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Abstract: For economical and sustainable benefits, conventional retaining walls are being replaced by
geosynthetic reinforced soil (GRS). However, for safety and quality assurance purposes, prior tests of
pullout capacities of these materials need to be performed. Conventionally, these tests are conducted
in a laboratory with heavy instruments. These tests are time-consuming, require hard labor, are
prone to error, and are expensive as a special pullout machine is required to perform the tests and
acquire the data by using a lot of sensors and data loggers. This paper proposes a data-driven
machine learning architecture (MLA) to predict the pullout capacity of GRS in a diverse environment.
The results from MLA are compared with actual laboratory pullout capacity tests. Various input
variables are considered for training and testing the neural network. These input parameters include
the soil physical conditions based on water content and external loading applied. The soil used is
a locally available weathered granite soil. The input data included normal stress, soil saturation,
displacement, and soil unit weight whereas the output data contains information about the pullout
strength. The data used was obtained from an actual pullout capacity test performed in the laboratory.
The laboratory test is performed according to American Society for Testing and Materials (ASTM)
standard D 6706-01 with little modification. This research shows that by using machine learning,
the same pullout resistance of a geosynthetic reinforced soil can be achieved as in laboratory testing,
thus saving a lot of time, effort, and money. Feedforward backpropagation neural networks with a
different number of neurons, algorithms, and hidden layers have been examined. The comparison of
the Bayesian regularization learning algorithm with two hidden layers and 12 neurons each showed
the minimum mean square error (MSE) of 3.02 × 10−5 for both training and testing. The maximum
coefficient of regression (R) for the testing set is 0.999 and the training set is 0.999 for the prediction
interval of 99%.

Keywords: geosynthetic reinforced soil; ANN; machine learning; pullout capacity; weathered granite
soil; Bayesian regularization

1. Introduction

With the emergence of United Nations Sustainable Goals (UN SDGs), the need for
sustainable, environmentally friendly, and economical structures and products is increas-
ing. This also requires a huge transformation of geotechnical engineering, a field in which
conventional and uneconomical methods are practiced. One such example is the replace-
ment of the conventional retaining walls with geosynthetic reinforced soils (GRSs) in the
construction sector [1–5]. Geosynthetic reinforced soil (GRS) is widely used to increase
the shear strength of the soil and avoid the failure of slopes and GRS soil slopes, also
known as mechanically stabilized earth (MSE) walls. The geosynthetic material helps in
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redistributing the stress on the soil and adds to the stability of the structure [6–22]. The soil
used in the GRS does not need to be of high quality; instead, any locally available cheap
soil is utilized as a filling material. The utilization of local materials for filling is highly
economical and reduces the project costs by up to 60% [23–28]. However, soil reinforcement
interaction studies need to be performed to fully understand the behavior of the GRS. For
this purpose, pullout or direct shear tests are performed. Pullout capacity, also known
as pullout strength or pullout resistance, is a very important phenomenon in GRS, in
which the soil (slope) is strengthened with polymer materials, as it helps them to prevent a
collapse, is measured with the help of a laboratory pullout capacity test [29–47]. There is
already a lot of comprehensive studies on the GRS soil and former researchers performed
scaled modelling and tests as well as numerical analysis on the behavior of granular soils
reinforced with geosynthetics [48–60] and cohesive soils in detail [61–66]. For instance,
Goodhue et al. [48] showed that for foundry sands the drained and compacted friction
angles were the same. They also proposed ranges of interface friction angles. Moraci
et al. [50] proposed a stress transfer model to predict the pullout resistance for extruded
geogrids considering granular soils. Yamamoto et al. [58] proposed a numerical method
to investigate the bearing capacity and failure mechanism of reinforced soils. Bergado
et al. [61] worked on the modelling of reinforced slopes on soft soils. Shi and Wang [65]
found that the interface characteristics are influenced by soil density, vertical load, and
displacement rate. Most of the investigations are performed on sand and clay. However,
weathered granite soil (WGS), which is abundant in Japan, Hong Kong, Singapore, and
Korea, has a different behavior from both sands and clays [67]. In addition, for a safe
design of a GRS, it is important to consider the effect of environmental changes on the GRS.
For example, during heavy rainfall excessive pore water pressures are developed in GRS,
especially in a weathered granite soil, which decreases the pullout capacity of the GRS. The
pullout capacity of a GRS decreases with the increase in moisture content [68–70]. Thus, the
characteristics of WGS must be studied separately to understand its behavior in the GRS.

