
Access Control Enforcement Architectures for
Dynamic Manufacturing Systems

Björn Leander
School of Innovation,

Design and Engineering,
Mälardalen University

and
Process Automation, ABB AB

Västerås, Sweden
bjorn.leander@mdu.se

Aida Čaušević
School of Innovation,

Design and Engineering,
Mälardalen University

and
Alstom AB

Västerås, Sweden
aida.causevic@alstomgroup.com

Tomas Lindström
Process Automation, ABB AB

Västerås, Sweden
tomas.lindstrom@se.abb.com

Hans Hansson
School of Innovation,

Design and Engineering,
Mälardalen University

Västerås, Sweden
hans.hansson@mdu.se

Abstract—Industrial control systems are undergoing a trans-
formation driven by business requirements as well as technical
advances, aiming towards increased connectivity, flexibility and
high level of modularity, that implies a need to revise existing
cybersecurity measures. Access control, being one of the major
security mechanisms in any system, is largely affected by these
advances.

In this article we investigate access control enforcement archi-
tectures, aiming at the principle of least privilege1 in dynamically
changing access control scenarios of dynamic manufacturing
systems. Several approaches for permission delegation of dynamic
access control policy decisions are described. We present an
implementation using the most promising combination of archi-
tecture and delegation mechanism for which available industrial
standards are applicable.

Index Terms—Cybersecurity, Access Control, Industrial Au-
tomation and Control Systems, Dynamic Manufacturing

I. INTRODUCTION

Manufacturing systems are undergoing a transformation
driven by business requirements as well as technical ad-
vances [2], [3], [4]. One direction of development is towards
systems which can easily be adapted to changing business
requirements, fast innovation cycles and mass customization.
Such systems are dynamic by their nature, as both the system
composition and functionality is changing over time.

Access control in industrial automation systems. Tra-
ditionally, cybersecurity in industrial automation system has
focused on physical and logical perimeter protection of strictly
hierarchical systems [5]. Access control is therefore typically
limited to role-based access control at the higher level com-
ponents for human operator and engineering staff [6].

This work is supported by ABB AB; the industrial postgraduate school
Automation Region Research Academy (ARRAY), funded by The Knowledge
Foundation; and the European Union’s Horizon 2020 ECSEL JU project
InSecTT under grant agreement No 876038. The document reflects only the
author’s view and the Commission is not responsible for any use that may be
made of the information it contains.

1The principle of least privilege dictates that no entity should have privi-
leges beyond what is required to fulfill its task [1].

There is a trend in manufacturing system architectures,
transitioning from the hierarchical controller-centric model,
towards a network-centric design strategy using a common
network back-bone [7]. This implies a need for a unified access
control mechanism, spanning the entire system.

Modular Automation [8], [9], [10] is one example of an
emerging design strategy for process industries, which exhibits
three distinct levels of dynamicity:

1) Dynamic system composition - available processing mod-
ules and how they are interconnected will change over
time, due to changing high-level production requirements.

2) Dynamic production schemes - available and active
recipes describing the production workflow and synchro-
nization change on a daily basis, based on business
requirements.

3) Dynamic operations - during recipe execution, different
steps of the recipe-workflow are activated, implying dif-
ferent processing operations being executed.

To follow the least-privilege principle, the dynamic prop-
erties of the emerging manufacturing systems should ideally
be mirrored by the access control mechanisms. This could
be achieved using different methods of dynamic access con-
trol [11], [12], which provide active permissions adaptable to
system changes over time, following, e.g., active workflows
or environmental conditions. Several dynamic policy models
have been proposed for use within industrial systems, but only
a few of them consider the enforcement architecture (further
discussed in Section II).

Problem statement. At the moment, dynamic access con-
trol is not widely adopted in manufacturing systems, but for
evolving system types it is highly relevant, due to the inher-
ently dynamic nature of these systems. Assuming a dynamic
access control policy framework is in place, the mechanisms
for enforcing the stated policies must be equally dynamic.
They must be practically useful in a manufacturing context,
with resources often protected by constrained devices. To the
best of our knowledge, available enforcement architectures
cannot provide such characteristics.©2023 IEEE

Paper objectives. This article focuses on constructing an
access control enforcement architecture that:

1) Allows dynamic access control.
2) Is applicable to industrial manufacturing scenarios.
3) Uses available industrial standards for communication.
The goal of the architecture is to be practically applicable

in real industrial systems, being potentially interoperable with
COTS components. Therefore, adhering to a selected set of
available technical standards is a requirement.

Combining objectives 1 and 2 is the main challenge, as
we need a mechanism which can make dynamic, secure and
timely policy decisions enforced on devices responsible for
safety critical operations in the manufacturing systems. The
mechanisms have to be light-weight and scale well with
regards to communication-load.

Contributions. The following are our main contributions:
• Presentation of four enforcement architectures, along with

an evaluation of their respective usefulness for enforcing
dynamic access control in manufacturing systems (Sec-
tion III).

• Four approaches for communication of dynamic access
control policy decisions within the architecture, using
JSON Web Tokens (JWT) [13] (Section IV).

• Implementation of an enforcement architecture, using
one of the suggested JWT formats and the Open Pro-
cess Communication Unified Automation (OPC UA) [14]
framework (Section V).

• A verification of the provided implementation, using
propositional logic (Section VI).

The results are discussed in Section VII, and conclusions
and ideas for potential future work are presented in Sec-
tion VIII.

II. BACKGROUND AND RELATED WORK

The unique challenges and requirements for access control
in Industrial Internet of Things and Smart Manufacturing
systems are discussed in some previous works, e.g., by Sa-
lonikas et al. [15] and Leander et al. [16]. These works
both describe the need for mechanisms that are resource
efficient and scalable, while being flexible and able to make
decisions based on context awareness or executing workflows,
in contrast to the access control architectures currently used
in industrial control systems, which are typically static and
management-intensive to update. Our approach aims to fulfill
the described requirements from an architectural point of view.

There are several authorization policy models able to handle
dynamic scenarios, coming from two main policy model-
families: Attribute Based Access Control (ABAC) [17] and
Task Based Access Control (TBAC) [18]. In ABAC, the dy-
namic behavior is captured by changing attributes of subjects,
resources and the environment. In TBAC, a workflow-engine
keeps track of task states and transitions, thus limiting allowed
activities to what is mandated by the workflows.

