a minimum.

When specifying the quality requirements for a system it may be helpful
to start with an existing model or taxonomy [11, 27, 35, 49, 70], perhaps even
a published standard such as ISO/IEC 25010 [45]. The ISO 25010 model
uses eight main characteristics: Functional Stability, Performance Efficiency,
Compatibility, Usability, Reliability, Security, Maintainability, and Portability.
Each one of these is then divided into a handful of related sub-characteristics.

The concrete quality requirements addressed in this thesis are listed in Ta-
ble 1.1. Following the ISO 25010 taxonomy, we consider throughput and la-
tency to be parts of Performance Efficiency, specifically the sub-characteristics
Time Behaviour. Likewise, we see scalability as part of Performance Effi-
ciency in general, and resilience as part of Reliability. Availability is already a
part of Reliability in ISO 25010.

1.3 Research Challenges in Brief

We address two groups of research challenges in this thesis. In the first group,
the focus is on the throughput in systems with a single node. Here we iden-
tified two challenges, RC1 and RC2. For the second group the focus shifts to
multi-node messaging gateways in order to also cover reliability, resulting in

6

Table 1.1: The most important quality requirements (QR) in this thesis.

ISO 25010 QR Description

Performance

Throughput
Throughput should be high, even on
moderately powerful hardware.

Latency
Clients should get acknowledgements for

Efficiency sent messages without unnecessary delays.

Scalability
It should be possible to run the messaging
gateway in parallel on multiple machines
for a higher total system throughput.

Reliability

Availability
Clients should be able to connect to the
messaging gateway system and send
messages.

Resilience
Received and acknowledged messages
should not be lost even if a limited number
of servers fail or become unreachable.

RC3. The three challenges are listed below, and are described in more detail
in Section 3.1.

RC1: Understand and model round-trip times and their anomalies
We observed a large variation in round-trip times for SMS traffic in sev-
eral production environments, and wanted to get a better understanding
of this value distribution, as well as find ways to use this understanding
to reliably identify anomalies.

RC2: Identify architectural weak points and find ways to improve them
In order to possibly increase both the availability and efficiency of an
existing messaging gateway, we wanted to know if its architecture could
be improved, and if so, how.

RC3: Identify and resolve multi-node issues
As mentioned in Section 1.2, there is a conflict between reliability and
throughput. We wanted to identify the exact reasons for this conflict for
multi-node messaging systems, and find more suitable balance points
between these requirements.

1.4 Thesis Contributions in Brief

The contributions of the papers included in this thesis are, briefly, as follows.
They are described in more detail in Section 3.3. In short, contributions C1,

7

C2, and C3 focus on the throughput, and C4, C5, and C6 focus on the relia-
bility while still not ignoring the throughput.

C1 A generalized exponential smoothing which works for any number of di-
mensions.

C2 An anomaly detection algorithm for collective anomalies [26] in data cov-
ering multiple orders of magnitude.

C3 An in-house variant of the Architectural Trade-off Analysis Method
(ATAM) [52] for finding the architectural approaches with the largest
effect on the system’s quality attributes.

C4 A review of the state of the art and practice for multi-node systems.

C5 A description, implementation and analysis of a data replication protocol
designed for store-and-forward systems with geographically separated
nodes.

C6 A resilient and efficient method for replicating data normally updated in
isolated bursts, such as the credit balances for system users.

1.5 Impact of Contributions

When our system model is implemented as an SMS gateway as shown in Fig-
ure 1.1, the message senders are typically companies, and the recipients are
mobile network operators. The senders pay the SMS brokers to forward the
traffic, so an SMS gateway requires a credit management module to keep track
of the messages sent by each company and rejecting traffic when prepaid bal-
ances are depleted. The reliability of the message storage is business critical
for the SMS brokers due to the per message cost from the operators.

Company 1 Broker Operator 1

Operator 2Company 2

Figure 1.1: Companies sending text messages via an SMS broker to Mobile Network
Operators. Originally published in Paper D.

8

Some SMS brokers develop their own software, while others prefer to use
existing third party solutions. One of these third party products is the En-
terprise Messaging Gateway (EMG) from Braxo AB. EMG is an SMS gate-
way matching our system model, and is used as a proof-of-concept messaging
gateway and an industrial use case in this thesis. EMG handles the “soft mis-
match” [24] case, as not all attributes exist or have the same values in all SMS
protocols. The protocols are however similar enough for an SMS gateway to
be able to provide meaningful conversions in most practical cases. Braxo gets
revenues from EMG in the form of license costs paid by various SMS brokers,
and from the price differences between what it charges the companies using
Braxo’s own EMG servers and what it pays the operators for delivering this
traffic to the mobile phones.

By leveraging the throughput oriented contributions in this thesis, EMG
can be made more effective in forwarding the traffic, lowering the cost for the
machines it runs on, and thereby the system as a whole can generate a higher
profit both for Braxo and the EMG licensees. Additionally, both SMS bro-
kers and companies sending the messages need to be able to trust that once a
message has been accepted by EMG, it will not get lost. By providing better
reliability for the messages using the reliability oriented contributions in this
thesis, Braxo can sell EMG licenses to more SMS brokers, and more compa-
nies will be interested in sending messages via EMG based systems.

1.6 Thesis Outline

The rest of the thesis is structured as follows.

• Chapter 2 contains further background information and elaborates on the
motivation behind this thesis.

• Chapter 3 contains a summary of the research and a discussion on future
work.

• Chapter 4 concludes the thesis.

• Part II contains the included papers.

Some passages of this thesis have been quoted verbatim from the author’s
Licentiate thesis [13].

9

Chapter 2

Background & Related Work

In this chapter, we describe important concepts and summarize related work
relevant for this thesis. All papers in this thesis, as listed in Section 3.2, discuss
SMS traffic to some degree, which motivates Section 2.1 where we describe the
communication protocols used for such traffic. Log files can be very helpful in
many applications in the analysis of which actions the application has taken,
so the log files used in Paper A are described in Section 2.2. Our initial ob-
servations regarding the round-trip times for outgoing requests and processing
times for incoming requests, which were presented in Paper N2 and analyzed
in Paper A, are described in Section 2.3. Next, Section 2.4 contains a general
discussion about software architecture, which is important in both Paper B, Pa-
per C, and Paper D. Finally, Section 2.5 contains related work on the anomaly
detection discussed in Paper A and the data replication discussed in Paper D
and Paper E.

2.1 SMS Protocols

There are a handful of protocols used for SMS messaging, most of them orig-
inally designed for direct communication between message senders and net-
work operators. The protocols are all similar to each other as they support
almost the same set of attributes, e.g., sender phone number, recipient phone
number, message body, character set, and whether a delivery receipt should
be returned. The data packet containing such a set of attributes for a single
request or response is called a PDU, a Protocol Data Unit.

The main differences between the protocols concern the encoding of val-
ues in a PDU. For example, UCP (Universal Computer Protocol1) sends all

1https://en.wikipedia.org/wiki/EMI_(protocol)

11

data as human readable text with each field separated by a “/” character, while
SMPP (Short Message Peer-to-Peer2) sends all data as binary encoded tuples
containing a field number, the data length, and the data. Over time, many SMS
gateways have started to also support more general purpose protocols such as
HTTP (Hypertext Transfer Protocol3) albeit with differences in the field names
and value encodings.

The similarities between the protocols served as the basis for the creation
of EMG. Thanks to SMS gateways such as EMG, otherwise incompatible SMS
software products from different vendors can now easily communicate with
each other.

The SMS protocols are all stateful, requiring an initial “login” operation
before any messages can be sent. This means there is no need for sending au-
thentication information with each request, and enables traffic going upstream
from the mobile phones via the operators back to the companies.

Sliding windows are used to achieve a higher throughput than what would
be possible if the system waited for a response after each request. Each out-
going request contains a unique transaction number, and this number must be
included in the corresponding response.

The sender may want confirmation that the message was successfully de-
livered to the mobile phone, and would in that case request a delivery report
by setting a flag in the message PDU. Such a delivery report is structured and
handled in much the same way as a regular message.

2.2 SMS Gateway Log Files

Most SMS gateways can be configured to produce PDU log files, contain-
ing information about each data packet sent or received from both clients and
operators. These files might then be used to view the exact network traffic,
separated into the data fields used by each of the supported protocols. These
PDU log files provide the data analyzed by the tool presented in Paper A.

A typical entry in a PDU log for SMPP, as it is generated by EMG, is
shown below. The part “operator1,0” means the connection to “operator1”,
instance number 0. There can be many parallel connections to the same oper-
ator, thus the need for an instance number to distinguish them. The “trn” field
is the transaction number used by the sliding window mechanism. When a re-
sponse comes back with the same transaction number on the same connection,
it is possible to calculate the round-trip time for that request. The “SHORT-

2https://en.wikipedia.org/wiki/Short_Message_Peer-to-Peer
3https://tools.ietf.org/html/rfc7231

12

MESSAGE” field contains the message body, in hexadecimal form. For a full
explanation of the other fields, we refer to the publicly available SMPP speci-
fication4.

2022-11-22 13:15:00.700729 INFO (operator1,0)
Write op:0x00000004 (SUBMIT_SM)
status:0 trn:1337 datalen:142
SOURCEADDRTON:1 SOURCEADDRNPI:1 SOURCEADDR:464321
DESTADDRTON:1 DESTADDRNPI:1 DESTADDR:46123456
ESMCLASS:0 PROTOCOLID:0 PRIORITYFLAG:0
REGISTEREDDELIVERY:1 REPLACEIFPRESENT:0
DATACODING:3 SMDEFAULTMSGID:0 SMLENGTH:12
SHORTMESSAGE:50684420646566656E7365

2.3 Round-Trip Time Distribution

The round-trip times between two servers has two main components, the time
required for the data packets to travel back and forth between the servers, and
the processing time on the remote machine. Briscoe et al. [23] have described
five main groups of sources for the first component: structural delays, interac-
tion between endpoints, delays along transmission paths, delays related to link
capacities, and intra-end-host delays. Most of these are relatively constant over
time between each pair of servers, which is consistent with our assumptions
in Paper A where we only considered the second component, the processing
time. The main exception concerns interaction between endpoints, primarily
the transport initiation phase. Any variations caused by this, e.g. the TCP slow
start, would be evenly distributed among different types of data packets.

In Paper N2, we looked at the distribution of the raw RTTs. The relative
number of request and response pairs which completed within a certain time
for one of the operators are shown in Figure 2.1. The X-axis is the time limit
in µs, and the Y-axis is the relative number of pairs, both on a logarithmic
scale. The larger ratio that each bullet represents, the higher up it is. The blue
line shows the response times for incoming traffic to EMG, and the red line
shows the response times for outgoing traffic to the operator. We see that the
operator sometimes responds very quickly, shown by the left end of the red
line being close to 1e+03 µs (1 ms).

4The most reliable way to find this document is to enter “smpp 3.4 specification” in your
favourite search engine, as at the time of this writing currently there is no official owner and
maintainer of this protocol. However, there are several suppliers of applications and libraries
that implement SMPP who provide the specification as a service to their users.

13

Figure 2.1: The distributions of the processing times for incoming requests to EMG,
and the round-trip times for outgoing traffic to an operator.

The right end of the red line, representing messages with a RTT of more
than 30 seconds, is marked with “1”. If these measurements are spread evenly
over a longer time span, such slow responses could actually be acceptable.

Another observation concerns the two peaks, marked with “2”, on the blue
line representing incoming traffic. A closer investigation revealed that the op-
erator sends keepalive PDUs, which is a heartbeat mechanism [6] used to de-
tect if the remote system has failed. These requests require less processing by
EMG than regular messages, and this difference is reflected in these two peaks
being so far apart along the X axis. From the diagram we can see that a typical
keepalive message gets a response sent after around 0.1 ms (1e+02 µs), while
normal messages require 5–10 ms.

Similar peaks could be seen for the outgoing traffic as well, but here the
keepalive PDUs turned out to correspond to the peak to the right, in Figure 2.1
marked with “3”. The operator later verified that keepalive responses were sent
with a constant delay of 50ms, which is consistent with the difference between
the two peaks of the red line.

For anomaly detection to be meaningful on response times with these pro-
files, the data points had to be separated somehow. This separation was done
in Paper A as described in Section 3.3.

14

2.4 Architectural Approaches

The quality attributes are often the main drivers of the system architecture [32],
as the functional requirements can usually be fulfilled regardless of whether
the system is a monolith on the local computer or a collection of microservices
running in a cloud. The selected architecture has a much bigger effect on
aspects such as response time, availability, and modifiability. The relationships
between the architectural approaches used in EMG and the resulting quality
attributes were explored in Paper B.

The architecture is usually one of the things that is hardest to change about
a system. Making a change at the edge of a properly structured system, such
as changing the SQL database from one brand to another, can sometimes be
as easy as updating a configuration file. However, a change such as migrating
from a monolith to microservices is an entire research field with activities both
in academia [39] and the industry [40, 65]. In this field we published Paper C,
on the architectural changes required to enable a messaging gateway to run in
parallel on multiple servers.

We recognize that many systems can be described in multiple ways, de-
pending on the perspective [8]. There are therefore several architectural pat-
terns that can be used to describe the behaviour and design of a messaging
gateway. They also affect which modifications are possible, and offer different
advantages for the stakeholders. The patterns most relevant for this thesis are
listed below, and then described in more detail.

Monolith
Enables easy development, relatively simple test and life-cycle manage-
ment, and is efficient.

Store-and-Forward
Enables high availability and independent components on the system
level, as the incoming and outgoing connections do not have to be active
at the same time.

Publish–Subscribe
Enables high availability and independent internal components, as each
connection is free to consider solely its own work.

Client–Server
Increases portability, as the gateway can be deployed anywhere in the
network.

Plugins and Microservices
Provide high portability and modifiability by the application customers.

15

2.4.1 Monolith

Basically, a monolith has all its functionality packaged into a single executable
file. This makes it easy to manage its life-cycle: either the program is running,
or it is not. The main disadvantage when using a monolith is that functionality
cannot be updated without restarting the entire program, which in the gateway
case results in also closing all connections to both clients and operators. This
connectivity issue was discussed in depth in Paper B.

2.4.2 Store-and-Forward

As mentioned, the top level architecture generally used for SMS traffic is called
“store-and-forward”, as the SMS gateways store each message sent to them
until they can be forwarded to the right operator, and each operator stores each
message until it can be forwarded to the mobile phone. This perspective is
discussed to varying degrees in all papers in this thesis. A similar architecture
is “batch-sequential” [32], where the focus is more on batch-wise processing
of larger groups of data. Such batching was a key factor to the high throughput
reached in Paper D.

Neither store-and-forward nor batch-sequential has any built-in end-to-end
acknowledgement. At a lower level in the networking stack, TCP adds this
acknowledgement on top of the store-and-forward based IP, but there is no
corresponding mechanism for SMS. SMS indeed has delivery reports, but they
are too unreliable to be used for determining whether a message must be resent.
Some operators never send these back at all, forcing the SMS brokers to simply
assume all messages are successfully delivered, while other operators send
back positive delivery reports for all messages regardless of their final status.

2.4.3 Publish–Subscribe

The architectural style best matching how a messaging gateway might handle
messages internally is called “publish–subscribe”. In this architecture compo-
nents called “producers” publish events on an event bus, and the “consumers”
which are subscribed to matching event types are notified. The producers and
consumers can thus run independently of each other. The mapping of these
concepts to EMG5 was described in Paper B, and how to replicate the event
bus was the main topic of Paper D.

5In EMG, a connector is an incoming port to which clients can connect, or a set of outgoing
connections to another system.

16

“The embedded NoSQL storage acts as the event bus, the connec-
tion between producers and consumers. The publisher is driven
by the incoming connector the client connects to, and the con-
sumer is driven by the outgoing connector. The events are the
text messages, and the event types correspond to the names of the
connectors.” – Paper B

Having independent connectors allows clients to send a large number of
messages without requiring the designated operators to always be online and
able to receive the messages. Likewise, operators can return delivery reports to
the SMS gateway without requiring each intended recipient to be connected.

2.4.4 Client–Server

When seen as a client–server system, a gateway acts as both a client and a
server. This is shown in Figure 1.1, where a gateway running at the SMS
broker acts as a server to the clients run by the companies to the left, and as a
client towards the operators to the right.

2.4.5 Plugins and Microservices

Some business logic is too customer specific to capture using only configura-
tion options. In order to provide the customers with extension points where
they can add such logic themselves, many applications support plugins. This
extensibility comes at the cost of lower throughput due to increased overhead
as compared to making an internal function call. Making these calls to a mi-
croservice increases the independence between the application and the cus-
tomer code, as the microservice can be written in any programming language
and even run on a different server. However, this is also likely to incur a cost
of higher latency on account of the additional network traffic required to han-
dle each request. Both these extension types, microservices in particular, were
discussed in Paper B.

2.5 Related work

2.5.1 Anomaly Detection

Chandola et al. [26] identified three basic anomaly types: a) “point,” when
individual data points are anomalous compared to the rest of the data, b) “con-
textual,” when data points are anomalous in a specific context, e.g., a temper-
ature in a specific time of the year, and c), “collective,” when a collection of

17

data points are anomalous compared to the rest of the data. The anomaly de-
tection used in Paper A was a combination of contextual and collective, as it
was triggered by a collection of data points, but only compared to the subset of
data points with similar parameter values (e.g., character encoding and PDU
type).

In addition to these three types, Ibidunmoye et al. [42] identified the “pat-
tern” type, for detecting changes in the shape of a series of data points. This
type matches our observation discussed in Section 2.3 regarding the two dis-
tinctive peaks in the graph.

Guyon and Elisseeff gave an overview of “Variable and Feature Selec-
tion” [37, 38] from the machine learning area, used for gene selection and text
classification. This could have been used in the papers A and N2 to find the
attributes which had the largest effect on the round-trip time, instead of the
manual method that was used. This might also have identified variations in the
round-trip times caused by combinations of attributes, which was not possible
using the manual method.

Similarly to what we did in Paper A, Ibidunmoye et al. [43] examined
endless time series streams, using “tumbling windows” (sliding windows with
steps > 1, and no overlap between each window), as a preliminary phase for
incrementally finding means, trends and seasonalities, followed by a detection
phase.

Anomaly detection in log files very often means comparing their contents
with some predefined pattern or another type of state machine [7, 76]. How-
ever, this requires that such a state machine can be defined in advance, and thus
appears better suited for detecting point anomalies.

2.5.2 Architecture Analysis

Within the Software Architecture field, there is a research area on the analysis
of such architectures. It is clear that in this area the connection between archi-
tecture and changeability is central, as one of the first methods published on
how to do an architecture analysis, the Software Architecture Analysis Method
(SAAM) [51], primarily focuses on the modifiability of the evaluated system.
SAAM later got extended into SAAMCS [56], focused on complex scenar-
ios, ESAAMI [61], adding a reusable knowledge base, and SAAMER [57],
adding considerations for evolution and reusability. SAAM also got extended
into ATAM [8, 52], which added both a full set of quality attributes, and the
two concepts sensitivity point and trade-off point. ATAM was the method we
selected for the analysis in Paper B. ATAM, in turn, was then further extended
into the Cost Benefit Analysis Method (CBAM) [50, 62], adding a financial

18

dimension.
The literature reviews by Dobrica and Niemelä [31] and Ionita et al. [44]

describe a few more methods, many with modifiability as a key concept. Ionita
et al. also concluded that an important benefit from all these methods is “im-
proved communications between stakeholders”. It may therefore in some cases
be more important to actually carry out an architecture analysis, than to use
some particular method.

2.5.3 Data Replication

At its core, a messaging gateway is essentially a kind of message queue,
an application type which exists in many variants [25, 58]. The basic idea
is that some sort of message enters the system, and is delivered to one or
more other systems. The most well known of these products are probably
Apache Kafka [53] and RabbitMQ6. These products seem to fit best into
publish–subscribe scenarios where each recipient subscribes to a small subset
of the full data flow.

The publish–subscribe model may make it seem like a good idea to use
Apache Kafka in EMG to draw on its proven throughput and data safety, but
the similarities make the mapping of the quality requirements difficult. Using
Kafka would also increase the complexity of deployment and management of
the messaging system for the SMS brokers beyond what appears reasonable.

Worth mentioning is also the group of protocols designed for distributed
agreement, primarily of an ordered sequence of events [67]. These protocols,
e.g., Paxos [54] and its variants Mencius [60] and AllConcur [69], as well as
Raft [66] and ZooKeeper [41], are most suitable for slow moving sequences.
In the messaging context, they could be used to maintain the system configu-
ration or the list of clients authorized to use the system, as such information
is usually quite stable over time. They would be less of a fit for things such
as the message queues, as using them would lead to excessive network traf-
fic and data storage volumes. Paper C explored this in more detail, matching
replication methods to the various types of data used in a messaging gateway.
The replication protocols presented in D and Paper E were then designed to be
more bandwidth friendly than any of these protocols.

6https://www.rabbitmq.com

19

Chapter 3

Research Summary

The research in this thesis is based on three main challenges, described in Sec-
tion 3.1. Each challenge has been addressed in one or more of the included pa-
pers, which are described in Section 3.2. The outcome of this work is centered
around six main contributions, described in Section 3.3. The overall research
process and the individual research methods are then described in Section 3.4.
Finally, some possibilities for future work are discussed in Section 3.5.

3.1 Challenges

According to our system model described in Section 1.1, we assume that the
gateway is sufficiently effective in its CPU usage. The overall focus in this
thesis is therefore on I/O related research challenges (RCs), primarily the net-
work traffic. For RC1 and RC2 the focus is on systems with a single node, and
for RC3 the focus is on systems with multiple nodes.

RC1: Understand and model round-trip times and their anomalies
The processing time required when receiving a message can be sub-
stantial, sometimes much longer than the raw network round-trip time.
Some sources we have seen in production environments for this time
consumption are database operations and communication with other ser-
vices, e.g., for deciding to which operator a message should be sent and
what the exact cost for the sender will be. These operations make the
total time from sending a message to receiving its acknowledgement fol-
low a more complex distribution function, shown in Figure 2.1 in Sec-
tion 2.3, than what has been seen at lower levels in the networking stack,
e.g., for ACK packets [2, 46]. Research Challenge 1 was to get a better

21

understanding of this distribution, and find ways to identify abnormal
delays.

Albeit in a different context, Underwood et al. [78] showed that the de-
gree of variation of the network latency was highly correlated with the
total performance. As the SMS protocols use windowing to limit the
number of outstanding network requests, a single long round-trip pre-
vents multiple messages from being sent during that time. It therefore
seems reasonable to assume that their result holds for us as well. By
identifying and thereby possibly enabling the reduction of RTT varia-
tions, resolving this challenge would get us closer to our research goal
of achieving a higher throughput.

RC2: Identify architectural weak points and find ways to improve them
Before making any architectural changes, it is necessary to know the sta-
tus of the system you are changing. Research Challenge 2 was therefore
to identify any performance related weak points in the current architec-
ture of EMG, and to find ways to improve its architecture.

RC3: Identify and resolve multi-node issues
Scaling a set of microservices to more nodes for increased total system
performance can be relatively easy, by just moving one or more services
to new nodes which can share the work load. Having the same service
on multiple nodes can also provide higher resilience, as this allows the
system to keep functioning during a server failure. Doing the same type
of scaling or load balancing with a monolith is much more difficult, as
there are typically no services to move. Also, as we saw in Section 1.2,
there is often a trade-off between the increased reliability achieved by
using multiple nodes and the overall system throughput, caused by the
overhead from the unavoidable communication between the nodes. Re-
search Challenge 3 was to identify these issues in more detail and find
candidate solutions for our system model.

3.2 Papers

Figure 3.1 is an extension of Figure 1.1 where a second gateway with its own
MySQL server and a NoSQL cluster have been added. It illustrates how each
one of the included papers fits in the overall SMS gateway architecture. Each
paper also addresses one or two quality attributes of a messaging gateway,
listed in Table 1.1 in Section 1.2. First, Paper A focuses on the latency in the
communication between senders and a gateway, and between a gateway and

22

Paper E
Paper D

MySQL
NoSQL

Gateway 2

NoSQL

Gateway 2

Paper C

Paper B

MySQL

Paper A

Sender

Gateway 1

Recipient

Figure 3.1: The gateway architecture and the included papers. There may be multiple
senders and recipients.

recipients. Next, Paper B focuses on the gateway as such, in order to improve
the availability and the communication towards the MySQL database to im-
prove the efficiency of the system. Paper C focuses on the communication
required between the gateways in a multi-node configuration to achieve good
scalability and improved reliability. For the same configuration, Paper D fo-
cuses on the communication towards the NoSQL storage, and the replication
of that data in order to increase the reliability. Paper E focuses on replicating
the current credit balance for each client between multiple nodes.

3.2.1 Papers included in the thesis

I am the main author of all papers listed below. I also made the implementa-
tions for Paper A, Paper D, and Paper E. The co-authors all contributed with
valuable discussions before and during each project, plus various additions,
adjustments and clarifications of the texts. The papers have been reformatted
to comply with the thesis layout, and occasional typos discovered after their
publication have been corrected.

Paper A: Round-Trip Time Anomaly Detection. Daniel Brahneborg,
Wasif Afzal, Adnan Čaušević, Daniel Sundmark, and Mats Björkman.

23

ACM/SPEC International Conference on Performance Engineering
(ICPE), 2018 [19].

This is an extended version of Paper N2.

Paper B: A Lightweight Architecture Analysis of a Monolithic Messaging
Gateway. Daniel Brahneborg, Wasif Afzal. IEEE International Con-
ference on Software Architecture (ICSA), 2020 [14].

Presentation: https://youtu.be/DHrVZeAoZoQ

Paper C: Towards a More Reliable Store-and-forward Protocol for Mobile
Text Messages. Daniel Brahneborg, Wasif Afzal, Adnan Čaušević,
and Mats Björkman. Workshop on Advanced tools, programming lan-
guages, and PLatforms for Implementing and Evaluating algorithms for
Distributed systems (ApPLIED), part of the ACM Symposium on Prin-
ciples of Distributed Computing (PODC), 2018 [17].

Paper D: GeoRep – Resilient Storage for Wide Area Networks. Daniel
Brahneborg, Romaric Duvignau, Wasif Afzal, and Saad Mubeen.
IEEE Access, 2022 [21].

This is an extended version of Paper N4.

Paper E: Resilient State-based CRDTs without Atomic Broadcast. Daniel
Brahneborg, Wasif Afzal, and Saad Mubeen. International Conference
on Software Technologies (ICSOFT), 2022 [20].

3.2.2 Papers not included in thesis

Additionally, I have been the author or co-author of the following papers.

Paper N1: A Pragmatic Perspective on Regression Testing Challenges.
Daniel Brahneborg, Wasif Afzal, Adnan Čaušević. International
Conference on Software Quality, Reliability & Security (QRS),
2017 [16].

Paper N2: A Black-Box Approach to Latency and Throughput Analysis.
Daniel Brahneborg, Wasif Afzal, Adnan Čaušević. International
Conference on Software Quality, Reliability & Security (QRS),
2017 [15].

This is an early version of Paper A.

24

Paper N3: Doctoral Symposium: Leaderless Replication and Balance Man-
agement of Unordered SMS Messages. Daniel Brahneborg. Inter-
national Conference on Distributed and Event-based Systems (DEBS),
2019 [12].

Paper N4: Superlinear and Bandwidth Friendly Geo-replication for
Store-And-Forward Systems. Daniel Brahneborg, Wasif Afzal, Adnan
Čaušević, and Mats Björkman. International Conference on Software
Technologies (ICSOFT), 2020 [18].

Winner of the Best Paper Award. It was then extended into Paper D.

3.3 Contributions

As the research challenges were resolved, we got a set of techniques for un-
derstanding and improving the throughput of a store-and-forward system, as
well as for improving its reliability while reducing this throughput as little as
possible. Table 3.1 maps the individual contributions to the research challenge
they address, and in which paper they were described. The contributions are
described in more detail next.

Table 3.1: The individual contributions, the research challenges they address, and the
paper they were described in.

Contribution(s) Challenge Paper
C1, C2 RC1 – Round-trip times A

C3 RC2 – Architectural aspects B
C4 RC3 – Multi-node issues C
C5 RC3 – Multi-node issues D
C6 RC3 – Multi-node issues E

C1: Exponential smoothing in multiple dimensions
Our first step in addressing RC1 was to model the round-trip times based
on an extended variant of exponential smoothing. Exponential smooth-
ing is a simple technique for calculating the average of a series of val-
ues, giving more importance to values later in the series. This is done
by taking a weighted sum of the previous average and the next value,
and repeating that calculation for each new value. The more weight that
is given to the first term, the more stable the average becomes as it re-
sponds slower to changes in the input values.

25

The exponential smoothing technique exists in several variants. The
simplest one is basic exponential smoothing, which uses the formulas

s0 = x0

st = αxt + (1− α)st−1, t > 0

where xt represents each new value, α the weight between 0 and 1 for
the new value, st−1 the previous average, and st is the calculated new
average. The Holt-Winters variant [81] adds a seasonal component to
this, for example to handle forecasting of electricity usage which varies
depending on whether it is night or day. In order to also handle the
difference between summer and winter, Taylor extended this into Double
Seasonal Exponential Smoothing [75].

We made the observation that SMS messages have several independent
attributes, e.g., the message encoding used and whether a delivery report
is requested. Each value of each such attribute may have a measurable
effect on the round-trip time, so to calculate the expected RTT for a given
combination of attribute values, each such combination would require
its own exponential smoothing calculation. It would, however, lead to
a combinatorial explosion of st values even though they were highly
correlated with each other.

Our contribution C1 contains two parts. First, we modified the expo-
nential smoothing to handle multi-dimensional data, by using a single st
value with adjustment factors based on the message attributes. Second,
we generalized the calculations to handle any number of such dimen-
sions.

C2: Anomaly detection algorithm
Our second step in addressing RC1 was to create an anomaly detec-
tion algorithm designed for endless time series of round-trip times at the
application level. Similarly to Agarwala et al. [1] and Tukey [77], we
identify anomalies as local spikes in the input data significantly exceed-
ing the median or mean as calculated over a longer period. As individual
RTT values could vary significantly during normal operations, we focus
on collective anomalies [26] where the median RTT over a short period
differs from the median RTT over a longer period. The algorithm uses
the following steps.

1. The data is normalized and some noise is removed, using the ex-
ponential smoothing described as C1 above.

26

Figure 3.2: Round-trip times in blue, with three periods of unusually slow responses
shown as the black and green spikes. Originally published in Paper A.

2. The Remedian [71] with a width of 5 is used to find approximate
median values over several time scales. In short, this means saving
the first 5 values in array A0. When the array is full, the median
of these values is appended to a second array A1, and the next
5 values form the new A0. This process repeats for as many levels
as needed intoA2,A3 and so on. We use the median of arrayA3 as
the local value and the median of array A5 as the long term value.

3. When the local value is more than twice the long term value, the
start of an anomaly is reported.

4. When the local value goes below the long term value, the end of
the anomaly is reported.

Using the median of A3 instead of individual values filters out shorter
sections of slow round-trips, reducing the number of false positives. In
other contexts, the size of the arrays and the selection of arrays for the
short and long term values can easily be adjusted to optimize the preci-
sion. An example of the output of this algorithm is shown in Figure 3.2,
for a data series with three groups of slow responses.

This anomaly detection algorithm was then implemented in a tool for
analyzing existing log files. The tool revealed that one operator had
response times for UCS-2 messages twice of what could be expected (for

27

details, see Paper A), and has since then come to practical use answering
multiple questions from SMS brokers regarding slow responses in their
own production environments.

C3: In-house architecture analysis
In order to resolve RC2, identifying any architectural weak points in
EMG, we needed a structured and proven analysis method. After com-
paring various potential candidates, we selected ATAM (Architectural
Trade-off Analysis Method) [52]. The original version of this method
describes how the various stakeholders should meet and discuss the var-
ious quality attributes, voting on the ones most important to them. The
core of our contribution C3 is an extension to ATAM, describing how
this voting may be replaced by simply focusing on the quality attributes
related to the largest number of business drivers. This change was moti-
vated by the observation that in many cases, each one of the business
driver groups would be represented by at least one stakeholder. We
therefore assumed that an attribute would have to be relevant to a large
number of business driver groups in order to get a large number of stake-
holder votes. We further assumed that such an attribute would indeed get
a large number of votes. For the purpose of finding the most significant
quality attributes, it may be just as effective to simply count lines in a
diagram.

In step 5 of ATAM, the quality attributes should be described as falsifi-
able requirements. However, due to the wide variety in the requirements
by the EMG users, this was not meaningful for us. Instead, they were
described in softer terms [49], significantly reducing the amount of work
required for the analysis.

Despite these significantly simplifying changes in how the attributes
were described and selected for further analysis, ATAM was still able
to provide us with new insights. In the mapping of the relationships be-
tween business drivers and quality requirements for an SMS gateway, as
shown in Figure 3.3, the most important quality attributes are shown in
boldface. Based on these, we concluded that extracting the credit man-
agement into a suite of microservices would have most beneficial impact
for the SMS brokers, improving system availability albeit at the cost of
more complex installation and maintenance procedures.

