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Abstract: Cyber-physical systems (CPSs) that interact with each other to achieve common goals
are known as collaborative CPSs. Collaborative CPSs can achieve complex goals that individual
CPSs cannot achieve on their own. One of the examples of collaborative CPSs is the vehicular
cyber-physical systems (VCPSs), which integrate computing and physical resources to interact with
each other to improve traffic safety, situational awareness, and efficiency. The perception system of
individual VCPS has limitations on its coverage and detection accuracy. For example, the autonomous
vehicle’s sensor cannot detect occluded objects and obstacles beyond its field of view. The VCPS can
combine its own data with other collaborative VCPSs to enhance perception, situational awareness,
accuracy, and traffic safety. This paper proposes a collaborative perception system to detect occluded
objects through the camera sensor’s image fusion and stitching technique. The proposed collaborative
perception system combines the perception of surrounding autonomous driving systems (ADSs)
that extends the detection range beyond the field of view. We also applied logistic chaos map-based
encryption in our collaborative perception system in order to avoid the phantom information shared
by malicious vehicles and improve safety in collaboration. It can provide the real-time perception of
occluded objects, enabling safer control of ADSs. The proposed collaborative perception can detect
occluded objects and obstacles beyond the field of view that individual VCPS perception systems
cannot detect, improving the safety of ADSs. We investigated the effectiveness of collaborative
perception and its contribution toward extended situational awareness on the road in the simulation
environment. Our simulation results showed that the average detection rate of proposed perception
systems was 45.4% more than the perception system of an individual ADS. The safety analysis
showed that the response time was increased up to 1 s, and the average safety distance was increased
to 1.2 m when the ADSs were using collaborative perception compared to those scenarios in which
the ADSs were not using collaborative perception.

Keywords: intelligent cyber-physical systems; autonomous driving systems; collaborative perception;
safety; logistic chaos map-based encryption

1. Introduction

Cyber-physical systems (CPSs) integrate sensing, computational resources, control
mechanisms, and networking resources into the physical systems, connecting them to
interact with each other. The advancements in CPSs have the potential to make the sys-
tems more responsive, precise, efficient, and reliable. CPSs have brought a revolution
in intelligent systems, e.g., from autonomous driving systems to smart grids and health
care to smart manufacturing systems. The collaboration of CPSs provides functionalities
beyond the capabilities of individual systems. Intelligent vehicular cyber-physical systems
(VCPSs) can be considered as the typical example of collaborative CPSs that integrate
the vehicular cyber world with the vehicular physical world. Integrating computing and
physical resources in VCPSs enables autonomous driving systems (ADSs) to interact with
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each other and their surrounding infrastructure (i.e., roadside units) to improve traffic
safety, robustness, efficiency, and reliability.

ADSs in VCPSs have the potential to process traffic information locally by communi-
cating with other ADSs through collaboration. The VCPSs provide many benefits in terms
of perceptual robustness that enables the reduction in traffic congestion and increases traffic
safety. VCPSs mostly rely upon onboard sensors such as cameras and LiDAR to perceive
the surrounding environment. Despite significant advancements in sensor technology,
the onboard sensors’ capability is bounded by their range and field of view. Additionally,
occluded and out-of-sight objects such as pedestrians and pets, as well as other moving
objects, impose challenges on perception systems. Lack of situational awareness regard-
ing occluded objects or objects beyond the range of sensors can cause catastrophic safety
concerns for ADSs.

The perception of individual ADSs has its limitations [1,2]. For example, the capability
of perceiving surrounding objects by the onboard sensors can be limited when perceiving
occluded objects. Therefore, the collaboration among ADSs can increase their capabilities to
perceive surrounding objects by exchanging information through vehicular communication,
enabling the ADSs to detect objects that were not detected by their own onboard sensors [3].
In collaborative perception, the perception ranges of ADSs can be extended beyond the
line-of-sight and field-of-view; hence by eliminating the blind spots, occluded objects can
be perceived.