In the literature, TBAC is limited to operations within
a closed Process Aware Information System (PAIS), e.g., a

Policy Decision
Point (PDP)

Policy
Information Point

(PIP)

Policy
Enforcement
Point(PEP)

Resource

Policy
Administration

Point (PAP)

Administrator

Client
(Subject)

Policy
data

Attribute data

(different
sources)

Fig. 1: Basic Elements of the XACML Reference
Architecture.

document handling system or banking system [19], making
available solutions less useful in manufacturing scenarios,
however, there are examples of transforming formalized work-
flows into ABAC-rules, e.g., as proposed by Leander et
al. [20], or extending access control matrices with workflow-
data as suggested by Knorr [11].

Similarly as in this article, the reference architectures
part of the eXtendable Access Control Modeling Language
(XACML) [21], [22] (Fig. 1) is often used as a basis for
enforcement architecture descriptions related to ABAC. The
architecture contains a Policy Administration Point (PAP),
providing administrative functionality, i.e., updating of Policy
Data; Policy Information Points (PIP) to provide interfaces
for querying attribute data; Policy Decision Points (PDP) that
contain the logic for deciding if a resource request from a
subject shall be granted or denied; and Policy Enforcement
Points (PEP) that enforce the policy decision [23].

Chandramouli et al. [24] describe an enforcement architec-
ture for micro-services applications executing in containerized
environments, with a side-car container acting as a common
PEP. Martinelli et al. [25] describe an enforcement architecture
for OPC UA, tailor-fit for the Usage Control (UCON) [26]
access control model, an extension of ABAC, which supports
mutable attributes. Bhatt et al. [27] describe ABAC for Ama-
zon Web Services (AWS) Internet of Things (IoT), with PEP
and PDP placed in edge-nodes, aiming for usability in the
cloud-connected factories of the future.

While all these approaches are related to our work, none
of them is directly applicable and interoperable in dynamic
manufacturing systems. Our approach focuses on providing an
architecture that can enforce dynamic access control decisions
on constrained resource servers, while following available
industrial standards.

OPC UA [14], part IEC 62541-4, describes a session-based
application-layer protocol for client-server communication that
provide integrity and confidentiality using mechanisms similar
to Transport Layer Security [28] (TLS)2. It also contains

2OPC UA also supports the publish/subscribe pattern, out of scope for this
paper.

sections covering access control, including several different
authentication models, and protocols for authorization. For
authorization, the main supported model is Role-Based Access
Control (RBAC) [29], described in IEC 62541-2, with static
role-permissions defined relative to the resources of a server.
User-to-role mapping is either configured at the server, or
communicated using access tokens issued by an authorization
service.

Using access tokens, such as JWT, is a common mechanism
for permission delegation in the IT-system domain, described
in the OAuth 2.0 standard [30]. Even though it is supported by
OPC UA, it is currently not widely adopted in manufacturing
systems.

Some previous works look at different enforcement ar-
chitecture mechanisms and similar concepts, such as sub-
granting techniques, in IoT and Cyber Physical Systems
(CPS) [31], surveyed by Sudarsan et al. [32], and Dramé-
Maigné et al. [33]. They provide information on, e.g., current
state of the art for authorization governance and permissions
delegation. Among other things, Dramé-Maigné et al. present
four basic architectural concepts for sub-granting: centralized,
hierarchical, federated and distributed. Our approach follows
a hybrid of the centralized and distributed approach, with
centralized policy decisions for dynamic permissions and role
assignment, and local decisions for static role-permissions.

III. ENFORCEMENT ARCHITECTURE - PROPOSED MODELS

In order for a set of policy rules to be effectively enforced in
a system, the design of the enforcement architecture is crucial.
In this section we introduce four different architectures, which
we find useful for achieving an enforcement architecture sup-
porting dynamic access control. We reason on the respective
model’s applicability in a dynamic manufacturing system,
based on the previously stated objectives.

Based on the previously introduced XACML reference
architecture (Fig. 1) we vary the placements of the PEP and
PDP elements, using the following entities:

• Client is an entity that wants to access a resource. Clients
may be operators (human users supervising the process),
digital units executing high-level control operations, data-
historian services, sibling modules, etc. Clients that rep-
resent human users as well as purely digital entities are
possible.

• Resource Server is a service providing logical access to
a set of resources. In the context of a dynamic manu-
facturing system, it may be a direct-connected sensor, an
interaction point for a manufacturing module, a purely
digital service, etc.

• Authorization Service (AS) is a service that contains
logic and interfaces for policy decisions, i.e., facilitating
outsourced policy decisions [23].

Our focus is on policy decision and enforcement, hence the
PAP and PIP are omitted in the following, assuming that the
PDP can access the policy data it needs, and that secure and
efficient administration of policy data is provided.

The client is seen as potentially untrusted, and should there-
fore not contain any of the architectural elements. However,
clients can be used for mediation of information on policy
decisions, i.e., transport policy decision data from a PDP to
a PEP, provided that the PEP can validate the integrity of
the data. Following by the principle of full mediation [1],
the policy enforcement mechanism must be kept close to the
resources to minimize the risk of alternative routes for access
(i.e., back-doors). Therefore we use the limitation that the
resource server shall contain a PEP.

Using these entities and limitations, the following architec-
tural models can be constructed:
(a) Traditional client-server model (Fig. 2a) - The resource

server contains both the PDP and PEP, and must therefore
handle all the logic. For this model to be useful for
dynamic access control, the policy data contained by the
resource server must be reconfigured every time policies
concerning the resource server are updated (i.e., policy
provisioning). The model is similar to what can be used
in OPC Classic3 which is a common industrial commu-
nication protocol. However, OPC Classic authorization is
based on Windows OS Access Control Lists (ACL) on
DCOM-objects [34], heavily limiting expressiveness and
granularity of the policy rules.

(b) Common Open Policy Server (COPS) model (Fig. 2b)
- Clients provide credentials to the resource server and
all logic for inference of permissions resides in an AS,
i.e., the resource server asks an external PDP for each
resource request. This is following the same principle as
the COPS-protocol [35]. The policy decision is offloaded
to an external AS. For dynamic access control, the AS
must be updated whenever policy data changes, but the
resource server does not need additional configurations.
However, the resource server may need to validate user
credentials, implying that the resource server needs to
maintain the user account database. If client identities
change, the resource server must be reconfigured.

