
The Journal of Systems and Software 74 (2005) 1–3

www.elsevier.com/locate/jss
Guest editorial

Automated Component-Based Software Engineering
Following the successful 5th ICSE Workshop on

Component-Based Software Engineering: Automated

Component-Based Software Engineering held in Orlan-

do, Florida, in May 2002, this special issue of The

Journal of Systems and Software is devoted to auto-

mated component-based software engineering. We de-

pend on software components for everyday activities at
work, at home, in traffic and transport, banking, health,

telecommunications, defence and other areas. Many

times the software components are part of mission-

critical functions and services provided in these do-

mains. Primary reasons for component production and

deployment are: separability of components from their

context; independent component development, testing,

configuration and later reuse; upgrade and replacement
in running systems. However, compositionality of

component-based systems is often taken for granted.

Moreover, component technologies are not entirely

independent of particular hardware or operating plat-

forms, programming languages or the specific middle-

ware technology in which they are based. Ideally, the

development, quality control, and deployment of soft-

ware components should be automated similarly to
other engineering domains, which deal with the con-

struction of large systems from well-understood com-

ponents with predictable properties and under

acceptable budget and timing constraints.

Automated component-based software engineering is

emerging as a field of study in software engineering.

There are many open issues that need to be resolved

before a component-based approach can make a sig-
nificant impact on mission-critical software automation.

Methods must be developed that allow measurement

and prediction of functional and extra-functional char-

acteristics such as availability, adaptability, security,

and performance. Analysis and design methodologies

whose goals are automation or partial automation are

still lacking in the required formalisation and automa-

tion support. Middleware technologies such as Micro-
soft’s .NET and Sun Microsystem’s EJB are slowly

moving into the domain of automated component-based

software engineering. Their emphasis is typically on

generation, such as glue code generation or user-inter-

face generation; support for automated testing and

quality control is only nascent.
0164-1212/$ - see front matter � 2003 Published by Elsevier Inc.

doi:10.1016/j.jss.2003.11.016
Our ability to formally model and reason about

component-based systems is vital to any endeavour to

automate the process of component development,

adaptation, integration and deployment. System inte-

gration and changes to architecture may have significant

impact on critical system properties and overall system

quality; frequently, small structural changes have a
discontinuously large impact on such properties.
CBSE workshop history

Beginning in 1998, there have been six successive

workshops on component-based software engineering

held in conjunction with the International Conference on

Software Engineering. CBSE workshops have brought

together researchers and practitioners from many points

around the globe––and from several fields closely con-

nected to CBSE, notably software architecture, compo-
nent technology and trustworthy, dependable systems.
Papers in this special issue

This JSS special issue is dedicated to Automated

Component-Based Software Engineering.

The call for papers was widely disseminated through
mailing lists and news groups of the software engineer-

ing community. Authors of the CBSE6 workshop were

encouraged to develop submissions from their workshop

contributions. The call was open and all papers were

subject to the same rigorous review process with three to

four independent peer reviews per paper. We received 28

papers of which seven were selected.

The papers in this issue represent several areas of
automated software engineering research. The first

group of papers takes an analytic approach starting

from component-based models and aiming at quality

assurance, improvement and prediction. The quality of

components is a key factor in the overall service quality

and performance of any component-based system.

Analysis of software artifacts for system quality assur-

ance connects early architecture and component design
with runtime execution of reusable deployed compo-

nents to achieve model-driven quality assurance, testing

and verification, and prediction and certification.



Acknowledgements

We would like to acknowledge the support of the

Software Engineering Institute at Carnegie Mellon

University, Pittsburgh, USA as well as Monash Uni-

versity, Melbourne, Australia and M€alardalen Univer-

sity, V€aster�as, Sweden.
We are especially grateful to the community effort

contributing to this special issue: the many authors who

made the effort to submit papers, and the editorial board

members who produced their reviews at short notice and

within a tight time window.

Ivica Crnkovic

M€alardalen University
V€aster�as, Sweden

Heinz W. Schmidt

Computer Science and Software Engineering

Monash University

Wellington Road, 3800

Clayton, Vic., Australia

E-mail address: hws@csse.monash.edu.au

Judith Stafford

Tufts Unversity

Boston, USA

Kurt Wallnau

Software Engineering Institute

Pittsburgh, USA

2 Guest editorial / The Journal of Systems and Software 74 (2005) 1–3
John Grundy, Guoliang Ding and John Hosking

present an approach to testing deployed components �on
site’ using an aspect-oriented approach to dynamic val-

idation agents. Such agents test components at runtime

against functional and extra-functional requirements.
The agents are generated from design-time descriptions

given as concerns cutting across components.