Different sensing fusion techniques are used to develop collaborative perception
systems in VCPSs. The commonly known fusion techniques are the homogeneous sensor
data fusion of multiple ADSs, heterogeneous sensors’ fusion of individual ADSs, and sensor
data fusion of heterogenous sensors of multiple vehicles [4,5]. However, our approach
focuses on the homogenous sensor (i.e., camera sensor data) data fusion technique of
multiple ADSs.

Camera image stitching is a widely used technique in real-life applications such as
ADSs, virtual reality, aerospace, and medical imaging [6,7]. It is used to enhance the field
of view by combining multiple overlapping local fields of view. The advance in VCPSs
has enabled the ADSs to share their perception with other ADSs through vehicle to vehicle
(V2V) communication. Therefore, in the ADSs domain, image stitching can combine the
individual perception of ADSs to increase the sensor’s field of view. Generally, image
stitching techniques can be divided into two types: pixel-based stitching and feature-based
stitching. The pixel-based stitching method compares the intensity of each pixel in the
image and reduces the difference between the pixels to perform stitching [8]. However,
the feature-based stitching [9] technique first extracts the features (i.e., points, corners,
or shapes) from the images, and then the correspondence between the extracted features
is established.

1.1. Motivation

Just as with other components of ADSs, sensors are susceptible to failure and have
limitations on frequency, resolution, and field-of-view [10]. Therefore, relying on a single
input data to make control decisions for ADSs may create safety issues. The perception
system of individual ADS gets worse while detecting occluded objects. Figure 1 shows
examples of occlusion in real traffic scenarios. The future trajectory of ADS_1 is shown
in the green arrow, and the future trajectory of ADS_2 is shown in the blue arrow. From
Figure 1a, it can be observed that the individual perception system of each vehicle has its
own limitation on sensing range and field-of-view. For example, in Figure 1a, the broken
vehicle is occluded to ADS_1 at T-junction. Hence, the ADS_1 perception system cannot
detect the broken vehicle. This is the same as how the black vehicle (i.e., which is not in the
sensing range of ADS_2) is occluded to ADS_2. The purpose of detecting beyond the vision
or occluded object is to enhance the situational awareness of ADSs in VCPSs, improving
traffic safety by better planning their future trajectory.
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Figure 1. Occlusion in a real traffic scenario. (a) represents occlusion on T-junction, and (b) represents
a hazardous scenario caused by occlusion.

Earlier detection of the objects through collaboration can help the ADS to make better
decisions for the future trajectory. Figure 1a shows that ADS_2 can detect the broken vehicle
that is occluded to ADS_1. In collaborative perception, for example, the ADS_2 shares its
perception with ADS_1 so that the ADS_1 can detect the broken vehicle in advance and
perform better planning to avoid traffic congestion and safety-related issues.

Similarly, consider a traffic scenario where the traffic light was green for pedestrians,
as shown in Figure 1b. However, a pedestrian was crossing the road, and in the middle of
the road, the traffic light turned green for ADS_2 and the bus. Due to occlusion by the bus,
the ADS_2 could not detect the pedestrian behind the bus, resulting in the possibility of
ADS_2 hitting the pedestrian despite applying the brake. However, this safety-related issue
could be solved through collaborative perception, where both ADSs share their perception.
Figure 1b shows that the ADS_1 can detect the pedestrian. Therefore, sharing the perception
of ADS_1 to ADS_2 can extend the sensing range, improving traffic safety.

However, a malicious vehicle may send phantom information in collaborative per-
ception, and this may cause threats to the safety of participating ADSs. This issue can be
solved by encrypting each image frame shared by ADSs so that phantom information can
be avoided.