C4: Review of state of the art and practice for multi-node systems
As the first step for addressing RC3, we wanted to identify the issues
that would arise when increasing the system reliability by using multiple

28

Im
po

rt
an

t
Fu

nc
tio

ns

Q
ua

lit
y

G
oa

ls
B

us
in

es
s

G
oa

ls

C
on

st
ra

in
ts

Credit Management
High Throughput

Interrupt Free
Prevent Data Loss

Easy Installation

Releases with Value
Frequent Releases

Standard Protocols
No Ordering
No Rewrite

Fu
nc

tio
na

lit
y

R
el

ia
bi

lit
y

Message State

Correct-ish Message Credits

No Code Changes

MTTR < 1 min

Rare Client Reconnects
Survive Restarts
Survive Node Death

Effi
ci

en
cy1000 clients

Fast responses

1000 MPS

M
ai

nt
ai

na
bi

lit
yExternal Logs

New Protocols
Custom Changes
Unit/System Level Tests

Po
rt

ab
ili

tyLanguage Independent Plugins

Ratio of Manual Installation Steps

Low Coupling

Third Party Components

Figure 3.3: Business Drivers (left) and Quality Attributes (right) for EMG. The graph
is rotated 90 degrees anti-clockwise compared to the original, which was published in
Paper B.

29

nodes. This work led to contribution C4, which consists of the reviews of
the state of the art and the state of practice for multi-node solutions, and
how the different approaches relate to the requirements of a messaging
gateway with an architecture similar to our system model. Typically,
existing solutions for these requirements work best in local networks
with high bandwidth and low latency.

The review is summarized in Table 3.2. The System membership re-
quirement means keeping track of the set of nodes in the system. This
information must be maintained on all nodes. The Message storage re-
quirement is a fundamental part of the store-and-forward architecture.
This can be solved by using a replicated database or a message queue,
but existing solutions typically require a strict ordering to be maintained,
which in turn consumes both CPU and network resources. We continued
to work on this requirement in papers N4 and D, summarized as contri-
bution C5 next. The Message state requirement is needed for billing
and audit purposes. Existing solutions here, usually replicated databases
or event logs, can lead to long round-trip times for the clients and lim-
ited system performance, as they use a single node for serialization of
the operations. The Message ownership requirement is used when de-
termining which node will forward which message. This also easily
leads to a serialization node being the performance bottleneck. Finally,
maintaining Client credits is necessary for correct billing. We identified
PN-counters [73] as a possible solution for this, even though those may
lead to occasional overdrafts. This requirement was further explored in
Paper E, resulting in contribution C6.

Table 3.2: Considered approaches for each set of requirements, and expected new
problems.

Requirement Approach Problem
System membership Per node None known

Message storage
Database Strict ordering
Message queue Strict ordering

Message state
Database Round-trip times
Replicated log Single node

Message ownership Replicated log Single node
Client credits PN-counter Possible overdrafts

C5: Replicated message storage
When the multi-node issues were identified in contribution C4, the next

30

step in addressing RC3 was to find a better solution for the require-
ment Message store. The solution we developed, named GeoRep, is
the core of our contribution C5, the high level description of an exten-
sively evaluated data replication protocol tailored for store-and-forward
architectures in general and messaging gateways in particular. Com-
bined with an open sourced implementation1, it should be possible for
other researchers and engineers to modify and reimplement the proto-
col as needed. We also showed that in an SMS context, it is possible to
achieve throughput that increases with the number of nodes in the sys-
tem up to almost 3500MPS per node, see Figure 3.4 (24085/7 ≈ 3441).
Table 3.3 shows the throughput for four different system configurations.
When running within the same data-center, the throughput is similar for
Paxos and GeoRep. However, when using 7 geo-separated servers, Geo-
Rep is faster than Paxos almost by a factor of 100. This result was
possible to reach as there is no relative order between each SMS, so
we needed neither a central master node, nor to replicate every SMS to
every node.

Number of nodes
3 4 5 6 7

Local/Paxos 22827 13366 16021 13798 9343
Local/GeoRep 14880 23246 29807 32762 40437
Separated/Paxos 756 356 217 211 243
Separated/GeoRep 13253 13230 15977 21345 24085

Table 3.3: System throughput for Paxos and GeoRep, within the same data-center and
geo-separated. All values are in messages per second (MPS).

C6: Replicated bursty counters
Next, we wanted to resolve the Client credits requirement from contribu-
tion C4 as the third step in addressing RC3. One of the ideas discussed
in Paper D was the use of application level knowledge in order to find a
more effective solution than what would otherwise have been possible.
In Paper E, we used the same idea, but applied it to much more slowly
moving data, such as the client credits which can be updated in bursts.

As mentioned, a straightforward solution in the literature is to use PN-
counters [73], which consist of a set of pairs of positive and negative
numbers, with one pair per node. When the value is incremented on
a node, the positive number P for that node is incremented, and when

1https://bitbucket.org/infoflexconnect/leaderlessreplication

31

number of servers, f=1

M
P

S

10

100

1000

10000

2 3 4 5 6 7

1 client 10 clients 100 clients 1000 clients

Figure 3.4: System throughput as a function of the number of active servers, running
in different data-centers on multiple continents. Originally published in Paper D.

the value is decremented, the negative number N is incremented. The
full set of pairs is replicated to all other nodes as needed, and each node
saves the maximums of all node-specific P and N it has seen. The sum of
all P minus the sum of all N gives the counter’s value, which converges
to the same value on all nodes.

We extended this datatype with a few attributes, e.g., at what time each
pair was replicated and whether the incoming pair was identical to what
a node already had. Combined, these attributes minimized the network
traffic as unnecessary transmissions were eliminated, and also made the
counters resilient to packet loss.

3.4 Process and Framework

Gorschek and Wnuk [36] have described a 7 step model for technology transfer
between industry and academia. This model provides a roadmap for how an
industry partner with a complex problem can use the knowledge and research
techniques from academia to ultimately create a new solution. It also provides
a suitable framework for the work in this thesis.

Figure 3.5 shows an overview of the steps in this model based on the figure
in the original paper [36], adding our research challenges and contributions.
Step 1 is the identification of problems, which contains all research challenges

32

Step 1
Identify
problem

Step 2
Study

state of
the art

Step 3
Candidate
solution

Step 4
Validation
in the lab

Step 5
Static

validation

Step 6
Dynamic
validation

Step 7
Release
solution

RC1, RC2, RC3

C4 C1

C3, C5, C6

C2

Industry
Academia

Figure 3.5: Our research challenges and contributions matching the 7 steps for tech-
nology transfer by Gorschek and Wnuk [36].

RC1, RC2, and RC3. Step 2 is for problem formulations and the study of state
of the art. Here we find contribution C3. In step 3, a candidate solution is
formulated, which we find in contribution C1. Step 4 is for validation in the
lab, which was done in contributions C4, C5, and C6. In step 5, we go back
to the industry perspective, discussing results with practitioners. This was also
done in contributions C4, C5, and C6. Step 6 is for validation using pilot
projects and controlled tests, as in contribution C2. Finally, in step 7 a solution
is released into production. This fits the tool described in contribution C2,
as it has been used repeatedly for understanding issues discovered in various
production environments.

Gorschek and Wnuk [36] stress that their model is not a list of steps you
follow before publishing a paper. Instead, each single step can provide suffi-
cient new knowledge for one or more publishable research papers. Paper C is
a clear example of this, as it only describes a problem and the solution space.
Two of the actual solutions and their validations then come in Paper D and
Paper E. Also, although it is not mentioned in Paper D, we have occasionally
seen that the current GeoRep implementation has some unresolved issues on
multi-core cpus and is therefore not yet ready to be used in production.

For a more detailed description of the questions in the research challenges,
the approaches used to find the desired new knowledge, and the validations
of the contributions, we use the framework suggested by Shaw [74]. This
framework can be used both for the evaluation of existing research and for
the selection of strategies for new research. As it separates the problem type,

33

the research approach, and the result validation, it offers a more detailed and
flexible framework than the more commonly used terms, e.g., “survey”, “case
study”, and “experiment”.

For the selection of the type of research question, named “research set-
ting”, Shaw suggests the classes Feasibility, Characterization, Method/Means,
Generalization, and Selection. Of these, we used all except Generalization.
The described research approaches are Qualitative/descriptive model, Tech-
nique, System, Empirical model and Analytic model. Of these, we used the
first two. Shaw describes several validation techniques, grouped into Persua-
sion, Implementation, Evaluation, Analysis, Experience. We used all of them
except Analysis.

For challenge RC1, on the nature of round-trip times, our first research
setting was of the type Characterization, as we wanted to get a better un-
derstanding of how these values varied. To find that understanding, we used
Technique, developing the formulas in contribution C1. In the second research
setting, Method, we again used Technique, now for the development of the al-
gorithm in contribution C2. These contributions were then validated together
using Implementation in the form of a case study, first using existing log files
from a production EMG installation and then with simulated data.

For challenge RC2, on possible architectural weak points, the research
question type was Selection, as the goal was to find the best architectural
changes. Using ATAM [8, 52], the selected approach was to generate De-
scriptive models as contribution C3. This contribution was validated using
Experience.

For challenge RC3, on multi-node issues, we first used the question type
Feasibility to get a better understanding of the issues that had to be resolved
to achieve an efficient multi-node configuration, primarily what would be re-
quired for the network communication between the servers. The approach was
again to generate a Descriptive model, this time as contribution C4. The vali-
dation was done using Persuasion.

Challenge RC3 was then addressed using Method/Means, to see if we
could achieve higher throughput by leveraging our domain knowledge to make
trade-offs and optimizations, which would not be possible in a general repli-
cation protocol. The approach was Technique, in the form of the replicated
message storage protocol in contribution C5. This protocol was validated us-
ing a quantitative Evaluation. The same triple with Method/Means, Technique,
and Evaluation, was used for C6. Table 3.4 provides an overview of the set-
tings, approaches, and validation techniques used.

34

Table 3.4: The research contributions and their Shaw classifications.

Contribution Setting Approach Validation
C1 Characterization Technique

ImplementationC2 Method Technique
C3 Selection Descriptive Experience
C4 Feasibility Descriptive Persuasion
C5 Method Technique Evaluation
C6 Method Technique Evaluation

3.5 Future Work

The goal in this thesis, as described in Section 1.2, was to improve the qual-
ity attributes of a messaging gateway. Of the attributes described in ISO/IEC
25010 [45], particular focus has been given to Performance Efficiency and Re-
liability. Going forward, we have identified various ways to further improve
both these and a few more attributes described in that quality model.

The ideas below are all based on concrete problems from industrial pro-
duction environments. Their research settings are either Feasibility or Method/
Means [74], but the selection of a suitable research approach and result valida-
tion techniques remains open for now.

3.5.1 Performance Efficiency

For the sub-characteristics Capacity, we see work on the optimizations of the
networking on a lower level, such as the use of QUIC2 in both the data repli-
cation protocols and for the transport between SMS brokers.

For the Resource Utilization, we see some room for improvement in the
windowing used by all SMS protocols. This is used, similarly as in TCP,
in order to increase the throughput. However, in contrast to the automatic
search for an optimal window size used in TCP, SMS gateways normally use a
fixed window size, leading to sub-optimal throughput or unnecessary network
queues. It would be useful to leverage existing research to find better solutions
here.

3.5.2 Reliability

The reliability for individual gateway nodes can be increased by leveraging
the PDU log files from production environments. On rare occasions, the com-

2https://datatracker.ietf.org/wg/quic/about

35

bination of a large number of events happening in a specific order leads to
unexpected behaviour. As the SMS protocols are stateful and bidirectional,
the events triggering the issue may consist of incoming messages as well as re-
sponses to outgoing messages. Therefore, reproducing these issues so they can
be understood and resolved, is often difficult. To the best of our knowledge,
there are no publicly available tools which can be used to simulate both pro-
ducers and consumers, even though “replay these events” tools are common.
We need a more intelligent tool which can wait for data sent by the application
before sending the corresponding replies, in some cases containing field values
from previously received data. We call this future tool a “pdu runner”.

3.5.3 Security

The analysis implemented for Paper A is an offline solution. A useful improve-
ment here would be to extend the tool to watch log files in real time as they
are written, as the SMS broker could then be notified as soon as a problem is
detected. Another interesting feature for this tool is based on the discussion in
Paper D on the speed of light. If we know that the remote server is some phys-
ical distance away making no response ever being able to come back in less
than for example 10ms, a reply with a round-trip time significantly smaller
than this could indicate a man-in-the-middle attack which clearly would be
worth reporting. The time spent before a remote system sends a reply may
vary, but the speed of light obviously does not.

3.5.4 Reliability and Security

For the combination of Reliability and Security, we could use Fuzz
Testing [59]. With this testing technique, syntactically correct data is sent to
an application, but with random semantically incorrect values. For example,
SMS sent as multiple parts contain both a sequence number and the total
number of parts. Mulliner et al. [63] found, among other things, that when the
first number was larger than the second, some mobile phones crashed. Fuzz
testing is a way of automatically finding such cases. When implemented in
a tool similar to the pdu runner discussed above, we may be able to detect
previously unknown vulnerabilities, both in Braxo’s EMG and in other SMS
gateways.

3.5.5 Maintainability

The Reusability of the tool developed for Paper A could be increased, based
on the hypothesis that the round-trip times could be expressed as some type of

36

well-known distribution instead of just as sums. The expected RTT would then
have some probability for being within a certain interval, which would make
anomaly detection a bit more general, instead of using the hard coded limits
currently used.

37

Chapter 4

Thesis Summary

4.1 Discussion

Our system model, as described in Section 1.1, together with its practical im-
plementation described in Section 1.5, presented several constraints which pre-
vented many of the otherwise possible solutions. First, we could only monitor
the traffic and update the applications running on the gateway nodes, with ac-
cess to neither message senders nor message recipients. This also prevented
us from making any changes in the communication protocols used with these
external parties. Next, we had to be able to handle traffic peaks of up to 1000
messages per second per node.

For RC1 in particular, addressing the round-trip times, we had to com-
pensate for the high variation seen in normal traffic. A specific connection
might have a typical RTT of just a few milliseconds, but a limited number of
round-trips times of several seconds would still not be a reason for concern.

The multi-node configurations addressed by RC3 were made more difficult
by the SMS use case, which also often requires delivery reports to be sent back
to the sender. With the additional bookkeeping required, we needed to replicate
up to 10 000 write operations per second per node, when WanKeeper [3] and
similar systems could provide only around 1% of this performance. More
generally, we found ourselves out of sync with state of the art in multiple
ways:

1. In a world focused on distributed consistency, identifying our situation
as requiring distributed inconsistency was non-trivial.

2. Most of the existing work on data replication [9, 22, 33, 72] address
long time storage, often with causal dependencies between the stored

39

data tuples. Our messages are normally received, stored, forwarded, and
then removed, within a second.

3. To the best of our knowledge, there are no existing storage systems
which allow nodes not belonging to the majority group after a net-split
to keep making progress. This unnecessarily decreases the system avail-
ability for message senders.

When making 10 000 round-trips per second, the speed of light limits the
distance between the nodes to 10 km [68], which is far from enough to offer
protection from outages covering larger areas. We therefore had to find another
solution to RC3, ignoring unnecessary consistency requirements enforced by
previous work. This was made possible as our data tuples were fully indepen-
dent, even if the generality of the solution in C5 therefore is limited to such
settings.

In hindsight, the calculation of adjustment factors in C1 might have been
even better had it also used the Remedian [71] which is central to the anomaly
detection in C2. It would however still only be useful for situations where there
are just a small number of possible factors, each one with a few valid values.

The data replication in C5 could have used a stream model, where mes-
sages were accepted by one gateway node, replicated in a chain to one or more
other nodes, and then forwarded to the recipient. This would also allow batch-
ing, one of the key techniques used to achieve high performance in C5, and be
more inline with existing work (e.g., Chain Replication [5] and Kafka [53]),
but would require a more complex system configuration.

A lesson learned from all parts of the work presented in this thesis is to not
be afraid of going back to basics, questioning and discarding previous solutions
as needed. Albeit this strategy was born out of necessity, as neither state of the
art nor the state of practice was sufficiently efficient for us, it also forced us to
analyze our problems in depth and develop new solutions.

4.2 Validity Threats

All research challenges in this thesis originated from customer requests on
a specific SMS gateway (EMG), so the most significant validity threat here
clearly belongs to the external [28, 48] category, concerning whether the re-
sults would still be valid in a more general context. We have tried to mitigate
this by formulating both the purpose and the contributions of each paper in
as general terms as possible. One of the constraints in Paper B, the fact that
all communication with external systems had to use standard communication

40

protocols, is from this perspective an advantage. Due to this, none of the con-
tributions use any EMG specific communication protocols.

4.3 Conclusions

The goal behind the work presented in this thesis was to improve various se-
lected quality attributes, primarily throughput and reliability, of messaging
gateways. We formulated three specific research challenges. Research Chal-
lenge 1, RC1, was to “Understand and model round-trip times and their anoma-
lies”, motivated by us seeing the round-trip times varying by several orders of
magnitude even during normal operations, and that the distribution had mul-
tiple local maxima. RC2 was to “Identify architectural weak points and find
ways to improve them” in an existing messaging gateway. Any aspect of the
architecture that prevents a high throughput must clearly be addressed before
changing individual components. RC3 was to “Identify and resolve multi-node
issues”, focusing on the special set of issues that arise when extending a system
to run on multiple nodes.

To better understand latency, we contribute a new technique for doing ex-
ponential smoothing in multiple dimensions (C1), and a new anomaly detec-
tion algorithm which can handle large variations in what is considered normal
(C2). To better understand availability and efficiency, we contribute the de-
scription of a lightweight version of ATAM, applied to an existing messaging
gateway (C3), and for scalability and maintainability a review of state of the
art for multi-node systems (C4). Building on the review in C4, it became clear
that existing solutions, while certainly helpful, were still not always a good fit,
or needed significant adjustments to be useful in our setting. As a result, we
contribute two new data replication protocols (C5 and C6), improving reliabil-
ity with a significantly lesser impairment of the throughput than with existing
methods.

41

Bibliography

[1] S. Agarwala, F. Alegre, K. Schwan, and J. Mehalingham. E2EProf: Au-
tomated end-to-end performance management for enterprise systems. In
Proceedings of the International Conference on Dependable Systems and
Networks (DSN). IEEE, 2007.

[2] J. Aikat, J. Kaur, F. D. Smith, and K. Jeffay. Variability in TCP round-trip
times. In Proceedings of the SIGCOMM Conference on Internet Mea-
surement (IMC). ACM, 2003.

[3] A. Ailijiang, A. Charapko, M. Demirbas, B. O. Turkkan, and T. Kosar.
Efficient distributed coordination at WAN-scale. In Proceedings of the
International Conference on Distributed Computing Systems (ICDCS).
IEEE, 2017.

[4] P. S. Almeida and C. Baquero. Scalable Eventually Consistent Counters
over Unreliable Networks. Distributed Computing, 32:69–89, 2019.

[5] S. Almeida, J. Leitão, and L. Rodrigues. ChainReaction: a Causal+ Con-
sistent Datastore based on Chain Replication. In Proceedings of The
European Professional Society on Computer Systems (EuroSys). ACM,
2013.

[6] P. A. Alsberg and J. D. Day. A Principle for Resilient Sharing of Dis-
tributed Resources. In Proceedings of the International Conference on
Software Engineering (ICSE). IEEE Computer Society Press, 1976.

[7] J. H. Andrews. Theory and Practice of Log File Analysis. Technical
report, Department of Computer Science, University of Western Ontario,
1998.

[8] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice,
3rd ed. Addison-Wesley Professional, 2013.

[9] N. Belaramani, M. Dahlin, L. Gao, A. Nayate, A. Venkataramani, P. Yala-
gandula, and J. Zheng. PRACTI replication. In Proceedings of the
Conference on Networked Systems Design & Implementation (NSDI).
USENIX, 2006.

[10] A. Bennaceur, V. Issarny, R. Spalazzese, and S. Tyagi. Achieving Interop-
erability through Semantics-Based Technologies: The Instant Messaging
Case. In LNCS 7650, ISWC. Springer, Berlin, Heidelberg, 2012.

42

[11] B. W. Boehm, J. R. Brown, and M. Lipow. Quantitative Evaluation of
Software Quality. In Proceedings of the International Conference on
Software Engineering (ICSE). IEEE Computer Society Press, 1976.

[12] D. Brahneborg. Leaderless Replication and Balance Management of Un-
ordered SMS Messages. In Proceedings of the Conference on Distributed
and Event-Based Systems (DEBS), New York, NY, USA, 2019. ACM.

[13] D. Brahneborg. Improving the Quality Attributes of a Monolithic Messag-
ing Gateway. Licentiate thesis, Mälardalen University, Västerås, Swe-
den, 2020.

[14] D. Brahneborg and W. Afzal. A Lightweight Architecture Analysis of a
Monolithic Messaging Gateway. In Proceedings of the The International
Conference on Software Architecture (ICSA). IEEE, 2020.

[15] D. Brahneborg, W. Afzal, and A. Čaušević. A Black-Box Approach to
Latency and Throughput Analysis. In Proceedings of the Conference
on Software Quality, Reliability and Security Companion (QRS). IEEE,
2017.

[16] D. Brahneborg, W. Afzal, and A. Čaušević. A Pragmatic Perspective
on Regression Testing Challenges. In Proceedings of the Conference
on Software Quality, Reliability and Security Companion (QRS). IEEE,
2017.

[17] D. Brahneborg, W. Afzal, A. Čaušević, and M. Björkman. Towards a
More Reliable Store-and-forward Protocol for Mobile Text Messages. In
Proceedings of the Workshop on Advanced Tools, Programming Lan-
guages, and PLatforms for Implementing and Evaluating Algorithms
for Distributed systems (PODC/ApPLIED), New York, NY, USA, 2018.
ACM Press.

[18] D. Brahneborg, W. Afzal, A. Cauševic, and M. Björkman. Superlinear
and Bandwidth Friendly Geo-replication for Store-and-forward Systems.
In Proceedings of the International Conference on Software Technologies
(ICSOFT). INSTICC, 2020.

[19] D. Brahneborg, W. Afzal, A. Čaušević, D. Sundmark, and M. Björkman.
Round-Trip Time Anomaly Detection. In Proceedings of the ACM/SPEC
International Conference on Performance Engineering (ICPE). ACM,
2018.

43

[20] D. Brahneborg, W. Afzal, and S. Mubeen. Resilient Conflict-free Repli-
cated Data Types without Atomic Broadcast. In Proceedings of the In-
ternational Conference on Software Technologies (ICSOFT). INSTICC,
2022.

[21] D. Brahneborg, R. Duvignau, W. Afzal, and S. Mubeen. GeoRep – Re-
silient Storage for Wide Area Networks. IEEE Access, 10, 2022.

[22] M. Bravo, L. Rodrigues, and P. Van Roy. Saturn: A Distributed Meta-
data Service for Causal Consistency. In Proceedings of the European
Conference on Computer Systems (EuroSys), 2017.

[23] B. Briscoe, A. Brunstrom, A. Petlund, D. Hayes, D. Ros, I.-J. Tsang,
S. Gjessing, G. Fairhurst, C. Griwodz, and M. Welzl. Reducing Internet
Latency: A Survey of Techniques and Their Merits. IEEE Communica-
tions Surveys & Tutorials, 18(3):2149–2196, 2016.

[24] K. Calvert and S. Lam. Formal methods for protocol conversion. IEEE
Journal on Selected Areas in Communications, 8(1):127–142, 1990.

[25] S. Celar, E. Mudnic, and Z. Seremet. State-Of-The-Art of Messaging for
Distributed Computing Systems. In Proceedings of the DAAAM Interna-
tional Symposium, Vienna, Austria, 2016.

[26] V. Chandola, A. Banerjee, and V. Kumar. Anomaly Detection: A Survey.
ACM Computing Surveys, 41(3):58, 2009.

[27] L. Chung and J. C. S. do Prado Leite. On Non-Functional Requirements
in Software Engineering. In Lecture Notes in Computer Science, volume
5600 LNCS, pages 363–379. Springer Berlin Heidelberg, 2009.

[28] T. D. Cook and D. T. Campbell. Quasi-experimentation: Design and
Analysis for Field Settings. Rand McNally, Chicago, 1979.

[29] M. Dahlin, B. B. V. Chandra, L. Gao, and A. Nayate. End-to-end
WAN Service Availability. IEEE/ACM Transactions on Networking,
11(2):300–313, 2003.

[30] D. Didona, P. Fatourou, R. Guerraoui, J. Wang, and W. Zwaenepoel. Dis-
tributed Transactional Systems Cannot Be Fast. In Proceedings of the
Symposium on Parallelism in Algorithms and Architectures (SPAA), New
York, NY, USA, 2019. ACM Press.

44

[31] L. Dobrica and E. Niemelá. A Survey on Software Architecture Analysis
Methods. IEEE Transactions on Software Engineering, 28(7):638–653,
2002.

[32] G. Fairbanks. Just enough software architecture: a risk-driven approach.
Marshall & Brainerd, 2010.

[33] P. Fouto, J. Leitão, and N. Preguiça. Practical and Fast Causal Consistent
Partial Geo-replication. In Proceedings of the International Symposium
on Network Computing and Applications (NCA). IEEE, 2018.

[34] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Pro-
fessional, 1994.

[35] M. Glinz. On Non-Functional Requirements. In Proceedings of the In-
ternational Requirements Engineering Conference (RE). IEEE, 2007.

[36] T. Gorschek and K. Wnuk. Third Generation Industrial Co-production
in Software Engineering. Contemporary Empirical Methods in Software
Engineering, 2020.

[37] I. Guyon and A. Elisseeff. An Introduction to Variable and Feature Selec-
tion. Journal of Machine Learning Research (JMLR), 3(3):1157–1182,
2003.

[38] I. Guyon and A. Elisseeff. An Introduction to Feature Extraction. In
Feature Extraction, Studies in Fuzziness and Soft Computing, volume
207, pages 1–25. Springer Berlin Heidelberg, 2006.

[39] S. Hassan and R. Bahsoon. Microservices and Their Design Trade-offs:
A Self-Adaptive Roadmap. In Proceedings of the International Confer-
ence on Services Computing (SCC). IEEE, 2016.

[40] G. Hohpe. Enterprise Integration Patterns. https://www.
enterpriseintegrationpatterns.com, 2020 (accessed 2021-
08-06).

[41] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper: Wait-
free Coordination for Internet-scale Systems. In Proceedings of the
USENIX Annual Technical Conference (USENIX ATC). USENIX Asso-
ciation, 2010.

45

[42] O. Ibidunmoye, F. Hernández-Rodriguez, and E. Elmroth. Performance
Anomaly Detection and Bottleneck Identification. ACM Computing Sur-
veys, 48(1), 2015.

[43] O. Ibidunmoye, A.-r. Rezaie, and E. Elmroth. Adaptive Anomaly Detec-
tion in Performance Metric Streams. IEEE Transactions on Network and
Service Management, 15(1):217–231, 2018.

[44] M. T. Ionita, D. K. Hammer, and H. Obbink. Scenario-based software
architecture evaluation methods: An overview. In Proceedings of the
Workshop on Methods and Techniques for Software Architecture Review
and Assessment, part of International Conference on Software Engineer-
ing (ICSE), 2002.

[45] ISO/IEC. ISO/IEC 25010. https://iso25000.com/index.
php/en/iso-25000-standards/iso-25010, 2020. Accessed
2020-06-07.

[46] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley. Infer-
ring TCP Connection Characteristics Through Passive Measurements. In
IEEE INFOCOM, volume 3, pages 1582–1592. IEEE, 2004.

[47] A. Jalnapurkar, C. Shousha, and D. Petriu. Architecture-Based Perfor-
mance Analysis Applied to a Telecommunication System. IEEE Trans-
actions on Software Engineering, 26(11):1049–1065, 2000.

[48] A. Jedlitschka, M. Ciolkowski, and D. Pfahl. Reporting experiments in
software engineering. In Guide to advanced empirical software engineer-
ing. Springer, London, 2008.

[49] I. J. Jureta, S. Faulkner, and P. Y. Schobbens. A More Expressive Softgoal
Conceptualization for Quality Requirements Analysis. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), 4215 LNCS(May):281–295,
2006.

[50] R. Kazman, J. Asundi, and M. Klein. Quantifying the costs and bene-
fits of architectural decisions. In Proceedings of the The International
Conference on Software Engineering (ICSE). IEEE, 2001.

[51] R. Kazman, L. Bass, G. Abowd, and M. Webb. SAAM: A Method for An-
alyzing the Properties of Software Architectures. In Proceedings of the
International Conference on Software Engineering (ICSE). IEEE, 1994.

46

[52] R. Kazman, M. Klein, and P. Clements. Method for Architecture Eval-
uation. Technical report, Carnegie-Mellon Univ Pittsburgh PA Software
Engineering Inst, 2000.

[53] J. Kreps, N. Narkhede, and J. Rao. Kafka: a Distributed Messaging
System for Log Processing. In Proceedings of the SIGMOD Workshop
on Networking Meets Databases (NetDB), Athens, Greece, 2011.

[54] L. Lamport. The Part-time Parliament. ACM Transactions on Computer
Systems, 16(2):133–169, 1998.

[55] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Problem.
ACM Transactions on Programming Languages and Systems, 4(3), 1982.

[56] N. Lassing, D. Rijsenbrij, and H. van Vliet. On software architecture
analysis of flexibility, complexity of changes: Size isn’t everything. In
Proceedings of the The Nordic Software Architecture Workshop (NOSA),
1999.

[57] C.-H. Lung, S. Bot, K. Kalaichelvan, and R. Kazman. An Approach to
Software Architecture Analysis for Evolution and Reusability. In Pro-
ceedings of the The Conference of the Centre for Advanced Studies on
Collaborative Research, 1997.

[58] L. Magnoni. Modern Messaging for Distributed Systems. Journal of
Physics: Conference Series, 608:1–8, 2015.

[59] V. J. Manes, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz,
and M. Woo. Fuzzing: Art, science, and engineering. arXiv preprint
arXiv:1812.00140, 2018.

[60] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius: Building Efficient
Replicated State Machines for WANs. In Proceedings of the USENIX
Conference Operating System Design and Implementation (OSDI), 2008.

[61] G. Molter. Integrating SAAM in Domain-centric and Reuse-based De-
velopment Processes. In Proceedings of the The Nordic Workshop on
Software Architecture (NOSA), 1999.

[62] M. Moore, R. Kazman, M. Klein, and J. Asundi. Quantifying the Value of
Architecture Design Decisions: Lessons from the Field. In Proceedings
of the International Conference on Software Engineering (ICSE). IEEE,
2003.

47

[63] C. Mulliner, N. Golde, and J.-P. Seifert. SMS of Death: From Analyzing
to Attacking Mobile Phones on a Large Scale. In Proceedings of the
USENIX Security Symposium, volume 168. San Francisco, CA, 2011.

[64] P. Naur and B. Randell. Software Engineering: Report of a Conference
Sponsored by the NATO Science Committee, Garmisch, Germany. Tech-
nical report, Scientific Affairs Division, NATO, Belgium, 1969.

[65] S. Newman. Monolith to Microservices: Evolutionary Patterns to Trans-
form Your Monolith. O’Reilly Media, 2019.

[66] D. Ongaro. Consensus: Bridging Theory And Practice. PhD thesis,
Stanford University, 2014.

[67] C. Papadimitriou. Serializability of Concurrent Database Updates. Tech-
nical report, Naval Research Laboratory, Cambridge, Massachusetts,
1979.

[68] R. Percacci and A. Vespignani. Scale-free behavior of the Internet global
performance. European Physical Journal B, 32(4):411–414, 2003.

[69] M. Poke, T. Hoefler, and C. W. Glass. AllConcur: Leaderless Concurrent
Atomic Broadcast Marius. In Proceedings of the International Sympo-
sium on High-Performance Parallel and Distributed Computing (HPDC).
ACM, 2017.

[70] G. C. Roman. Taxonomy of Current Issues in Requirements Engineering.
Computer, 18(4), 1985.

[71] P. J. Rousseeuw and G. W. Bassett. The Remedian: A Robust Averaging
Method for Large Data Sets. Journal of the American Statistical Associ-
ation, 85(409):97–104, 1990.

[72] N. Schiper, P. Sutra, and F. Pedone. P-store: Genuine Partial Replication
in Wide Area Networks. In Proceedings of the Symposium on Reliable
Distributed Systems (SRDS). IEEE, 2010.

[73] M. Shapiro, N. Pregui, C. Baquero, and M. Zawirski. A comprehensive
study of Convergent and Commutative Replicated Data Types. Technical
Report RR-7506, Inria – Centre Paris-Rocquencourt, 2011.

[74] M. Shaw. The Coming-of-Age of Software Architecture Research. In
Proceedings of the International Conference on Software Engineering
(ICSE). IEEE Computing Society, 2001.

48

[75] J. W. Taylor. Short-Term Electricity Demand Forecasting Using Dou-
ble Seasonal Exponential Smoothing. Journal of Operational Research
Society, 54(8):799–805, 2003.

[76] D. Tu, R. Chen, Z. Du, and Y. Liu. A Method of Log File Analysis for
Test Oracle. In Proceedings of the Conference on Scalable Computing
and Communications. ACM, 2009.

[77] J. W. Tukey. Exploratory Data Analysis. Reading, MA, 1977.

[78] R. Underwood, J. Anderson, and A. Apon. Measuring Network Latency
Variation Impacts to High Performance Computing Application Perfor-
mance. In Proceedings of the ACM/SPEC International Conference on
Performance Engineering (ICPE), New York, NY, USA, 2018. Associa-
tion for Computing Machinery.

[79] P. Urbán, X. Défago, and A. Schiper. Contention-Aware Metrics for Dis-
tributed Algorithms: Comparison of Atomic Broadcast Algorithms. In
Proceedings of the International Conference on Computer Communica-
tions and Networks (IC3N). IEEE, 2000.