The well-established laboratory pullout capacity test—American Society for Testing
and Materials (ASTM) standard D 6706-01—is time consuming, hard to perform, expensive,
and labor extensive, as a lot of sensors and data loggers are needed to store the obtained data.
However, the emergence of soft computing techniques based on data-driven modelling
has revolutionized the approach of researchers and engineers in handling such complex
problems. This study is motivated from the application of machine learning architecture
(MLA) in geotechnical engineering [71–76]. Details of MLA can be studied from the work
of former researchers [77,78]. MLA is a self-learning smart database system that can give
reliable predictions. MLA models have been used by several researchers in the past to
predict the geotechnical properties like pile skin friction, bearing capacity, slope stability,
friction angle, elastic modulus of rock mass, and soil permeability, etc. [79–85]. Among
the ML techniques, regression-based methods and classifier-based methods are very well
known. The regression-based models can predict the structural response and reduce
the computing time and cost of experimentation [86–88]. Classifier-based techniques are
used to detect damage or failure of a structure [88–90]. Moreover, the prediction of peak
shear stress along the cohesive soil geosynthetic interface using ANN has been studied
by [91]. However, to the best of the authors’ knowledge, there is currently no research
in the present literature that investigates the pullout capacity of geo-synthetic reinforced
weathered granite soil by using the application of soft computing techniques. Moreover, the
displacement of the geosynthetic in the pullout machine is an important factor to determine
the strength which is not included in the studies that performed similar ML applications,
and most of them have small databases. Thus, the authors have addressed these issues as
well and the details are discussed in the study. So far, MLA is the future of geotechnical
problems. Likewise, it has been proven in this study to predict the pullout capacity in an
easy and economical way.

ANN is a well-known, established, and widely accepted ML technique used for
framing any system’s nonlinear response [92] and the most important phase in the data-
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driven techniques is the creation of the database, which is obtained from actual laboratory
tests performed by the authors, in this case. The ANN model has three parts consisting of
the input layer, hidden layer(s), and the output layer. In this study, the inputs contain the
most significant parameters for a GRS in practice. The pullout capacity of a GRS depends
on various factors including the soil density, soil saturation, the force applied along the
interface of geosynthetic and soil, mechanical properties of soil like the shape, size, grain
distribution, etc., of the soil, as well as the shape and geometry of the geosynthetic.

Thus, summing up the above analysis and research studies, the objective of the paper
is to study the pullout behavior of WGS in GRS both in laboratory and then show the
application of ANN to predict the same as an alternative method to save time, cost, and
hard labor. Thus, the authors first performed tests in the laboratory and then used the
experimental dataset in the ANN. Furthermore, unlike previous similar studies, this study
is carried out with a considerable amount of dataset, and it includes the displacement of
the geosynthetic in the pullout machine, which is an important factor to determine the
strength. A feedforward backpropagation artificial neural network (ANN) model with
different neurons, hidden layers, and algorithms is used to predict the pullout capacity.
A comparison is performed between the results of one hidden layer and two hidden
layers with various nodes and algorithms and the precise and accurate one is selected for
comparing the experimental and MLA-based pullout capacities. Thus, the remainder of
this paper is organized as follows. Section 2 discusses the experimental setup, and Section 3
illustrates the machine learning architecture development. Section 4 presents results and
discussions. Finally, Section 5 concludes this paper.

2. Experimental Setup

The pullout machine used consisted of an open rigid box divided into three parts.
The middle part has an open section for a geosynthetic (geogrid in this case) to be placed
and held by a clamp. The upper box has an inflated air bag to apply the pressure. The
box is 60 cm long, 40 cm wide and 50 cm deep. The conceptual model and the sensors
installed are shown in Figure 1. Weathered granite soil is used to prepare the model
ground. According to the Unified Soil Classification System USCS and American Society
for Testing and Materials (ASTM) 2487-90-1992, the soil was classified as SM. By using a
hand compactor, the soil is compacted to achieve approximately 80% of its unit weight of
17.30 kN/m3, as determined by the standard Proctor test according to ASTM D698-12e2,
which is about 13.88 kN/m3. The model ground is prepared by putting the soil in layers to
ensure a satisfactory level of compaction. The soil and geogrid (wide width test) properties
are shown in Table 1. A polyethylene biaxial geogrid with dimensions of 70 cm in length
and 30 cm in width is used for all tests. The aperture size of the geogrid is 5 cm by 5 cm.
With the help of tighteners, nuts, and bolts, the geogrid is attached to the clamp of the
pullout machine. A linear variable differential transducer (LVDT) is also built in with
the clamp. The experiments are heavily instrumented to monitor the test and analyze
the data to derive conclusions. The displacement of the geogrid is monitored with three
TLH-0300 potentiometric transducers attached to the extremes and middle of the geogrid in
a diagonal pattern. Pore pressure and earth pressure sensors were used about 10 cm away
from the top and bottom. In addition, 5TE sensors were installed at different positions
to check the temperature and the saturation of the model soil. The pressure cell shown
is the figure measures the applied vertical load. All data measured from the sensors was
recorded with the help of a tabular data logger TDS-303.
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Figure 1. Actual and conceptual model of the test setup of a pullout machine and sensors installed.
Vertical stresses of around 25 kPa, 60 kPa, and 100 kPa are applied with a degree of saturation of
about 90%, 80%, 70%, and 45%. The controller of the machine has the capability to regulate the
loading rate which is set to 1.0 mm/min (ASTM standard D: 5321). (a) The laboratory experimental
setup. (b) Sensors installed inside and outside of the pullout box.