(c) OAuth2 model (Fig. 2c) - differs from (b) only in that
the client communicates the policy decisions. This model
is similar to permission delegation based on OAuth2 [30].
When the client makes the resource request, the request
itself contains all the logic needed to infer permissions, is-
sued by a trusted AS. Therefore, the resource server does
not need any additional configuration to infer dynamic
permissions. In this model, the resource server does not
need a user database, if it can check that the policy
decision is issued for the client, and that the decision
is issued by a trusted AS.

(d) OPC UA model (Fig. 2d) - is similar to (c), with
additional PDP capabilities in the resource server. This is
similar to the OPC UA model described in Section II. For
the model to be useful for dynamic access control scenar-
ios, the policy data on either the AS, the resource server
or both must be updated as policy-decisions change.

3https://opcfoundation.org/about/opc-technologies/opc-classic

2Policy
data

1

Client

3 Resource Server

PEP

Resource(s)

PDP

(a) Traditional client-server
model. All logic in resource
server.

3

4

Authorization
Service

Policy
data

1

Client

5

PDP

2

Resource Server

PEP

Resource(s)

(b) COPS-model. Resource
server communicates directly w.
PDP.

2

3

Authorization
ServicePolicy

data

4

1

Client

5

PDP

Resource Server

PEP

Resource(s)

(c) OAuth2-model. PDP in
authorization service, PEP in
resource server, client mediates.

Resource Server

Authorization
Service2

3

Policy
data'

4

Client

6

PDP'

Policy
data''

5

PEP

Resource(s)

PDP''

1

(d) OPC UA-model. PDP
distributed over authorization-
and resource-server, client
mediates.

Fig. 2: Four authorization architecture models. The numbers indicate the order of messages in respective protocols.

As described, these models are all used in different forms
in the state of practice, however, using them for providing
enforcement of dynamic access control policies in a manufac-
turing system is a novel approach and is a contribution of this
article.

A. Evaluation of models

As mentioned, all the above architectures are theoretically
feasible for dynamic access control. In the following we will
attempt to evaluate the models from the perspective of an
industrial automation and control system.

Based on the requirements from Section II above, we derive
three evaluation criteria for the architectures. In network-
centric manufacturing systems, constrained devices may act
as resource servers, e.g., simple sensor devices. Therefore
a reasonable goal is to minimize workload of the resource
server. Furthermore, to enhance scalability and robustness, the
access control mechanism dependence on reliable, fast, and
deterministic network performance should be reduced. Below
we refer to this as network load, where high means that there
is a need for high network performance, e.g., caused by a need
for many message exchanges (per operation).

The following criteria will therefore be used: 1) execution
load of the resource server (lower is better), 2) amount of
network traffic involving the resource server (lower is better),
and 3) flexibility with regards to dynamic access enforcement
(high is better). The evaluation is summarized in Table I.

Architecture Workload Network load Flexibility
(a) High Low Low
(b) Medium High High
(c) Low Low Medium-High
(d) Medium-Low Low Medium-High

TABLE I: An Evaluation of Architectures

Architecture (a) puts all work related to policy decision
and enforcement, as well as user authentication, at the re-
source server. However, the network load is low since the
only interactions between the client and the resource server
are the resource requests. From a flexibility perspective the
architecture is rated as “Low”, since keeping the local policy
data up to date with dynamic policies would require frequent
resource server reconfiguration.

In architecture (b), the resource server is the active entity
in relation to the PDP and it is responsible for initiating
a communication channel for policy decisions. Even though
policy decisions and policy data are not needed in the resource
server, a lot of communication work is required, putting the
workload to “Medium” and network load to “High”. This
setup will allow high flexibility with regards to dynamic access
control, assuming the AS has access to up-to-date policy data.

In architecture (c), the client is responsible for commu-
nication with the AS, which removes communication and
processing load from the resource server (“Low” on resource
server workload and network load). The architecture allows
high flexibility with regards to access control, according to
the same reasoning as architecture (b). However, as the client
is the mediator, the policy decision must come with a validity
time-span, and the length of that time-span, in practice limiting
the dynamicity of the architecture.

Architecture (d) places some policy data in the AS and some
in the resource server, and lets the client mediate the AS policy
decisions to the resource server, similar to architecture (c).
This will put some additional workload onto the resource
server, but allows for the same low amount of network
traffic and the same level of flexibility as architecture (c).
Architecture (d) however has an advantage: In case policy
decisions by the AS cover more than one resource request, the
required work and network load between client and AS will be
lower than for architecture (c). In an industrial control system
a session between a client and a server will typically include

several interactions and resource requests, prompting several
client-AS interactions. Furthermore, it is quite common that,
e.g., permission to read data is allowed by most interaction
parties, while the permissions to write data or execute methods
are restricted until needed.

Architecture (d) also has the advantage that it enables an
attractive separation of work: policy decisions related to static
permissions can be made in the resource server, while policy
decisions related to dynamic permissions can be made in the
AS.

Based on the collected information, architectures (c) and (d)
are the best choices for the given evaluation criteria. In both
cases the client communicates policy decisions from the AS
to the resource server. Access tokens is one mechanism for
secure communication of policy decisions. In the following
section we explore how to use this mechanism for dynamic
access control in manufacturing systems.

IV. ACCESS TOKENS FOR DYNAMIC ACCESS CONTROL

In this section we explore different ways of formulating
access tokens to support dynamic access control using the
previously described architectures (c) and (d).

As previously mentioned, an access token must have a
validity time to be useful. Deciding on the length of validity
for an access token is a trade-off between dynamicity and
performance. Too long validity time will lead to outdated
policy-decisions being enforced by the resource server, while a
too short validity time will lead to a communication overhead,
with the risk of network congestion and impaired real-time
characteristics. If the token lifetime is of the same order
as, or greater than, the dynamicity of the system, a token
revocation mechanisms may be needed. If the token lifetime
is significantly smaller than the dynamicity of the system,
the amount of time when incorrect tokens can be used in
the system is small. In the following, we assume that the
token validity time is significantly shorter than the average
time between the state changes of the system.

Information stated in access tokens is often refereed to as
claims. In the following section we will present strategies for
formulation access token claims, two related to architecture (c)
and two for architecture (d).

A. Architecture (c): Session-wide explicit permissions
Architecture (c) does not group permissions into, e.g., roles

and therefore the AS populates the access token with a list of
all permissions valid for the session. The token have to contain
explicit permissions related to all the relevant resources of
the resource server. This means that for a resource server
protecting more than a few resources, there is a risk that the
token size will become unmanageable.