Mohammad Zulkernine and Rudolph Seviora har-

ness the executability of deployed reusable components

for automatic testing of software architectures and their

integration. Their methods employ communicating state

machines and aim at improving the overall service

quality of component-based software systems by using a
specification-based approach to component interfaces

and component-based architectures.

Roel Wuyts, St�ephane Ducasse and Oscar Nierstrasz

model small embedded real-time components (software

and devices) and develop scheduling and analysis

methods aimed at meeting hard and soft real-time con-

straints in systems of such components. To this end the

semi-automatic approach taken in their Pecos system
combines constraint satisfaction techniques with rate-

monotonic analysis for periodic, aperiodic and sporadic

tasks. Their data-centric approach models these kinds of

tasks by distinguishing active, passive and event-driven

components respectively.

Shiping Chen, Yan Liu, Ian Gorton and Anna Liu

report on feasibility studies towards a practical param-

eterized performance prediction method for component-
based application systems. Based on their previous work,

which demonstrates that the performance of a given

application depends critically on the underlying com-

ponent technology and platform, the studied approach is

technology-specific: it uses predictor model parameters

that may be actualised differently for different platforms.

The paper shows that accurate predictions are feasible in

n-tier distributed enterprise application systems for cur-
rent industry-strength platforms.

The second group of papers takes a more generative

approach aiming at partially automated software con-

struction from component-based software models.

Adaptation, synthesis, and generative approaches more

generally use component-based specifications and de-

signs for generating code or code skeletons automati-

cally.
The success of architecture and product-line based

approaches to component-based software systems

necessitates the distinction between component adapta-

tion, which involves interface and contextual changes,

and component implementation reuse �as is’. In the

formal approach to component adaptation described by

Andrea Bracciali, Antonio Brogi and Carlos Canal,

declarative component and adaptor specifications are
utilised to overcome mismatches between reused com-

ponents and their deployment environment by auto-

matic adapter generation.
Marcelo R. Campo, J. Andr�es D�ıaz Pace and Fede-

rico U. Trilnik focus their work on supporting novice

users of component-based technologies, notably Java,

UML and aspect-oriented programming. They present

Hint, an environment for assisting the instantiation of
Java applications. The underlying method uses agents

capable of proposing programming activities aiming at

building new applications satisfying well-defined

requirements. The most relevant contribution of this

work is the use of novel planning techniques to guide

the execution of configuration and instantiation activi-

ties.

Gerald C. Gannod, Sudhakiran V. Mudiam and
Timothy E. Linquist apply their expertise to a publish-

subscribe development paradigm integrating data and

behavior. Applications in this paradigm integrate ser-

vices semi-autonomously, based on target runtime

properties and policies, by generating wrappers and

synthesizing code according to high-level architectural

specifications.

As a group, this set of papers provides a broad cov-
erage of model-driven, analytic and generative ap-

proaches to automating parts of the component-based

development process.



Guest editorial / The Journal of Systems and Software 74 (2005) 1–3 3
Special Issue Editorial Board

Uwe Assmann, Link€opings University (Sweden)

Len Bass, Software Engineering Institute, Pittsburgh

(USA)

Judith Bishop, University of Pretoria (South

Africa)

Jan Bosch, Rijksuniversiteit Groningen (Netherlands)

Paul Clements, Software Engineering Institute,
Pittsburgh (USA)

Ivica Crnkovic, M€alardalen University, V€aster�as
(Sweden)

Dimitra Giannakopoulou, NASA Ames Research

Center, Palo Alto (USA)

John Grundy, University of Auckland (New Zealand)

Richard Hall, Freie Universit€at Berlin (Germany)

Dick Hamlet, Portland State University (USA)
Willem-Jan vd Heuvel, Tilburg University (Nether-

lands)
Paola Inverardi, Universit�a L’Aquila (Italy)

Jean-Marc Jezequel, IRISA/INRIA, Rennes (France)

Richard Karcich, Sun Microsystems (USA)

Kung-Kiu Lau, University of Manchester (UK)

John D. McGregor, Clemson University (USA)
Iman Poernomo, DSTC P/L, Melbourne (Australia)

Otto Preiss, ABB Corporate Research, Baden

(Switzerland)

Ralf Reussner, DSTC P/L, Melbourne (Australia)

Heinz Schmidt, Monash University, Melbourne

(Australia)

Judith Stafford, Tufts University, Boston (USA)

Kurt Wallnau, Software Engineering Institute,
Pittsburgh (USA)

Alain Wegmann, EPFL Lausanne (Switzerland)

Bruce Weide, Ohio State University, Portland (USA)

David Wile, Teknowledge, Marina del Rey (USA)

Available online 21 January 2004