Table 1. Geotechnical properties of soil and geogrid.

Parameters Values

Specific gravity 2.65
D10 0.26 mm

Coefficient of uniformity Cu 6.3
Coefficient of curvature Cu 1.25

Soil classification USCS SM
Field max. dry unit weight 17.30 kN/m3

Data OMC 15.5%
Permeability 9.65 × 10−5 m/s
Cohesion c′ 3 kPa

Internal friction angle φ′ 30◦

Georgrid dimensions 70 cm × 30 cm
Individual grid size 5 cm × 5 cm

Ultimate tensile load Tult 21 kN/m
Ultimate tensile strain ε 3.5%

3. Proposed Methodology—The Machine Learning Model
3.1. Making the Databaes for ANN

In this section, the database used for the ANN is discussed. The database consists of
61,775 data points obtained from the experiment, which is normalized for the output as
shown in Figure 2; 85% of data is used for training and 15% is used for testing. Normaliza-
tion of the input and output values has been done to cater for the different measurement
units of the variables. The normalized values ranged between 0 and 1. The ANN model
is performed in the MATLAB R2020a environment with a neural network toolbox. The
statistical properties of the input and output data are shown in Table 2. Normal stress
(σ), unit weight (γ), saturation (S), and displacement (δ) are taken as inputs. The output
consisted of the pullout capacity (Pr). Various researchers have already used similar input
and output variables [93–96]. Figure 3 shows the architecture of the ANN.
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was suggested by previous researchers [97,98], but in this case, the performance of both 

Figure 2. Histogram of normalized pullout resistance values used in the MLA.

Table 2. The statistical properties of the data.

Parameters
Standard Deviation Mean Max Min Correlation

(Inputs vs. Output Pr)

Training Test Training Test Training Test Training Test Training Test

σ (kPa) 32.31 32.54 58.25 58.35 100 100 20 20 0.67 0.66
S (%) 16.33 16.48 71.89 71.81 90 90 45 45 −0.18 −0.17
δ (mm) 18.60 18.63 31.48 31.21 66.38 66.38 0 0 0.41 0.41

γ (kN/m3) 0.90 0.91 10.74 10.75 13.37 13.37 10.30 10.30 −0.33 −0.32
Pr (kN/m) 39.37 39.33 59.25 58.85 147.65 147.65 0 0 1 1
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3.2. Evaluating the Performance of ANN Models

A three-layered feedforward backpropagation neural network with one hidden layer
was suggested by previous researchers [97,98], but in this case, the performance of both
one hidden layer and two hidden layers is checked. The number of neurons is determined
by using a heuristic model as suggested by [98]. The heuristic model is shown in Table 3,
in which Ni is the number of inputs and No is the number of outputs. The model shows
that the hidden neurons may vary from 1 to 12. Figure 4a,b shows the relationship between
the numbers of neurons against mean square error (MSE) during the training with one
and two hidden layers with the three algorithms, namely Levenberg–Marquardt back-
propagation (TrainLM), Bayesian regularization backpropagation (TrainBR), and scaled
conjugate gradient backpropagation (TrainSCG). It is observed from the figure that TrainBR
gives the optimum architecture of the ANN model based on the minimum value of MSE
of the training dataset. Further comparison of the hidden layers in Figure 5 shows that
two hidden layers with 12 nodes gives better results with MSE value of 3.02 × 10−5 and
maximum coefficient of regression (R) value of 0.999 as compared to one hidden layer
architecture. Hence, the database is trained with different algorithms, number of neurons,
and number of layers and functions. The Bayesian regularization learning algorithm with
two hidden layers and 12 neurons each showed the minimum MSE and maximum R for
the testing and training sets, which is the best result obtained, as shown in Table 4. Based
on the Bayesian statistical approach [99], the Bayesian backpropagation was introduced
by [100,101]. The Bayesian regularization learning algorithm constraints the number of
parameters used in the network with a regularized that penalizes the weights to make it
more general. In other words, a penalty unit is applied to the sum squared error (SSE)
and provides a distributed probability over the predicted value, instead of giving just one
optimum value. Thus, it reduces errors generated by noisy data.