[80] G. Wiederhold. Mediators in the Architecture of Future Information Sys-
tems. Computer, 25(3):38–49, 1992.

[81] P. R. Winters. Forecasting Sales by Exponentially Weighted Moving Av-
erages. Management Science, 6(3):324–342, 1960.

49

Part II

Included Papers

51

Paper A.
Round-Trip Time Anomaly
Detection

Round-Trip Time Anomaly Detection. Daniel Brahneborg, Wasif Afzal, Ad-
nan Čaušević, Daniel Sundmark, Mats Björkman.

In Proceedings of the ACM/SPEC International Conference on Perfor-
mance Engineering (ICPE). ACM, 2018.

53

Abstract

Mobile text messages (SMS) are sometimes used for authentication, which
requires short and reliable delivery times. The observed round-trip times when
sending an SMS message provide valuable information on the quality of the
connection.

In this industry paper, we propose a method for detecting round-trip time
anomalies, where the exact distribution is unknown, the variance is several or-
ders of magnitude, and there are lots of shorter spikes that should be ignored.
In particular, we show that using an adaption of Double Seasonal Exponential
Smoothing to reduce the content dependent variations, followed by the Reme-
dian to find short-term and long-term medians, successfully identifies larger
groups of outliers. As training data for our method we use log files from a live
SMS gateway. In order to verify the effectiveness of our approach, we utilize
simulated data. Our contributions are a description on how to isolate content
dependent variations, and the sequence of steps to find significant anomalies
in big data.

54

5.1 Introduction

Measuring and monitoring round-trip times (RTTs) of data packets in a net-
worked environment is important for at least two reasons: (1) to maintain the
negotiated service levels of quality and (2) to minimize operational costs. To
better understand the importance of this monitoring, let us consider a scenario
where a person wants to login to an Internet bank.

1. The customer goes to the bank website and enters a personal, unique
identification number.

2. The bank finds this information in its customer database, and sends a
verification code as an SMS message to the registered mobile phone for
this customer. In most cases, the SMS arrives to the mobile phone well
within the negotiated, stipulated time, but in some anomaly situations,
the message could be delayed for a considerable amount of time.

3. The customer enters the verification code, completing the login proce-
dure.

There are many mobile network operators, and as the bank does not want
to maintain connections and agreements with all of them, this service is out-
sourced to one or more “SMS brokers”. SMS brokers (SBs) manage the SMS
traffic between their customers and the network operators. For increased re-
liability, the bank connects to two SMS brokers (Figure 5.1). Assuming the
cost for sending messages via SB1 is lower than via SB2, by default the bank
sends all messages via SB1. If the connection to SB1 is lost for some reason,
the bank quickly switches to SB2 in order to avoid delays in the SMS deliver-
ies. In the worst case it could take hours for the connection to SB1 to be fully
functional again, so without this switch, the problem with SB1 would result in
dissatisfied customers for the bank as the verification codes would stay in the
outgoing queue in the bank’s SMS Gateway. The sooner the switch to SB2 can
be made, the smaller the delay seen by the bank’s customers. Using SB2 all the
time would not improve the situation, as SB2 could also become unreachable
for any number of reasons, e.g. broken hardware, or problems at their Internet
service provider.

The bank customer is the only one who knows the exact delivery time, and
that is just for their own message. In order to get an overall view, from this
point on we will use a simpler measurement: the RTT between the bank and
the SMS broker.

55

Bank
customer

Bank

SMS Broker 1
Operator 1 Operator 2, …

Queue
SMS Broker 2

Bank
SMS Gateway

Login
request

Verification
code

RequestResponse

Verification
code

Figure 5.1: An example scenario emphasizing the importance of measuring and mon-
itoring round-trip times: the bank customer, the bank, two SMS brokers and some
operators.

In this paper we focus on detecting violations that fall somewhere between
a few individual messages being slightly delayed and a fully broken connec-
tion. Let us assume the operator normally has two servers handling SMS traf-
fic, and one of them temporarily breaks. With incoming throughput to the
SMS broker being constant and outgoing throughput being halved, a queue of
messages may form. To prevent this queue from growing without bounds, the
SMS broker can throttle incoming traffic by delaying its responses. Clients
must implement proper windowing, so these delays will cause them to delay
their future requests.

The SMS system behaves much like a train of cars, in that we can draw
conclusions on the situation further ahead by observing the car in front of
us. If the car slows down, we can assume there is a problem with the traffic
in general. Provided the slow speed persists, we might decide to choose an
alternate route. Similarly, the RTT towards the SMS broker provides the client
(the bank) with valuable feedback on the effective throughput of the entire
chain of SMS brokers and operators.

This paper addresses the situation when the absolute values of the delivery
time are not known. We know from earlier results [4] that the RTT has very few
anomalies, but when they happen, we want to know as soon as possible. We

56

have seen that there are several shorter spikes in these RTTs, so our research
objective is to develop a method of automatically finding longer periods of
outliers in RTTs while ignoring these short uninteresting spikes. In particular,
we examine the variation of the RTTs in a production system of an SMS broker
between their own system and several external operators.

Section 5.2 describes the context in more detail and Section 5.3 describes
related work for RTT measurement and anomaly detection. Our approach is
described in Section 5.4. We then describe our case study in Section 5.5, and
the results in Section 5.6. Section 5.7 discusses these results, and the paper
ends with conclusions and future work in Section 5.8.

5.2 Background and Terminology

Figure 5.2 shows the simple base scenario of the network traffic as seen from
the SMS Gateway software used by the SMS brokers. The filled arrows repre-
sent SMS messages, the unfilled arrows are responses, and A, B etc. are points
in time. The SMS Gateway only knows about the times B, C, E and H. The
arrow from J to K is dashed, as we do not know when this event occurs. The
difference between B and C shows the processing time required for an incom-
ing message, while the difference between E and H shows the full RTT to
the operator. We will examine both these differences, as anomalies between
B and C reveal problems in the local environment and anomalies between E
and H reveal problems in the network or with the remote node. The difference
between C and E is how long the message sits in the outgoing queue, waiting
to be sent. From the bank customer’s point of view, the login request starts
at some point before A, and the verification code arrives to the phone at K.
The delivery of the message to the mobile phone and the response sent back to
the SMS Gateway happens in parallel, so the relationship between H and K is
undefined.

In many cases, monitoring of response times is required as a way of mak-
ing sure the system works as expected. According to our industrial experience,
one of two methods are commonly used for this monitoring. 1) Visualize se-
lected measurements on a display, which is simple to implement but requires
a human to look at the display. This is easily forgotten if anomalies are rare.
2) Utilize tools based on Simple Network Management Protocol (SNMP), re-
porting detected anomalies without requiring human interaction. A drawback
is that those checks are usually trivial with static tolerance levels, e.g. whether
a single RTT is longer than 1 second or whether the processing queue contains
more than 1000 elements.

57

Client

SMS Gateway

Operator

Phone

A B C D E F G H J K

Figure 5.2: The network traffic between a client, an SMS Gateway, an operator and a
mobile phone.

Once an anomaly has been detected, some fault localization technique [22]
should be applied to find the root cause of the problem. This is however outside
the scope of this paper.

While SMS brokers reduce the number of accounts needed, the combined
network traffic becomes more difficult to analyze. Some brokers specialize in
operators in a particular region, decreasing the number of accounts but increas-
ing the number of intermediate nodes. Broker handling of messages varies, e.g.
they may store the messages on disk for safety, or wait for acknowledgment
from the next node before responding back to the previous. These factors in-
cur variability in response times, even between the same nodes. We assume
that if a node uses a server cluster, all these servers are homogeneous, giving
consistent RTTs.

5.2.1 Terminology

We will now define the concepts discussed in this paper:

Node: Common term for clients, operators and SMS brokers.

Downstream/Upstream: Downstream is as ordered in Figure 5.2, i.e. client
to SMS broker to operator to mobile phone. Upstream is, obviously, the
reverse direction.

Request: A data packet containing an SMS message, including the sender,
recipient and message body, or a delivery report.

Response: Acknowledgement of a received request.

PDU: Protocol Data Unit, refers to both requests and responses.

58

Delivery report: A data packet sent as confirmation of successful message
delivery to the recipient or rejection by a node.

Round-trip time (RTT):! For outgoing traffic, RTT is the interval between
when the request is sent and the response comes back. For incoming
traffic, RTT is the interval after receiving a request until the response is
sent. In Figure 5.2, these are the intervals from E to H and from B to C
respectively.

Throughput: The number of messages received and forwarded by a node, per
some specified time unit.

Window size: The number of requests the client sends before waiting for a
response.

Outlier: A single RTT measurement significantly higher than usual for a spe-
cific connection. Responses arriving earlier than usual is both very rare
and typically not a problem.

Anomaly: A larger cluster of outliers. This is defined in more detail in Sec-
tion 5.4.4.

5.3 Related work

Earlier studies have focused on either RTT measurement or anomaly detection,
so we will describe these groups of papers separately.

5.3.1 RTT measurement

For RTT measurement, existing work can be structured according to what
protocol they analyze. A relatively common layer for RTT measurements is
TCP, as it is used for many applications and therefore enables analysis of large
amounts of data. Here we find an examination of several different TCP imple-
mentations [18], and a description of the experiences using the tool Tstat [16].

TCP includes an ACK packet which, similarly to our response PDUs, pro-
vides an easy way to calculate the RTT. The RTT can then be either approx-
imated using just the SYN/ACK pair used to initiate the connection [12] or
more correctly using also the data packets and their responses [26]. Martin et
al. [15] took this further by using the minimum and average values of the RTT
for both the SYN and data packets to separate the physical latency from the
server side processing time. The packet-pair strategy was then generalized for
raw IP traffic [27].

59

At the application layer, which is most similar to our work, we have stud-
ies on HTTP traffic by Mosberger and Jin [17] using their tool httperf,
and Halepovic et al. [9] who examined the RTTs from mobile clients to web
servers. The throughput values given by httperf had an average close to the
maximum, which corresponds to an average RTT being close to the minimum.

In some cases, the minimum and maximum RTT values are the most in-
teresting [8], in which case there is no need to examine the distribution in
more detail. Papers that have analyzed the data deeper, have found variances
in RTT for TCP traffic between 1 millisecond and 200 seconds [11, 2]. In an
analysis for Controller Area Networks, the type of network used in real-time
environments, the data had a good fit with the Gamma distribution [28]. Taken
together, most papers that have examined the distribution of RTT values, ex-
plicitly or implicitly describe it as exponential in some way. This is consistent
with our findings.

5.3.2 Anomaly detection

Shanbhag and Wolf suggest using multiple anomaly detection algorithms in
parallel [21], and using the combined result as the trigger. Even though we
do not use multiple algorithms, we use all relevant data fields in the PDU to
calculate the expected values with as much precision as possible.

E2EProf, as described by Agarwala et al. [1], is similar to our approach
as it also uses time-series analysis, of which exponential smoothing is one of
the methods, to analyze the performance of each subsystem of an application.
They define a “spike” as a local maximum, exceeding a threshold of the mean
plus three times the standard deviation. For testing, they used httperf.

Bayesian Principal Anomaly Detection (BPAD) warns for individual out-
liers [10], and because these occur too frequently, it does not suit our context.

Between the years 2000 and 2010, there were several papers [19, 14, 13]
on using Principal Component Analysis (PCA) for anomaly detection. Even
though the method worked fine, it was difficult to find the right sensitivity [5].

Wang et al. [25] stress that anomaly detection methods must in some cir-
cumstances be “lightweight”, both in terms of the number of metrics they re-
quire to run (the volume of data continuously captured and used), and in terms
of their runtime complexity. They suggest smoothing the data, just as we use
exponential smoothing (Section 5.4.2), and detect anomalies using the Tukey
method based on “fences” and “hinges” [24]. This method splits the data into
quartiles separated at Q1, Q2 and Q3, and classifies anomalies in multiples of
the difference between Q1 and Q3. While different from our method, it also
uses the median instead of the mean.

60

5.4 Approach

In order to understand the RTT values, we first calculated the mean and stan-
dard deviation of a few collections of RTTs (Section 5.4.1). We then used ex-
ponential smoothing to get a mean value that gave higher importance to newer
RTTs (Section 5.4.2). Some parts of the variance turned out to be related to
specific aspects of the message data, so the exponential smoothing was further
refined to isolate these as adjustment factors (Section 5.4.3). Finally we calcu-
lated the median of smaller and larger groups of RTTs as a way of identifying
outlier clusters (Section 5.4.4).

5.4.1 Mean and standard deviation

As mentioned in Section 5.2.1, the time spent by a node processing a request
can vary significantly, so the RTT varies from fractions of a millisecond to mul-
tiple seconds. Calculating the mean from such data does not give meaningful
results.

The exact distribution of the RTTs is not known to us. However, earlier
work shows that it resembles a log-normal distribution, so we calculate the
mean and variance of the logarithms of the RTTs.

For efficiency, we use formulas based on those described by Finch [7]. The
formula used for the incrementally calculated mean is shown in Equation 5.1.
Here, xn is the new value, and n is the number of values so far. We use
Equation 5.2 to get the variance Sn, and Equation 5.3 for the standard deviation
σn.

µn = µn−1 +
1

n
(lnxn − µn−1) (5.1)

Sn = Sn−1 + (lnxn − µn−1)(lnxn − µn) (5.2)

σn =
√
Sn/n (5.3)

5.4.2 Exponential smoothing

Over time, the effect of new values added to Equation 5.1 shown in Sec-
tion 5.4.1 will diminish. By instead using exponential smoothing, we are able
to analyze an endless series of data.

We calculate the expected value En using the well-known Equation 5.4,
where n is the number of observations, and Vn is the nth value. Or rather, Vn
is the logarithm of the measured RTT, and En is the logarithm of the expected
value. The new value is the sum of two terms based on the current observation

61

and on the previously expected value, respectively. The constant α is used to
select the scaling factor between them, where a lower value of α gives a more
stable En, as the effect from individual values of Vn is smaller. We set E1 to
V1.

En = αVn + (1− α)En−1, n > 1 (5.4)

5.4.3 Adjustment factors

As the traffic between SMS brokers uses Internet, network related RTTs can
vary both by time of day and day of week. While grouping the data by hour
gives a lower variance and therefore improved anomaly detection, it also gives
less data in each group, resulting in reduced stability. Moreover, it disregards
the similarities of RTTs during consecutive hours.

Communication protocols for SMS consist of fields with key-value pairs
which specify how the SMS should be handled, so we assume their values
might affect the RTT. To minimize the variance, each unique combination of
fields should be analyzed separately. This strategy leads to a combinatorial
explosion, and requires large amounts of data for satisfactory stability of En.
In the financial domain Double Seasonal Exponential Smoothing [23] is some-
times used, basing the result on time values, e.g. day of month and month of
year. The idea is to get a single average value for the entire dataset, with a
small number of adjustment factors. Similar approaches have also been used
in network contexts [6]. We use a variation of this method, but with field values
instead of time values.

We need one adjustment factor per field value, and use the syntax F vn for
the nth value of the adjustment factor for field value v. The value of F v0 is
set to 0, representing the case when the RTT is identical for all values. The
adjustment factor can be either additive or multiplicative, and because of the
exponential nature of the RTT distribution, multiplicative adjustments seem to
make the most sense. However, as the values of En and Vn are logarithms, the
actual adjustment needs to use addition. The calculation of the effect from a
specific field value is shown in Equation 5.5. We want the expected value En
to be free from these variations, so Equation 5.4 is modified to instead use the
adjusted value of Vn, as shown in Equation 5.6.

F vn = α(Vn − En) + (1− α)F vn−1 (5.5)

En = α(Vn − F vn−1) + (1− α)En−1 (5.6)

62

For the more general case, we see the difference between the expected
valueEn and the measured value Vn as the sum of all adjustment factors for all
fields. We can then update the adjustment factors using the same exponential
smoothing as in Equation 5.4. This is shown in detail in Algorithm 1, lines
7 to 13. For simplicity we use the same scaling factor α as for the expected
value in Equation 5.4, but it is possible to use different scaling factors for each
adjustment factor.

5.4.4 Medians

Even with α as low as 0.0001, the wide range of values in the input data renders
En too unstable to be useful in detecting anomalies. A more reliable reference
point is given by the median, in our case calculated using the Remedian [20]
method. The algorithm is simple but effective, using k arrays Ai, each of
length b.

1. Store the first b values in A0, where typically b < 10.

2. Calculate the median of A0 and append the result to A1.

3. Repeat steps 1 and 2 until A1 contains b values. Calculate the median of
them, and append the result to A2.

4. Repeat the previous steps up to Ak for all i less than some k, appending
the median of Ai−1 to Ai.

The median of Ak is now an estimate of the median of the full series of
values. The number of operations required to find the median of b values is
fixed for each b, giving an execution time complexity ofO(n) for n values. We
can think of it as a software version of multiple connected Geneva drives [3].

The value we append to A0 is En, the most recent measurement with all
adjustment factors removed. Using arrays with b = 5 values each achieves a
good balance between stability, which requires more values in each array, and
sensitivity, which requires fewer values. This way A0 has the median of the
most recent 5 values, A1 of 25 values, A2 of 125, etc.

We can now define an anomaly as a cluster of outlier measurements that
increase the median of A3 above twice the median of A5. To avoid repetitive
notifications, each notification suspends further ones until the median of A3

goes below the median of A5. A period of large values that is long enough
to affect the median of A3 this way occurs sufficiently seldom, as shown in
Section 5.6.3.

63

5.4.5 Summary

Algorithm 1 combines the steps described earlier in this section. The algorithm
is implemented as an extension to our existing tool called ELFA (EMG Log
File Analyser – initially introduced in [4]). The method described here has
several benefits.

1. All calculations are done in constant time, depending only on the num-
ber of adjustment factors. This is necessary as we need to be able to
handle continuous traffic with up to 1000 measurements per second.

2. The sensitivity is easily adjusted, even online.

3. It is independent of the frequency of values.

4. The expected value is calculated from all observations, not just from an
artificial subset.

5. Adjustment factors can be added and removed online as needed.

6. For each connection we need to persist only the base value En and the
non-zero adjustment factors F vn to be able to resume a paused analysis.

7. It is self-adapting, using the most recent RTT values for each individual
connection as the basis for detecting outliers.

5.5 Case Study Design

To evaluate our approach for detecting anomalies in the RTTs, we undertook an
industrial case study. Specifically, we wanted to investigate and exemplify how
log files generated by the production system of an SMS broker can be utilized
to identify anomalies in RTTs between itself and several external operators.

5.5.1 Data collection

We examined data from the Enterprise Messaging Gateway (EMG), an In-
foflex Connect AB product used by many SMS brokers. The data was taken
from existing log files as they contained the data we needed without requiring
modifications to the core product with a risk of introducing bugs. The amount
of data per operator varied between 33 and 497 MB.

In this study we selected one of the most commonly used protocols for
SMS traffic, SMPP (Short Message Peer to Peer). Each PDU starts with a
header, comprised of the operation number, a transaction number, a status and

64

ALGORITHM 1: Find Outlier Clusters
input : A list of data points, each one consisting of a list of key-value pairs

and a measured value Vn.
output: A list of start and end points for anomalies.

1 forall A do A←− ∅ // Clear all Remedian arrays.
2 haveReported←− false; (outliers,expected)←− ∅
3 foreach possible key do
4 foreach value used by key do adjustments[key,value]←− 0
5 end
6 foreach data point dp do

// Update the expected value from
measurement(dp), minus adjustment factors.

7 b←− 0
8 foreach (key,value) in dp do b←− b+ adjustments[key,value]
9 expected←− α ∗ (measurement(dp)− b) + (1− α) ∗ expected

// Update the adjustment factors.
10 foreach (key,value) in dp do

// Assume all other adjustment factors are
correct, and calculate what is left.

11 diff←−
measurement(dp)−(expected+b−adjustments[key,value])
// Update the adjustment factor for this

key-value pair.
12 adjustments[key,value]←−

α ∗ diff + (1− α) ∗ adjustments[key,value]
13 end
14 i←− 0 // Update the Remedian arrays.
15 Append expected to A[0]
16 while A[i] is full and i + 1 < 6 // We have 6 arrays
17 do
18 Append median(A[i]) to A[i +1]
19 A[i]←− ∅; i←− i + 1

20 end
// Find start and end points for anomalies.

21 if not haveReported and A[5] has been filled at least once and
median(A[3]) > 2 ∗ median(A[5]) then

22 Add (’start’, timestamp(dp)) to outliers
23 haveReported←− true
24 end
25 if haveReported and median(A[3]) < median(A[5]) then
26 Add (’end’, timestamp(dp)) to outliers
27 haveReported←− false
28 end
29 end
30 return outliers

65

the length of the data section. Following the header is the data section, consist-
ing of a sequence of key-value pairs, where the keys and their order depend on
the operation. As responses can arrive in an undefined order, the transaction
number from the request must be exactly duplicated in the response.

The EMG log files contain information on whether each PDU was sent or
received, the timestamp, which connection was used, the operation name, the
transaction number, and all key-value fields from the data section.

5.6 Case Study Results

This section presents the results of the industrial case study. In particular, we
first discuss how different characteristics (keys) of the data and messages sent
affect the RTT (Section 5.6.1). Second, we discuss how using certain adjust-
ment factors enabled higher accuracy in the outlier detection (Section 5.6.2).
Third, we detail the results of applying the anomaly detection algorithm to a
large dataset of network traffic (Section 5.6.3).

In the presented results, data is analyzed for three different operators, re-
ferred to as “O1”, “O2” and “O3”.

5.6.1 RTT for selected keys

To explore how individual keys affected the RTTs, we counted the number of
unique values used by each key. This revealed three distinct categories.

Message specific: 11 keys, e.g. destination numbers and message bodies. We
assume these values are unique for each message.

Groups: 11 keys, e.g. whether a delivery report is requested, the character
encoding, and similar keys with a very limited set of values. We identi-
fied “data coding”, “esm class” and “registered delivery” as having the
largest effect on the RTTs.

Constants: 4 keys that are either not supported by EMG, or ignored by most
recipients, and therefore always sent with the same value.

Next we describe the key “data coding” in more detail, and how its value
affects the RTT. All RTT values in this section are shown with their mean
and one standard deviation up and down, to give an indication of their relative
positions and spread.

Table 5.1 shows the RTT grouped by data coding. The values in the first
column have the following meaning.

66

Value O1 O2 O3
0 9.3/9.7/10 8.1/8.2/8.4 440/466/493
8 23/25/28 21/24/27 651/673/697

240 3.6/3.7/3.7 3.5/3.5/3.5 N/A
245 3.2/4.9/7.7 N/A 329/358/390

Table 5.1: RTT in milliseconds, grouped by data coding. The three values are µ− σ,
µ and µ+ σ, respectively.

0 Text message, using the GSM character encoding IA5.

8 Text message, using the character encoding UCS-2.

240 Special messages, e.g. configuration settings.

245 8 bit data, e.g. ring tones.

With the exception of the values 240 and 245 to operator “O1”, the RTT
distributions for different values are clearly separated. The operators seem to
perform some time consuming processing of UCS-2 texts, as those RTTs are
significantly longer than for IA5 texts. “N/A” means the value was not used
with that operator.

The RTTs when grouped by the “esm class” and “registered delivery” keys
showed similar patterns, with a ratio of up to 3 for some values. This motivates
us to show the results with a deeper analysis using the adjustment factors.

5.6.2 Adjustment factors

The adjustment factors for the message key values were mostly consistent with
the results in Section 5.6.1. The “data coding” adjustment factors are shown
in Table 5.2. As the values represent the difference in exponent, a value of 1
corresponds to a ratio between the RTTs equal to e.

For O1, whether data coding is 0 or 8 gives an RTT that varies by a factor
of e0.92−(−0.46) ≈ 3.97. UCS-2 data requires twice as much space as IA5, but
even if we adjust for this, there is still a remaining factor of 3.97/2 ≈ 1.99.
We see a similar pattern for O2, with adjustment factors −0.13 and 1.30 for
data codings 8 and 240. The “esm class” and “registered delivery” keys also
showed a clear correlation between the RTTs and the adjustment factors.

67

Value O1 O2 O3
0 -0.46 (9.7) -0.13 (8.2) -0.10 (466)
8 0.92 (25) 1.30 (24) 0.11 (673)

240 -1.12 (3.7) -0.87 (3.5) N/A
245 -0.03 (4.9) N/A -0.25 (358)

Table 5.2: Adjustment factors, by data coding. The value inside parentheses is µ from
Table 5.1.

5.6.3 Anomaly frequencies

Figure 5.3 uses blue circles to show the RTTs for 288,515 outgoing requests
to O1, over a period of approximately two months. Most measurements are
around 10 milliseconds (1e+04 microseconds), but RTTs of up to several sec-
onds are common enough that they are not considered outliers. The black,
green and red lines show the medians from A1, A3 and A5, respectively, as de-
scribed in Section 5.4.4. The black line shows the median of the 52 = 25 most
recent measurements. Even with the large number of measurements above
1e+06 microseconds at Index 240,000, there is still enough data with lower
values to keep the median below 1e+05 microseconds. The green line shows
the median of 25 values from the black line, i.e. 252 = 625 measurements.
It stays significantly calmer, peaking only for indices 18,000, 190,000 and
around 240,000, all corresponding to wider peaks of the black line. The red
line shows the median yet another factor of 25 up, for 253 = 15, 625 measure-
ments. Although some noise remains, the values shown by the red line (A5)
can be used for comparisons with those shown by the green line (A3).

The intervals that satisfy our condition for anomalies, i.e. when the median
of A3 is more than twice the median of A5 as described in Section 5.4.4, are
marked with red lines at the bottom of the graph, surrounded by grey dotted
rectangles. These lines perfectly mark the sections with many slow responses.

Despite the large variance shown in Section 5.6.1, using adjustment factors
and medians provides a base level that is relatively stable. The area contain-
ing outliers for O2 is shown in Figure 5.4(b), where the blue dots have been
removed for clarity. The end point of the marked area is quite far away from
the starting point, indicating low precision of our method. This is the trade-off
for high recall and avoiding multiple adjacent groups of outliers. There are no
round-trips at 196,000 shorter than 5000 microseconds, causing A3 (shown by
the green line) to increase from 4267 microseconds to 8229. This makes A3

more than twice the value of A5 (shown by the red line), i.e. 8229 > 2 ∗ 3964,
satisfying our condition for outliers.

68

Figure 5.3: RTT and medians for O1.

The effect of the adjustment factors is illustrated in Figure 5.4(a) and Fig-
ure 5.4(b). Both figures show the same data, without and with adjustment fac-
tors, respectively. The black and green lines in Figure 5.4(b) are more stable,
reporting one anomaly instead of three.

The algorithm detected no anomalies in the traffic towards O3.
For validation, we created simulated log files. The RTTs were randomized

with a log normal distribution and a minimum value of 1000 microseconds.
After at least 20,000 roundtrips, a group of up to 4095 entries with up to half a
second slower responses was added. The results from the analysis on one such
file are shown in Figure 5.5. There were three groups with slow responses, one
at 48,515 with 2488 entries, one at 82,120 with 1222 entries, and one at 9133
with 192 entries, corresponding to the three blue peaks. Given there must be
at least 625/2 = 313 entries for our algorithm to report an anomaly, only the
first two peaks are reported.

The red line is almost perfectly flat, showing the Remedian [20] is stable.

5.7 Validity Threats

Below we discuss the threats to the validity of our study.

Internal: We see two possible internal validity threats. First, although the
8 option keys we discarded in Section 5.6.1 showed no significance in

69

(a) RTT and medians for O2, without adjustment factors.

(b) RTT and medians for O2, with adjustment factors.

Figure 5.4: RTT and medians for O2 with and without adjustment factors.

70

Figure 5.5: Simulated RTTs, with medians and outliers.

the RTTs in our preliminary results, a more advanced analysis might
show an effect. Second, any implementation errors were mitigated by
carefully examining the program output, manually comparing it with
the raw data in the log files.

External: The analyzed log files in this paper all contain SMS traffic over
SMPP, but the approach with exponential smoothing and the equations
in Section 5.4.2 should be usable in any system where parameter val-
ues affect which parts of the code are executed, and therefore also the
response time. When calculating the median, the sensitivity can easily
be changed by adjusting the array length, and selecting which arrays to
compare.

Reliability: We consider the reliability threat to be small, as we have seen
similar RTT distributions for connections to several operators around
the world.

Construct: The system model used in this paper is somewhat simplified, ab-
stracting the network traffic into logged “send” and “receive” events. In
reality, an outgoing PDU requires multiple steps:

1. The data structure with the information to be sent is created.

2. The data is packed into a byte array that can be transmitted on a
socket.

71

3. The data in the data structure is logged.

4. The byte array is sent to the operating system kernel.

5. The operating system sends the byte array to the network device.

6. The network device transmits the byte array to the network.

The timestamp used for the PDU comes from step 3, ignoring any de-
lays caused by the subsequent steps. The operating system used is Unix,
which does not provide a simple way to find the exact time for step 6.
Instead we assume that delays are small compared to the network trans-
mission and application processing times.

A limitation of the Remedian (described in Section 5.4.4) is that only
value sequences that start on multiples of 5n are considered, so the num-
ber of outliers required to trigger an anomaly notification varies. We do
not consider this a problem, as the algorithm must always be adapted in
order to achieve the desired sensitivity.

5.8 Conclusions and Future Work

Anomaly detection in production systems is valuable for ensuring service lev-
els towards customers. Making use of our domain knowledge, we developed
an algorithm that reduces noise, enabling the detection of larger clusters of out-
liers. The algorithm is implemented as an extension to our tool ELFA which
calculates RTTs between different communicating systems.

Even when the average RTT is within acceptable limits when analyzing
data from the live production environment of an SMS broker, our approach can
be used to identify conditions which have an unreasonable effect. A relevant
example would be the UCS-2 handling (see Table 5.2, the factor when the
parameter is 8) by O1 and O2. Whilst being functionally correct, it suggests
the UCS-2 handling could possibly be made more efficient in those systems.

RTT anomalies may also be possible to detect by observing their side ef-
fects, such as a queue of outgoing messages being formed. The higher the
throughput normally is, the longer the queue can be while maintaining an ac-
ceptable delivery time, so such an algorithm would have to take the current
throughput into account. The throughput is not logged by EMG, so we could
not use this method.

72

Acknowledgments

This work was sponsored by The Knowledge Foundation industrial PhD school
ITS ESS-H, 20160139 (TestMine), 20130085 (TOCSYC) and Infoflex Con-
nect AB.

73

Bibliography

[1] S. Agarwala, F. Alegre, K. Schwan, and J. Mehalingham. E2EProf: Au-
tomated end-to-end performance management for enterprise systems. In
Proceedings of the International Conference on Dependable Systems and
Networks (DSN). IEEE, 2007.

[2] J. Aikat, J. Kaur, F. D. Smith, and K. Jeffay. Variability in TCP round-trip
times. In Proceedings of the SIGCOMM Conference on Internet Mea-
surement (IMC). ACM, 2003.

[3] J. H. Bickford. Mechanisms for intermittent motion. Krieger Pub Co,
1972.

[4] D. Brahneborg, W. Afzal, and A. Čaušević. A Black-Box Approach to
Latency and Throughput Analysis. In Proceedings of the Conference
on Software Quality, Reliability and Security Companion (QRS). IEEE,
2017.

[5] D. Brauckhoff, K. Salamatian, and M. May. Applying PCA for Traf-
fic Anomaly Detection: Problems and Solutions. In Proceedings of the
Conference on Computer Communications (INFOCOM). IEEE, 2009.

[6] J. D. Brutlag. Aberrant behavior detection in time series for network
monitoring. In LISA, volume 14, pages 139–146, 2000.

[7] T. Finch. Incremental Calculation of Weighted Mean and Variance. 2009.

[8] M. Gutiérrez, W. Steiner, R. Dobrin, and S. Punnekkat. Learning the
Parameters of Periodic Traffic Based on Network Measurements. In Pro-
ceeings of the International Workshop on Measurements & Networking
(M&N). IEEE, 2015.

[9] E. Halepovic, J. Pang, and O. Spatscheck. Can you GET me now? Es-
timating the time-to-first-byte of HTTP transactions with passive mea-
surements. In Proceedings of the SIGCOMM Conference on Internet
Measurement (IMC). ACM, 2012.

[10] A. Holst and B. Bjurling. A Bayesian Parametric Statistical Anomaly De-
tection Method for Finding Trends and Patterns in Criminal Behavior. In
Proceedings of the European Intelligence and Security Informatics Con-
ference, 2013.

74

[11] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley. Infer-
ring TCP Connection Characteristics Through Passive Measurements. In
IEEE INFOCOM, volume 3, pages 1582–1592. IEEE, 2004.

[12] H. Jiang and C. Dovrolis. Passive estimation of tcp round-trip times.
ACM SIGCOMM Computer Communication Review, 32(3):75–88, 2002.

[13] A. Lakhina, M. Crovella, and C. Diot. Mining anomalies using traffic
feature distributions. ACM SIGCOMM Comp. Comm. Rev., 35(4), 2005.

[14] Y. Liu, L. Zhang, and Y. Guan. Sketch-based Streaming PCA Algorithm
for Network-wide Traffic Anomaly Detection. In Proceedings of the
International Conference on Distributed Computing Systems (ICDCS).
IEEE, 2010.

[15] H. Martin, A. McGregor, and J. Cleary. Analysis of Internet Delay Times.
Technical report, 2000.

[16] A. F. M. Mellia and M. M. M. M. Munaf. Experiences of Internet Traffic
Monitoring with Tstat. IEEE Network, (June):8–14, 2011.