B. Architecture (c): Specific explicit permissions
A way of countering the issue with growing access tokens

expressed above, is to include a set of needed permissions
in the access token request, such that the client requests the
specific permissions it intends to use. This protocol will limit
the content of the token to only necessary information.

C. Architecture (d): Roles with modifiers

Architecture (d) allows the resource server to be aware
of, e.g., roles that the AS can refer to (using role claims),
instead of just listing explicit permissions. Therefore, the
access tokens can in many cases be smaller than in architec-
ture (c). Additionally it is possible to combine the dynamic
policies with static local permission definitions. The static
local permissions can be referred to with role claims, as
described above, and the effectively granted set of permissions
can be modified by adding explicit permissions or restrictions.

The resource server policy data comprise a static set of roles,
mapped to permissions, the AS knows all the resource servers
role permissions, and uses this knowledge to populate an ac-
cess token which combines the roles with explicit permissions
or restrictions to mirror the currently active set of permissions.
Compared to using only explicit permissions, this allows for
a more compact way of communicating claims in the access
token, while keeping the flexibility.

D. Architecture (d): Specific explicit permissions with roles

A further development would be to combine the specific
explicit permission scheme, as in Section IV-B above, with
local static roles. This would result in a protocol were the
client requests specific permissions from the AS, and as a
response receives a token encoded with the roles that are fully
granted, i.e., that has no restrictions, and explicit permissions
to the requested operations (if granted).

For some types of interactions, this would be a more
practical concept. Consider, e.g., all the potential actions an
operator is allowed to do in relation to all process objects in
a complex manufacturing environment. It would be wasteful
to have all of them pre-calculated and put into access tokens
for all open sessions4. Instead, permissions could be evaluated
and granted just-in-time and on demand.

E. OPC UA considerations

To the best of our knowledge, OPC UA is the only
industrial communication framework which includes access
tokens for permission delegation. However, the authorization
flow described in the OPC UA specification is tailored for
communicating role-permissions, and therefore carries a major
limitation in the client to AS communication protocol: there
is no room for context specific information in the access
token request sent by the client, and therefore the AS cannot
use anything else than the client identity and resource server
identity for compiling the content of the token.

To keep the solution interoperable with OPC UA clients, we
want to avoid altering the existing protocol for authorization
delegation. This means that among the proposed solutions we
are limited to session-wide explicit permissions (as described
in IV-A) or roles with modifiers (as described in IV-C) to
implement dynamic access control in a manufacturing system

4Wasteful, considering the execution time in the AS for calculating and
compiling never used permissions into tokens, for network utilized for
communicating these tokens, and on resource server memory and execution
for storing and evaluating the decisions.

utilizing OPC UA. To mitigate the risk of generating over-
sized access tokens we focus on the approach using roles with
modifiers in the implementation.

V. IMPLEMENTATION

This section provides an example on how an enforcement
architecture can be implemented, with the goal to demonstrate
the feasibility of the suggested approach.

A. Protocol description

For a client to communicate with a resource server, with the
goal of accessing resources safeguarded by the resource server
following Architecture (d) and using permission delegation
according to the approach using roles with modifiers (see
IV-C) the following protocol is proposed (illustrated in Fig. 3).

First a session between the client and resource server must
be created. To activate the session the client needs an access
token, which can only be received from an AS trusted by the
resource server (see arrow ”1. Request token” in Fig. 3). The
request includes credentials for the client and the identity of
the resource server. The AS evaluates the currently available
permissions that the Client holds related to the resources which
the resource server safeguards (arrow ”2. Evaluate” in Fig. 3),
which will result in an Access Control List (ACL) representing
all client permissions on resource server resources. The ACL
is then compared with resource server local RBAC policies,
as detailed below (arrow ”3. compare” in Fig. 3), in order to
create the access token (arrow ”4. Create” in Fig. 3) containing
a combination of roles and explicit permissions/restrictions.
The token is signed by the AS and returned to the client (arrow
”5. Return” in Fig. 3), which uses it to activate the session with
the resource server (arrow 6 in Fig. 3). Upon session activation
the resource server validates the basic data of the token, e.g.,
signatures and validity. If the token is valid, the session is
accepted, and the resource server stores the token for future
policy enforcement tasks. When a resource is requested (arrow
7 in Fig. 3), the resource server enforces policies related to
the request using explicit permissions and restrictions from
the access token, and permissions related to the granted roles
from the local RBAC policy repository. Further details on the
sequence of the protocol given in Fig. 5.

B. Access token content

In our approach, the policy-related data in the access token
can be defined formally as token = (idc, ids, Tid, PX , ZX),
where idc is a unique identification of the client and ids is
a unique identification of the resource server. Tid is a set of
identities of zero or more roles known by the resource server,
PX is a set of zero or more explicit permissions of the form
p = (o, r) granting execution of an operation o on a resource
r. ZX is a set of zero or more explicit restrictions, written
in the same form as permissions, i.e., z = (o, r), but instead
implying the restriction that an operation o is not allowed to
be executed on the resource r. All the resources, operations,
and roles referred by the token are assumed to be known by
the resource server.

In the implementation, JWT is used as the container for
claims. JWT is encoded in a JSON Web Signature (JWS) [36]
or JSON Web Encryption (JWE) [37] structure, i.e., with
signed and/or encrypted payload. There are several ways of
expressing these as claims in a JWT, but in the implementation,
the following are used:

1) Roles: an array of strings, representing roles, well-known
by the resource server.

2) Entitlements: an array of strings, representing explicit
permissions related to resources handled by the resource
server. These permissions are to be seen as additions to
permissions granted implicitly by the Roles claim.

3) Restrictions: an array of strings, representing explicit
restrictions related to resources handled by the resource
server. These permissions are to be seen as exclusions of
permissions granted implicitly by the Roles claim.

Example of the claims-section of a JWT, using the above
fields:
{
"sub": "client_id",
"aud": "resource_server_id",
"name": "readable client name"
"iat": 1516239022,
"exp": 1516241022,
"roles": ["role1", "role2"],
"entitlements": ["method1", "signal1.read"],
"restrictions": ["signal1.write"]

}

The audience (aud) field uniquely identifies the resource
server, the subject (sub) field identifies the client, the
iat field is the time of issuing the token, while exp is
the token expiry time. The roles array lists roles, while
entitlements and restrictions list additional per-
missions and restrictions for the client, respectively. The JWT
also contains a signature from the AS, which ensures token
integrity and the identity of the token issuer.