Table 3. The heuristic function to determine number of neurons (functions adopted from [39]).

Serial No. Heuristic Function Number of Neurons

1 ≤ 2× Ni + 1 9
2 3× Ni 12
3 2+(No×Ni)+(0.5×No)×(N2

o +Ni)−3
Ni+No

1

4 (2× Ni)÷ 3 2.6 ≈ 3
5 2× Ni 8
6 (Ni + No)÷ 2 2.5 ≈ 3
7

√
(Ni + No) 2.24 ≈ 3Sensors 2022, 22, x FOR PEER REVIEW 7 of 17 
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Figure 5. Accuracy test in terms of MSE of one hidden layer and two hidden layers MLA.

Table 4. The performance of various MLA with different parameters.

Algorithm Hidden
Layers MSE R

9 Neurons 12 Neurons 9 Neurons 12 Neurons

Train LM
1 0.000360343 0.000235 0.997 0.998
2 0.0000852 0.000159 0.999 0.998

Train BR
1 0.000265397 0.000211 0.998 0.998
2 0.0000826 0.0000302 0.999 0.999

Train SCG
1 0.000408998 0.000451 0.996 0.996
2 0.00027 0.0002 0.997 0.998

The training and test R values for both one hidden layer (1HL) and two hidden layers
(2HL) are shown in Figures 6 and 7. It should also be noted that the predicted pullout
capacity values obtained from MLA needs to be validated with the experimental values.
For this purpose, a 99% prediction interval was plotted. The 99% prediction interval is
defined as an interval within which 99% of Y values for a certain X value will lie near the
linear regression line. The upper and lower bound prediction interval values used in this
study are obtained by using an established equation [102]. Figures 8 and 9 are the plots for
the 99% prediction interval for both one hidden layer and two hidden layer MLAs after
demoralizing and showing the actual values to be compared with the experiment. Again, it
is evident that the two hidden-layer ANN predicts better than one hidden layer as all data
lie within the 99% interval band. This also validates the proposed MLA model. It is clear
that MLA model with TrainBR learning algorithm with two hidden layers and 12 nodes
gives the most accurate predictions that fall within the 99% prediction interval.
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3.3. Sensitivity Analysis

Sensitivity analysis (SA) is a major concern for selecting the important input variables.
Different methods have been used to select the significant input variables. However,
methods such as Garson’s algorithm and the connection weight approach have been
successfully used by some researchers for assessing the variable contribution in geotechnical
engineering problems [79,82]. The results of the SA are tabulated in Table 5. The rankings
show that the displacement has the most influence on the pullout capacity followed by
normal stress, unit weight, and saturation according to Garson’s modified equation.

Ij =

∑m=Nh
m=1

(( ∣∣∣wih
jm

∣∣∣
∑k=Ni

k=1 |wih
km|

)
×
∣∣∣who

mn

∣∣∣)

∑k=Ni
k=1

{
∑m=Nh

m=1

(
|wih

km|
∑k=Ni

k=1 |wih
km|

)
×
∣∣who

mn
∣∣} (1)

Here, Ij is the relative importance of the variable of the jth input on the output variable,
Ni and Nh are the input and hidden number of nodes, respectively, and w is connection
weight, the superscripts i, h, and o show the input, hidden, and output layers, respectively,
and the subscripts k, m, and n refer to input, hidden, and output nodes, respectively [103].

Table 5. Sensitivity analysis of input parameters using Garson’s algorithm.