[17] D. Mosberger and T. Jin. httperf - A Tool for Measuring Web Server
Performance. SIGMETRICS Performance Evaluation Review, 26(3):31–
37, 1998.

[18] V. Paxson. Automated Packet Trace Analysis of TCP Implementa-
tions. ACM SIGCOMM Computer Communication Review, 27(4):167–
179, 1997.

[19] H. Ringberg, A. Soule, J. Rexford, and C. Diot. Sensitivity of PCA For
Traffic Anomaly Detection. ACM SIGMETRICS Performance Evaluation
Review, 35(1), 2007.

[20] P. J. Rousseeuw and G. W. Bassett. The Remedian: A Robust Averaging
Method for Large Data Sets. Journal of the American Statistical Associ-
ation, 85(409):97–104, 1990.

[21] S. Shanbhag and T. Wolf. Accurate Anomaly Detection Through Paral-
lelism. IEEE Network, 23(1):22–28, 2009.

[22] M. Steinder and A. S. Sethi. A Survey of Fault Localization Techniques
in Computer Networks. Science of Computer Programming, 53(2):165–
194, 2004.

75

[23] J. W. Taylor. Short-Term Electricity Demand Forecasting Using Dou-
ble Seasonal Exponential Smoothing. Journal of Operational Research
Society, 54(8):799–805, 2003.

[24] J. W. Tukey. Exploratory Data Analysis. Reading, MA, 1977.

[25] C. Wang, K. Viswanathan, L. Choudur, V. Talwar, W. Satterfield, and
K. Schwan. Statistical Techniques for Online Anomaly Detection in Data
Centers. In Proceedings of the IFIP/IEEE International Symposium on
Integrated Network Management (IM), 2011.

[26] H. Yan, K. Li, S. Watterson, and D. Lowenthal. Improving Passive Esti-
mation of TCP Round-trip Times Using TCP Timestamps. In Proceed-
ings of the International Workshop on IP Operations and Management.
IEEE, 2004.

[27] S. Zander and G. Armitage. Minimally-intrusive Frequent Round Trip
Time Measurements Using Synthetic Packet-pairs. In Proceedings of the
Conference on Local Computer Networks (LCN), 2013.

[28] H. Zeng, M. Di Natale, P. Giusto, and A. Sangiovanni-Vincentelli. Using
Statistical Methods to Compute the Probability Distribution of Message
Response Time in Controller Area Network. IEEE Transactions on In-
dustrial Informatics, 6(4):678–691, 2010.

76

Paper B.
A Lightweight Architecture
Analysis of a Monolithic
Messaging Gateway

A Lightweight Architecture Analysis of a Monolithic Messaging Gateway.
Daniel Brahneborg, Wasif Afzal.

In Proceedings of the International Conference on Software Architecture
(ICSA). IEEE, 2020.

77

Abstract

Background: The Enterprise Messaging Gateway (EMG) from Infoflex
Connect (ICAB) is a monolithic system used to deliver mobile text messages
(SMS) world-wide. The companies using it have diverse requirements on
both functionality and quality attributes and would thus benefit from more
versatile customizations, e.g. regarding authorization and data replication.

Objective: ICAB needed help in assessing the current architecture of EMG
in order to find candidates for architectural changes as well as fulfilling the
needs of variability in meeting the wide range of customer requirements.

Method: We analysed EMG using a lightweight version of ATAM (Ar-
chitectural Trade-off Analysis Method) to get a better understanding of how
different architectural decisions would affect the trade-offs between the qual-
ity requirements from the identified stakeholders.

Result: Using the results of this structured approach, it was easy for ICAB
to identify the functionality that needed to be improved. It also became clear
that the selected component should be converted into a set of microservices,
each one optimized for a specific set of customers.

Limitation: The stakeholder requirements were gathered intermittently
during a long period of continuous engagement, but there is a chance some of
their requirements were still not communicated to us.

Conclusion: Even though this ATAM study was performed internally at
ICAB without direct involvement from any external stakeholders, document-
ing elicited quality attribute requirements and relating them to the EMG archi-
tecture provided new, unexpected, and valuable understandings of the system
with a rather small effort.

78

6.1 Introduction

Mobile text messages (SMS) are used world-wide, being popular as they work
on all mobile phones without any additional software installed. In particular,
they are commonly used by companies to send meeting reminders, authenti-
cation codes, travelling tickets, and more, to their customers. Between these
companies and the customers’ network operators, we find a product segment
called SMS gateways. These gateways receive text messages from the compa-
nies, route them to the right operators, manage the connections to the opera-
tors over several different communication protocols, and handle any operator
specific requirements. The gateways are often run by a separate group of com-
panies, known as SMS brokers.

One of these gateways is the Enterprise Messaging Gateway (EMG) from
Infoflex Connect AB (ICAB). EMG is a system with a proven track record
spanning more than 20 years. Its monolithic architecture makes it easy for
customers to deploy and manage EMG, and is also convenient for the software
developers as the entire code base is just a simple function call away.

However, monoliths can be difficult to scale horizontally, i.e. to more than
one server, and are sensitive to failures as those can bring the entire application
down [22]. In our context, it is also problematic that each software update
requires a full application restart, temporarily stopping all traffic.

One common way of addressing some of these issues with monoliths is
to split them into sets of microservices [6, 14]. Selecting which parts of
the monolith to extract is non-trivial [12, 10], but usually involves identify-
ing components with loose coupling (independent) and strong cohesion (self-
contained) [17].

Older literature on modularity provide some other recommendations, such
as “We propose instead that one begins with a list of difficult design decisions
or design decisions which are likely to change. Each module is then designed
to hide such a decision from the others.” by Parnas [18]. We find a similar
theme in many of the design patterns by Gamma et al. [11], namely to “encap-
sulate the concept that varies”.

The approach used by Cruz et al. [7] was to base their migration of a mono-
lith to microservices on the results of an architectural analysis of the system.
Such an analysis focuses on aspects which arise as a consequence of the ar-
chitecture, e.g. response times, scalability, and modifiability. In particular,
they used the Architectural Trade-off Analysis Method (ATAM) created at the
Carnegie Mellon’s Software Engineering Institute [16, 3]. According to both
Dobrica et al. [8] and Anjos and Zenha-Rela [2], the only analysis methods
that consider a wide set of quality attributes are ATAM and SBAR [4]. Of

79

these, ATAM is the only one applicable to mature products [2]. A more recent
approach is RCDA, the Risk- and Cost Driven Architecture approach [19],
adding a financial dimension to architectural work. RCDA appears to be most
useful early in relatively large projects, neither of which is the case for us.

We know from experience that software such as EMG, created by one com-
pany and used by others, usually require variability in terms of customer spe-
cific behaviour. This variability is typically not required for microservices, as
they tend to be created for in-house use and even operated by the developers
themselves, sometimes phrased as “you build it, you run it” [13]. This in-
house focus means that “the literature [on microservices] is scarce in relation
to the use of variability” [6]. Variability is also not covered in the otherwise
comprehensive mapping study on microservice architecture by Alshuqayran
et al. [1].

The research questions we address in this work are whether ATAM could
help identifying the components in EMG where architectural changes would
be most beneficial, and whether it can help clarifying the need for variability
in those components. During the analysis, all known quality requirements as
given both by ICAB and their customers must be taken into account.

We present the results of the systematic application of a lightweight version
of ATAM to ICAB’s EMG system. Our primary contribution is showing that
the ATAM analysis was able to identify the best component to change, which
in ICAB’s case is the credit management. Our second contribution is show-
ing that ATAM also helped with managing the variability, suggesting that the
credit management component should be extracted into a set of microservices,
all providing the same API but implementing different strategies. Our third
contribution is the overview of the ATAM artefacts and concepts (Fig. 6.6),
with more details than the original paper [16]. Our fourth contribution is a de-
scription of how ATAM can be used in a real-world architecture analysis, even
in the absence of external stakeholders (Section 6.3.5).

The analysis was carried out as an entirely internal project at ICAB, avoid-
ing the overhead that comes with involving external parties. While this setup
presented a risk of missing some of the requirements and ignoring the relative
importance of the requirements we found, it also meant that the study could be
completed in just over one man month.

The current section has presented the background for the analysis and re-
lated work. Next, Section 6.2 describes ATAM and how we adapted it for our
purposes, Section 6.3 presents the results from the ATAM analysis, and Sec-
tion 6.4 discusses the interpretation of those results. Section 6.5 discusses the
validity threats and finally, Section 6.6 presents our conclusions and planned
future work.

80

6.2 Method

ATAM [16] is a systematic way to “assess the consequences of architectural de-
cisions in light of quality attribute requirements”. We therefore only consider
requirements whose measurable responses to external stimuli are affected by
the architecture.

An ATAM study follows the nine steps below, typically in a two or three
day discussion workshop. The participants of this workshop are the various
stakeholders of the system. The analysis is usually carried out in two phases,
where phase 1 is limited to steps 1–6 and a small team, and phase 2 includes
all steps a few weeks later, now with the full team.

Presentation:

1. Present ATAM to the participants.

2. Present the system from a business perspective.

3. Present the suggested architecture.

Investigation and analysis:

4. Identify architectural approaches. These approaches refer to aspects
such as whether the system would be a monolith, client–server, or some-
thing else. Other terms used here are “styles” and “patterns”.

5. Generate the quality attribute utility tree, a hierarchical list of quality
requirements.

6. Analyze the architectural approaches in step 4, on how they realize the
most important quality attributes described in step 5. This results in the
identification of sensitivity points where an architectural approach af-
fects a quality attribute, tradeoff points where an approach affects mul-
tiple quality attributes in different ways, and the list of such points that
present a risk.

Testing:

7. Elicit and prioritize scenarios. Now the full set of stakeholders are in-
cluded, brainstorming both current use cases, expected future “change
scenarios”, and extreme “exploratory scenarios”.

8. Analyze the architectural approaches again, now focusing on the most
important scenarios from step 7. If a scenario can not be realized using
the selected architectural approaches, these need to be adjusted.

81

Business Drivers

Architecture

Architecture Approach

Utility Tree

Step 5

Scenario

Attribute Goal

Sensitivity Point

Risk

Tradeoff PointArchitectural Decision

Step 2

Step 3

Step 4

refined into

requires

grouped
into

input

input

fulfilled
by

based on

affects

configured
with

Step 6

Figure 6.6: Artefacts created by the different steps in the ATAM version used in this
paper, with arrows indicating data flow. The analysis output is discussed in detail in
Section 6.3.5.

Reporting:

9. Present the results.

The key concepts used in ATAM, according to our understanding, are
shown in Fig. 6.6. We noted that there is a discrepancy in the ATAM paper
regarding the output from step 6. First it says “all sensitivity points and trade-
off points should be categorized as either a risk or a non-risk”, suggesting that
risk is an orthogonal concept to the first two. However, then it continues “The
risks/non-risks, sensitivity points, and tradeoff points are gathered together in
three separate lists”, where the risks are now a concept of its own. In this paper
we used the second variant, with the risks list containing attribute goals we do
not yet know how to fulfill.

We made some additional adaptations of ATAM to fit our situation better.
First of all, no external stakeholders were involved. Therefore, our analysis
was based on the lightweight version of ATAM [3], where the testing done in
steps 7 and 8 is skipped. This is, in essence, ATAM phase 1 plus reporting. The
current section represents step 1 and Section 6.3 represents step 9, containing
the output produced by steps 2 to 6.

82

Next, we realized that the prioritization of the quality attributes in step 6,
“Analyze Architectural Approaches”, was highly dependent on which stake-
holders were present. To get an objective result despite the lack of such stake-
holders, we needed another way of identifying the most important scenarios.
For this purpose, we counted the number of business driver groups interested in
each of the quality attributes. The point of having a varied set of stakeholders
would partly be to have somebody represent all these different groups, making
this simple count seem a reasonable proxy.

6.3 Results

This section represents step 9, presenting the output generated from steps 2
to 6. We recall that step 1 was covered by Section 6.2, and that steps 7 and 8
were skipped entirely.

6.3.1 Step 2: Business Drivers

The system requirements from a business perspective were grouped into “im-
portant functions”, “major quality attribute goals”, “business goals”, and “con-
straints”.

• The most important functions of EMG are to:

– forward messages with high throughput, and

– manage client credits for these messages.

• The major quality attribute goals of EMG are to:

– be available without interruptions,

– prevent data loss, and

– be easy to install and maintain.

• To satisfy the business goals, each EMG release should:

– provide increased value to a varied set of both old and new cus-
tomers, and

– be done several times per year, to minimize risks for both ICAB
and the SMS brokers by not containing too many new features or
updated behaviours.

• The constraints, defining the border between what can and what can not
be done, say that:

83

– EMG must follow standard network protocols (e.g. SMPP and
HTTP),

– the relative message ordering does not need to be maintained [5],
and that

– ICAB does not have the resources for a full software rewrite. This
means focusing on the smallest changes in the most isolated mod-
ules, giving the most value to the largest number of customers.

Step 2 also includes the identification of the major stakeholders, which in
our case consists of three groups. The first group consists of the staff at ICAB,
where there is a strong focus on maintaining a sound architecture, making the
required effort for adding new features predictable. In the second group we
have the entry level customers, operating gateways with a limited amount of
traffic. These customers run EMG on a single node, trading potentially lower
availability for a lower cost and a simpler setup. The third and final group
consists of customers using multiple EMG nodes and complex configurations
to achieve higher system-level throughput, higher availability to clients, and
better protection of queued messages.

6.3.2 Step 3: Analyzed Architecture

At the highest abstraction level, EMG, installed at an SMS broker, sits between
one or more clients on one side, and one or more mobile network operators on
the other side. The clients send messages to EMG, the messages are routed
within EMG according to the site specific configuration, and persisted on disk
until they can be sent to the designated operator. After a message has been
acknowledged by the operator, it is removed from disk. Additionally, the oper-
ator can send back message specific delivery reports, which are handled much
the same way as normal messages, but travelling in the opposite direction.

To maximize the throughput whilst minimizing the complexity of the in-
stallation and configuration, EMG is a modular monolith. Optionally, cus-
tomer specific plugins can be used at a handful of well defined points in the
message life cycle.

EMG normally only needs to be restarted for installation of optional soft-
ware updates, typically less than a few times per year. In order to prevent data
loss and make these restarts as opaque as possible for the clients, it is critically
important that the restarts are handled correctly. To accomplish this, the mod-
ules in EMG are grouped into three types based on how their data is managed.
The modules without persistent state comprise the first type. The second type

84

uses an embedded NoSQL database (currently LevelDB from Google), and the
third type uses an external MySQL database.

Modules of the first type provide functionality such as network connectiv-
ity and protocol drivers (e.g. SMPP and HTTP), address and content filtering
and modification, message routing, and logging. Most of these modules can
use either configurable builtin logic or a site specific plugin, developed either
by ICAB or the customers themselves.

The data managed by the second type of modules, using an embedded
database, is not accessible from the outside. This enables ICAB to change
both the actual database used as well as the structure of the stored data, as
needed. These modules primarily handle the message queues and information
about pending delivery reports. There is also a module for the SAT (Source
Address Translation) functionality, providing a dynamic mapping between the
incoming sender address from the client and the address used towards the op-
erator. This functionality enables a client to use an email address for the sender
address, which is mapped to a phone number picked from a number pool. The
message recipient can then reply to this pool number, which the SAT module
converts back to the original email address.

The third type of modules manage data using the MySQL client API, mak-
ing the data available for modification from the outside. This gives SMS bro-
kers the option to use either a simple single node database or a multi-node
replicating cluster, without requiring any special handling by EMG. These
modules mainly handle user authentication and message credits. There is
usually also a read-only view of the last known state (e.g. received, for-
warded, failed, or delivered) of each accepted message, used for billing and
troubleshooting.

6.3.3 Step 4: Architectural Approaches

At the top level, EMG is best described as using the publish-subscribe [9]
architectural style. Even though “connector” is part of the publish-subscribe
style, in the EMG context it is used as an endpoint definition from clients or to
operators. The embedded NoSQL storage acts as the event bus, the connection
between producers and consumers. The publisher is driven by the incoming
connector the client connects to, and the consumer is driven by the outgoing
connector. The events are the text messages, and the event types correspond to
the names of the connectors. Each event must only be received by a single con-
sumer, to avoid multiple copies of each message appearing in the recipients’
mobile phones, barring exceptional circumstances.

Both producers and consumers use a simple layered approach. The data

85

Plugins

Credit manager

Incoming Connector

Protocol driver

Enterprise Messaging Gateway

NoSQL driver

may use

Client

Receive message

Parse message

MySQL

Filter, modify, etc.

Check user credit
use

Select the target
outgoing connector

Reject message

insufficient

rejected

Deduct default cost

Accept message

ok

Store message and
delivery report info

use

Send reply

LevelDB

Figure 6.7: The main data flow for incoming traffic from clients.

flow of the producer side is shown in Fig. 6.7, where each received message
passes down through various modules before a response propagates back to the
sender. The incoming connectors receive messages using one of the protocol
drivers, filter, modify and route them as configured, and finally persist them
in the NoSQL storage. Similarly, the outgoing side handles connectivity to
the systems downstream, forwards the messages, removes them from storage,
and finally adjusts the user credit value. The usage of an embedded database
provides good performance and protection from temporary node failures, but
not from permanent node failures.

EMG is deployed on one or more, physical or virtual, 64 bit Linux nodes.
The deployment requires the installation of a number of third party compo-
nents, adding the executable files for EMG, and making site specific configu-
rations. MySQL is deployed on the same or other nodes.

Using multiple EMG nodes is beneficial despite the lack of data replication
between them, as permanent node failures are rare. Separate sets of messages
can then be processed in parallel by all nodes, resulting in increased system-
wide throughput.

Based on the assumption that the data in the embedded databases is limited
in size, all such data is loaded on startup into specifically tailored in-memory
data structures. Primarily, this frees the “find the next message to send” and
“find the delivery report record corresponding to a given message id” opera-
tions from having to make time consuming round-trips to the database. These

86

operations can now be carried out much faster by instead traversing the data
structures.

6.3.4 Step 5: Quality Attribute Tree

In step 5, the quality attributes are elicited, prioritized, and refined with exact
stimuli and falsifiable responses into scenarios, which are to be analyzed in
the next step. Typically these attributes originate from the business goals, the
result from step 2. ATAM provides a sample list of possible quality attributes,
but also notes that stakeholders “may add their own quality attributes or may
use different names for the same ideas” [16]. Another attribute list for use in
ATAM is presented by Bass et al. [3]. We decided to base our list on SIS-
ISO/IEC 9126 [21], because it had a focus on measurable attributes.

Defining all scenarios fully was not considered meaningful in this paper.
For example, the functional requirement that all incoming messages should
be forwarded can be refined with the quality requirement that this should be
done as soon as possible, which in turn could be refined by setting a maximum
time limit. However, the time a message is spent queued within EMG depends
entirely on the availability of and throughput to the receiving side, both of
which are beyond our control.

The full list of elicited quality attributes for the current use cases are sum-
marized together with their corresponding business drivers in Fig. 6.8, and
described in more detail below. The attributes selected for step 6 are written in
boldface.

6.3.4.1 Functionality

The database containing the current state of each message should be kept rea-
sonably up-to-date. As this requirement was not among the ones analyzed in
the next step, the exact limit for the allowed delay was not specified further.

In order for the EMG owner to be able to bill the clients correctly, and
possibly also ensure messages are pre-paid, the current value of the message
credits for each user must be kept up-to-date. A discrepancy of 1 second’s
worth of messages would be acceptable, if that increases the throughput.

Ever since EMG was created, it has followed the general robustness prin-
ciple of being as tolerant as possible when processing incoming data, and as
conservative as possible when producing outgoing data. Following this prin-
ciple ensures a minimum of code changes are required for EMG to exchange
messages with other systems, and has served the product well.

87

Important
Functions

Quality Goals
Business

Goals

Constraints

C
redit M

anagem
ent

H
igh Throughput

Interrupt Free
Prevent Data Loss

Easy Installation

Releases w
ith Value

Frequent Releases

Standard Protocols
No O

rdering
No Rew

rite

FunctionalityReliability

M
essage State

C
orrect-ish M

essage C
redits

N
o C

ode Changes

M
TTR

 < 1 m
in

Rare Client Reconnects
Survive Restarts
Survive N

ode D
eath

Efficiency

1000 clients
Fast responses

1000 M
PS

Maintainability

External Logs
New

 Protocols
C

ustom
 C

hanges
Unit/System

 Level Tests

Portability

Language Independent Plugins

R
atio of M

anual Installation Steps

Low
 Coupling

Third Party C
om

ponents

Figure 6.8: Business Drivers (top) and Quality Attributes (bottom) for EMG.

6.3.4.2 Reliability

There are two types of quality attribute requirements in the reliability category.
The first type concerns the availability to clients, stating that forcing clients to
reconnect to EMG should be a rare event, and happen at most once per several
months. Additionally, when such an interruption occurs, for example due to
EMG being restarted, connectivity should be restored in less than one minute.

The second type concerns the prevention of message loss. As there is
no dependable end-to-end acknowledgement for text messages, a message re-
ceived and confirmed back to the sender must remain in the queue and eventu-
ally get sent, regardless of whether the EMG application stops temporarily or
permanently. The latter is of course only possible to achieve in a configuration
with multiple nodes and data replication.

6.3.4.3 Efficiency

Most modules in EMG are I/O bound, either for disk, network, or both. In
order to effectively utilize modern hardware with fast multi-core processors,
each EMG node must support traffic from at least 1000 parallel client connec-

88

tions. Moreover, a majority of clients send very few messages, which means a
large number of clients are required for the SMS gateway node to be profitable.

Next, incoming messages should result in an acknowledgement sent back
within 10 seconds. Some SMS gateways wait up to a minute before sending
back a reply, making it difficult for the sender to know whether the remote
system is still operational. An EMG running on a local node has no problems
replying within 1 millisecond, but this time increases significantly if routing is
done using a plugin requiring one or more network roundtrips to other systems,
or if the message must be replicated to a different data center.

Finally, each EMG node should be able to process at least 1000 messages
per second (MPS). This number is based on both the requirements from ex-
isting EMG customers, and what seems to be reasonable given the current
architecture. The highest throughput is typically reached for 10–100 parallel
connections, as this keeps all processor cores busy.

6.3.4.4 Maintainability

For maintainability, where the requirements are based almost entirely on the
business goals of doing frequent and valuable releases, we consider both devel-
opment and operational perspectives. For the development perspective, adding
new protocols and custom logic should not affect the rest of the system. This
is supported by a comprehensive regression test suite. For the operational per-
spective, the most important requirement is to assist troubleshooting by having
EMG log over the network.

6.3.4.5 Portability

The portability requirements concern the independence of the system from its
surrounding environment, and of its parts relative to each other. To achieve
the former, plugins should be possible to implement in any programming lan-
guage available on the Linux platform, and the number of manual steps in the
installation procedure should be kept to a minimum. Until recently, plugins
could only be written in C and Perl, but with the recent addition of an HTTP
interface they are now language independent. For the installation, having to
install multiple system packages can cause conflicts with other applications.
Achieving the latter, where the parts are independent from each other, enables
making isolated and predictable changes. Keeping system parts independent is
easier when using third party components, as they are guaranteed not to have
any dependencies back into EMG.

89

6.3.5 Step 6: Analyze Architectural Approaches

In step 6, the architectural approaches from step 4 are analyzed on how well
they support the most important requirements from step 5. As mentioned, we
found those requirements by counting the number of business goals they were
related to. This way we found “1000MPS” linked to 3 groups, followed by
“correct-ish message credits”, “MTTR < 1 min”, and “survive node death”,
each one linked to 2 groups. We also found links to 2 groups from “ratio of
manual installation steps” and “third party components”. We recall that these
requirements are all marked with boldface in Fig. 6.8. Conversely, each one
of the business drivers “high throughput”, “prevent data loss” and “standard
protocols” affects the largest number of quality attribute groups, i.e. 3. We
describe the most significant architecture parameters related to these attributes
below.

6.3.5.1 Risks

As motivated in Section 6.2, our list of risks contains “architecturally impor-
tant decisions that have not been made” [16]. In our case, the only identified
risk concerns the temporary storage of unsent messages. How to ensure mes-
sages survive the permanent failure of the node they arrived to, while still
maintaining the desired throughput and following the constraints from step 2,
is an open issue.

6.3.5.2 Sensitivity points

The sensitivity points are “parameters in the architecture correlated to mea-
surable quality attributes” [16]. Production environment log files from vari-
ous sites clearly show that the greatest effect on the time required to restart the
EMG application after a failure, i.e. the MTTR, is due to the preloading of
NoSQL data. The lion’s share of the startup time is used loading the runtime
data for the SAT functionality. This is because the SAT data is kept for sev-
eral days, whereas messages waiting to be sent and data on pending delivery
reports are typically removed after just a few seconds.

The ratio of manual installation steps and the coexistence with third party
components would both benefit from improved installation procedures. In par-
ticular, using container technology such as Docker1 could have considerable
positive effects.

1https://www.docker.com

90

6.3.5.3 Trade-off points

Trade-off points are similar to sensitivity points, but “correlated to multiple
quality attributes with different effects” [16]. The architectural decision of
storing the message credits in an external database is the source of two such
points, both related to performance.

The first point concerns the trade-off between performance and usability.
By keeping the credits in MySQL, we improve usability as the credits are easy
to read and update from an external tool. However, because each database
operation takes non-zero time, at the same time we also lose throughput.

The second point is the trade-off between performance and precision. To
mitigate the lowered throughput from the previous trade-off, credit updates
could be limited to once per n messages. This would improve performance on
account of fewer database operations, but reduce the precision of the current
credit value. The credit value would be only eventually consistent at each
point in time, so there are windows of time in which clients might be able to
send more messages than they should be, according to their pre-paid message
credits.

6.4 Discussion

Using multiple EMG nodes can not only protect from data loss when an indi-
vidual node fails, but also increase the total system throughput as more work
can be done in parallel. Only the data protection would benefit from replication
of the data in the embedded databases, in particular the messages yet unsent.
In contrast, both data protection and throughput would benefit from having an
effective way of keeping the message credits synchronized among all nodes,
as it would allow clients to simultaneously connect to multiple EMG nodes.
Furthermore, the ability of doing batch-wise updates of the message credits
may provide increased throughput also for the smaller customers using a sin-
gle EMG node.

We see that improving the credit management would have the biggest im-
pact as it would increase the system throughput, and thereby the value of EMG,
for basically all customers. Such an enhancement could be carried out in mul-
tiple steps, with each step producing a new variant to be released and then
maintained independently. These variants would probably include, but not
necessarily be limited to, the ones listed below. Fig. 6.9 shows how they re-
place the “use” arrow between the credit manager and MySQL to the right in
Fig. 6.7.

91

Microservices

Plugins

Credit manager

Incoming Connector

Protocol driver

Enterprise Messaging Gateway

NoSQL driver

Client

Receive message

Parse message

MySQL

Filter, modify, etc.

Check user credit
use

Select the target
outgoing connector

Reject message

insufficient

rejected

Deduct default cost

Accept message

ok

Store message and
delivery report info

use

Send reply

LevelDB
may use

Figure 6.9: The connection between the credit manager and MySQL, shown to the
right in Fig. 6.7, would be replaced by one of three microservices.

1. A minimal microservice which checks and updates the credit value for
every message, in the same way as the existing implementation.

2. A microservice which updates the credit value with a configurable fre-
quency.

3. A microservice replicating the message credits between EMG nodes,
allowing for a more efficient solution with higher throughput than with
a replicated database.

The modularity of EMG frees the rest of the system from having to care
whether credit updates are batched, if the values are replicated, and if so, how.
The components not managing the credit value need only be able to ask if a
user can send more messages, and request credit updates when the messages
are processed. This loose coupling makes the credit management an excellent
candidate for extraction to microservices. As a microservice it can be updated
without violating the reliability requirement of allowing clients to remain con-
nected to EMG for extended periods of time. Due to the increased operational
complexity of microservices compared to a single monolith, ICAB may also
consider implementing the batching of the credit updates as an optional feature
in the EMG core.

The answer to our question regarding whether ATAM could help identify-
ing the components in EMG where architectural changes would be most bene-
ficial, is therefore a definite yes. It is also clear that ATAM can help clarifying
the need for variability in such components. Additionally, the analysis showed
the significance of the SAT implementation. The SAT feature is used by only a
few EMG customers, but as the long startup time of the current implementation
risks violating the important availability requirement, it needs to be updated.

92

6.4.1 Lessons learned

The EMG team members are well acquainted with the customer requirements
since they all have been involved with the development of the product during
its entire lifetime, spanning more than 20 years. The new insights provided by
ATAM therefore came a surprise, as the extraction of the credit management
into a separate component had never before been considered.

The flexibility of ATAM turned out to be very beneficial to us. As men-
tioned in Section 6.3.4, the examined quality attributes could easily be adjusted
for the specific system being analyzed. Despite ATAM being presented as
a tool for improving the communication between stakeholders [16], we were
able to adjust it to give meaningful results in ICAB’s context even though none
of the external stakeholders participated.

We were also able to identify prioritized quality attribute scenarios directly
in Fig. 6.8 as described in Section 6.3.5, without having to create an explicit
quality attribute tree. This worked in our context as the focus was on high-
lighting the most prioritized scenarios, rather than making a finer prioritization
in terms of “high”, “medium” and “low”. We appreciate that this allowed us
to save both time and effort as utility tree generation is known to be an effort
consuming activity [7].

One additional benefit of applying ATAM in our context was the capture of
variability scenarios, whereby the component undergoing architectural change
would be customized according to the needs of different customers. This
explicit identification of variability in architecture perfectly matches ICAB’s
business goals, and other companies can very well benefit from eliciting such
variations without having to go all the way to CBAM (Cost-Benefit Analysis
Method) [15, 3].

6.5 Threats to Validity

Runeson and Höst [20] have grouped validity threats into construct, internal,
external and reliability. External validity threats concern whether the results
are still valid in a more general context. We recognize that some of the simpli-
fications mentioned in Section 6.4.1 fall into this category.

Reliability threats concern whether other researchers would get the same
result. The most problematic threat here is the list of business drivers elicited
in step 2, and thereby also the list of quality attribute requirements analyzed
in step 6, which may both be incomplete. We addressed this by revisiting the
lists over several months, adjusting them until they stabilized.

Another reliability threat is the selection of attribute requirements from

93

step 5, where we used a different method than suggested by ATAM. Given
what we know about the existing EMG installations, the results still appear
reasonable.

6.6 Conclusions and Future Work

The monolithic application EMG needed to provide higher availability and bet-
ter data protection, which motivated us to performed an ATAM analysis of the
existing architecture. EMG is a messaging gateway, which stores and forwards
short text messages, and is used by customers with very diverse requirements.
As messages are such an important core concept of the application, we had
long thought that the replication of those messages would be the next step for-
ward for EMG. Taking all requirements into account, it instead became clear
that updating the credit management, used for the billing of the senders of text
messages, would provide the most value to the largest set of customers. This
improvement will be realized by moving the credit management to a set of
microservices, which in turn will allow each customer to select the balance
between usability, performance and precision which best suits their particular
needs.

For future work, we plan to evaluate the new credit management microser-
vices on relevant quality attributes, e.g. code complexity and performance.
ICAB also plans to investigate how best to improve the installation procedures,
possibly by making use of container technologies.

Acknowledgments

This work was sponsored by The Knowledge Foundation industrial PhD school
ITS ESS-H, Infoflex Connect AB and H2020 project ADEPTNESS (871319).

94

Bibliography

[1] N. Alshuqayran, N. Ali, and R. Evans. A Systematic Mapping Study in
Microservice Architecture. In Proceedings of the International Confer-
ence on Service-Oriented Computing and Applications (SOCA). IEEE,
2016.

[2] E. Anjos and M. Zenha-Rela. A Framework for Classifying and Compar-
ing Software Architecture Tools for Quality Evaluation. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), 6786 LNCS(PART 5):270–
282, 2011.

[3] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice,
3rd ed. Addison-Wesley Professional, 2013.

[4] P. Bengtsson and J. Bosch. Scenario-based Software Architecture
Reengineering. In Proceedings of the International Conference on Soft-
ware Reuse (Cat. No.98TB100203). IEEE, 1998.

[5] D. Brahneborg, W. Afzal, A. Čaušević, and M. Björkman. Towards a
More Reliable Store-and-forward Protocol for Mobile Text Messages. In
Proceedings of the Workshop on Advanced Tools, Programming Lan-
guages, and PLatforms for Implementing and Evaluating Algorithms
for Distributed systems (PODC/ApPLIED), New York, NY, USA, 2018.
ACM Press.

[6] L. Carvalho, A. Garcia, W. K. G. Assunção, R. Bonifácio, L. P. Tizzei,
and T. E. Colanzi. Extraction of Configurable and Reusable Microser-
vices from Legacy Systems: An Exploratory Study. In Proceedings of
the International Systems and Software Product Line Conference (SPLC),
New York, NY, USA, 2019. ACM Press.

[7] P. Cruz, H. Astudillo, R. Hilliard, and M. Collado. Assessing Migration
of a 20-Year-Old System to a Micro-Service Platform Using ATAM. In
Proceedings of the International Conference on Software Architecture
Companion (ICSA-C). IEEE, 2019.

[8] L. Dobrica and E. Niemelá. A Survey on Software Architecture Analysis
Methods. IEEE Transactions on Software Engineering, 28(7):638–653,
2002.

[9] G. Fairbanks. Just enough software architecture: a risk-driven approach.
Marshall & Brainerd, 2010.