C. Policy data and policy decisions

In the following we detail policy data content for the
respective component, and how the policy decision points
work.

Policy data at the resource server: The resource server
s provides the interface to a set of resources R. For each
resource r ∈ R, a set of operations O are possible. From the
resource server point of view, a permission p is defined as
p = (o, r), where o ∈ O, i.e., grant of permission p allows
performing an operation o on a resource r. Furthermore, a
resource server has a set of roles T , with t ∈ T being a
named collection of permissions t = (id, Pt), where id is a
unique identifier for the role and Pt is the set of permissions
granted to the role.

Policy data at the AS: The AS has knowledge of each
resource servers’ internal role definitions, and thus contains
data for a set of resource servers S, with associated permission
definitions s = (id, T) where id is a unique identification
of the resource server and T is the set of roles used by the
server s. The AS also contains a policy decision mechanism

Resource server
6. Activate session

w. Token

7. Req. resource

Client

Authorization Service

5. Return

1. Request Token

RBAC
policies

Global
policies

Policy Decision

2. Evaluate
3. Compare 4. CreateActive ACL

0Token w.
Role + modifier

Local
RBAC

policies

Policy
Enforcement

Session
Access-Token

8. Resource

Based on local policies
+ token content

Fig. 3: A Proposed Authorization Protocol

so that, for a client and resource server s, it can construct
an access control list PACL of granted permissions, based on
dynamic policy data and rules. PACL should be interpreted as
an exclusive set of granted permissions, and no permissions
outside this set are granted, i.e., allow if a permission is in the
set, otherwise deny.

Policy decision in authorization service: Upon a request
from the client the AS constructs a token containing the
combination of roles and explicit permissions or restrictions
needed to faithfully represent the set of permissions present
in PACL using Algorithm 1.

Algorithm 1 Populate token

1: Tid := ∅, ZX := ∅, PX := PACL

2: ti ∈ T for smallest li := max(| ti.Pt \PACL |, | PX \ ti.Pt |)
3: if li < (| PX |) then
4: Tid := Tid ∪ ti.id
5: ZX := ZX ∪ (ti.Pt \ PACL)
6: PX := PX \ ti.Pt

7: goto 2
8: end if

Algorithm 1 encodes the policy decision into an access
control token, populating the claims for roles (Tid), explicit
restrictions (ZX) and explicit permissions (PX). The policy
decision is represented by the access control list PACL, and
the role-permissions for the resource server is represented by
T .

The algorithm Initiate the sets Tid and ZX to empty set
(∅), and let PX := PACL. For each iteration, the role ti ∈ T
which has permissions (Pt ∈ ti) with the largest overlap with
PX is found. If the permissions of ti overlaps PX so that
the overall size of data represented in the token decreases, the
role identity is added to the list of roles (Tid), the permissions
granted by ti is subtracted from PX , and permissions granted
by ti which are not in PACL are added to the restriction list
ZX . If no role with big enough overlap has been found, the
algorithm is completed.

Policy decision in resource server: When the client c
activates a session, the protocol requires using an access
token as one of the arguments. Part of the policy decision
from the resource server will therefore take place also during

session activation: Different aspects of the provided token are
validated, e.g., the integrity and authenticity of the token, that
idc matches the client id and that ids matches the resource
server identity. The token is persisted together with the session,
for use in consequent resource requests. A resource request,
which can only be done within the scope of an active session,
is defined as an operation on a resource req = (o, r), i.e., on
the same form as a permission. The resource server evaluates
the request by matching it against the permissions granted by
the session token using the following equation5:

d(req) =
deny if (req ∈ ZX)

allow if (req ∈ PX)

allow if (∃(t ∈ T) : t.id ∈ Tid ∧ req ∈ t.Pt)

deny otherwise

(1)

Modules
Authorization Service

Mixer Pasteurizer Homogenisator Dynamic
freezing

 and flavor

Freezing
Packaging

Orchestrator

Engineering Operations

Engineering
Repository

\temp\

Recipes

Fig. 4: Use Case: A modular ice-cream factory, architecture
overview.

D. Use case

The implementation is done in the context of an ice-cream
production process, illustrated in Fig. 4, which is designed

5Cases has to be checked in given order.

according to the modular automation system design strategy.
Cybersecurity threats against ice-cream factories are limited,
and so the target process is merely an illustration. However, the
provided implementation is applicable to any manufacturing
system using this strategy, e.g., pharmaceutical and chemical
processing.

Modular automation uses a service-oriented approach with
semi-autonomous modules, specialized in a certain production
procedures, having standardized logical and physical interface.
During operation, the current production needs decide which
modules to use, and how they shall be interconnected. Pro-
duction synchronization is done using high-level control from
a central orchestration unit executing different recipes. This
specific realization of the production process comprise five
separate modules for mixing, pasteurization, homogenization,
freezing and flavoring, and packaging. A more detailed de-
scription of the use case system is provided in [38].

All the interactions between entities in the system use OPC
UA client/server communication. Issuing of access tokens
follows the authorization flow, as defined in the OPC UA
standard6. The implemented part of the authorization is related
to recipe execution, with the orchestrator unit acting as a
client, the modules are resource servers, with the high-level
control commands as well as operational data as resources.
Interactions related to policy decisions and enforcement be-
tween an orchestrator, a module, and the AS are illustrated in
the sequence diagram in Fig. 5. The dynamic access control
is related to which recipes and recipe steps that are active in
the system, following the workflow-based approach suggested
in [39].

The implementation uses dynamic policy-data in the AS
modeled in Next Generation Access Control (NGAC) [40],
[41], with software components developed using .NET Core,
C#, and using the OPC Foundation .NET OPC UA stack for
the communication interactions, the Microsoft.IdentityModel
functionality for JWT creation, and the PolicyMachine7 for
NGAC policy model representation.

On a client access token request, the AS queries the NGAC
database to compile a set of permissions, PACL, containing the
client permissions relative the resource server resources. The
list of permissions is used as input to Algorithm 1, which is
executed to populate the access token, which is then returned
to the client. The client use the token to activate a session with
the resource server, and the resource server use the token to
enforce the resource requests from the client, according to the
previously described decision function.

A running example of using the token population algorithm
and decision function on interactions in this use case is
provided in Appendix A.