Various object detection and segmentation models have been proposed in the recent
literature [11–14]. Modern object detection techniques based on camera images [15,16] and
LiDAR data [17,18] use different deep learning algorithms, such as convolutional neural
networks (CNN) [19], to process data and region proposal networks (RPN) to detect the
object. Many research studies have been reported on collaborative perception focusing
on improving the individual ADS’ precision [20–22]. Previous studies mainly focused on
research issues in collaborative perception, such as improving the precision of individual
ADSs, the impact of data exchange on the network, the format of data to be exchanged,
data fusion at the edge, and fog computing. However, the safety aspects of collaborative
perception have not been fully explored. Both camera and LiDAR sensor data are used
to detect objects in ADSs. Although the LiDAR sensor has better precision in 3D space it
is computationally very expensive compared to camera sensors’ data, because a typical
LiDAR frame contains up to 100,000 LiDAR points, and the size of each frame is almost
4 MB [10]. Exchanging such a massive amount of data would be computationally very
expensive. In contrast to the LiDAR frame, the compressed camera sensor data size is
very low. Therefore, we opted to use camera sensor data for our collaborative perception
systems and investigated the safety aspects of collaborative perception.

1.2. Main Contributions

This paper proposes a collaborative perception system that enables ADSs to detect
occluded objects and objects beyond the field of view. It also enhances the object detec-
tion rate. Our proposed approach uses the camera sensors’ image fusion and stitching
techniques. The camera sensor data from multiple ADSs are fused to make a collabora-
tive perception system that realizes end-to-end object detection to improve situational
awareness. The compression technique used in our approach enables the removal of the
computational burden from the network. It only takes a few milliseconds (i.e., 301 ms) to
transmit data from one ADS to another, which realizes real-time object detection feasible
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in both in-vehicle and fog computing environments. We believe that our computationally
less-expensive collaborative perception system can be deployed on in-vehicle as well as fog
computing systems. Our paper makes the following contributions:

Technique:

• A collaborative perception system enables VCPSs to detect occluded objects based
on the camera sensor image fusion and stitching technique, improving the safety
of VCPSs.

• A real-time collaborative object detection system is proposed using the faster region-
based convolutional neural network (Faster R-CNN) to detect and localize objects in
collaborative perception.

• A logistic chaos map-based real-time end-to-end encryption technique to encrypt
image frames in collaborative perception in order to avoid phantom information
shared by malicious vehicles.

Dataset:

• We generated a dataset containing 1895 labeled simulation-based images that can be
used for object detection in real-time in the CARLA simulator [23]. It can also be used
to evaluate the performance of the real-time object detection algorithm in collaborative
perception systems. The dataset contains four classes: walker, passenger_car, truck,
motorcycle, and cycle.

Evaluation:

• Empirical analysis shows that the collaborative perception in our proposed approach
enhanced the situational awareness of ADSs and outperformed the individual percep-
tion system of ADSs in terms of detecting occluded objects and enhancing safety.

The rest of the paper is organized as follows: Section 2 presents the related work,
while the system model and the proposed approach are presented in Section 3. Section 4
describes the experimental setup, and performance evaluation is presented in Section 5.
Finally, Section 6 concludes this paper.

2. Related Work

SIFT-based Feature Extraction and Image Fusion: the SIFT algorithm [24] is a widely used
computer vision algorithm to detect and describe features in images. The SIFT algorithm
first searches for the feature points in spatial scale-space and then extracts the scales,
rotation invariants, and position of the feature points. The next step is to combine the
matching points, eliminate the mismatched features, and fuse both images. The work
by [24] exploits a dense SIFT descriptor for ghost-free image fusion. The authors used the
SIFT algorithm to extract contrast information from the source image for fusion. In another
study [25], SIFT was used to extract features and feature matching for the image fusion of
different vehicles. The authors proposed a co-operative visual augmentation algorithm
based on inter-vehicle image fusion for autonomous driving systems. It was used for
feature selection and description. Another study used the SIFT algorithm to stitch the
unmanned aerial vehicle (UAV) low-altitude remote sensing images [26]. In the study of
authors [27], the SIFT algorithm was used as a feature extractor for image stitching. The
image stitching in this work was applied to enhance the UAV navigation in GNSS-denied
regions. The work by the authors [28] used the SIFT algorithm to stitch video image
frames in real time. Both studies used the SIFT algorithm as a feature extractor and feature
matching algorithms to stitch video image frames. The studies of the authors in [7,29]
exploited the application of the SIFT algorithm in the autonomous driving domain for
stitching the image frames from multiple autonomous vehicles. They proposed multi-scene
image stitching methods based on SIFT.