95

[10] J. Fritzsch, J. Bogner, A. Zimmermann, and S. Wagner. From Mono-
lith to Microservices: A Classification of Refactoring Approaches. In
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), volume
11350 LNCS, pages 128–141. 2019.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Pro-
fessional, 1994.

[12] J. P. Gouigoux and D. Tamzalit. From Monolith to Microservices:
Lessons Learned on an Industrial Migration to a Web Oriented Archi-
tecture. In Proceedings of the International Conference on Software Ar-
chitecture Workshops (ICSAW). IEEE, 2017.

[13] J. Gray. A conversation with Werner Vogels. ACM Queue, 4(4):14–22,
2006.

[14] J-M. Horcas, M. Pinto, and L. Fuentes. Software product line engineer-
ing. In Proceedings of the International Systems and Software Product
Line Conference (SPLC), New York, NY, USA, 2019. ACM Press.

[15] R. Kazman, J. Asundi, and M. Klein. Making Architecture Design Deci-
sions: An Economic Approach. Technical report, Carnegie Mellon Soft-
ware Engineering Institute, 2002.

[16] R. Kazman, M. Klein, and P. Clements. Method for Architecture Eval-
uation. Technical report, Carnegie-Mellon Univ Pittsburgh PA Software
Engineering Inst, 2000.

[17] S. Newman. Monolith to Microservices: Evolutionary Patterns to Trans-
form Your Monolith. O’Reilly Media, 2019.

[18] D. L. Parnas. On the criteria to be used in decomposing systems into
modules. Communications of the ACM, 15(12):1053–1058, dec 1972.

[19] E. R. Poort and H. Van Vliet. RCDA: Architecting as a risk- and cost
management discipline. Journal of Systems and Software, 85(9):1995–
2013, 2012.

[20] P. Runeson and M. Höst. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering,
14(2):131–164, 2009.

96

[21] Swedish Standards Institute. SIS-ISO/IEC TR 9126-2:2003 Software en-
gineering – Product quality – Part 2: External metrics. Technical Report
121124, 2003.

[22] D. Taibi, V. Lenarduzzi, and C. Pahl. Processes, Motivations, and Issues
for Migrating to Microservices Architectures: An Empirical Investiga-
tion. IEEE Cloud Computing, 4(5):22–32, sep 2017.

97

Paper C.
Towards a More Reliable
Store-and-forward Protocol for
Mobile Text Messages

Towards a More Reliable Store-and-forward Protocol for Mobile Text Mes-
sages. Daniel Brahneborg, Wasif Afzal, Adnan Čaušević, and Mats Björkman.

In Proceedings of the Workshop on Advanced tools, programming lan-
guages, and PLatforms for Implementing and Evaluating algorithms for Dis-
tributed systems (ApPLIED), part of the Principles Of Distributed Computing
conference (PODC). ACM, 2018.

99

Abstract

Businesses often use mobile text messages (SMS) as a cost effective and uni-
versal way of communicating concise information to their customers. Today,
these messages are usually sent via SMS brokers, which forward them further
to the next stakeholder, typically the various mobile operators, and then the
messages eventually reach the intended recipients. Infoflex Connect AB de-
livers an SMS gateway application to the brokers with the main responsibility
of reliable message delivery within set quality thresholds. However, the pro-
tocols used for SMS communication are not designed for reliability and thus
messages may be lost.

In this position paper we deduce requirements for a new protocol for rout-
ing messages through the SMS gateway application running at a set of broker
nodes, in order to increase the reliability. The requirements cover important
topics for the required communication protocol such as event ordering, mes-
sage handling and system membership. The specification of such requirements
sets the foundation for the forthcoming design and implementation of such a
protocol and its evaluation.

100

7.1 Introduction

Today, mobile text messages (a.k.a. SMS) are often used in business-to-
consumer communication, e.g., two-factor authentication and booking
reminders. Text messages provide quick and cost effective communication
with world-wide coverage, making them a natural choice in many situations.
However, the concrete implementation for processing these messages reveals
a rather complex system. There are many mobile network operators, even
within the same country, and each message must be sent to the correct
operator in order to reach the intended recipient. In the 1990s it was sufficient
to examine the first few digits in the destination number to find the correct
operator. That is no longer enough, as number portability allows customers to
keep their number while switching operators. Additionally, the operators use
a plethora of communication protocols (e.g. SMPP, UCP, CIMD2, HTTP),
of different versions (SMPP 3.4 allows bi-directional traffic while SMPP 3.3
does not) or with unique implementation issues and requirements (primarily
phone number formats and character encodings).

Businesses commonly send text messages via services provided by SMS
brokers instead of handling this complexity themselves. These brokers charge
a fee for providing a single protocol to their clients (i.e. the businesses), and
handle both technical and financial communications with the operators. Our
context is the software used by these SMS brokers to forward the text messages
from their clients to different operators. We call this the SMS gateway applica-
tion. One such application is the Enterprise Messaging Gateway (EMG) from
Infoflex Connect AB.

SMS messaging is based on a store-and-forward architecture, similarly to
TCP/IP. Incoming messages are stored in a local queue, and from that queue
they are extracted and forwarded as soon as possible. Figure 7.10 shows the
data flow for a message sent from the client to a node run by an SMS broker,
and then forwarded to a mobile operator. When the client receives the response
at point D, the SMS broker has assumed full responsibility for the message, so
the client will delete their copy of the message. A similar response is sent at
point G. When the recipient finally has received the message from the operator,
an acknowledgement is returned to the sender, indicating whether the message
needs to be resent. For TCP/IP that acknowledgement is an ACK packet, and
for SMS it is a delivery report (usually shortened to “DLR”), albeit with an
important difference: the DLR is unreliable. The unreliability of the delivery
report is our main issue, as even though the sender can use the response from
the SMS broker or operator to know whether the message was accepted, they
can not use the DLR to know if the message reached its final destination.

101

Client

Node

Operator

A B C D E F G H

Figure 7.10: Traffic between clients, nodes, and operators. Filled arrows represent
messages, and hollow arrows represent responses.

The critical section here is between points C and E in Figure 7.10, when
the message has been received and acknowledged, but not yet forwarded. If
the node were to crash in this interval, the message would be lost. To miti-
gate this risk, the message must be replicated to one or more additional nodes
before the response is sent at C. The connectivity to the operator may be (tem-
porarily) broken or too slow in relation to the rate of incoming traffic, resulting
in thousands of messages stored on a node, waiting to be forwarded. Without
replication, these messages could be lost.

At Infoflex Connect AB, we have experimented with storing messages in
SQL and NoSQL databases, but results were discouraging from a performance
perspective. Typical throughput was at most a few hundred messages per sec-
ond, while we could achieve ten times that when using an embedded database,
and hundred times that when storing the messages only in memory. There
are several reasons for this, apart from the additional I/O. For a system with a
single node, the message queues are kept in memory in self-balancing sorted
trees to keep the messages in order. For persistence, messages are written and
removed using their unique identifier. In a system with multiple nodes, the or-
dering must be handled by the database, which is not only costly in itself, but
also requires synchronization between the database nodes, which in turn must
be done for every message.

In this position paper we discuss the requirements for, and the effects of,
adding a replication protocol in this store-and-forward context. We do this by
first describing our system model (Section 7.2), followed by the requirements
to be met by the protocol in our context (Section 7.3). Solution candidates
are discussed in Section 7.4, while Section 7.5 contains a more general review
of related work. Section 7.6 summarizes the requirements and the considered
approaches, and concludes the paper.

102

7.2 System Model

We assume the perspective of an SMS broker, using a system consisting of a
collection of nodes, some of which are geographically distant. Each node has
a unique and constant identifier, can connect to all other nodes via Internet,
and may join and leave the system at any time. Furthermore, the nodes are
crash-recovery, so they may rejoin after crashing.

Each node runs a store-and-forward application in a configuration as
shown in Figure 7.11. Messages are sent by clients, stored in local queues on
one of the nodes managed by an SMS broker, and then forwarded to one of
the operators after which they are removed from the queue.

Client 1

Client 2

Client x

Node 1

Node 2

Node y

Operator 1

Operator 2

Operator z

.

Figure 7.11: Clients, nodes, and operators.

Security issues such as authentication and encryption are handled sepa-
rately, and there are no byzantine failures [19] with nodes sending arbitrarily
erroneous data.

7.3 Requirements

We group our requirements into the following categories: 1) ordering, 2) mes-
sage handling, 3) system membership, 4) metadata handling, 5) message own-
ership, and 6) third party effects. Each one is described next. All requirements
are considered critical except for the moving of messages between nodes de-
scribed in Section 7.3.5.2, as this is just a performance optimization.

7.3.1 Ordering

The most important requirement in this context, as it has the most far-reaching
effects on the solution space, and to the best of our knowledge is the most novel

103

one, is an anti-requirement: the order in which messages are forwarded does
not matter. Considering the uses of mobile text message, it is easy to see why.
If, e.g., two users request a new authentication code within a few seconds of
each other, the exact order of delivery of the codes to the users’ mobile phones
is not important. For the same reason, the global order of messages received on
different nodes, is not important either [24]. However, for the sake of fairness
and to ensure liveness, messages should be forwarded in approximately the
same order as they were received.

The most commonly used protocols for SMS communication, e.g., SMPP
and UCP, support sliding windows with transaction numbers. These numbers
are unique values set by the sender and duplicated in the responses, making the
reception order of the responses irrelevant. Combined with the insignificance
of the message ordering, the protocol can decide to reorder events in different
ways if necessary.

7.3.2 Message handling

Several of the requirements relate to replicating incoming messages and for-
warding the messages to an operator or another SMS broker.

7.3.2.1 Replicate incoming messages

The first step towards high reliability is ensuring the incoming client messages
are replicated to the other nodes. The set of nodes required to confirm receiving
the messages before the response is sent constitute a quorum [11], which for
n nodes in a normal majority system needs a size of at least bn/2c+ 1. Other
quorum systems [34] use other sizes. Thus, we assume this quorum size to be
configurable.

7.3.2.2 Forward messages

Each message received by a node should, ideally, be forwarded to an operator
exactly once, regardless of the number of nodes in the system and how many
nodes the message has been replicated to. However, this “exactly once” re-
quirement is not absolute, as it is sometimes violated by the usage of sliding
windows mentioned in Section 7.3.1. Sliding windows can lead to duplicated
messages if the connection breaks after the message has been received by the
operator but before the response comes back to the node (i.e. the interval be-
tween points G and H in Figure 7.10).

In a typical configuration with a single node, the sender uses a window
size, denoted w, between 1 and 10. When using UCP, w is limited to 99. With

104

a window size of w, they can send w messages before requiring a response, so
the number of messages with an unknown status in case of a broken connec-
tion is at most w. The maximum number of duplicated messages, per broken
connection, is therefore w. In a system with multiple nodes, the number of du-
plicated messages should still not exceed w. This would be possible to verify
by using a model checker, e.g. Spin2 or Uppaal3.

7.3.3 System membership

The set of nodes in the system should be able to both grow and shrink dynam-
ically.

7.3.3.1 Accept a new or returning node to the system

A node should be able to join the system at any time, simply by connecting to
one of the existing nodes. As described in our system model in Section 7.2,
the nodes are crash-recovery, meaning that nodes can reconnect to the rest
of the system, in particular if they were just temporarily unavailable due to a
network partition. Even a short-lived network partition may last longer than
the lifetime of the messages in the queues, so the difference between “new
node” and “returning node” is expected to be minuscule.

7.3.3.2 Remove a node from the system

We want the current set of nodes in the system to be known to all nodes as
soon as possible, in order to know which nodes to replicate messages to. In
case the application must be manually stopped,4 the protocol should propagate
the information about a node’s impending death.

7.3.4 Metadata handling

For financial reasons, we must keep track of all received and forwarded mes-
sages. We do this by updating the client’s credit, and keeping the current state
of all messages in a global database.

2http://spinroot.com
3http://www.uppaal.org
4There are many possible reasons for this, e.g., it should be replaced with a newer version

or its system configuration may have changed in a way that requires a full restart.

105

7.3.4.1 Manage Credits

Before the client is allowed to send a message, the client’s current credit value
should be examined. A possible overdraft of this credit is acceptable if it low-
ers the round-trip time and increases the throughput, but this overdraft must
be limited and configurable. When the real cost of forwarding the message is
known, this credit value is updated.

7.3.4.2 Message State Database

For audit purposes, there must exist a mechanism for retrieving the state of
all received and forwarded messages. This information does not have to be
exact at every point in time, as long as each message is only counted once.
Therefore, eventual consistency is sufficient.

7.3.5 Message Ownership

Each message can only have a single node as its owner, so when the message
is replicated to the other nodes it should be stored there in a dormant state,
preventing it from being forwarded by those other nodes. This replication is
only useful if there also exists a mechanism for changing the owner, making it
possible for the replicated messages to be forwarded by another node than the
one which received them. Two of the situations where the protocol requires
this mechanism are described next.

7.3.5.1 Adopt messages from a presumed dead node

When an eventually perfect failure detector reports a failed node, the other
nodes should quickly take ownership of any messages currently in the queue
of this node, so its messages can be forwarded. The delivery requirement is still
not “exactly once”, but the duplication rate should not change significantly.

7.3.5.2 Move Messages Between Nodes If Required

For applications such as SMS voting, the message can be sent “upstream” from
an operator via one of our nodes, destined for one of the clients. The arrows in
Figure 7.11 just indicates who is connecting to who, the actual network traffic
is bidirectional. If the client is not connected to all nodes, a mechanism is
needed to automatically move messages to one of the nodes where the client is
connected.

Referring to Figure 7.12, consider the case when Operator z has a message
destined for Client 1. The operator does not know about the connections on the

106

Client 1 Node Operator 1

Operator 2Client 2

Client x

Node 2

Node y Operator z

.

Figure 7.12: Routing a message back to the client.

left side, so it is sent to a randomly selected node, which in this case could be
Node y. It would have been better to send it to Node 2, as it could then be sent
directly to Client 1, but we have no control over that. Client 1 is not connected
to Node y, so the message must be moved to Node 1 or Node 2 before it can
be forwarded to the client. In this scenario the message would need to travel
according to the dashed blue lines. While certainly useful, we consider this
requirement to be of low priority.

7.3.6 Third Party Effects

We must also consider the perspective of the clients, operators and SMS bro-
kers connected to our system.

7.3.6.1 Transparent to third party software

The communication with both clients and operators follow well defined pro-
tocols (e.g. SMPP or HTTP), involving thousands of clients and hundreds of
operators. Any solution must therefore be completely transparent to these third
parties. However, we can assume clients can be given the connection details
to multiple nodes and that they can switch freely between them, in particular
if the selected node becomes unreachable. HTTP includes response codes to
request such a switch, but we can not depend on that being supported by the
clients.

As more work needs to be performed per message in order to perform the
replication, and additional round-trips between the nodes must be performed
before the client can get their response back, the round-trip time seen from

107

the client’s perspective (Figure 7.10, the interval between points A and D) will
increase with any replication strategy.

7.3.6.2 High throughput

The usage of local queues gives mostly independent nodes, which should al-
low the throughput to remain high while still getting increased reliability from
the replication. Previous experiments using a shared database have failed to
achieve more than a few hundred messages per second even within the same
data center, while local queues reach several thousand. The interval between
1000 and 10 000 operations per second is what is achieved by WanKeeper [1]
when it focuses on reading data, as it can take advantage of local processing
and data ownership. With equal parts reading and writing in a configuration
with geographically distant servers [1], WanKeeper achieves 100 operations
per second, while the commonly used ZooKeeper achieves 10. Our require-
ment, based on discussions with various SMS brokers, is 1000 or more opera-
tions per second.

7.3.7 Limitations

A system fulfilling the described requirements would have some limitations
we need to be aware of.

System reliability & performance evaluation
To verify the reliability and performance of the solution, extensive test-
ing and verification is needed.

Network overhead
The replication will lead to increased network traffic, but we can mitigate
that in several ways. First, we can replicate multiple messages in the
same packet, using the network bandwidth as effectively as possible.
Second, we can replicate the messages to just a subset of the nodes.
Third, messages that have been forwarded before being replicated to the
most distant nodes (with the longest round-trip time), does not have to
replicated there at all.

Increased complexity
The complexity of the system would increase, primarily caused by the
coordination between the nodes. This could to be addressed by making
the solution architecture as simple as possible.

108

Protocol adoption
Despite being called a protocol, the requirements actually concern an
internal architecture. It is not intended for interoperability between sep-
arate systems, rather between different broker nodes within a single sys-
tem.

7.4 Solution Space

This section discusses various available solutions to address the elicited re-
quirements as well as their suitability in our context.

7.4.1 SQL and NoSQL database clusters

In a multi-node environment a clustered database might be considered for man-
aging the credit values, as described in Section 7.3.4.1.

Section 7.3.2 described the low consistency requirements in this domain,
which is lower than what either ACID (Atomicity, Consistency, Isolation, and
Durability) [12] or BASE (Basically Available, Soft state, Eventual consis-
tency) [10] can offer. Similarly to how an optimistic consistency model can
lead to better performance [31], this relaxed delivery guarantee should also
enable a more effective architecture.

7.4.2 Adoption tokens

Our initial idea for solving the changes of message ownership described in
Section 7.3.5 was to use an “adoption token”, and passing it around between
the nodes. Only the node currently in possession of this token would be al-
lowed to adopt any messages, so there should never exist more than one. If a
node dies or there is a network partition, the system may end up with both 0,
1 or 2 such tokens. A lost token is no problem, as that situation is no different
from when the system is initially started; simply run a leader election algo-
rithm such as Paxos [18] or Raft [26] to select a node that can create the token.
Multiple tokens on the other hand, could lead to thousands of duplicated mes-
sages. This can happen if the adoption token ends up in the minority group
during a network partition.

Next, we kept the idea of an adoption token, but modified the token passing
to use quorum voting instead. To pass the token, the node currently holding it
would start an election among all reachable nodes, suggesting the next node.
When the new node has seen enough votes, the token is recreated there.

109

However, this can also lead to considerable message duplications. Con-
sider the following sequence of events, in a system of 3 nodes: A, B and C.

1. Node A has the token, and starts an election for passing it to B.

2. Node B wins the election, and assumes ownership of the token.

3. The network splits, leaving B alone.

4. Node B realizes it can not reach node A, and adopts all its messages. At
this point all current messages on node A are duplicated. Node A is still
in the majority group, so it keeps processing its messages normally.

5. Node C realizes it has not seen the adoption token in some time, and
starts an election to create one.

6. Node C gets a vote from A, giving it a majority.

7. Node C realizes it can not reach node B, and adopts all its messages.
Now all messages on node B are also duplicated.

Depending on the relative executions of the nodes, we may still end up with
two adoption tokens and thousands of duplicated messages as an unacceptable
consequence.

7.4.3 Replicated logs

In Section 7.3.2.2 we concluded that the messages have no linearizability re-
quirement. The high independence between separate text messages, combined
with the throughput requirement, make solutions that send all events via a sin-
gle node to ensure all nodes see the events in the same order both unnecessarily
strict and unusable. For this reason, we are not able to use neither Raft [26],
Viewstamped Replication [20], nor ZooKeeper [14] for the external network
traffic.

The externally visible protocols can not be changed, as discussed in Sec-
tion 7.3.6.1. This prevents solutions such as Raft [26] and Chubby [4].

7.5 Related Work

This section discusses the existing products and academic work focused on
data replication. In Section 7.5.1 we describe solutions that are implemented,
evaluated and in use, while in Section 7.5.2 we focus more on theoretical re-
sults. In short, we have not been able to find a solution that can take advantage

110

of our low ordering requirements, thus reusing existing solutions would poten-
tially result in suboptimal performance in our context.

7.5.1 State of practice

In many applications, persisting data to survive application crashes is done in
a database. This can be either a classical SQL database such as MySQL or
Oracle, or a more modern NoSQL database such as MongoDB or Cassandra.

For message queues, RabbitMQ and Apache Kafka are common solutions.
Kafka is a better choice if events need to be persisted to disk and replayed
any number of times by clients, while RabbitMQ supports multiple protocols
which is good for interoperability, and a possibility to set the time to live (TTL)
of messages [5]. However, the disk usage by Kafka can be extensive, and
RabbitMQ does not scale well when the queue sizes increase. EMG needs
both support for message TTL and large queues.

7.5.1.1 Message Queues

There are plenty of message queue products of varying complexity (e.g. Rab-
bitMQ5, Qpid6, and IBM WebSphere), implementing various well documented
protocols (e.g. Java JMS, AMQP (Advanced Message Queuing Protocol)7, and
ZeroMQ [13]), so a program that only forwards messages is trivial. However,
systems using these solutions, such as SDQS [38], Andes [35] and EQS [32],
are all very strict regarding the ordering of the messages. A common solution
for synchronization between nodes to ensure this ordering is ZooKeeper [14],
which works fine for local clusters within a single data center, but in a geo-
distributed environment stays below 10 transactions per second [1].

Previously, the message queue system Apache Kafka8 [15] used
ZooKeeper [14] for coordination for each entry, making it unusable in our
context. In Kafka, enqueued messages can be delivered to one of many nodes,
which is exactly what we needed. Messages can be separated into different
topics, with ordering only being guaranteed within each topic. This relaxed
ordering is still too strict for us.

Closely related to message queues are publish/subscribe systems. Both
message queues and publish/subscribe systems allow “space decoupling”, i.e.
the sender and the recipient need not be aware of each other, “time decou-
pling”, i.e. the message is sent at one point in time and delivered at another,

5https://www.rabbitmq.com
6https://qpid.apache.org
7http://www.amqp.org
8http://kafka.apache.org

111

and “synchronization decoupling”, i.e. the sender does not have to wait until
the message has been delivered to the recipient [8]. This matches our require-
ments well. The two main ways they differ from what is needed for EMG is
that they also assume a “one-to-many” delivery strategy, and that filtering must
be used to avoid sending all messages to all recipients.

7.5.1.2 Storage

An important difference between our message queues and a generic storage
system, is that we have no externally initiated reads. Once a message has been
received, only the system itself needs to know where it is stored. There will be
no requests from other applications to fetch the message. Therefore, all effort
spent in handling such operations, are for our purposes wasted. As an example,
the “Saturn” system [3] is described as a way to “enforce causal consistency
when accessing replicated data”, where the critical word here is “accessing”.
Other systems such as ChainReaction [2], Orbe [6], GentleRain [7], COPS [22]
and SwiftCloud [37] use different mechanisms to achieve this accessibility, e.g.
vector clocks [17], physical clocks, and caches. MeteorShower [21] explicitly
addresses the delays caused by geographically separated servers.

Rarely, if ever, is the lifetime of the stored objects addressed. Typically,
objects are created by one of the nodes, and occasionally updated by the same
or another node. Most of the operations are then read accesses. For example,
the system OCC [31] uses a workload “with a 32:1 GET:PUT ratio”. For a
message queue, the situation is different. For such a system, there are not only
no read accesses at all, we also know that all objects will be removed after
usually just a few seconds. To the best of our knowledge, no existing storage
mechanism considers this factor as a way of minimizing the amount of data
needed for the replication.

7.5.2 State of the art

The most active areas of interest to us concern commutative functions and
leader election algorithms. Commutative functions address the fact that strict
ordering of events is unnecessary, and leader election is the base concept when
achieving consensus between multiple nodes.

7.5.2.1 Commutative Functions

Whether reality is ordered has been discussed for some time, at least from 1993
by Queinnec and Padiou [29] regarding flight plans. If this ordering can be
ignored, it is also possible to attain higher availability of data in an unreliable

112

network [9] and lower the number of network round-trips [27]. For example,
using the CRDT “PN-counter” [30], it is possible to implement updates and
limit checks of user credits in a distributed environment from Section 7.3.4.1,
without any network round-trips.

Using commutative functions in order to get lower response times has been
known since 1988 [16] if not earlier. Shapiro et al. [30] described data types
based on these commutative functions, calling them “Convergent or Commu-
tative Replicated Data Types (CRDTs)”. Zawirski then described some lower
limits of the amount of metadata needed for the replication of some of these
data types [36], both in terms of the number of nodes and the number of up-
dates.

7.5.2.2 Leader Election

There are several algorithms for reaching consensus among a set of communi-
cating nodes [33], each one in multiple variants. The most commonly known
one is probably Paxos [18]. In recent years, Raft [26] is also used. Both
of them, as well as Viewstamped Replication [20, 25] and the lock service
Chubby [4], require support from the third party applications that connect
to the replicating system. This is in conflict with the requirement in Sec-
tion 7.3.6.1 of being transparent to those third parties. For an internal protocol
between EMG nodes only, any of these can of course be used.

To avoid overloading a single node with a leadership role through which all
requests much pass, the mechanism used by Paxos, Raft and others, some alter-
natives exist. Mencius [23] is derived from Paxos, but lets the leader role rotate
periodically. AllConcur [28] goes further, being entirely leaderless. With All-
Concur, each message is forwarded several times between different pairs of
nodes, resulting in more network traffic than the leader-based methods.

7.6 Summary

7.6.1 Approaches

Table 7.3 summarizes the requirements and approaches to be considered for
fulfilling them. Essentially, databases are too strict on ordering, and replicated
logs are unsuitable in a geo-distributed environment as they rely on all events
being serialized by a single node.

9Information about new nodes are broadcast among all nodes, but each node maintains its
own list of active peers.

113

Requirement Approach Problems
System membership Per node9 None known
Message storage Database Strict ordering

Message queue Strict ordering
Message state Database Round-trip times

Replicated log Single node
Message ownership Replicated log Single node
Client credits PN-counter Possible overdrafts

Table 7.3: Considered approaches for each set of requirements, and expected new
problems.

7.6.2 Conclusions

The communication protocols for mobile text messages are unreliable, as there
is no dependable end-to-end acknowledgement packet. There is, on the other
hand, no strict ordering requirements in this domain, allowing the use of more
effective solutions than off-the-shelf message queue products. We can not
avoid the inevitable round-trip time between data centers, which may very well
be geographically distant, but by replicating messages from multiple clients in
the same update, the total system throughput should be satisfactory. As contri-
butions, this position paper sets the requirements for a reliable communication
protocol for SMS in place, and reviews the state of the art as well as practice
for considered solutions. While partial solutions suitable in our context are
available, a complete solution satisfying the requirements specified in this pa-
per would require a new bespoke protocol that can effectively take advantage
of the possibility of event reordering and short lifetime of the messages.

Acknowledgments

This work was sponsored by The Knowledge Foundation industrial PhD school
ITS ESS-H, 20160139 (TestMine), 20130085 (TOCSYC) and Infoflex Con-
nect AB.

114

Bibliography

[1] A. Ailijiang, A. Charapko, M. Demirbas, B. O. Turkkan, and T. Kosar.
Efficient distributed coordination at WAN-scale. In Proceedings of the
International Conference on Distributed Computing Systems (ICDCS).
IEEE, 2017.

[2] S. Almeida, J. Leitão, and L. Rodrigues. ChainReaction: a Causal+ Con-
sistent Datastore based on Chain Replication. In Proceedings of The
European Professional Society on Computer Systems (EuroSys). ACM,
2013.

[3] M. Bravo, L. Rodrigues, and P. Van Roy. Towards a Scalable, Distributed
Metadata Service for Causal Consistency under Partial Geo-replication.
Proceedings of the Doctoral Symposium of the International Middleware
Conference (Middleware), 2015.

[4] M. Burrows. The Chubby lock service for loosely-coupled distributed
systems. In Proceedings of the Symposium on Operating Systems Design
and Implementation, OSDI. USENIX Association, 2006.

[5] P. Dobbelaere and K. S. Esmaili. Kafka versus RabbitMQ. In Pro-
ceedings of the Conference on Distributed Event-Based Systems (DEBS).
ACM, 2017.

[6] J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel. Orbe: Scalable causal
consistency using dependency matrices and physical clocks. In Proceed-
ings of the Symposium on Cloud Computing (SOCC). ACM, 2013.

[7] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel. GentleRain: Cheap
and Scalable Causal Consistency with Physical Clocks. Proceedings of
the Symposium on Cloud Computing (SOCC), 2014.

[8] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The
Many Faces of Publish/Subscribe. ACM Computing Surveys, 35(2):114–
131, 2003.

[9] M. J. Fischer and A. Michael. Sacrificing Serializability to Attain
High Availability of Data in an Unreliable Network. In Proceedings
of the SIGACT-SIGMOD Symposium on Principles of Database Systems
(PODS). ACM, 1982.

115

[10] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier.
Cluster-based scalable network services. ACM SIGOPS Operating Sys-
tems Review, 31(5), 1997.

[11] D. K. Gifford. Weighted Voting for Replicated Data. In Proceedings of
the Symposium on Operating Systems Principles (SOSP). ACM, 1979.

[12] T. Haerder and A. Reuter. Principles of transaction-oriented database
recovery. ACM Computing Surveys, 15(4):287–317, 1983.

[13] P. Hintjens. ZeroMQ: messaging for many applications. O’Reilly Media,
Inc., 2013.

[14] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper: Wait-
free Coordination for Internet-scale Systems. In Proceedings of the
USENIX Annual Technical Conference (USENIX ATC). USENIX Asso-
ciation, 2010.

[15] J. Kreps, N. Narkhede, and J. Rao. Kafka: a Distributed Messaging
System for Log Processing. In Proceedings of the SIGMOD Workshop
on Networking Meets Databases (NetDB), Athens, Greece, 2011.

[16] A. Kumar and M. Stonebraker. Semantics Based Transaction Manage-
ment Techniques for Replicated Data. Proceedings of the SIGMOD In-
ternational Conference on Management of Data (SIGMOD), 1988.

[17] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed
System. Communications of the ACM, 21(7):558–565, 1978.

[18] L. Lamport. The Part-time Parliament. ACM Transactions on Computer
Systems, 16(2):133–169, 1998.

[19] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Problem.
ACM Transactions on Programming Languages and Systems, 4(3), 1982.

[20] B. Liskov and J. Cowling. Viewstamped Replication Revisited. Techni-
cal Report MIT-CSAIL-TR-2012-021, Massachusetts Institute of Tech-
nology, 2012.

[21] Y. Liu, X. Guan, V. Vlassov, and S. Haridi. MeteorShower: Minimiz-
ing Request Latency for Majority Quorum-Based Data Consistency Al-
gorithms in Multiple Data Centers. In Proceedings of the International
Conference on Distributed Computing Systems (ICDCS). IEEE, 2017.

116

[22] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Don’t
Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage
with COPS. Proceedings of the Symposium on Operating Systems Prin-
ciples (SOPS), 2011.

[23] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius: Building Efficient
Replicated State Machines for WANs. In Proceedings of the USENIX
Conference Operating System Design and Implementation (OSDI), 2008.

[24] C. S. Meiklejohn. A certain tendency of the database community. In
Companion to the First International Conference on the Art, Science and
Engineering of Programming, Programming ’17, pages 34:1–34:5, New
York, NY, USA, 2017. ACM.

[25] B. M. Oki and B. H. Liskov. Viewstamped Replication: A New Pri-
mary Copy Method to Support Highly-Available Distributed Systems. In
Proceedings of the Symposium on Principles of Distributed Computing
(PODC). ACM, 1988.

[26] D. Ongaro. Consensus: Bridging Theory And Practice. PhD thesis,
Stanford University, 2014.

[27] S. J. Park and J. Ousterhout. Exploiting Commutativity For Practical Fast
Replication. 2017.

[28] M. Poke, T. Hoefler, and C. W. Glass. AllConcur: Leaderless Concurrent
Atomic Broadcast Marius. In Proceedings of the International Sympo-
sium on High-Performance Parallel and Distributed Computing (HPDC).
ACM, 2017.

[29] P. Queinnec and G. Padiou. Flight plan management in a distributed air
traffic control system. Proceedings of the International Symposium on
Autonomous Decentralized Systems (ISAD), 1993.

[30] M. Shapiro, N. Pregui, C. Baquero, and M. Zawirski. A comprehensive
study of Convergent and Commutative Replicated Data Types. Technical
Report RR-7506, Inria – Centre Paris-Rocquencourt, 2011.

[31] K. Spirovska, D. Didona, and W. Zwaenepoel. Optimistic Causal Con-
sistency for Geo-Replicated Key-Value Stores. In Proceedings of the
International Conference on Distributed Computing Systems (ICDCS).
IEEE, 2017.

117

[32] N. L. Tran, S. Skhiri, and E. Zimányi. EQS: An elastic and scalable mes-
sage queue for the cloud. In Proceedings of the International Conference
on Cloud Computing Technology and Science, (CloudCom). IEEE, 2011.

[33] J. Turek and D. Shasha. The Many Faces of Consensus in Distributed
Systems. Computer, 25(6):8–17, 1992.

[34] M. Vukolić. Quorum Systems: With Applications to Storage and Con-
sensus. Synthesis Lectures on Distributed Computing Theory. Morgan &
Claypool Publishers, 2012.

[35] C. Wickramarachchi, S. Perera, S. Jayasinghe, and S. Weerawarana. An-
des: A highly scalable persistent messaging system. In Proceedings of
the International Conference on Web Services (ICWS). IEEE, 2012.

[36] M. Zawirski. Dependable Eventual Consistency with Replicated Data
Types. PhD thesis, Université Pierre et Marie Curie - Paris, 2015.

[37] M. Zawirski, N. Preguiça, S. Duarte, A. Bieniusa, V. Balegas, and
M. Shapiro. Write Fast, Read in the Past: Casual Consistency for Client-
side Applications. Technical report, 2015.