VI. VERIFICATION

In this section we evaluate the behavior of the suggested
implementation. This is done by verifying that the set of

6IEC 62541 [14] Part 4, chapter 6.2 Authorization Services
7https://github.com/PM-Master/policy-machine-core

Fig. 5: A sequence diagram for the authorization protocol
including policy decisions and enforcement related to session
activation and resource requests.

permissions granted by the decision function in Equation 1
matches the access control list PACL, when the token policy
data is generated using Algorithm 1.

Proving the following two theorems is sufficient to show
that the decision function d will enforce permissions according
to PACL, since the permissions in PACL are exclusive, as
described in Section V-A:

Theorem 1. Any request req = (o, r) matching a permission
p ∈ PACL will result in a decision allow.

Theorem 2. Any request req = (o, r) not matching a
permission p ∈ PACL will result in a decision deny.

Proof. of Theorem 1 by contradiction: Let us assume that
there exists a req′ ∈ PACL that would yield decision deny.
According to the decision function, there are two cases in
which this could happen: A) req′ ∈ ZX , or B) if req′ is
neither part of PX , nor do any of the roles identified in Tid

contain req′.
For 1.A) ZX cannot contain req′, as we have stated that

req′ ∈ PACL, according to line 5 of Algorithm 1, the elements
added to ZX are always added in the form: ZX = ZX∪(ti.Pt\
PACL).

For 1.B) Neither PX nor any of the roles in T ′ contain

req′. Using t′ ∈ T ′|t′.id ∈ Tid, PX is initiated to PACL (line
1 in Algorithm 1), and the only permissions removed from
PX are the ones from roles with identities added to Tid (line
6 in Algorithm 1). Therefore req′ cannot be in PACL without
being present in either PX , or one of the roles with identities
in Tid.

According to 1.A) and 1.B), there cannot be any requests
req′ ∈ PACL resulting in decision function d(req′) evaluating
to deny, consequently any req′ ∈ PACL yields decision allow,
which is what we wanted to show.

Proof. of Theorem 2 by contradiction: Let us assume there
exists a req′ /∈ PACL which leads to d evaluating to allow.
This would only be possible if req′ /∈ ZX and either A) req′ ∈
PX or B) ∃(t ∈ T) : t.id ∈ Tid ∧ req′ ∈ t.Pt.

For 2.A) req′ cannot be in PX , as PX in line 1 of
Algorithm 1 is initiated to PACL, and then only altered by sub-
traction, in line 6, i.e., req′ ∈ PACL ∧ req′ /∈ PACL = false.

For 2.B) Define (T ′|t′ ∈ T ′, t′.id ∈ Tid ∧ req′ ∈ t′.Pt).
Then T ′ are all the roles that contain req′. If req′ /∈ PACL,
then ∀t′ ∈ T ′, req′ ∈ (t′.Pt \ PACL). However, according to
the line 5 of Algorithm 1, ZX = ZX ∪ (ti.Pt \PACL), which
means that all req′ /∈ PACL for which there exists a role t′

such that (t′ ∈ T ′, t′.id ∈ Tid ∧ req′ ∈ t′.Pt), i.e., req′ ∈ ZX .
According to 2.A) and 2.B), there cannot be any request

req′ /∈ PACL resulting in decision function d(req′) yielding
allow, consequently any req′ /∈ PACL will evaluate to the
decision deny, which proves Theorem 2.

Provided that Algorithm 1, and decision function in Equa-
tion 1 are correctly implemented, and the AS has correct
information regarding role definitions for the resource server,
we have shown that Equation 1, implemented in the resource
server, enforces exactly the policy decisions taken by the AS,
using the token data produced by Algorithm 1.

VII. DISCUSSION

Balancing usability and cybersecurity is a challenging task
as increased cybersecurity may lead to decreased perceived
usability. Formulating rules according to the least privilege
principle is certainly very difficult and management intensive,
and requires some amount of automation to be efficient [20],
[42]. Still, we assume that it is possible to have an updated
set of dynamic access control policies sufficiently close to
this principle in a manufacturing system. The architectures
described in this paper is developed to enable enforcement of
such dynamic policies.

The implemented architecture provides the possibility of
enforcing dynamic access control policies. It is applicable in
industrial manufacturing scenarios, with the resource servers
being constrained devices. Furthermore, the implementation
uses the OPC UA communication standard to allow interop-
erability with clients following the standard. With this being
achieved all our objectives are fulfilled.

Among the four described approaches of using access
tokens for dynamic access control, only two of them were
possible to implement, considering the OPC UA standard,

and only one was deemed useful in scenarios comprising
complex resource servers. To include the approaches resulting
in the most precise and compact token formulations would
require additions to the existing standard, including extending
the token request protocol with explicit permission requests.
The implemented solution yields correct results but is not
guaranteed to produce compact access tokens.

The two suggested architecture models are using session-
wide access control tokens, which requires the policy decision
point to produce a full set of active permissions/restrictions.
This is a limitation, as not all policy models can produce this
kind of output, e.g., XACML [21] is optimized for handling
atomic access control requests, but cannot effectively provide
a list for all permissions that a client holds related to a specific
resource [41].

The use of session-wide tokens also limits the dynamicity
that the enforcement architecture can exhibit, as the token has
a fixed validity time. If the system has a rate of change which
is of the same order as the token validity time, there is a high
probability that the granted permissions are outdated when
used.

In the described architecture models, no functionality related
to policy enforcement and decision is placed on the client side.
From a cybersecurity perspective, this decision is easily moti-
vated as the resources should not need to be protected by the
logic placed in the client, since there may be malicious clients.
However, from a usability point of view the client is often
relying on knowledge on active permissions to hide or disable
parts of the user interface related to disallowed functionality.
The OPC UA information model contains metadata on active
permissions for an open session, which the client can query
from the resource server. This is information that could be
used by a client user interface to adapt also to dynamically
changing policies.

The provided implementation is done in the scope of a sim-
ulated manufacturing system with comparably low complexity,
yet it covers all the necessary components of a real system,
and is therefore generally applicable for machine-to-machine
access control in manufacturing systems.

VIII. CONCLUSIONS

Access control is one of several cybersecurity mechanisms
highly affected by technical advances and changing business
objectives in manufacturing systems. Emerging manufacturing
system types are increasingly dynamic, making dynamic ac-
cess control a requirement in those systems. In this paper, we
describe how an enforcement architecture can be modeled and
implemented to enable dynamic access control in a manufac-
turing system, interoperable with the OPC UA standard.