Serial No. Input Parameters Ranking

1 N Stress (kPa) 2
2 Saturation (%) 4
3 Deplacement (mm) 1
4 Soil Unit Weight (kN/m3) 3

4. Results and Discussion

In this section, the results on the application of MLA and the comparison of its
predicted values with those of the experimental (field) results are discussed and analyzed.
The plots for pullout capacity of the geogrid versus the displacement for 20, 60, and
100 kPa normal stresses and displacements with different saturation levels are shown
in Figures 10–12. The results of ANN are perfectly matched to the experimental values.
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It is also evident from these figures that the pullout capacity increases to an ultimate
point and then starts decreasing. Comparing these figures, it is seen that the pullout has
increased with the increase in the normal strength. It is due to the fact that the increased
loading increases the friction of the soil particles by interlocking and compacting them.
On the other hand, it decreases with the increase in moisture content or saturation, which
is due to the decrease in the interparticle friction between the soil and the geogrid and
the grip between them is weakened. The pullout capacity for 20 kPa, 60 kPa, and 100 kPa
for 45% saturation is approximately 48 kN/m, 120 kN/m, and 160 kN/m, respectively,
whereas for 90% saturation it is 27 kN/m, 65 kN/m, and 122 kN/m, respectively, as seen
in Figure 13, which compares the maximum pullout capacity and the normal stresses for
different saturations. In the end, the interface friction angle (IFA) for different saturations
for both the field data and the MLA data is calculated from the slope of maximum pullout
capacity vs. normal stress graph. IFA is an indicator of the strength between the soil and the
geosynthetic material. It also backs the previous results by showing an increased IFA for
the lowest saturation and highest normal stress value in case of both experiment and MLA,
as can be seen in Figure 14. This means that with low moisture content the density of soil
is higher, and the particles cannot slip easily because of more contact. The actual pullout
experiment with a pullout machine takes at least 2 h for testing and adding preparation
and post cleaning time makes it about 6 h based on the capacity of machine. However, by
using ANN, a lot of time, money, and hard labor is saved. By using ANN, on average, a
single experiment on the dataset can be computed in less than a minute, thus saving a lot
of time. Thus, this study shows the use of MLA as a replacement of heavily instrumented
and costly experiments.
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Figure 14. An example showing the calculation of IFA at 45% degree of saturation of the soil. Field
vs. ANN results of IFA at different degree of saturation of the soil.

The ANN relating the input to the output is expressed in mathematical form as
mentioned by

Yo = fsig

{
bo +

h

∑
t=1

[
wt × fsig

(
bht +

m

∑
i=1

witXi

)]}
(2)

where Yo is the normalized output value, b0 is the bias at the output layer, wt is the
connection weight between tth node of hidden layer and the single output node, bht is the
bias at the tth node of hidden layer, h is the number of nodes in the hidden layer, wit is the
connection weight between ith input variable and tth node of hidden layer, and Xi is the
normalized input variable i and fsig is the sigmoid transfer function.

5. Conclusions

Conventional retaining walls are being replaced by GRSs, for economical and sus-
tainable benefits. To ensure safety and sustainability, prior tests of the pullout capacity
is essential. Conventionally, these tests are carried out in laboratories with heavy instru-
ments that require a great deal of time for experimentation, entail huge costs, and require
heavy labor. To overcome these challenges, this study stresses the application of machine
learning in the field of engineering generally and geotechnical engineering specifically by
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showing the capability of MLA to predict the properties of geosynthetic reinforced soil
without performing costly pullout experiments that contain a lot of sensors. Thus, this
study compares the pullout capacity results of GRS from both MLA and experiment to
validate the proposed idea.

The pullout capacity and interface friction angle are accurately predicted by the
proposed MLA. As far as the MLA is concerned, out of three learning algorithms, the
Bayesian regularization backpropagation learning algorithm with two hidden layers and
12 neurons each is used for its better generalization to the training and testing data and
lowest statistical error as discussed before. This study concludes that normal stress plays
an important role in the behavior of GRS in case of pullout force. In general, the pullout
resistance increases with increasing the normal stress. It is seen that the value of relative soil-
reinforcement displacement corresponding to the total mobilization of friction increases and
the IFA decreases, which means the GRS strength is lessened by the increase in moisture.

As far as MLA is concerned, the ANN model with Bayesian regularization back-
propagation training algorithm outperforms other algorithms (TrainLM and TrainSCG) in
predicting the pullout capacity of geogrids. Based on sensitivity analysis, namely Garson’s
algorithm, ranked displacement is the most important parameter influencing pullout ca-
pacity prediction followed by normal stress, density, and saturation. The MLA showed the
classical behavior of the load displacement relationship in which the displacement and load
are linear up to a certain point and then become nonlinear. The results of MLA also show
that the pullout capacity is increased as the normal stress (vertical pressure) is increased,
and the trend is linear. The MLA results also confirm that low moisture content increased
the interface friction angle between the soil and geogrid which strengthens the pullout
capacity and interaction between these two materials. Thus, GRS performs better. By using
ANN, a lot of time, money, and hard labor is saved as a laboratory pullout experiment
can take 2 to 6 h. The present study can predict pullout capacity of the GRS subjected to
different degree of saturation, normal stress, and unit weight of soil like a real laboratory
pullout test due to applied tensile force for any displacement value.
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