[38] Z. Zhang, Y. Wang, H. Chen, M. Kim, J. M. Xu, and H. Lei. A cloud
queuing service with strong consistency and high availability. IBM Jour-
nal of Research and Development, 55(6):10:1–10:12, 2011.

118

Paper D.
GeoRep – Resilient Storage for
Wide Area Networks

GeoRep – Resilient Storage for Wide Area Networks. Daniel Brahneborg,
Romaric Duvignau, Wasif Afzal, Saad Mubeen.

In IEEE Access, 2022.

119

Abstract

Embedded systems typically have limited processing and storage capabilities,
and may only intermittently be powered on. After sending data from its sen-
sors upstream, the system must therefore be able to trust that the data, once
acknowledged, is not lost. The purpose of this work is to propose a novel so-
lution for replicating data between the upstream nodes in such systems, with
a minimal effect on the software architecture. On the assumption that there is
no relative order between replicated data tuples, we designed a new replication
protocol based on partial replication. Our protocol uses only 2 communication
steps per data tuple, instead of the 3 to 12 used by other solutions. We veri-
fied its failover mechanism in a proof-of-concept implementation of the pro-
tocol using simulated network failures, and evaluated the implementation on
throughput and latency in several controlled experiments using up to 7 nodes
in up to 5 geographically separated areas, with up to 1000 data producers per
node. The recorded system throughput increased linearly relative to both the
number of nodes and the number of data producers. For comparison, Paxos
showed a performance similar to our protocol when using 3 nodes, but got
slower as more nodes were added. The lack of a relative order, in combination
with partial replication, enables our system to continue working during net-
work partitions, not only in the part containing the majority of the nodes, but
also in any sufficiently large minority partitions.

120

8.1 Introduction

All over the world, various types of disasters happen with both regular and
irregular intervals [13, 37, 48, 49]. These disasters, which could be caused by
natural, technical, political or other kinds of events, affect network and power
equipment, and might therefore lead to outages for internet services [1, 8, 63].
Such infrastructure failures have been showed to be about twice as likely the
cause for services being unavailable to clients, as compared to failures in the
servers themselves [18]. Oftentimes, these infrastructure failures can be miti-
gated by using multiple geographically separated servers [13, 52, 53, 62], con-
veniently offering protection from failures in both infrastructure and individ-
ual servers. The servers exchange data with each other as necessary, allow-
ing clients to connect to any one of them. If the system uses different cloud
providers for each data center to mitigate the risk of failures due to software
or configuration upgrades [26], the probability for some event killing multiple
nodes during the processing of a particular data tuple is effectively zero.

Maintaining the same data on multiple servers is not a new problem. A
common solution is to use full replication, which sends all information regard-
ing the processed data to all other servers [11]. This is often managed via
a master server as in Paxos [35, 43] or Raft [50], ensuring both that all data
and its operations are communicated to all servers, and that the operations are
processed in the same order [6].

Full replication is easy to understand and reason about, and is implemented
in various concrete tools and libraries, e.g., Redis10 and Spread11. It forms
the basis for eventual consistency [60], and for Convergent and Commuta-
tive Replicated Data Types (CRDTs) [57]. It is good for web applications and
other request-response based systems as it gives good availability for external
readers, which can send the requests to any one of the included servers and
get reasonably current data in return. Because the system can freely select one
or more remaining servers to take over the duties of a failed server [40], this
also makes resilience, as described by the ResiliNets project [48, 58], straight-
forward. Resilience is then the degree of how well a system can recover from
failures. This differs from robustness, which is how well the system behaves
during normal operations.

However, full replication also has a number of shortcomings. It wastes net-
work traffic [36, 37], as the amount of transmitted data grows at least linearly
by the number of servers in the system. It requires all servers to be able to
reach each other, possibly going via one or more other servers. When there is

10https://redis.io
11http://www.spread.org

121

a network partition, by which we mean any type of failure breaking full reach-
ability, system availability [5, 19, 23, 31, 53] is reduced as clients can then
only perform updates on the nodes in the remaining majority part, if any. The
required coordination can be costly [29, 34] and limit system performance.

In this work, we envision an application providing a message queue for
event data sent from sophisticated sensors or IoT devices. The data tuples are
added to the queue by the devices, and then one by one pushed by the queue
itself to the service responsible for that particular type of data. After being
successfully forwarded, each data tuple is removed from the queue.

The queue’s push construct has a few important implications, making pre-
vious state-of-the-art non-optimal. One of the explicit goals in current work
on replication is that the data tuples should be delivered and thereby be visible
to all other nodes. An alternative to this full replication is to use the more re-
source conservative partial replication, which only sends data tuples to a subset
of the servers [53]. In our use case, each message needs to be visible to just
one single server, to ensure that it is delivered only once. It is not until a server
fails that the application layer on the other servers should be made aware of its
messages, again only on a single server per message.

As each data tuple is independent, we have no need for consistent oper-
ation ordering, and therefore do not need any mechanism for enforcing this
order [59]. As there are no external readers pulling messages from the queue,
we also do not need all nodes to receive the same set of data and its oper-
ations, and thus have no use for the consistency guarantees provided by full
replication.

Partial replication saves both network and other resources compared to full
replication, but makes it difficult to maintain a consistent, global order between
data tuples. Previous works in this area [9, 12, 14, 24, 56] solve this by using
some variant of atomic broadcast [2, 15, 27, 28, 55]. Unfortunately that so-
lution requires additional network traffic (between 1 and 10 communication
steps, depending on the protocol) and relatively complex algorithms. This cre-
ates a problem with scalability, which can be observed in the literature on this
topic by noticing that the system throughput does not always increase when
new nodes are added. The throughput typically falls relatively quickly when
the number of nodes to replicate to increases. This can, for example, be seen in
the evaluation of GentleRain [20], where the throughput increases significantly
slower when there are more than about 10 servers.

The purpose of this work is to design a replication protocol for a resilient
message queue with high efficiency, allowing disaster-resistant processing of
1000 or more messages per second (MPS) per server, with better scalability
than in state-of-the-art. The resulting design was evaluated using a proof-of-

122

concept implementation, tested on servers scattered across multiple continents.
Even on servers with modest performance, we achieved up to 3440MPS per
node in the geo-diverse case, replicating each data tuple to a random other
server in the world. By always using the nearest server, e.g., from New York
to Toronto, we instead reached 5661MPS per node.

We claim the following contributions in relation with this protocol.

1. A high level description of its functionality.

2. An analysis of its reliability in terms of availability, potential data loss,
and potential data duplication.

3. A method to verify its failover mechanism.

4. A performance analysis on throughput, both when deployed within a
local network and for a geo-distributed system configuration.

5. An open-sourced implementation.

Following this introduction is a description of the assumptions we have
made about our system model, and a sample application context. Section 8.2
describes the proposed protocol. Next follows evaluations of the protocol from
three different perspectives. First, Section 8.3 contains a theoretical analysis
of the reliability. Then, Section 8.4 describes the verification of the failover
mechanism, and finally Section 8.5 describes the setup for the experiments
conducted to evaluate the behaviour in a real-world configuration, focusing on
the quality attribute throughput. The results are discussed in Section 8.6, and
related work in Section 8.7. Section 8.8 holds conclusions and some ideas for
future work.

This paper is an extension to the previously published conference
paper [10] presenting this protocol. The main differences between that version
and this updated article, are Section 8.1.3 discussing our requirements, the
extension of the “Duplication Analysis” subsection into a more complete
Reliability Analysis in Section 8.3, the failover verification in Section 8.4, and
an extended list of references.

8.1.1 System Model

Our system model is a classic store-and-forward queue [21], with external sets
of producers and consumers [22]. Data tuples, described in more detail below,
are received from the producers and stored in the queue. As soon as possible
after they are received, each data tuple is forwarded by the queue to one of the

123

consumers. When acknowledged by the consumer, the data tuple is removed
from our system. The data tuples are therefore managed by the queue for a
relatively short time period, normally less than 1 second. There are no end-to-
end acknowledgements.

The part of the system we can control and manipulate in this model is just
the queue itself, which comprises a collection of n nodes, named node1, node2,
. . ., noden. Each node knows about all other nodes, can exchange data with
any other node, and may join and leave the system at any time. The nodes are
crash-recovery, so they may rejoin after crashing. The communication between
the queue nodes is asynchronous.

Each producer and consumer is a third party system connected to one or
more queue nodes. We assume that each producer maintains a list of addresses
to multiple nodes they can use when sending their data tuples. However, we
cannot change the communication protocol used with these parties, nor any-
thing else in their systems. Due to this, a server cannot inform clients about
the other servers, unless that is already part of the protocol between clients and
servers.

The data tuples contain the following fields.

id A globally unique id.

payload Opaque application specific payload.

In addition to n, the number of nodes in the system, we will use f for the
number of nodes which are allowed to fail at the same time without data being
lost. The value of f is typically 1 or 2.

We use the term “majority replication” for all data replication protocols
based on inequality (8.7) below. Full replication normally uses number of
nodes to send write operations to (w) = n and number of nodes to read data
from (r) = 1, which trivially satisfies this condition [3]. Another variant is to
wait for acknowledgements from at least bn/2c + 1 nodes for both write and
read operations [7].

w + r > n (8.7)

Security concerns such as authentication and encryption are not part of the
model. There are also no byzantine failures [44], with nodes sending arbitrarily
erroneous data.

8.1.2 Example Application

One of the application areas matching our system model is application-to-
human messaging, e.g. an SMS gateway. Such gateways are used by SMS

124

brokers, connecting clients via internet to mobile network operators. These
clients are companies sending event data from their IoT devices, authentica-
tion codes, meeting reminders and similar information. Using SMS makes it
possible to reach all customers without them having to install any additional
software on their mobile phones. Fig. 8.13 shows a schematic view of this
setup. In this use case, the replication would be done between multiple SMS
gateways belonging to the same SMS broker, without affecting the protocols
towards neither the client companies nor the operators. In our system model,
the clients are the producers, and the operators are the consumers.

Operator

Broker

IoT DeviceServer

Clients

IoT DeviceIoT Device

Figure 8.13: Companies sending text messages from multiple IoT devices, an
SMS broker with multiple servers, mobile network operators, and customers’ mobile
phones.

We will use an SMS gateway for the motivation of various assumptions
and decisions throughout this paper. For example, n is in this context typi-
cally at most 10. The payload field in the data tuple consists of the sender’s
and recipient’s phone numbers, the message text, and possibly additional other
information, in total a few hundred bytes.

The network operators implement their own message queues, making the
mobile phone user the final consumer. This affects the delivery guarantees
we must support, as it is important that all messages are delivered as soon as
possible, but it is not a big problem if an occasional message is delivered twice.
Similar to the established terms “at most once” and “at least once”, we call this
“once plus epsilon” delivery. The term “at least once” allows any number of
repetitions of each message, but we want to explicitly minimize these.

8.1.3 Problem Statement and Requirements

For our store-and-forward system model in general, and our SMS application
in particular, the problem addressed in this paper is to find a way to replicate
the forwarded data tuples as effectively as possible, with minimal changes to
an existing application. By “effectively” we mean high throughput and low
CPU and network usage.

Next, we summarize our requirements, which are based on current industry
standards for SMS traffic in general. An overview of the required data flows
for a configuration with two nodes is shown in Fig. 8.14. A program, named

125

ExampleApp, is running on each node, using a context independent subsystem
implementing the replication protocol. In the figure this subsystem is called
GeoRep, as that is the name of our proposed solution. A producer, of which
there may be many, sends data to ExampleApp on one of the nodes. The
producers here correspond to the companies in Fig. 8.13. ExampleApp then
tells the replication subsystem to store the data in its local persistent storage,
and replicate it to the other node. When ExampleApp has forwarded the data to
a consumer, corresponding to one of the operators in Fig. 8.13, it tells GeoRep
to delete the data on both nodes.

The GeoRep subsystems communicate with each other for replication and
failure detection. When a failed node has been detected, GeoRep tells Exam-
pleApp on the working node to forward the data tuples originally received by
the failed node. So, ExampleApp does not know anything about replication,
and GeoRep knows neither of the producers nor the consumers.

node 1 node 2

ExampleApp

Producer

GeoRep

Data Tuple Storage

Consumer

ExampleApp

GeoRep

Data Tuple Storage

store
delete

store
deleteadopt adopt

store forward

Figure 8.14: Architecture overview for ExampleApp running on two nodes.

This architecture has several advantages.

1. ExampleApp can maintain its data tuples freely, reordering and delaying
them as needed, without any network traffic at all.

126

2. The API towards the replication system is small and generic, allowing
many different solutions.

3. The replication system does not require any standalone components,
which may otherwise add complexity to the installation and maintenance
procedures for the full ExampleApp system.

We assume all n nodes receive the same amount of traffic, m messages
per second. Using full replication will then lead to the CPU load of O(nm)
on each node, which is undesirable as more system nodes will require a lower
m. We therefore need partial replication, giving a load of O(fm), which is
independent of n. We have set a target throughput of 1000MPS per node.

There are a few potential solutions we need to dismiss for various reasons.

Having the “find the next data tuple” operation in the replication system
If the selection of the next data tuple to forward to the consumer is han-
dled by the replication system, a global consensus must be reached fre-
quently to ensure each data tuple is handled by one single node.

Apache Kafka and other standalone engines
Standalone systems have their advantages, but make the system archi-
tecture more complex as they need their own life-cycle management.

Systems requiring modifications in the producers or consumers
For example, ChainReaction [4] uses an API where new data tuples are
sent to one node and acknowledged by another. Typically SMS bro-
kers integrate with many different systems developed and maintained by
other companies, making any API changes impossible in practice.

8.2 Proposed Solution

In this section we describe our proposed replication protocol, named GeoRep.
It is designed to be used on n nodes, of which f nodes may fail without data
being lost.

8.2.1 Protocol Description

Here we describe the activities carried out when GeoRep starts and stops, how
data is replicated, and how node failures are handled.

We amend the data tuples with an additional owners field, containing an
ordered list of f + 1 unique node identifiers. The first node referenced in this
list is the one which originally received this tuple, and the remaining nodes are
the failover nodes for this specific data tuple.

127

8.2.1.1 Startup

At startup, the application layer in ExampleApp provides its selected value
for f to the GeoRep subsystem, and an initial list of other nodes. GeoRep
then loads any previously stored data tuples into appropriate data structures
in memory. When that is completed, it waits for contact requests, while also
trying to make contact with the other nodes.

In response to a contact request from nodex, GeoRep on the contacted
node returns a welcoming message with its list of currently known nodes. This
list includes temporarily stopped nodes and their expected return times (see
Section 8.2.1.3 below). The contacted node informs the others about nodex,
while nodex tries to connect to the existing nodes, getting their respective lists
of known nodes. If any node gets an update during this phase, the full list is
broadcast to all other nodes. Eventually, this will converge, from which point
all nodes send periodic heartbeats [6] to all other nodes unless other data has
recently been sent.

If a node returns after a short time, each welcoming message will also
contain the list of entries adopted by each node. These entries can then be
removed by the returning node to reduce the number of duplications.

8.2.1.2 Replication

According to our system model described in Section 8.1.1, f nodes are allowed
to fail without resulting in data loss. All received data tuples must therefore
be replicated to at least f additional nodes before the corresponding acknowl-
edgement can be sent to the producer. We do not need to replicate the data
to more than these f nodes, as there is no requirement of keeping all nodes
identical. The replication algorithm therefore becomes as follows.

1. The application layer in ExampleApp requests some opaque data to be
replicated.

2. GeoRep creates a list of f other nodes known to be alive out of the other
n − 1 ones it knows about, putting this list in the owners field of the
data tuple. If the number of alive and reachable nodes is less than f ,
the operation is terminated immediately, and a failure status is returned
to the application. If this happens, the producer can send the data to
another node.

3. The data tuple is replicated to the f selected nodes.

128

4. GeoRep returns a condition variable to the application. This variable
is signalled when all nodes have responded. The application can there-
fore be as synchronous as it wants to be, while GeoRep remains asyn-
chronous.

If multiple producers request entries to be replicated sufficiently close in
time to the same node, these are all sent together. When receiving an entry
from another node, it is stored locally and a response sent back, but no other
action is taken. In particular, none of the received messages are forwarded
at this point. Fig. 8.15 shows the replication when n = 5 and f = 2, for a
message received by node1, and the f other nodes being node3 and node4.

Producer

node5

node4

node3

node2

node1
payload: x id: 42

payload: x
owners: 1,3,4

Figure 8.15: Replicate a payload to a subset of size 2 of the 5 known nodes, here
nodes 3 and 4. This payload is sent neither to node2 nor node5.

8.2.1.3 Failover

If node1 does not receive anything from node2 for some time, node1 suspects
that node2 is down and stops replicating entries to it [45]. It resumes replication
to node2 only after node2 has sent proof-of-life by means of new data.

The reason for this lost connection may be a network outage, resulting in
multiple isolated subsets of the original n nodes still in contact with each other.
Each network partition with such a subset of at least f + 1 nodes can continue
to run as before. This is in contrast to replication protocols using majority
quorums, as they only allow the nodes in the majority to accept new data.

129

After some configurable time, or after the recovery timeout given by node2
when it exited, node2 is considered dead. If node1 ends up as the first node in
the owners list for one or more entries, the application running on node1 is
notified, one entry at a time. For these entries, node1 is now the only node
allowed to forward them to the consumer. We call this transfer of ownership
adoption. The identifiers of the adopted and successfully sent entries are stored
for a limited time, making it possible to notify node2 should it return.

As node1 knows the identifiers of the rest of the nodes to which each entry
was replicated, it will try to inform those nodes about updated statuses. Only
the nodes in the owners list will ever send updates and deletes for a particular
entry, and only to the nodes originally stored in that list.

8.2.1.4 Exiting

When ExampleApp exits and tells GeoRep to shut down, this event is broadcast
to all other nodes, including a timeout for when the node expects to be back.
This timeout is also stored locally. The timeout tells the other nodes when they
can start adopting that node’s messages. If the original node comes back after
the timeout has expired, it can assume all of its messages have been adopted
by the other nodes.

8.2.2 Peer Life Cycle

Fig. 8.16 shows the states and transitions used by each node for each one of
the other nodes. A node maintains its own list of states for these peer nodes,
so all nodes can take different decisions on which other nodes to replicate data
to. This is intentional, and an important feature of this replication protocol as
it both avoids having to reach consensus on the set of reachable servers, and
allows the protocol to continue to work even in case of partial failures. As our
model has crash-recovery nodes, there is no end state.

When a node is informed about the existence of a new peer, the new peer
starts in the Prospect state, causing the node to send it a greeting. When the
peer replies with some data, regardless of the current state, it is moved to the
Active state. This is the only state where it can receive new data tuples, and is
marked with boldface.

When no data has been received for some time, the peer first moves to the
state Schrödinger, and after an additional time to the state Terminated. The
timeouts when moving to the Schrödinger and Terminated states are config-
urable, letting the application select its sensitivity to timeouts. When a node
knows it will be away for just a short while, making any failover adoptions

130

Terminated

Arnold

Active

Contacted Schrödinger

T

Prospect

send
greeting

got data

got Goodbye

got data

no data

 still no datagot data

no data

got data
long timeout

got data

Figure 8.16: The life cycle of each peer.

unnecessary, it can send a goodbye message to the other nodes which puts it
in the Arnold12 state. The failover logic is triggered when moving to the Ter-
minated state. To allow partitions to heal, all nodes send occasional heartbeats
even to Terminated nodes.

8.2.3 Data Tuple Life Cycle

Fig. 8.17 and Fig. 8.18 illustrate the replication and failover from the perspec-
tive of a single data tuple. The Inactive state has a dashed border to show that
it is a passive state, waiting on an externally initiated event. The solid arrows
represent state changes on the first node, and dashed arrows on the failover
nodes.

First, in Fig. 8.17, a producer sends the data tuple to some node, whereby
the data tuple enters the Received state. This corresponds to the arrow from
Producer to node1 in Fig. 8.15. Next, this node sets the owners field, and
replicates the updated data tuple to the selected failover nodes, where they are
stored in the Inactive state. Also in Fig. 8.15, these are the arrows on the right,
from node1 to node3 and node4. When the failover nodes have confirmed this
operation, the data tuple on node1 moves to state Stored. It stays in this state
until the application has forwarded the data.

In the normal case, the application will forward any data tuple in the Stored
state, and then move them to the Forwarded state. This instructs GeoRep to

12It will be back.

131

Inactive

DeletedForwarded

Stored

ReceivedT
to first node

T

delete

replicate to failover
nodes

on delete

Figure 8.17: The life cycle of each data tuple on the first node.

inform the failover nodes, i.e., node3 and node4 in Fig. 8.15, that this data
should be deleted. Finally, the data tuple is removed from the local storage in
GeoRep on the first node as well.

Fig. 8.18 illustrates the cases later shown as B and C in Fig. 8.20, when
a failover node discovers that all earlier nodes in the owners field no longer
respond to its heartbeat requests within the stipulated timeout. It then moves
the data tuple from state Inactive to Stored, and informs the application about
this change. The life cycle then proceeds as above, causing the data tuple to be
forwarded and then deleted on any remaining failover nodes. As described in
Section 8.3.3, there is a possibility for the same data tuple to enter the Stored
state and therefore be forwarded by multiple nodes. We do not need to create
a mechanism to prevent that, as such duplication are acceptable according to
our requirements.

8.2.4 Source Code

The source code, consisting of about 3500 lines of C, is publicly available13.
This includes both the proof-of-concept implementation of the replication pro-
tocol and the test application and scripts used in the evaluations in Sections 8.4
and 8.5. ZeroMQ14 is used for the networking layer.

13https://bitbucket.org/infoflexconnect/leaderlessreplication
14https://zeromq.org

132

Inactive

DeletedForwarded

Stored

T

T

from
first
nodeearlier

nodes
dead

delete

Figure 8.18: The life cycle of a data tuple in case of failover.

8.2.5 Evaluation Environment

For the evaluations later in this paper, we used a total of thirteen servers in
2021, all of them being the smallest ones offered by DigitalOcean15 at that
time: 1 GB memory, 25 GB disk, and 1 virtual x64 CPU. They all ran Cen-
tOS 7.9, with the working directory on the filesystem XFS. The code was com-
piled using gcc 4.8.5.

8.3 Reliability Analysis

The design of our protocol has some immediate consequences on its relia-
bility. We will discuss these consequences next, based on the quality model
ISO 25010 [38]. This model defines several characteristics for the evaluation
of a software product, each one separated into several sub-characteristics. In
this section we will focus on the Reliability characteristic, which contains the
sub-characteristics Maturity, Availability, Fault Tolerance and Recoverability.
Discussing the maturity of a new protocol does not seem meaningful, and the
recoverability in terms of how GeoRep handles a lost node was already dis-
cussed in Section 8.2.1.3.

For the evaluations of the availability and fault tolerance of the proposed
protocol, we will use the concepts yield and harvest, respectively, suggested

15https://digitalocean.com

133

by Fox and Brewer [25]. In Section 8.3.1 we discuss the availability in terms
of the yield, i.e., how likely it is for a producer to be able to find a node in
the GeoRep system which accepts a new data tuple. Next, in Section 8.3.2,
we discuss the fault tolerance in terms of the harvest, seen as the probability
that the consumer will receive at least one copy of each data tuple. Finally, the
fault tolerance is again discussed in Section 8.3.3, now from the perspective
of what happens when the communication between two or more nodes fail for
some reason, and under which conditions the consumer will get at most one
copy of a particular data tuple.

8.3.1 Availability – Yield

The yield [25] for GeoRep is the probability for a client to be able to find a set
of at least f+1 (where f represents the number of nodes that are allowed to fail
after data has been received and acknowledged, as discussed above) correctly
functioning nodes. Here we assume that the client knows about all n nodes in
the system.

To calculate this yield, we define a node-set as a set of nodes that can
communicate with each other. Each one of n nodes is either part of, or not part
of, each such set, giving a total of 2n sets. If a node has failed, it is put in its
own node-set. As we only care about sets with a size of at least 2 (i.e. f + 1,
where f > 0), failed nodes are automatically ignored in our calculations below.
There are

(
n
k

)
sets with size k. For example, consider the configuration in

Fig. 8.15, where n = 5. The number of sets with sizes between 2 and 5 are
then 10, 10, 5, and 1, respectively.

GeoRep can use all sets with a size of at least f + 1, which for n = 5 and
f = 1 there are 10+10+5+1 = 26. In contrast, replication protocols which
requires a majority of the nodes to work [61] can only use those with a size
of at least (n + 1)/2, which for n = 5 becomes (5 + 1)/2 = 3. There are(
5
3

)
+
(
5
4

)
+
(
5
5

)
= 10 + 5 + 1 = 16 such sets. The protocols requiring fewer

nodes than a majority [42, 46] for a write operation to succeed, achieve this by
only allowing predefined node sets, so for n nodes there are typically only n
usable node sets. For protocols replicating all data to all other nodes, only a
single node set is allowed.

We illustrate the general case in Fig. 8.19, using Pascal’s triangle, where
the row (starting at 0, shown to the left) is the number of nodes in the system,
and the values in the triangle are the number of node-sets with a particular
size. The list of 1’s along the left side represents the single situation where all
nodes are unavailable. The next column on each row, where the value is the
same as the number of nodes, represents the cases where only a single node

134

is available. Each following column represents the cases with an increasing
number of available nodes. Along the rightmost side are finally the single
cases where all nodes are available.

GeoRep

Majority

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1

8 1 8 28 56 70 56 28 8 1

9 1 9 36 84 126 126 84 36 9 1

Figure 8.19: Number of node-sets usable by majority replication and GeoRep, for
f = 1.

The node-sets usable by majority replication are the ones on the right part
of Fig. 8.19. As described above, GeoRep can use not only these node-sets,
but also the ones to the left except the ones in the first f + 1 columns.

The total number of node-sets is shown in Equation (8.8) below. The ones
usable by GeoRep are then shown by Equation (8.9). The number of node-
sets usable by majority replication are given by in Equations (8.10) and (8.11)
for odd and even values of n, respectively. For example, going from right
to left on row 3, we see that for 3 nodes we can use the single case where
all nodes are available, and the 3 cases where 2 out of 3 nodes are available:
2(n−1) = 2(3−1) = 22 = 4 = 1 + 3.

The ratio between the number of sets usable by GeoRep and the ones
usable by majority replication in the best case, is then given by the expres-
sion (8.12), which simplifies to Equation (8.13). As the second term in Equa-
tion (8.14) is a polynomial, the second term in Equation (8.13) will always
converge to 0, making the ratio converge to 2 for all values of f . Assuming the
producer can connect to any of the system nodes, the availability is therefore
up to twice as high as for other systems.

135

total = 2n (8.8)

georep = 2n − (n+ 1) (8.9)

majority_odd = 2n−1 (8.10)

majority_even = 2n−1 −
(
n

n/2

)
< majority_odd (8.11)

ratio ≥ georep

majority_odd
=

2n − (n+ 1)

2n−1
(8.12)

= 2− n+ 1

2n−1
(8.13)

Generally, we get:

georep = 2n −
f−1∑
k=0

(
n

k

)
(8.14)

There are multiple strategies to use when selecting which node-set to use,
for the situations when there are more than 1 available. The effect the selected
strategy has on the system throughput is examined in Section 8.5.4.

8.3.2 Fault Tolerance – Harvest

The harvest [25] is the probability that each data tuple inserted into the sys-
tem still exists to be output when needed. When this condition is true, the
consumer will receive at least one copy of the data tuple. For GeoRep we
therefore define the harvest as the probability that at least one of the nodes in
the particular subset used for storing an individual data tuple is alive until the
data has been forwarded to the consumer (as shown in Fig. 8.14). Again, we
use concrete values, for e.g., queue and recovery times, in accordance with
industry standards. According to Sahoo et al. [54], the typical lifetime of a
computer system is in the order of 3–10 years. The actual mean time between
failures (MTBF) for a specific system may of course be both lower and higher
than this, but in the calculations below we have assumed it to be 3 years. We
make no assumptions on the MTBF for other equipment in the data-center, the
power grid, etc, even though those are also relevant for a full analysis.

The interval from when a data tuple is stored to when it is forwarded is
typically less than one second. If a node fails exactly once every 3 years the
probability that it happens in any particular second, which we denote as d1s, is

136

d1s =
1

3 · 365 · 24 · 60 · 60
≈ 10−8

(assuming each second is equiprobable16). When the node has been repaired
or replaced and then restarted, we reset the clock and assume it will run for up
to 3 more years.

In our use case, an embedded system or an IoT device may send a large
batch of data tuples faster than they can be fully processed. The resulting
queues are typically cleared within a few hours, as the incoming traffic eventu-
ally slows down. The probability that the node that received the messages dies
within this time, say 3 hours, is

d3h = 1− (1− d1s)3·60·60 ≈ 10−4.

As the nodes are geographically distant from each other, we can further
assume their failures are independent. The formula for the harvest as defined
above, then simply becomes 1 − df+1, for the relevant value of d. For the
normal case when data is forwarded within a second, we get a harvest for f = 1
of about 1− 10−8(f+1) = 1− 10−16, a.k.a. “16 nines”. For data that stays in
the system for 3 hours, we instead get a reliability of 1−10−4(f+1) = 1−10−8

for f = 1 and 1− 10−12 for f = 2. Systems where queues are frequent might
therefore want to replicate to two other nodes, but more than that is mostly just
a waste of network bandwidth. Please also see Table 8.6 in Section 8.4, where
only one of the nine test cases required a fourth node to be available to avoid
data loss.

For replication protocols using full replication, we get a harvest of 1− dn.
As n grows, this of course converges more rapidly towards 1, but at the cost
of significantly more data traffic and higher CPU load. We want to emphasize
that as there is a possibility that all nodes fail at the same time, the harvest is
never exactly 1, so data loss is always possible.

8.3.3 Fault Tolerance – Duplication Analysis

We now consider the cases that can occur in the same situation as in Sec-
tion 8.2.1.2, when n = 5 and f = 2, and a message is replicated from node1 to
node3 and node4. The cases are shown in Fig. 8.20. Neither node2 nor node5
have seen this message, so whether they remain in contact with the other nodes
has no effect here. For our SMS gateway application, the consumer here is

16This is of course a simplification, but we consider it to be an acceptable compromise in the
interest of understandability [5].

137

the mobile network operator handling SMS to the recipient of each particular
SMS.

A. As long as node1 is alive, it will try to deliver the message to the con-
sumer, and the statuses of the other nodes do not matter.

B. If node3 concludes that node1 is dead or for some other reason unreach-
able, it will adopt the message and try to deliver it. Here, the status of
node4 does not matter.

C. If node4 loses contact with both node1 and node3, it will then try to
deliver the message itself.

node5

node4

node3

node2

node1

Consumer
dead?

dead?dead?

A

B

C

Figure 8.20: Possible duplications.

There is no way for a node to know if any of the other nodes are dead
or are unreachable for another reason, e.g., being unusually slow [5, 45]. In
case multiple nodes can communicate with the consumer but not with each
other, messages could therefore be duplicated. We assume that the probability
for this is low, and these duplications are therefore acceptable. We consider
it much more likely that a lost node is dead or has lost internet connectivity
entirely, and thereby also the connectivity to the consumer. In both of these
two latter cases the message is delivered only once.

138

8.4 Failover Verification

As we see it, the most important functionality that needs verification is that
data tuples inserted into the system are adopted and subsequently forwarded
by another node if the original node becomes unreachable. More specifically,
a data tuple should only be adopted by the first node in its owners list where
all preceding nodes have become unreachable.

For the test case construction, we defined five different categories of nodes.
At the top level we had the nodes in the owners list plus the rest of the nodes.
Of the owners, we had one originator and a list of failover peers. Of those
peers, we distinguished between the first one, the ones in the middle, and the
last one. These three peer groups allowed at least one peer to have other peers
before it in the owners list, after it, and both.

Next, we assigned a number to each category as follows, and as shown in
Table 8.4: originator=1, first=2, middle=4, last=8, rest=16. Finally we created
a sum of the values representing nodes that had become unavailable. As the
selected values are powers of 2, this sum can be seen as a bitmask, where the
bit value 0 meant the nodes in this category were still reachable, and 1 that
they were not. For example, the bitmask value 00001 = 1 meant only the
originator was unreachable, and 01100 = 12 that the originator and the first
failover peers was still reachable, as well as the non-peer nodes (in the rest
group), but not any of the other failover peers. This way we got a set of 32
unique test cases, numbered from 0 to 31, providing a reasonable coverage of
possible server and network outages as each test case represented the situation
where zero or more nodes in each of these categories became unavailable to
all other nodes.

owners

originator 1

failover peers
first 2
middle 4
last 8

rest 16

Table 8.4: The five different node categories, and their assigned bitmask values.

Of the total set of 32 possible test cases, all even numbered ones mean
the originating node is still alive and reachable. Therefore no adoption should
occur in any of these cases. Next, the test cases 16–31 are the same as the
cases 0–15, as the reachability of nodes not in the owners list have no effect,
regardless of how many they are. This leaves us with just 9 distinct test cases,
listed in Table 8.5. We note that in cases 0 and 15, no adoption is made. In

139

case 0, as there is no need for it, and in case 15, as there is no owner left alive
to do the adoption. In case 15 there is simply an unfortunate subset of f + 1
nodes being unavailable, corresponding exactly to the nodes storing the tested
data tuple, i.e., both the original node and all failover peers.

Number Unreachable Adopter Minimum f

0 = 00000 none none 1
1 originator first 1
3 originator and first middle 2
5 originator and middle first 3
7 originator, first and middle last 3
9 originator and last first 3
11 originator, first, and last middle 3
13 originator, middle and last first 2
15 = 01111 all owners none 1

Table 8.5: Relevant tests cases.