Four architecture models are investigated and evaluated
based on three criteria related to minimizing resource server
workload and network utility and maximizing access control
policy flexibility. Among the evaluated architecture models,
the top two are selected for further discussions on policy
delegation mechanisms resulting in four different approaches
for encoding dynamic policy decisions in access tokens.

An implementation of the most promising combination of
architecture and delegation mechanism is described, using
the approach of distributed policy decision points, with the
dynamic decision taking place in an authorization service,
which encodes the policy decisions as access tokens using
knowledge on static role-based permissions at the resource
server combined with explicit permissions and restrictions.

The implementation includes details on how the authoriza-
tion service populates access tokens, and how the resource
service validates resource requests using the available claims,
covering policy decision and enforcement mechanisms. Fur-
thermore, the implementation uses OPC UA as communication
protocol, JWT for access token formulations and NGAC for
authorization service policy data. Although the implemented
solution is simple, it contains essential components of a dy-
namic manufacturing system, and uses available standardized
solutions.

As a future work, we aim to extend and integrate the
implementation into a realistic manufacturing environment,
based on the modular automation system design strategy. This
will provide a better evaluation of the suggested approach with
regards to scale and real-time properties.

The two approaches for token content which require explicit
permission requests, as described in this paper, are currently
not part of any standard, and therefore not part of the pro-
vided implementation. They do however hold some interesting
properties, which could make it worthwhile to evaluate their
usefulness, e.g., for enforcing permissions on safety-critical
operations.

ACKNOWLEDGEMENTS

Abhinav Sasikumar and Filip Johnsson at ABB made tech-
nical contributions to parts of the use case implementation.

REFERENCES

[1] J. Saltzer and M. Schroeder, “The Protection of Information in Com-
puter Systems,” in proceedings of the IEEE, vol. 63, pp. 1278–1308,
September 1975.

[2] A. Sigov, L. Ratkin, L. A. Ivanov, and L. D. Xu, “Emerging enabling
technologies for industry 4.0 and beyond,” Information Systems Fron-
tiers, pp. 1–11, 2022.

[3] K.-d. Thoben, S. Wiesner, and T. Wuest, “Industrie 4.0 and smart
manufacturing – a review of research issues and application examples,”
Intl. Journal of Automation Technology, January 2017.

[4] Y. Lu, “Industry 4.0: A survey on technologies, applications and open
research issues,” Journal of Industrial Information Integration, vol. 6,
pp. 1 – 10, 2017.

[5] “IEC 62443 security for industrial automation and control systems,”
standard, Internation Electrotechnical Commission, Geneva, CH, 2009-
2018.

[6] E. D. Knapp and J. T. Langill, “Chapter 9 - establishing zones and
conduits,” in Industrial Network Security (Second Edition), pp. 261–
281, Boston: Syngress, second edition ed., 2015.

[7] “O-PAS Standard, Version 2.0: Part 1 – Technical Architecture
Overview,” Open Group Preliminary Standard (P201-1), The Open
Group, February 2020.

[8] ZVEI—German Electrical and Electronic Manufacturers’ Association,
“Process INDUSTRIE 4.0: the age of modular production,” White Paper,
Frankfurt, 2019.

[9] J. Ladiges, A. Fay, T. Holm, U. Hempen, L. Urbas, M. Obst, and T. Al-
bers, “Integration of modular process units into process control systems,”
IEEE Transactions on Industry Applications, vol. 54, pp. 1870–1880,
March 2018.

[10] T. Seifert, S. Sievers, C. Bramsiepe, and G. Schembecker, “Small scale,
modular and continuous: A new approach in plant design,” Chemical
Engineering and Processing: Process Intensification, vol. 52, pp. 140–
150, 2012.

[11] K. Knorr, “Dynamic access control through Petri net workflows,” Pro-
ceedings - Annual Computer Security Applications Conference, ACSAC,
vol. 2000-January, pp. 159–167, 2000.

[12] D. J. Dougherty, K. Fisler, and S. Krishnamurthi, “Specifying and
reasoning about dynamic access-control policies,” in International Joint
Conference on Automated Reasoning, pp. 632–646, Springer, 2006.

[13] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Token (JWT).” RFC
7519, May 2015.

[14] “IEC 62541 OPC unified architecture, rev 1.05,” standard, International
Electrotechnical Commission, Geneva, CH.

[15] S. Salonikias, A. Gouglidis, I. Mavridis, and D. Gritzalis, “Access con-
trol in the industrial internet of things,” in Security and Privacy Trends
in the Industrial Internet of Things, Springer International Publishing,
2019.

[16] B. Leander, A. Čaušević, H. Hansson, and T. Lindström, “Access control
for smart manufacturing systems,” in Software Architecture. ECSA 2020.
Communications in Computer and Information Science., vol. 1269,
(Cham), pp. 463–476, Springer, 2020.

[17] E. Yuan and J. Tong, “Attributed based access control (ABAC) for web
services,” in IEEE Intl. Conference on Web Services, vol. 2005, pp. 561–
569, 2005.

[18] R. K. Thomas and R. S. Sandhu, “Task-based authorization controls
(TBAC): A family of models for active and enterprise-oriented autho-
rization management,” in Database Security XI, pp. 166–181, Springer,
1998.

[19] M. Uddin, S. Islam, and A. Al-Nemrat, “A Dynamic Access Control
Model Using Authorising Workflow and Task-Role-Based Access Con-
trol,” IEEE Access, vol. 7, pp. 166676–166689, 2019.

[20] B. Leander, A. Čaušević, H. Hansson, and T. Lindström, “Toward an
ideal access control strategy for industry 4.0 manufacturing systems,”
IEEE Access, vol. 9, pp. 114037–114050, 2021.

[21] “eXtensible Access Control Markup Language (XACML) Version 3 .
0 Plus Errata 01,” OASIS Standard incorporating Approved Errata., July
2017. Edited by Erik Rissanen.

[22] V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller,
and K. Scarfone, “Guide to Attribute Based Access Control (ABAC)
Definition and Considerations,” tech. rep., NIST, 2014.

[23] A. Westerinen et al., “Terminology for Policy-Based Management
Status.” RFC 3198, Nov. 2001.

[24] R. Chandramouli, Z. Butcher, A. Chetal, et al., “Attribute-based access
control for microservices-based applications using a service mesh,” NIST
Special Publication, vol. 800, p. 41, 2021.

[25] F. Martinelli, O. Osliak, P. Mori, and A. Saracino, “Improving security
in industry 4.0 by extending OPC-UA with usage control,” in 15th Intl.
Conference on Availability, Reliability and Security, ACM, 2020.

[26] J. Park and R. Sandhu, “The UCONABC usage control model,” ACM
Transactions on Information and System Security, vol. 7, no. 1, pp. 128–
174, 2004.

[27] S. Bhatt, T. K. Pham, M. Gupta, J. Benson, J. Park, and R. Sandhu,
“Attribute-Based Access Control for AWS Internet of Things and Secure
Industries of the Future,” IEEE Access, vol. 9, pp. 107200–107223, 2021.

[28] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3.”
RFC 8446, Aug. 2008.

[29] V. Watson, J. Sassmannshausen, and K. Waedt, “Secure granular interop-
erability with opc ua,” in INFORMATIK 2019: 50 Jahre Gesellschaft für
Informatik – Informatik für Gesellschaft (Workshop-Beiträge), (Bonn),
pp. 309–320, Gesellschaft für Informatik e.V., 2019.

[30] D. Hardt, “The OAuth 2.0 Authorization Framework.” RFC 6749,
October 2012.

[31] R. Baheti and H. Gill, “Cyber-pysical Systems,” The impact of control
technology, vol. 12, no. 1, pp. 161–166, 2011.

[32] S. V. Sudarsan, O. Schelen, and U. Bodin, “Survey on Delegated and
Self-Contained Authorization Techniques in CPS and IoT,” IEEE Access,
vol. 9, pp. 98169–98184, 2021.

[33] S. Dramé-Maigné, M. Laurent, L. Castillo, and H. Ganem, “Centralized,
Distributed, and Everything in between: Reviewing Access Control
Solutions for the IoT,” ACM Computing Surveys, vol. 54, no. 7, 2021.

[34] OPC Foundation, “OPC Security Custom Interface.” Industry Standard
Specification (Version 1.0), Oct. 2000.

[35] R. Rajan, J. Boyle, A. Sastry, R. Cohen, D. Durham, and S. Herzog,
“The COPS (Common Open Policy Service) Protocol.” RFC 2748, Jan.
2000.

[36] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Signature (JWS).”
RFC 7515, May 2015.

[37] M. Jones and J. Hildebrand, “JSON Web Encryption (JWE).” RFC 7516,
May 2015.

[38] B. Leander, T. Marković, A. Čaušević, T. Lindström, H. Hansson, and
S. Punnekkat, “Simulation environment for modular automation sys-
tems,” in IECON 2022–48th Annual Conference of the IEEE Industrial
Electronics Society, pp. 1–6, IEEE, 2022.

[39] B. Leander, A. Causevic, and H. Hansson, “A recipe-based algorithm
for access control in modular automation systems,” tech. rep., September
2020.

[40] D. Ferraiolo, S. Gavrila, and W. Janse, “Policy Machine: Features,
Architecture and Specification,” white paper, NIST, October 2015.

[41] D. Ferraiolo, R. Chandramouli, R. Kuhn, and V. Hu, “Extensible Access
Control Markup Language (XACML) and Next Generation Access
Control (NGAC),” pp. 13–24, 2016.

[42] U. Lang and R. Schreiner, “Proximity-based access control (pbac) using
model-driven security,” in ISSE 2015 (H. Reimer, N. Pohlmann, and
W. Schneider, eds.), (Wiesbaden), pp. 157–170, Springer Fachmedien
Wiesbaden, 2015.

APPENDIX A
RUNNING EXAMPLE OF ALGORITHM AND DECISION

FUNCTION

In the following we describe a running example from part
of the recipe orchestration for the ice-cream factory use case,
highlighting how the access token sets are compiled, using
Algorithm 1, and how the decision function d(req) uses the
token claims to make local policy decisions in the resource
server.

In this example we only look at one module, the mixer
module from the use case. The mixer module has resource in-
terfaces according to Fig. 68. Furthermore, there are two roles
defined for the mixer module, T = {Observer,Operator}:

Observer = {CleanupDone.read,EmptyDone.read,

F illMixDone.read, Level.read, LevelPercent.read},

and

Operator = {Cleanup,Empty,EmptyAmount,

F illAndMix}.

Let us assume a recipe is being executed and the current
step of the recipe is related to filling the mixer module. When
the orchestrator (being the client in this example) requests an
access token from the AS, the following list of permissions
could be the result of the policy decision in the AS:

PACL = {CleanupDone.read,EmptyDone.read,

F illMixDone.read, Level.read, F illAndMix}

Now, all the data needed to run Algorithm 1 is available.
In line 1, the working sets are initiated:

Tid = ∅, ZX = ∅, PX = PACL

8Screen capture from the Unified Automation UaExpert tool (www.
unified-automation.com).

Fig. 6: Interfaces for Mixer module.

At line 2, li is evaluated for all the roles, with lObserver being
the smallest.

lObserver = max(1, 1), lOperator = max(4, 4)

At line 3, lObserver is compared with the cardinality of PX ,
which is 5, greater than 1. At line 4, 5 and 6 the working sets
are updated so that:

Tid = {Observer}, ZX = {LevelPercent},
PX = {FillAndMix} (2)

Line 7 directs execution back to line 2, which evaluates
smallest li over the changed working sets:

lObserver = max(1, 5), lOperator = max(4, 4)

Smallest value is lOperator = 4 which is greater than | PX |,
and therefore the algorithm ends here. The resulting sets from
Equation 2 are used to populate the claims in the access token
which is returned to the orchestrator as follows.
{
"sub": "Orchestrator_X",
"aud": "MixerModule",
"name": "Ice Cream Factory Orchestrator X"
"iat": <issuing time>,
"exp": <expiry time>,
"roles": ["Observer"],
"entitlements": ["FillAndMix"],
"restrictions": ["LevelPercent.read"]

}

The orchestrator uses the token to activate a session to-
ward the Mixer module. Using the sets in the token, the
decision function d(req), running at the mixer module, can
be evaluated. Assume e.g., that the orchestrator attempts a
request: req′ = Level, then d(req′) = allow, as Level ∈
tObserver.Pt. For req′ = Cleanup, d(req′) = deny, as
Cleanup /∈ PX , Cleanup /∈ tObserver.Pt, etc.