Finally, we mapped the test cases listed in Table 8.5 to concrete servers.
This mapping is shown in Table 8.6, where nodes that should become un-
reachable are marked with italics and nodes that should adopt the message(s)
are marked with boldface.

Number originator first middle last
0 node1 node2 node3 node4
1 node1 node2 node3 node4
3 node1 node2 node3 node4
5 node1 node2 node3 node4
7 node1 node2 node3 node4
9 node1 node2 node3 node4
11 node1 node2 node3 node4
13 node1 node2 node3 node4
15 node1 node2 node3 node4

Table 8.6: Mapping test cases to servers, marking which ones should become un-
reachable and which ones should adopt the replicated data tuples.

The rest of this section contains the details regarding the implementation
and execution of these test cases, as well as the results.

140

8.4.1 Experiment Design

The critical point for a data tuple is the transfer from Inactive to Stored, shown
in Fig. 8.18 in Section 8.2.3, which in turn will trigger at least one of the
nodes in the owners list to hand the data tuple over to the application so it can
ultimately be forwarded to the consumer. To simulate this sequence of events,
we created a test application that performed the following steps.

1. Create a single data tuple.

2. Replicate the data tuple to all other nodes, and wait for confirmation.

3. Block all outgoing traffic from a selected subset of nodes, as specified
in Table 8.6. This simulates the node having failed.

4. Wait some time to allow the blocked nodes to reach the state Terminated
in Fig. 8.16 in Section 8.2.2, triggering the data tuple adoptions.

5. Examine the log files created on each node, to see which node or nodes
adopted the data tuple.

8.4.2 Factors and Variables

For this evaluation, the only independent factor was the set of nodes which
should be made unavailable, and the only dependent variable was the set of
nodes adopting the data. Based on Table 8.6, all test cases in this section used
n = 4 and f = 3. We also used a fixed peer order to ensure the roles of each
node was predictable. Preliminary tests showed that the number of clients and
messages had no effect on the behaviour, so we set both of these parameters
to 1. As the adoptions were performed based entirely on local information, the
concepts of recovery time, time to elect a new leader and so on, commonly
evaluated for other replication protocols, were not relevant to us. The factors
and variables are summarized in Table 8.7 for easy overview.

8.4.3 Execution

The tests were implemented by adding a filter between the main GeoRep logic
and the ZeroMQ interface, making it possible on the application level to pre-
vent any outgoing traffic to one or more particular other peer nodes. The shell
script run-failover.shwas used to ensure all executions used the correct
parameters, and that data was collected in the same way for all test cases.

141

Type Factor Value(s)/Unit
Independent Disabled node(s) None, 1, 2, 3, and/or 4

Constants

Servers, n 4
Protection, f 3
No of clients 1
No of messages 1
Separation local

Dependent Adopter node number(s)
Ignored Recovery time seconds

Table 8.7: Experiment factors for the failover evaluation.

8.4.4 Results

Table 8.8 shows the results for each one of the test cases. For test case 0, no
node was blocked, and therefore no adoptions by other nodes occurred. For
the other test cases, we notice that the correct node, as specified in Table 8.6,
does indeed adopt the replicated data.

No node1 node2 node3 node4
0
1 blocked adopts
3 blocked blocked / adopts adopts
5 blocked adopts blocked / adopts
7 blocked blocked / adopts blocked / adopts adopts
9 blocked adopts blocked / adopts
11 blocked blocked / adopts adopts blocked / adopts
13 blocked adopts blocked / adopts blocked / adopts
15 blocked blocked / adopts blocked / adopts blocked / adopts

Table 8.8: Failover results, showing blocked nodes and the ones adopting any data
tuples.

Except for node1, all blocked nodes also adopt the replicated data tuples.
The reason for this is that as they are blocked, they never get any life signs
from the other nodes and therefore must consider these too to be unreachable.
As discussed in Section 8.3.3, this would however rarely lead to any data du-
plications.

142

8.5 Throughput Evaluation

For an evaluation of the proposed protocol primarily focused on quality at-
tributes, we designed a controlled experiment [51]. The overall goal was to
evaluate the throughput in a few different configurations.

8.5.1 Experiment Design

We used a sequence of tasks corresponding with the queue related operations
performed by the type of systems described as our system model in Sec-
tion 8.1.1, resulting in realistic experiments. We created a test application
which itself created the messages, and discarded them when all tasks described
below were completed.

1. A new message was stored locally and replicated according to the
selected configuration. The application waited for acknowledgements
from the others servers before returning control to the application.

2. A message was extracted from the queue.

3. The extracted message was deleted from all servers where it was stored.

A benchmark suite commonly used for evaluating replication systems is
the Yahoo! Cloud Serving Benchmark (YCSB) [17]. Using the same suite
makes it easy to compare different solutions, but as it is designed for web server
type systems and not store-and-forward systems, YCSB was not meaningful
for us.

8.5.2 Factors and Variables

In addition to the usual Independent and Dependent factors, we found it rele-
vant to describe the independent factors that we set to constant values, and the
dependent factors which we chose to ignore. These are all described in more
detail below, and summarized in Table 8.9.

8.5.2.1 Independent Factors

The primary factors in these experiments were selected to give a deeper under-
standing of the behaviour under different circumstances.

The number of servers was varied from 2 to 7. The number of client con-
nections was varied between 1 and 1000. For clarity, only subsets of these
intervals are shown in the diagrams below.

143

Type Factor Value(s)/Unit

Independent
Servers, n 2. . .7
Clients 1, 3, 10, . . . , 1000
Separation Local, Geographical

Constant
Protection, f 1
Transient 5 s
Steady-state 30 s

Dependent
Throughput MPS
Min RTT Microseconds, µs

Ignored
Recovering MPS
Duplications Ratio

Table 8.9: Experiment factors.

We used servers both within the same data center and in multiple time
zones. This way we could examine the effect the physical distances between
the servers, and thereby the different round-trip times, had on the system
throughput. The data centers used for the different numbers of servers, are
shown in Table 8.10. The idea was to keep the sites as geographically sep-
arated as possible. Only when using 6 or 7 servers did we use data centers
relatively close to each other.

Data center Number of servers
2 3 4 5 6 7

Amsterdam X X X X X X
New York X X X X X X
San Francisco X X X X X
Bangalore X X X X
Singapore X X X
London X X
Toronto X

Table 8.10: Data centers used for the Geographical cases.

The reliability of the power and internet infrastructure is also relevant, but
these factors mainly affect the availability of the system, not its fault tolerance.
We get high availability by having a large number of possible node sets, and
as we saw in Fig. 8.19 in Section 8.3.1, the most effective way to increase the
number of such sets is to increase the number of nodes, n. This value is already
selected as one of the independent factors.

144

8.5.2.2 Constants

We motivate setting the protection f to 1 by recalling the discussion about reli-
ability in Section 8.3.2. For normal operations, where messages are forwarded
within the same second as they were received, even setting f to such a low
value as 1 gives a reliability of about 1− 10−16.

All configurations were tested for 35 seconds. First, there was a transient
phase of 5 seconds, allowing the CPU caches and TCP parameters to stabilize.
Next, the application continued to run in the steady-state phase for another 30
seconds.

8.5.2.3 Dependent/Response Variables

For all configurations, i.e. the combinations of one particular value for each
of the independent variables, the response variable of most interest to us in
this experiment was the total system throughput. This throughput was defined
as the number of messages processed per second (MPS), according to the se-
quence of tasks described in Section 8.5.1.

We also measured the minimum RTT between each pair of nodes. The
median round-trip time would be more relevant for answering the question of
what a typical response time would be. However, as discussed in Section 8.1,
we are more interested in the system resilience, achieved by replicating the
data tuples to nodes at some minimum physical distance from each other. A
large RTT clearly is no guarantee that the nodes are far apart, but due to the
finite speed of light, a small RTT requires the nodes to be near each other.

8.5.2.4 Ignored Response Variables

Other response variables that might be of interest mainly concern the behaviour
when a failed server is detected, and the time-span afterwards during which the
system is reassigning messages to new servers.

8.5.3 Execution

Before each test, all servers were reset to a known empty starting state. The
files for local storage were removed, so they could be recreated as needed.
The application was then started on all servers, with the selected values for the
independent variables provided as command line parameters.

The test application counted the number of messages processed each sec-
ond by each server, values that were then summarized into a result for the full

145

system. Finally, the median of the values for each of the 30 seconds in the
steady-state phase was calculated.

8.5.4 Results

Here we present a summary of the results from our throughput evaluations,
made to establish an initial intuition of how this protocol behaves. As men-
tioned, we varied the number of servers up to 7, and the number of clients
up to 1000, even though the diagrams just show the results for representative
subsets.

In a local network, the total system throughput increased with the number
of nodes up to 40 437MPS on 7 nodes with 300 clients, shown in Fig. 8.21.
The minimum RTT varied between 143 µs and 420 µs.

number of servers

kM
P

S

0

10

20

30

40

50

2 3 4 5 6 7

3 clients 30 clients 300 clients

Figure 8.21: System throughput as a function of the number of servers, all running in
the same data center.

When GeoRep was deployed in a cluster of geo-separated servers, through-
put again increased with the number of nodes. The peak throughput levels were
much lower than in the local case, due to the longer round-trip times. For the
same reason, the system spent more time waiting for responses, lowering the
CPU load. This allowed us to increase the number of clients to 1000. Fig. 8.22
shows how the throughput reached 9048MPS for 2 nodes and 24 085MPS for
7 nodes.

In Fig. 8.23 we see the performance hit resulting from the replication logic.
The entries for f = 0 show the case when not using any replication at all. We

146

also ran a few tests using f = 2. Other than occasional heartbeat traffic, the
executed program code in GeoRep is just a very thin layer on top of LevelDB.
As expected, the throughput scales almost linearly by the number of nodes,
around 35–40 kMPS per node.

number of servers, f=1

M
P

S

10

100

1000

10000

2 3 4 5 6 7

1 client 10 clients 100 clients 1000 clients

Figure 8.22: System throughput as a function of the number of servers, running in
different data centers on multiple continents. Please note that the Y axis is logarithmic,
to match the logarithmic increase in the number of clients.

For 3 geo-separated nodes, the minimum RTT averaged 105ms. For 7
nodes, the relatively distant nodes in Bangalore and Singapore resulted in an
increase to 138ms. Fig. 8.24 shows the RTT between a few selected pairs
of nodes. For example, the RTT from Toronto (in column 3) is quite low to
New York, almost the same to San Francisco and Amsterdam, and quite high
to Bangalore. The profiles for nodes geographically close to each other, e.g.,
New York and Toronto, are notably similar.

Based on Fig. 8.24, we saw that instead of replicating messages to a ran-
dom selection of nodes, we could select the f ones with the smallest RTT from
where the message was received, ignoring nodes with an RTT lower than some
predefined limit, say 10ms. This minimum value ensures messages are always
replicated outside of the critical region mentioned in Section 8.1.

We set the number of servers to 7, and varied the number of clients be-
tween 100 and 1000. We varied the minimum RTT limit between 1, 20, and
100 ms, based on the following reasoning. A minimum of 1ms prevents a
node from replicating to another node within the same data center. This level
protects from local internet and power outages. The RTT between New York

147

number of servers

kM
P

S

5

10

50

100

2 3 4 5 6 7

f=0 f=1 f=2

Figure 8.23: System throughput as a function of the number of servers, running in
different data centers on multiple continents, when varying f between 0, 1, and 2.
The number of clients is 1000.

and Toronto, and between the nodes in Europe, is around 10ms. By setting a
minimum of 20ms, these nodes must find peers further away, such as the one
in California or one across the Atlantic. This level protects from larger outages
covering bigger areas. When increasing the limit to 100ms, we also prevent
replication within the American continent and between the American east coast
and Europe. The data tuples are then always replicated at least about one third
of the total circumference of the earth. Increasing the limit further would not
have any practical application. With a larger number of nodes in more parts of
the world, other RTT limits would be meaningful, offering a larger number of
tradeoff points between throughput and reliability. The achieved throughput
for the three tested cases are shown in Fig. 8.25.

8.5.5 Comparative Evaluation

To get a performance comparison between GeoRep and Paxos, we used the
C implementation LibPaxos317. Based on the requirements described in Sec-
tion 8.1.3, we assumed that a full implementation based on Paxos would need
to do at least two operations per message. First, the data would be added to
the replicated event list, including the owners field described in Section 8.2.1.
As only the node first in the owners field would be allowed to forward the

17https://bitbucket.org/sciascid/libpaxos

148

R
TT

0 ms

50 ms

100 ms

150 ms

200 ms

250 ms

San
 Fran

cis
co

New
 Y

ork

Toro
nto

Lo
nd

on

Amste
rda

m

Ban
ga

lor
e

Sing
ap

ore

Amsterdam San Francisco Bangalore New York

Figure 8.24: Round-trip time (RTT) for various pairs of servers.

message, we avoid duplications. When the correct node has forwarded the
message, the message id would be replicated again, with a flag marking it as
being delivered. We can therefore get the number of messages that could be
processed by a Paxos based solution per second, by simply counting the num-
ber of events we can submit and divide by 2.

The set of reachable nodes would be stored within the event log as well,
providing a consensus on when the failover logic should be activated. There
still exists at least one sequence of events where a message may be duplicated,
described below. To the best of our knowledge, this situation can not be com-
pletely avoided, as any process may crash between promising to do something
and then doing it, or between doing something and then informing that it has
been done. However, we already stated in Section 8.1.2 that a limited number
of message duplications, caused by situations like these, are acceptable.

1. A node N finds itself being the owner of a particular message m.

2. Node N sends m.

3. Node N replicates the event that m has been forwarded. Before this event
has been sent, N crashes.

149

Minimum RTT

kM
P

S

1

5

10

50

1 20 100

100 clients 300 clients 1000 clients target: 7000

Figure 8.25: System throughput for various minimum RTT limits. In this experiment
we use 7 nodes, giving a target throughput of 7 ∗ 1000 = 7000 MPS.

4. The remaining nodes discover that N no longer responds, and after a
consensus round m is adopted by the next node in its owners list.

We tested the Paxos implementation in the same environments as Geo-
Rep, first with up to 7 servers in the same data-center, and then on up to 7
geo-separated servers. The numbers when all nodes are within the same data-
center, in Table 8.11 on the line marked Local, should be compared to the ones
for GeoRep in Fig. 8.21. We see that for 3 nodes Paxos is faster than GeoRep,
even when GeoRep has 300 parallel client threads. However, while the system
throughput increases when nodes are added in GeoRep, the throughput instead
decreases in Paxos. We then compare the numbers for the geo-separated con-
figurations to the ones for GeoRep in Fig. 8.22. Paxos is now more on par with
GeoRep for 10 parallel clients. Just as in the previous configuration, the clear
performance increase seen for GeoRep is not present with Paxos. The number
of clients had no measurable effect in this experiment.

The main advantage with a Paxos based solution is that the risk for dupli-
cated messages would be 0, due to the stricter reliance on consensus in Paxos.
With up to at least 7 nodes running within the same data-center, we also get at
least 1000MPS per node, our target as specified in Section 8.1.3. Paxos is not
as suitable in geo-separated configurations, nor provides the clear scale-up for
more servers as seen with GeoRep.

150

Number of servers
3 4 5 6 7

Local/Paxos 22827 13366 16021 13798 9343
Local/GeoRep 14880 23246 29807 32762 40437
Separated/Paxos 756 356 217 211 243
Separated/GeoRep 13253 13230 15977 21345 24085

Table 8.11: LibPaxos3 system throughput, in messages per second (MPS).

8.6 Discussion

In our experiments, the proposed protocol was shown to be able to leverage
the ordering independence of the data tuples and thereby perform better as the
number of clients, and thereby also the number of parallel requests, increased.
As shown in Fig. 8.25 in Section 8.5, the highest recorded throughput for the
geo-distributed case was 28 377MPS when using 7 servers with a minimum
RTT of at least 20ms between each other, or sufficiently far apart to avoid
having more than 1 server fail due to a single power or network outage. The
independence between the data tuples enables us to reach much more than our
target 1000MPS per node, as long as there are sufficiently many clients.

8.6.1 Threats to Validity

The identified validity threats are grouped [16, 39] for better overview.

8.6.1.1 Construct

The validity threat “construct” concerns whether the experiment measures the
right thing. Differences in hardware, programming language, the number of
clients, servers, and replication groups, as well as selected test scenarios make
it difficult to compare absolute numbers to previous work. The failover mech-
anism uses only local operations, and the rate of this was not measured.

8.6.1.2 Internal

Internal validity threats concern the causal relationship between two variables.
Even though an existing system was the driving force for the requirements
addressed by GeoRep, a new and minimal application was written for these
experiments. This avoided the threat of any confounding variables introduced
by the existing implementation and simplified the reproducibility.

151

In a production environment, the client applications will of course not run
on the same machine as GeoRep. Separating them will result in more time
passing for the client, between submitting a data tuple for replication, and
getting the confirmation back. On the other hand, it will leave more CPU to
GeoRep, possibly increasing its performance for the CPU bound parts.

To address the threat of additional confounding factors, all cases were run
for a relatively long time. As we focused on the median, any temporary vari-
ances in the environment were effectively filtered out.

8.6.1.3 External

External validity threats concern whether the results are still valid in a more
general context. Due to not having a coordinating server, our proposal is only
usable for situations where the stored elements have no relative order. Appli-
cations where this is true, other than in our embedded systems use case, are
email gateways. These gateways also route messages from companies to their
customers, but instead of delivering messages to network operators, they are
delivered to email servers and ultimately to the customers’ mailboxes. Here
too, the relative order between messages does not matter, there are no reliable
end-to-end acknowledgements,18 and each message is important to its recip-
ient. Here, the quality requirements for these systems also mean the system
must provide high availability to the senders, and as messages must not get
lost despite temporary failures of both system nodes and recipient systems.

8.7 Related Work

8.7.1 Replication in Practice

Among others, Helland and Campbell in 2009 [32] and Hellerstein and Alvaro
in 2019 [33], argued that shifting the focus from the storage layer up to appli-
cation semantics may lead to better solutions. In our case, this shift enabled us
to not only take advantage of the lower network requirements by partial repli-
cation, but also to lower the network usage even further by avoiding the cost
of maintaining a total order of the messages. It also made it possible, in case
of a network partition, to let other subsets than the one containing the majority
of the original nodes continue working, thereby making the system available
to the senders in the minority group(s).

18A common workaround for emails are tracking pixels, but these are usually possible to
disable on the client side. Some email services, e.g., hey.com, see them as a threat to privacy
and explicitly blocks them.

152

8.7.2 Replication Protocols

Other store-and-forward systems are application-to-application message
queues, e.g. Apache Kafka [41]. In Apache Kafka the data in the system
can be spread over multiple subsets of the nodes, with each such subset
being called a partition. A partition has an elected leader, which handles all
reads and writes, and zero or more replicas which are kept in sync using a
very efficient mechanism. Should the leader become unavailable, one of the
replicas takes its place. This gives an automatic ordering of the events, but at
the cost of being sensitive to the network latency between the client and the
replica leader. GeoRep avoids this cost, as it has no leader. Instead, clients are
free to connect to any node of their choice, thereby minimizing the latency
time and as a result maybe also maximizing the throughput. It is quite likely
that a Kafka-based solution would perform well in the same environment as
used in our tests. It would however not satisfy our “minimal changes to an
existing application” requirement from Section 8.1.3.

For systems where a global ordering must be maintained, e.g., fast atomic
multicast [15] and white-box atomic multicast [27], the replication protocols
are often based on a variant of Paxos [43] or Raft [50]. The Paxos variant Men-
cius [47] was designed to perform well even in wide-area networks with high
inter-node latency. One of the ways they achieve this is by using a multi-master
setup, where the leadership is divided among all nodes similarly to GeoRep.
However, as all data is sent to all other nodes, the throughput does not increase
when nodes are added to the system. These systems would also require a con-
sensus round among all nodes when each message has been processed and can
be deleted, while GeoRep only needs to send this information to the f nodes
involved in the replication for that particular message. As is shown in the
evaluations of both white-box atomic multicast [27] and Mencius [47], reduc-
ing the number of communication steps has a clear and positive effect on the
system performance. We do not need the higher consistency these protocols
provide, so we can reduce the number of communication steps even further.
The experiment in Section 8.5.5 showed some of these differences in practice.

Another solution would be to store the data tuples in an SQL
database, where there are plenty of replication methods. However, as SQL
databases must maintain the ACID (Atomicity, Consistency, Isolation, and
Durability) [30] properties of the data, those methods work best within a local
server cluster. With geo-separated servers, the higher round-trip times cause
a significant performance degradation in our case, as the “find and remove
the next data tuple” operation would require a global, synchronous lock.
Preliminary tests with such a configuration resulted in a throughput in the

153

order of 1 message per second. Comparing GeoRep with an SQL database in
this paper would therefore not be meaningful.

8.8 Conclusions and Future Work

With the purpose of increasing the resilience of a store-and-forward system, we
designed a solution based on application semantics instead of lower level stor-
age operations. Several approaches to data replication exist, but we could not
find any existing solutions with sufficiently high throughput for geo-separated
configurations. Our main contribution in this work is the description and im-
plementation of a new protocol, based on partial replication. When deployed
on 7 nodes running on different continents, it provided a total throughput of
24 085 messages per second, almost 100 times higher than a comparable im-
plementation based on Paxos. The primary trade-off is that during a network
outage, there is a small risk for message duplication.

Naturally, we welcome replication studies of our protocol. The experi-
ments can be varied along several different dimensions, e.g., a) using other
programming languages than C, b) using other frameworks than ZeroMQ, c)
using a larger number of nodes, d) separating the client applications into sep-
arate nodes, and e) considering other use cases and application areas. The
source code used in the experiment is open sourced to facilitate such studies.

There is no consensus among the nodes regarding the reachability of the
other nodes, so the number of use cases for the failover verification in Sec-
tion 8.4 is actually higher than 9, and increases with higher values of f . A
deeper analysis to find the exact formula for which of these test cases involv-
ing the reachabilities from multiple nodes can actually occur, their expected
outcome, and comparing this with the actual behaviour, would be interesting,
but is left as future work.

For predictable disasters [49], e.g., hurricanes, floods and tsunamis, it
should be possible to temporarily disable some servers beforehand as repli-
cation targets, to minimize data loss. The same strategy could even be used for
more unpredictable disasters causing power failures, in those cases triggered
by the affected nodes switching to battery power.

154

Bibliography

[1] G. Aceto, A. Botta, P. Marchetta, V. Persico, and A. Pescapé. A compre-
hensive survey on internet outages. Journal of Network and Computer
Applications, 113(2018):36–63, jul 2018.

[2] M. K. Aguilera and R. E. Strom. Efficient Atomic Broadcast Using De-
terministic Merge. In Proceedings of the Symposium on Principles of
Distributed Computing (PODC). ACM, 2000.

[3] M. Ahamad and M. Ammar. Performance Characterization of Quorum-
Consensus Algorithms for Replicated Data. IEEE Transactions on Soft-
ware Engineering, 15(4):492–496, apr 1989.

[4] S. Almeida, J. Leitão, and L. Rodrigues. ChainReaction: a Causal+ Con-
sistent Datastore based on Chain Replication. In Proceedings of The
European Professional Society on Computer Systems (EuroSys). ACM,
2013.

[5] P. A. Alsberg, G. G. Belford, S. R. Bunch, J. D. Day, E. Grapa, D. C.
Healy, E. J. McCauley, and D. A. Willcox. Research in Network
Data Management and Resource Sharing, Synchronization and Dead-
lock. Technical Report CCTC-WAD Document Number 6508, Center
for Advanced Computation, University of Illinois, 1977.

[6] P. A. Alsberg and J. D. Day. A Principle for Resilient Sharing of Dis-
tributed Resources. In Proceedings of the International Conference on
Software Engineering (ICSE). IEEE Computer Society Press, 1976.

[7] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in
message-passing systems. Journal of the ACM, 42(1):124–142, 1995.

[8] P. Bailis and K. Kingsbury. The Network is Reliable. Communications
of the ACM, 57(9):48–55, sep 2014.

[9] N. Belaramani, M. Dahlin, L. Gao, A. Nayate, A. Venkataramani, P. Yala-
gandula, and J. Zheng. PRACTI replication. In Proceedings of the
Conference on Networked Systems Design & Implementation (NSDI).
USENIX, 2006.

[10] D. Brahneborg, W. Afzal, A. Cauševic, and M. Björkman. Superlinear
and Bandwidth Friendly Geo-replication for Store-and-forward Systems.
In Proceedings of the International Conference on Software Technologies
(ICSOFT). INSTICC, 2020.

155

[11] S. Braun and S. Desloch. A Classification of Replicated Data for the
Design of Eventually Consistent Domain Models. In International Con-
ference on Software Architecture Companion, ICSA-C. IEEE, 2020.

[12] M. Bravo, L. Rodrigues, and P. Van Roy. Saturn: A Distributed Meta-
data Service for Causal Consistency. In Proceedings of the European
Conference on Computer Systems (EuroSys), 2017.

[13] Y. Cheng, M. T. Gardner, J. Li, R. May, D. Medhi, and J. P. Sterbenz.
Analysing GeoPath diversity and improving routing performance in op-
tical networks. Computer Networks, 82:50–67, 2015.

[14] P. Coelho and F. Pedone. Geographic State Machine Replication. Techni-
cal Report USI-INF-TR-2017-3, Faculty of Informatics Università della
Svizzera italiana Lugano, Switzerland, 2017.

[15] P. R. Coelho, N. Schiper, and F. Pedone. Fast Atomic Multicast. In
Proceedings of the International Conference on Dependable Systems and
Networks (DSN). IEEE, 2017.

[16] T. D. Cook and D. T. Campbell. Quasi-experimentation: Design and
Analysis for Field Settings. Rand McNally, Chicago, 1979.

[17] C. Cooper, T. Radzik, N. Rivera, and T. Shiraga. Benchmarking cloud
serving systems with YCSB. In Proceedings of the Symposium on Cloud
Computing (SoCC), SoCC. ACM, 2010.

[18] M. Dahlin, B. B. V. Chandra, L. Gao, and A. Nayate. End-to-end
WAN Service Availability. IEEE/ACM Transactions on Networking,
11(2):300–313, 2003.

[19] S. B. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in a parti-
tioned network. ACM Computing Surveys, 17(3):341–370, 1985.

[20] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel. GentleRain: Cheap
and Scalable Causal Consistency with Physical Clocks. Proceedings of
the Symposium on Cloud Computing (SOCC), 2014.

[21] Edsger Wybe Dijkstra. Co-operating Sequential Processes. In Program-
ming languages. Academic Press Inc, 1968.

[22] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The
Many Faces of Publish/Subscribe. ACM Computing Surveys, 35(2):114–
131, 2003.

156

[23] M. J. Fischer and A. Michael. Sacrificing Serializability to Attain
High Availability of Data in an Unreliable Network. In Proceedings
of the SIGACT-SIGMOD Symposium on Principles of Database Systems
(PODS). ACM, 1982.

[24] P. Fouto, J. Leitão, and N. Preguiça. Practical and Fast Causal Consistent
Partial Geo-replication. In Proceedings of the International Symposium
on Network Computing and Applications (NCA). IEEE, 2018.

[25] A. Fox and E. A. Brewer. Harvest, Yield, and Scalable Tolerant Sys-
tems. In Proceedings of the Workshop on Hot Topics in Operating Sys-
tems (HOTOS). IEEE, 1999.

[26] P. Gill, N. Jain, and N. Nagappan. Understanding Network Failures in
Data Centers: Measurement, Analysis, and Implications. In Proceedings
of the SIGCOMM Conference, New York, NY, USA, 2011. ACM.

[27] A. Gotsman, A. Lefort, and G. Chockler. White-box Atomic Multicast.
In Proceedings of the International Conference on Dependable Systems
and Networks (DSN). IEEE, 2019.

[28] R. Guerraoui and A. Schiper. Genuine Atomic Multicast in Asyn-
chronous Distributed Systems. Theoretical Computer Science, 254(1-
2):297–316, 2001.

[29] N. Gunther, P. Puglia, and K. Tomasette. Hadoop superlinear scalability.
Queue, 13:20–42, 5 2015.

[30] T. Haerder and A. Reuter. Principles of transaction-oriented database
recovery. ACM Computing Surveys, 15(4):287–317, 1983.

[31] C. Hale. You can’t sacrifice partition tolerance. https://codahale.
com/you-cant-sacrifice-partition-tolerance, 2010
(Retrieved May 2020).

[32] P. Helland and D. Campbell. Building on Quicksand. In Proceedings
of the Conference on Innovative Data Systems Research (CIDR). ACM,
2009.

[33] J. M. Hellerstein and P. Alvaro. Keeping calm: when distributed consis-
tency is easy. arXiv preprint arXiv:1901.01930, 2019.

[34] J. M. Hellerstein and P. Alvaro. Keeping calm. Communications of the
ACM, 63, 8 2020.

157

[35] H. Howard and R. Mortier. Paxos vs Raft: Have We Reached Consensus
on Distributed Consensus? In Proceedings of the Workshop on Principles
and Practice of Consistency for Distributed Data (PaPoC), 2020.

[36] D. Hutchison and J. P. Sterbenz. Architecture and design for resilient
networked systems. Computer Communications, 131:13–21, 10 2018.

[37] F. Iqbal and F. A. Kuipers. Disjoint paths in networks. Wiley Encyclope-
dia of Electrical and Electronics Engineering, pages 1–11, 1999.

[38] ISO/IEC. ISO/IEC 25010. https://iso25000.com/index.
php/en/iso-25000-standards/iso-25010, 2020. Accessed
2020-06-07.

[39] A. Jedlitschka, M. Ciolkowski, and D. Pfahl. Reporting experiments in
software engineering. In Guide to advanced empirical software engineer-
ing. Springer, London, 2008.

[40] P. R. Johnson and R. H. Thomas. RFC 677: The Maintenance of Dupli-
cate Databases, 1975.

[41] J. Kreps, N. Narkhede, and J. Rao. Kafka: a Distributed Messaging
System for Log Processing. In Proceedings of the SIGMOD Workshop
on Networking Meets Databases (NetDB), Athens, Greece, 2011.

[42] A. Kumar. Hierarchical Quorum Consensus: A New Algorithm for Man-
aging Replicated Data. IEEE Transactions on Computers, 40(9):996–
1004, 1991.

[43] L. Lamport. The Part-time Parliament. ACM Transactions on Computer
Systems, 16(2):133–169, 1998.

[44] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Problem.
ACM Transactions on Programming Languages and Systems, 4(3), 1982.

[45] B. G. Lindsay, P. G. Selinger, C. Galtieri, J. N. Gray, R. A. Lorie, T. G.
Price, F. Putzolu, I. L. Traiger, and B. W. Wade. Notes on distributed
databases. Technical Report Report RJ2571 (33471), 1979.

[46] M. Maekawa. A
√

N Algorithm for Mutual Exclusion in Decentralized
Systems. ACM Transactions on Computer Systems (TOCS), 3(2):145–
159, 1985.

158

[47] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius: Building Efficient
Replicated State Machines for WANs. In Proceedings of the USENIX
Conference Operating System Design and Implementation (OSDI), 2008.

[48] A. Mauthe, D. Hutchison, E. K. Cetinkaya, I. Ganchev, J. Rak, J. P. Ster-
benz, M. Gunkelk, P. Smith, and T. Gomes. Disaster-resilient communi-
cation networks: Principles and best practices. In International Workshop
on Resilient Networks Design and Modeling, RNDM. IEEE, 2016.

[49] B. Mukherjee, M. F. Habib, and F. Dikbiyik. Network adaptability from
disaster disruptions and cascading failures. IEEE Communications Mag-
azine, 52(5):230–238, 2014.

[50] D. Ongaro and J. Ousterhout. In Search of an Understandable Consensus
Algorithm. Technical report, Stanford University, 2014.

[51] C. Robson and K. McCartan. Real world research. John Wiley & Sons,
2016.

[52] J. P. Rohrer, A. Jabbar, and J. P. Sterbenz. Path diversification for fu-
ture internet end-to-end resilience and survivability. Telecommunication
Systems, 56(1):49–67, 2014.

[53] J. B. Rothnie and N. Goodman. A Survey of Research and Development
in Distributed Database Management. In Proceedings of the Interna-
tional Conference on Very Large Data Bases (VLDB), 1977.

[54] S. S. Sahoo, B. Ranjbar, and A. Kumar. Reliability-aware resource man-
agement in multi-/many-core systems: A perspective paper. Journal of
Low Power Electronics and Applications, 11(1):7, 2021.

[55] N. Schiper and F. Pedone. On the Inherent Cost of Atomic Broadcast
and Multicast in Wide Area Networks. In Proceedings of the Interna-
tional Conference on Distributed Computing and Networking (ICDCN).
Springer Berlin, Heidelberg, 2008.

[56] N. Schiper, P. Sutra, and F. Pedone. P-store: Genuine Partial Replication
in Wide Area Networks. In Proceedings of the Symposium on Reliable
Distributed Systems (SRDS). IEEE, 2010.

[57] M. Shapiro, N. Pregui, C. Baquero, and M. Zawirski. A comprehensive
study of Convergent and Commutative Replicated Data Types. Technical
Report RR-7506, Inria – Centre Paris-Rocquencourt, 2011.

159

[58] J. P. Sterbenz and D. HJutchison. ResiliNets Wiki. https://
resilinets.org, 2016 (accessed July 26, 2021).

[59] M. Stonebraker and E. Neuhold. A Distributed Data Base Version of
Ingres. Technical Report ERL-M612, California University, Berkeley.,
1976.

[60] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spre-
itzer, and C. H. Hauser. Managing update conflicts in bayou, a
weakly connected replicated storage system. SIGOPS Oper. Syst. Rev.,
29(5):172–182, Dec. 1995.

[61] R. H. Thomas. A majority consensus approach to concurrency control
for multiple copy databases. ACM Transactions on Database Systems
(TODS), 4(2):180–209, 1979.

[62] B. Vass, J. Tapolcai, D. Hay, J. Oostenbrink, and F. Kuipers. How to
model and enumerate geographically correlated failure events in commu-
nication networks. In Guide to Disaster-Resilient Communication Net-
works, pages 87–115. Springer, Cham, 2020.

[63] M. Yousif. Cloud Computing Reliability—Failure is an Option. IEEE
Cloud Computing, 5(3):4–5, may 2018.

160

Paper E.
Resilient Conflict-free
Replicated Data Types without
Atomic Broadcast

Resilient Conflict-free Replicated Data Types without Atomic Broadcast.
Daniel Brahneborg, Wasif Afzal, Saad Mubeen.

In Proceedings of the International Conference on Software Technologies
(ICSOFT). INSTICC, 2022.

161

Abstract

In a distributed system, applications can perform both reads and updates with-
out costly synchronous network round-trips by using Conflict-free Replicated
Data Types (CRDTs). Most CRDTs are based on some variant of atomic
broadcast, as that enables them to support causal dependencies between up-
dates of multiple objects. However, the overhead of this atomic broadcast is
unnecessary in systems handling only independent CRDT objects. We identi-
fied a set of use cases for tracking resource usage where there is a need for a
replication mechanism with less complexity and network usage as compared
to using atomic broadcast. In this paper, we present the design of such a repli-
cation protocol that efficiently leverages the commutativity of CRDTs. The
proposed protocol CReDiT (CRDT enhanced with intelligence) uses up to four
communication steps per update, but these steps can be batched as needed. It
uses network resources only when updates need to be communicated. Further-
more, it is less sensitive to server failures than current state-of-the-art solutions
as other nodes can use new values already after the first communication step,
instead of after two or more.

162

9.1 Introduction

Many distributed systems need to efficiently manage external resources. These
resources could be, e.g., network traffic, the number of times to show a specific
web advertisement, and more. In this work, we will consider an application
with one or more users, each one paying for the resources they use. Each user
has a credit balance, representing payments made and resources used. This
balance is then used as basis for their next invoice. The system clearly must
take great care in maintaining these credit balances.

Regardless of how reliable modern computer components have become,
occasional server outages are unavoidable [1, 5]. In order to make the service
available despite these server outages, we need multiple servers [12, 24, 25,
31], preferably independent and geographically separated [13]. The challenge
is to maintain accurate records of the resource consumption across all these
servers.

Unfortunately, maintaining consistency in a distributed system can eas-
ily lead to decreased performance [14], and in the presence of network par-
titions, fully distributed consistency and high availability simply cannot co-
exist [10, 16]. An interesting exception was identified by Alsberg and Day [4],
suggesting what is basically a precursor to Conflict-free Replicated Data Types
(CRDTs) [27]:

“An example [of a specific exception] is an inventory system
where only increments and decrements to data fields are
permitted and where instantaneous consistency of the data base
is not a requirement.”

CRDTs have become popular for distributed systems over the past few
years, partly because of their convenient property of having the same value
regardless of the order of the operations performed on them. When instanta-
neous consistency is not required, local operations can be performed on them
immediately, without the need for time-consuming network round-trips. The
new state is instead regularly broadcast to the other nodes. All nodes therefore
eventually get the same value for the object. There are two main groups of
CRDTs:

State-based CRDTs send their full state [11] between the nodes. This makes
them immune to both packet loss and packet duplications, but it can
quickly lead to excessive network usage for data types with a large state,
and to massive storage requirements when there is a high number of
clients [2]. A special case of these are delta-based CRDTs, which only
transmit the part of the state changed by local updates [3, 15].

163

Operation-based CRDTs send only the individual operations [6]. These typ-
ically use less network resources, but require reliable delivery where all
operations are successfully received by all nodes exactly once [32].

Even if the operation order on a single CRDT object does not matter,
many applications update an object based on the values of another. In order to
enforce such causal dependencies, most CRDT implementations use reliable
causal broadcast (RCB) where all nodes get the same set of packets in more or
less the same order [8, 26]. RCB is typically based on atomic broadcast, which
can ensure not only that all packets are delivered in the same order, but also
that this happens only if all nodes are still reachable. A simple way to imple-
ment atomic broadcast is Skeen’s algorithm, which requires a set of network
packets sent back to the sender, and then a third set of “commit” [17] packets
to all destinations from which the sender got the reply. When the causality
check is based only on Lamport clocks [20] this can give false positives, in
turn leading to unnecessary network traffic and delays [7].

The purpose of this work is to find a replication protocol for state-based
CRDTs not having any causal dependencies, where the replication uses less
network resources than previously proposed solutions. We use user credits as
the motivating example, typically implemented as CRDT PN-counters [27]. In
short, a PN-counter is a set of pairs of integers Z, merged by the operation
max(), where the integers are used for positive and negative changes, respec-
tively. Its value is the difference between these two integers. We refer to the
paper by Shapiro et al. for a more detailed description.

Our proposed protocol CReDiT (CRDT enhanced with intelligence) ex-
tends state-based CRDTs by augmenting the local state with additional infor-
mation in order to avoid unnecessary network traffic. All data is periodically
resent until it has been acknowledged by each other node, making the protocol
immune to occasional packet loss.

We will describe this work using Shaw’s framework [28], which catego-
rizes research in three different ways. First is the research setting, which is
what kind of research question or hypothesis is being addressed. Our setting is
Methods/Means, described in Section 9.2. Next is the research approach. Here
the desired result is a new Technique, described in detail in Section 9.3. The
third way is the result validation, which is done in Section 9.4. We discuss the
results in Section 9.5, present related work in Section 9.6, and end the paper
with our conclusions in Section 9.7.

164

Client 1 Node 1

Client 2

Client x

Node 2

Node y

.

Figure 9.26: We have x clients connected to y nodes, which in turn are all connected
to each other. Each node maintains its own database of the credit balance for each
client.

9.2 Method

In Shaw’s framework [28], the purpose of a “Methods/Means” setting is to find
an answer to a research question such as “what is a better way to accomplish
X”. After defining our system model in Section 9.2.1, we will therefore define
our “X” in Section 9.2.2, and what we mean by “better” in Section 9.2.3.

9.2.1 System Model

We assume that we have a distributed system of independently running nodes,
communicating over an asynchronous network. The physical network can use
any topology, as long as there is at least one logical path between each pair of
nodes. We further assume fair-lossy links, i.e., packets may be dropped, but
if a packet is sent infinitely often it will eventually be received. Packets may
also be duplicated and received out of order. The nodes have local memory
and stable storage, and can recover after crashing. We also assume there are
some number of clients, each one connecting to any node or nodes. As the
clients send requests to a node, their resource counter in that node is updated.
Figure 9.26 shows the situation with x clients and y nodes. This work addresses
the communication between the nodes, shown with dashed lines.

9.2.2 Functional Requirements

The functionality we need, i.e. our “X”, matches almost exactly what Almeida
and Baquero [2] call eventually consistent distributed counters (ECDCs).
These use the increment operation for updating the counter, and fetch for

165

reading its current value. Fetch returns the sum of updates made. A second
call to fetch returns the previous value plus any locally made updates since
the previous call. Eventually, fetch will return the same value on all nodes,
i.e., the above named sum of updates. In addition to an ECDC, we also allow
negative updates, which means we can count both the resources used and the
payments made.

9.2.3 Quality Requirements

We also need to specify our quality requirements, i.e. what we mean by “bet-
ter”. We base these on ISO 25010 [19], a taxonomy which puts quality at-
tributes into eight different groups of characteristics, each one divided into a
handful of sub-characteristics. The latter are written below in the form Main
characteristic / Sub-characteristic.

The CAP theorem [10, 16] tells us that given a network partition, we can-
not have both data consistency and availability. With the ISO 25010 nomencla-
ture, this means we need to choose between Functional Suitability / Functional
Correctness (the needed degree of precision) and Reliability / Availability. We
strongly prioritize the latter, as it is usually a good business decision to let
customers keep using your service, even when facing the risk of occasional
overdrafts.

For the Performance Efficiency / Capacity, we assume the system has up
to about 10 nodes, and that there are up to 1000 clients using its resources.
For now, we do not address the remaining quality characteristics in ISO
25010 [19].

Assuming that all clients are independent, we can model the time between
each update for each client using the exponential distribution. This distribu-
tion has the probability density function f(x) = λe−λx, and the cumulative
distribution function (CDF) P (X < x) = 1− e−λx. In both functions λ is the
inverse of the client specific mean interval µ, and x is the length of the interval.

This CDF has an interesting property, as it is always less than 1. In other
words, there will always exist a time interval of length x without any updates.
If x is measured in seconds, we will have an alternating sequence of some
number of seconds with updates, and some other number of seconds without.

9.3 Proposed Technique

Our proposed protocol is based on PN-counters [27], augmented with data to
keep track of the values on the other nodes. This data, and how it is used,
is described in Section 9.3.1. Section 9.3.2 describes the protocol as a state

166

entry[]

pn_t
p
n
flags[]

entry_t

sent_at
confirmed
force

gr_pn_flags_t

Figure 9.27: The three data types used by CReDiT.

machine, and Section 9.3.3 shows a sample scenario in a system with two
nodes. The protocol is named CReDiT, inspired by its basis in CRDT.

9.3.1 Prototype Implementation

We assume the application has some sort of collection of resource counters.
For the network communication, CReDiT uses a separate transport layer. Each
counter, named pn_t in our implementation, contains a map from node iden-
tifiers to instances of the structure entry_t. An entry_t contains the two
fields p and n, just as the original PN-counters.

We extend the entry_t structure with a map from node identifiers to
gr_pn_flags_t structures, containing the fields sent_at, confirmed,
and force, described below. These fields are therefore specific for each pair
of nodes. The three types are shown in Figure 9.27.

sent_at: timestamp
This is the most recent time the current value was sent to the other node.
In our implementation, for simplicity but without any loss of generality,
we use a resolution of one second for this field.

confirmed: boolean
This is set when the incoming values from another node are identical to
what is stored locally, so we know that we do not need to send the same
data to that node again.

force: boolean
This is set when a value must be sent on the next flush, overriding the
confirmed flag.

In the function descriptions below, we use A for the local node where the
code is executed, B for one of the remote nodes, entry for the instance of the
entry_t structure on A, x for a random node, and * to designate all nodes.
The protocol uses the functions listed below, of which only flush() and
receive() perform any network operations. We have marked the original
PN-counter functionality with “PN” and our additions with “New”.

167

init(x, p, n)
This is used when loading values from external storage on startup.

PN: It sets entry[x].p and entry[x].n to the supplied values.

New: It clears entry[x].flags[*].

update(delta)
This is called to update the resource counter.

PN: If the delta is positive, entry[A].p is increased with delta, and
if it is negative, entry[A].n is increased with -delta.

New: As we know that node A is the only one updating the entry[A]
fields, no other node has these exact values now, and we can therefore
clear the entry[A].flags[*].confirmed flags.

fetch()
This function is called by the application to get the current value of the
counter.

PN: It returns the sum of all entry[*].p fields minus the sum of all
entry[*].n fields.

flush()
This should be called regularly by the application, in order to initiate the
replication.

New: Entries are sent if the force flag is set, or if the confirmed flag
is not set and sent_at is different than the current time. Afterwards,
sent_at is set to the current time, and force is set to false. The use
of sent_at here allows the application layer to call this function as
often as it wants. In contrast to solutions based on atomic broadcast,
CReDiT does not wait for any replies from the other nodes.

receive(B, x, p, n)
This function is called by the transport layer, when new data has been
received from node B concerning values on node x.

PN: The field entry[x].p is updated to the maximum of its current
value and the incoming p, and similarly for entry[x].n and n.

New: If entry[x].flags[B].confirmed is set, entry[x]
.flags[B].force is set. If entry[x].p or entry[x].n
was changed, entry[x].flags[B].force is also set and
entry[x].flags[*].confirmed are cleared. The entry[x]
.flags[B].confirmed flag is always set though, as we know that

168

node B has these particular values. Finally a callback is made to the
application, which can now persist the new data. This persisted data is
what the application should provide to the init() function after being
restarted.

Our implementation was based on GeoRep [9], which supplied networking
code and configuration management for keeping track of the nodes to which
data should be replicated.

9.3.2 State Machine

Figure 9.28 shows a compact summary of the algorithms and the effects of
the flags. There is a separate state machine for each individual counter, and
for all pairs of nodes. The state of each machine is an effect of the node
specific flags in entry_t: If the force flag is set or if the current time
differs from the value of the sent_at attribute, the machine is in state 1 or 3.
If the confirmed flag is set, it is in state 2 or 3. Each counter starts at the
filled black circle, and immediately goes to state 0. This represents the case
when both force and confirmed are false. In all states, update() and
receive() update the corresponding (p, n) pair(s). All functions described
in Section 9.3.1 can be called in any of these four states, but functions not
affecting a particular state are omitted for clarity.

9.3.3 Data Flow

In a system with the two nodes A and B, these are the steps taken when A
updates a shared counter.

1. A updates the value of a new counter with +2. This creates the counter,
and A sets p=2 and n=0 in entry[A].

2. After at most one second, A moves B to state 1. On the next call to
flush() from the application layer, the values for A are sent to B,
after which A sets entry[B].sent_at to the current time.

3. When B receives this data, it stores A’s values p=2 and n=0, and sets the
flags confirmed and force in entry[A].

4. As A has sent_at=now for B and force is not true, any additional
calls to flush() will not cause more data to be sent to B.

5. B has force set to true for A, so the next time flush() is called on
B, the (p=2, n=0) pair for A is sent back to A.

169

2

0
on flush(): send()

receive
(same)

receive
(different)

update()

next second

1

receive()

3

receive()

on flush(): send()

Figure 9.28: States on a node. Each pair of nodes has its own state. The black circle
is the starting point. For the states 1 and 3, the force flag is set. For the states 2
and 3, the confirmed flag is set.

6. Next, A gets the (p=2, n=0) pair for A from B. As these are the same
values it already has, it sets confirmed to true for B. It does not set
force. After this, both A and B has confirmed set to true for each
other, and agree on the (p=2, n=0) pair. No more data is sent by either
side.

If the data sent in step 2 is lost, A will obviously not get this data back from
B. When flush() is called during the next second or later, A will see the
missing confirmed flag and send the data again. This way, the confirmed
flag on node A prevents repeated transmissions of the same data from A to B.
As we assume fair-lossy links as mentioned in Section 9.2.1, B will eventually
receive this data.

If the data from B to A in step 5 is lost, B will still have the confirmed
flag set, so it will not send the data again. However, A will not have this flag set,
so it will send the data to B again. From B’s perspective, as the confirmed
flag for this entry is set, A and B should already have the same data. Hence,
as B sees the same data again from A, it can deduce that A’s confirmed flag
is not set. B can fix that by setting its force flag for A, causing the data to
be sent back to A on the next call to flush(). This way, the force flag on
node B prevents repeated transmissions of the same data from node A to B.

The combined effect of the confirmed and force flags is that any data

170

packet can be lost, and the protocol will still recover. Once all nodes have the
same set of confirmed values, no more data will be sent until after the next call
to update().

9.4 Evaluation

Here we discuss the validation of the proposed protocol regarding its function-
ality, correctness, and scalability. As both update() and fetch() only
work on local data, the availability is 100% by construction.

9.4.1 Functional Validation

We already know that CRDTs in general, and PN-counters in particular, con-
verge on the same value on all nodes, thanks to the broadcast and merge mech-
anisms [27] also used by CReDiT. We therefore only need to show that the
new fields do not invalidate this. For sent_at this is obvious, as this field
only limits how often data is sent.

The confirmed flag prevents data being sent from node A to node B,
when B has shown that it already has the exact same values as A. As long as
this is true, sending this data again is of no use to anyone. When the values
on A change, its confirmed flags are cleared, giving the original CRDT
behaviour. If the values on B change, this field is cleared on B, causing the
data to be broadcast to all nodes, including A, which in turn clears the field for
the other nodes, also getting us back to the original CRDT behaviour.

As described in Section 9.3.3, the force flag handles the case when the
sent values returned to the sender (A) are lost. As long as the values on A are
unchanged, A would otherwise keep sending them to B because no confirma-
tion is received. For new values sent by A, B would notice the update and send
it back to A, just as for any other CRDT.

9.4.2 Correctness Conditions

A state-based CRDT ensures that all updates originating on a particular node
can never be done in a different order on another node, as its current state
always includes its previous state. Its commutativity further ensures that even
if the relative order of updates made on different nodes may differ between the
nodes, the value of a CRDT object will eventually be the same on all nodes.
As this order may differ between nodes, we do not get serializability [23].

Whether we get linearizability [18] is not entirely clear. Herlihy and Wing
states that the “real-time precedence ordering of operations” should be re-

171

spected. This is indeed the case on each particular node. However, in a
distributed system with nodes A and B we can have a sequence such as the
following.

1. A stores the value 1 in variable x.

2. A stores the value 2 in variable x.

3. B reads the value of variable x.

4. B reads the value of variable x.

The data replication from node A to node B may be initiated both after step
1 and 2. Furthermore, the new data may arrive to node B both before and after
step 3, as well as after step 4. Node B can therefore see both the values 1, 2,
or something else. Still, if node B would read the value 2 in step 3, we can
guarantee that step 4 will not read the value 1 (a.k.a. monotonic reads). Also,
if node A would read the value of variable x, after step 1 it would get 1, and
after step 2 it would get 2 (a.k.a. read your writes).

9.4.3 Scalability

The memory usage for each counter is O(n) for the values, and O(n2) for the
flags. There is no transaction log as for operation-based CRDTs, so for a given
n the memory requirement is constant.

For an update on node A, up to 4 sets of network packets are triggered.
After these steps, all n nodes will have the same values, as well as knowing
that the other n− 1 nodes have them too. Because of this knowledge, no more
data is sent until the next update is made.

1. Node A sends the new (p, n) pair to the other n− 1 nodes.

2. After receiving the new pair, these n− 1 nodes send back their updated
values.

3. For a system with 3 or more nodes, the n − 1 nodes has at least one set
of flags where confirmed is not set. So, flush() on these nodes
will broadcast the updated values to the remaining n− 2 nodes.

4. If a packet in the previous set is received from a node y on a node x
before x has broadcast the update itself, the force flag will be set on
node x, causing the value to again be sent from node x to node y.

172

An update will therefore cause a total of up to (n − 1) + (n − 1) + (n −
1)(n − 2) + (n − 1)(n − 2) = 2(n − 1)2 network packets to be sent in the
system. This quadratic scale-up makes this protocol unsuitable for systems
with a large number of nodes, even though the decision for when this is true
must be done on a case by case basis.

The packet size will be proportional to the number of updated counters
since the last confirmation, but it is not affected by the number of updates to
a particular counter. The number of updates also has no effect on the number
of required network packets, making the quadratic scale-up less of a problem
than it may seem.

Additionally, counters with no updates on a particular node, after its
confirmed flag is set, stay in state 2 in the state machine shown in
Figure 9.28. In this state flush() generates no network traffic.

9.4.4 Real-world Evaluation

There are a couple of seemingly obvious measurements that could be used in
order to evaluate protocol behaviour in real-world situations. First, we could
measure the number of function calls per second. However, as all functions
either just modify local data structures or are asynchronous, this would effec-
tively only measure the CPU speed of our test machines. Second, we could
measure the time from when flush() is called until the data has reached all
other nodes. Unfortunately, this would just measure the round-trip time be-
tween the nodes. Third, we could compare some performance aspect of the
application that originally triggered this work. Currently, the best solution for
that application appears to be using a replicated MySQL server. However, we
have not found any way to do the required multi-master replication with geo-
separated nodes, while still getting acceptable performance (of at least 1000
updates per second).

Instead, we will compare our protocol with PN-counters based on atomic
broadcast. In particular, we have observed that for counters with updated data,
most algorithms for atomic broadcast use fewer communication steps than
CReDiT does. For counters without updates, CReDiT uses fewer. So, we
want to measure the relative frequency between these two cases. From two
production systems running the motivating application mentioned above, we
retrieved sample log files containing the time stamps of events that would trig-
ger an update of one of our counters.

The first file covers an interval of 91 hours in the middle of September
2021, with a total of 78 987 events. Within this interval we observed the oc-
currence of events during each hour, but only during 3358 out of a total of 5460

173

minutes, and during 35 166 out of the total of 327 600 seconds. Despite an av-
erage of 0.241 events per second, there is an event only during 10.7% of the
seconds in this interval. The second file covers 6 hours in August 2021, during
which there were 328 948 events, an average of 11.4 events per second. Still,
there was at least one event during only 28357 of the included 28800 seconds
(98.5%).

We do not have enough data points to find the most fitting statistical dis-
tribution for the events handled by the application, but it seems to be one of
the uneven ones, e.g. the exponential distribution discussed in Section 9.2.3.
The periods without any updates, where CReDiT is maximally efficient, are
therefore more frequent than one perhaps would expect.

9.5 Discussion

According to Urbán et al. [30], having a designated sequencer serializing all
operations in the system, uses the fewest number of communication steps per
message, namely 2. The trade-off cost to achieve this is that the sequencer
node needs much outgoing network bandwidth as it does a broadcast of all
messages to all other nodes. Most other atomic broadcast protocols need more
communication steps, but let each node broadcast its own messages.

As we saw in Section 9.4.3, our proposed protocol performs worse than
this in both aspects, as it requires up to 4 communication steps and that all
nodes broadcast all updated values. When there are no updates, our protocol
instead does not communicate at all.

The round-trip times between each pair of nodes has little or no effect on
this protocol, for several reasons. First, the updated data can be flushed at any
interval, which just has to be longer than the maximum round-trip time. By
default, this interval is therefore 1 second. Second, as the data sent is the full
new state of each counter, the number of updates between each flush does not
affect the amount of data sent. Third, as new data is immediately available to
each node after being received, a temporary delay on one link between two
nodes only affects those two specific nodes. This improves the reliability of
the system, as updated values sent just before a crash can be used by the other
nodes immediately after being received.

The increased storage requirements caused by our adding new data fields
is well compensated for by the elimination of chatter on the network during
quiet periods.

174

9.6 Related Work

Almeida et al. [3] address a problem similar to ours. Their δ-CRDTs support
both duplicated network packets, just as state-based CRDTs do, and achiev-
ing the lower bandwidth requirements of operation-based CRDTs. Their anti-
entropy algorithm (corresponding to our flush()) sends only the part of the
state affected by local operations performed on the current node. For a CRDT
with a large total state this δ-state is typically smaller than the full state repli-
cated by state-based CRDTs.

One way to ensure that all servers have the same data is to use a replication
protocol which can “guarantee that service requests are executed in the same
order at all resource sites” [4]. The most common solution to this problem is to
model the system as a replicated state machine, using a variant of Paxos [21] or
Raft [22]. For the counters we need, the request order does not matter. The im-
plementation complexity and network bandwidth required by these protocols
are therefore unnecessary.

Almeida and Baquero [2] defined Eventually Consistent Distributed Coun-
ters (ECDC), which is the same partition tolerant abstraction addressed in our
work. Their solution, called Handoff Counters, also works well over unreliable
networks. Their counters aggregate the values in a few central nodes, making
them scale better according to the number of servers than our solution does. By
creating a map of these counters, they would provide a reasonable solution for
our resource counting. However, the aggregation is rather complex, consisting
of a 4-way handshake and 9 data fields.

Skrzypczak et al. [29] also addressed the synchronization overhead of state
machine replication by using a single network round-trip for updates and not
having a leader. To get linearizability, they coordinate using the query opera-
tions, with repeated round-trips until the returned values stabilize. In contrast,
our protocol can accept both updates and queries during all types of network
partitions, and can respond to queries without doing any additional round-trips.

9.7 Conclusions

Generally, layered architectures are good, reducing the complexity of each in-
dividual layer. In the case of building state-based CRDTs on top of atomic
broadcast, we saw that the resulting system may use unnecessary network re-
sources. By instead taking advantage of the lack of causality between the
operations of our CRDT counters, we were able to design a new protocol with
lower network requirements during periods without updates. The described
approach can be used with any state-based CRDT, as long as it is possible to

175

determine if the incoming values differ from the local values.

Acknowledgments

This work was sponsored by The Knowledge Foundation industrial PhD school
ITS ESS-H and Braxo AB.

176

Bibliography

[1] G. Aceto, A. Botta, P. Marchetta, V. Persico, and A. Pescapé. A compre-
hensive survey on internet outages. Journal of Network and Computer
Applications, 113(2018):36–63, jul 2018.

[2] P. S. Almeida and C. Baquero. Scalable Eventually Consistent Counters
over Unreliable Networks. Distributed Computing, 32:69–89, 2019.

[3] P. S. Almeida, A. Shoker, and C. Baquero. Delta state replicated data
types. Journal of Parallel and Distributed Computing, 111:162–173,
2018.

[4] P. A. Alsberg and J. D. Day. A Principle for Resilient Sharing of Dis-
tributed Resources. In Proceedings of the International Conference on
Software Engineering (ICSE). IEEE Computer Society Press, 1976.

[5] P. Bailis and K. Kingsbury. The Network is Reliable. Communications
of the ACM, 57(9):48–55, sep 2014.

[6] C. Baquero, P. S. Almeida, and A. Shoker. Pure operation-based repli-
cated data types. arXiv preprint arXiv:1710.04469, 2017.

[7] J. Bauwens and E. G. Boix. Improving the Reactivity of Pure Operation-
Based CRDTs. In Proceedings of the Workshop on Principles and Prac-
tice of Consistency for Distributed Data (PaPoC), 2021.

[8] K. P. Birman and T. A. Joseph. Reliable Communication in the Presence
of Failures. ACM Transactions on Computer Systems, 5(1):47–76, Jan.
1987.

[9] D. Brahneborg, W. Afzal, A. Cauševic, and M. Björkman. Superlinear
and Bandwidth Friendly Geo-replication for Store-and-forward Systems.
In Proceedings of the International Conference on Software Technologies
(ICSOFT). INSTICC, 2020.

[10] E. A. Brewer. Towards Robust Distributed Systems. In Proceedings of the
Symposium on the Principles Of Distributed Computing (PODC). ACM,
2000.

[11] C. F. Carlos Baquero, Paulo Sérgio Almeida, Alcino Cunha. Composition
in State-based Replicated Data Types. Bulletin of EATCS, 3(123), 2017.

177

[12] Y. Cheng, M. T. Gardner, J. Li, R. May, D. Medhi, and J. P. Sterbenz.
Analysing GeoPath diversity and improving routing performance in op-
tical networks. Computer Networks, 82:50–67, 2015.

[13] M. Dahlin, B. B. V. Chandra, L. Gao, and A. Nayate. End-to-end
WAN Service Availability. IEEE/ACM Transactions on Networking,
11(2):300–313, 2003.

[14] D. Didona, P. Fatourou, R. Guerraoui, J. Wang, and W. Zwaenepoel. Dis-
tributed Transactional Systems Cannot Be Fast. In Proceedings of the
Symposium on Parallelism in Algorithms and Architectures (SPAA), New
York, NY, USA, 2019. ACM Press.

[15] V. Enes, P. S. Almeida, C. Baquero, and J. Leitao. Efficient Synchroniza-
tion of State-based CRDTs. In Proceedings of the International Confer-
ence on Data Engineering (ICDE). IEEE Computer Society, 2019.

[16] S. Gilbert and N. A. Lynch. Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web Services. In Proceedings
of the Symposium on the Principles Of Distributed Computing (PODC),
2004.

[17] A. Gotsman, A. Lefort, and G. Chockler. White-box Atomic Multicast.
In Proceedings of the International Conference on Dependable Systems
and Networks (DSN). IEEE, 2019.

[18] M. P. Herlihy and J. M. Wing. Linearizability: a Correctness Condition
for Concurrent Objects. ACM Transactions on Programming Languages
and Systems, 12(3):463–492, jul 1990.

[19] ISO/IEC. ISO/IEC 25010. https://iso25000.com/index.
php/en/iso-25000-standards/iso-25010, 2020. Accessed
2020-06-07.

[20] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed
System. Communications of the ACM, 21(7):558–565, 1978.

[21] L. Lamport. The Part-time Parliament. ACM Transactions on Computer
Systems, 16(2):133–169, 1998.

[22] D. Ongaro and J. Ousterhout. In Search of an Understandable Consensus
Algorithm. Technical report, Stanford University, 2014.

[23] C. H. Papadimitriou. The serializability of concurrent database updates.
Journal of the ACM (JACM), 26(4):631–653, 1979.

178

[24] J. P. Rohrer, A. Jabbar, and J. P. Sterbenz. Path diversification for fu-
ture internet end-to-end resilience and survivability. Telecommunication
Systems, 56(1):49–67, 2014.

[25] J. B. Rothnie and N. Goodman. A Survey of Research and Development
in Distributed Database Management. In Proceedings of the Interna-
tional Conference on Very Large Data Bases (VLDB), 1977.

[26] F. B. Schneider, D. Gries, and R. D. Schlichting. Fault-tolerant broad-
casts. Science of Computer Programming, 4(1):1–15, 1984.

[27] M. Shapiro, N. Pregui, C. Baquero, and M. Zawirski. A comprehensive
study of Convergent and Commutative Replicated Data Types. Technical
Report RR-7506, Inria – Centre Paris-Rocquencourt, 2011.

[28] M. Shaw. The Coming-of-Age of Software Architecture Research. In
Proceedings of the International Conference on Software Engineering
(ICSE). IEEE Computing Society, 2001.

[29] J. Skrzypczak, F. Schintke, and T. Schütt. Linearizable State Machine
Replication of State-based CRDTs without Logs. In Proceedings of
the Symposium on Principles of Distributed Computing (PODC). ACM,
2019.

[30] P. Urbán, X. Défago, and A. Schiper. Contention-Aware Metrics for Dis-
tributed Algorithms: Comparison of Atomic Broadcast Algorithms. In
Proceedings of the International Conference on Computer Communica-
tions and Networks (IC3N). IEEE, 2000.

[31] B. Vass, J. Tapolcai, D. Hay, J. Oostenbrink, and F. Kuipers. How to
model and enumerate geographically correlated failure events in commu-
nication networks. In Guide to Disaster-Resilient Communication Net-
works, pages 87–115. Springer, Cham, 2020.

[32] G. Younes, A. Shoker, P. S. Almeida, and C. Baquero. Integration Chal-
lenges of Pure Operation-Based CRDTs in Redis. In Proceedings of the
Workshop on Programming Models and Languages for Distributed Com-
puting (PMLDC), New York, NY, USA, 2016. ACM.

179

Index

anomaly detection, 26, 40, 58, 60
architecture, 7, 15, 22, 28

analysis, 8, 28, 79
batch-sequential, 16
client-server, 17
microservices, 15, 17, 79
monolith, 15, 16, 79
patterns, 15
plugins, 17
publish-subscribe, 16, 19, 85,

111
store-and-forward, 3, 16, 101,

123
ATAM, xv, 8, 28, 81

bank, 55
Braxo AB, ix, xi, xv, 9, 176
byzantine failures, 5

communication, 3
networking, 3
RTT, xvi, 7, 13, 21, 26, 55, 59
tumbling windows, 18
windowing, 35, 104

CRDT, xv, 6, 121, 162
CReDiT, 162
PN-counters, 31, 113, 164,

166

distributed agreement, 19

AllConcur, 19, 113
Mencius, 19, 113, 153
Paxos, 19, 31, 113, 121, 148
Raft, 19, 113, 121
WanKeeper, 5, 108
ZooKeeper, 5, 19, 108, 111

exponential smoothing, 25, 60

functional requirements, 15

gateways, 3, 41, 57
EMG, xv, 9, 12, 64, 79
soft mismatch, 9

GeoRep, 31, 126, 169
GSM, xv

IA5, xv
Infoflex Connect AB, xv, 64, 73,

79, 94, 114

log files, 12
login, 55

mean, 61
median, 26, 61

Remedian, 27
mediators, 3
message queue, 19
middleware, 3

Apache Kafa, 111

181

Apache Kafka, 19, 40, 111,
153

RabbitMQ, 19, 111
ZeroMQ, 111, 132

model checker
Spin, 105
Uppaal, 105

monitoring, 57
MySQL, 22, 85

NoSQL, xvi, 85
LevelDB, 85
Redis, 121

protocol
CIMD2, 101
conversion, 3
HTTP, xv, 12, 101
QUIC, 35
SMPP, xvi, 12, 64, 101
TCP, xvi, 13, 16, 35, 59
UCP, xvi, 11, 101

quality attributes, 15, 28, 41, 87
quality requirements, xvi, 166

availability, 6, 134, 166
CAP, 166
efficiency, 6, 88, 166
latency, 6
maintainability, 6, 89
MPS, xvi
predictability, 6
reliability, 5, 6, 55, 88, 133
scalability, 6, 172
stability, 6
throughput, 5, 6, 59

research
Shaw’s framework, 33, 164
technology transfer, 32

SMS, xvi, 3, 11, 55
brokers, 55, 57
gateway, 57, 124
PDU, xvi, 11, 12, 58, 64
protocols, 11

SQL, xvi, 15, 109, 153

UCS, xvi, 27
UTF, xvii

182