Collaborative Perception Systems: collaborative perception based on data fusion can
be achieved using three different methods: high-level, low-level, and feature-level. Data
fusion techniques are actively used in object detection and tracking to improve accuracy
and precision. The authors used data fusion for better detection and tracking of the object
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in autonomous driving systems [30]. The research work by [20] exploits the high-level
fusion methods on multi-sensors for 3D object detection. The proposed approach was
used to detect and track dynamic objects through the fusion of multiple sensors. The
authors in [31] used a high-level sensor data fusion technique for co-operative perception
systems. They proposed an architecture named Car2X-based perception based on high-level
sensor data fusion. The research work by [10] proposed a point cloud-based co-operative
perception framework for connected vehicles to achieve high precision in object detection.
The proposed framework uses the feature-level fusion technique to achieve the co-operative
perception of multiple vehicles. The proposed framework achieves faster edge computing
with low communication delay and computing cost, and it only requires 71 ms for feature
selection. In another study, the same authors proposed a co-operative perception called
Cooper [32], based on the raw LiDAR data fusion from multiple vehicles, to improve object
detection precision. The proposed method was based on a low-level data fusion technique
that significantly improved detection performance.

To the best of our knowledge, no existing works have been reported to implement
the concept of the homogeneous sensor (i.e., camera sensor) data fusion of multiple ADSs
for collaborative perception. Our contribution toward collaborative perception differs
from the existing approach [33] regarding sensor type, positions, and data used for fusion
methods. The authors used LiDAR point cloud data for fusion. Their sensor placement
differs from our approach as the sensors are fixed to a specific location, such as round-
abouts and T-junctions. The objects beyond the fixed sensors’ range in specific locations
are still undetected. For example, their approach used fixed sensor sets for T-junction
and roundabouts scenarios. However, those objects beyond these driving scenarios are
still undetected.

In contrast to the aforementioned approach, we use the camera sensors’ image frames
mounted on the ADSs irrespective of fixed locations, eliminating blind spots anywhere
in the driving scenarios. We also compare the fusion scheme with F-Cooper and Cooper
and [33] in terms of data used for fusion. All the above-mentioned approaches used LiDAR
points to clouds for fusion. On the other hand, we use the camera sensor’s image frames for
collaborative perception. We also investigated the safety aspects of collaborative perception.

3. System Model and Proposed Approach
3.1. System Model

The proposed collaborative perception system considers homogenous sensors, i.e.,
camera image fusion and stitching of multiple ADSs in VCPSs, as shown in Figure 2.
Each ADS can sense through the camera sensor and process the camera images at its local
processor. The camera sensor’s images are shared with nearby ADSs through VCPS-enabled
V2V communication in the collaborative perception system. Our system assumes that each
camera sensor mounted on ADSs was well-calibrated and captured images are compressed
before being transferred. Note that the collaborative perception system is not responsible
for controlling ADSs directly. The ADSs will use the collaborative perception system’s
information as well as its own local perception system to make control decisions. The role of
the collaborative perception system is to assist the ADSs in making safer control decisions
to avoid safety-threatening scenarios such as potential hazards caused by occluded objects.
The broad aspects of network delay, communication loss, and security protocol for cyber-
attack are beyond the scope of this paper. However, the end-to-end encryption technique is
used to encrypt the image frames while sharing each image frame from one ADS to another.

In our system, the camera sensors capture the surrounding environment, and the local
perception system of ADSs understands the scenes, and detects and localizes the objects.
However, in the case of occlusion or objects beyond the field of view, the local perception
cannot detect and localize those objects. Using image fusion and stitching techniques, our
collaborative perception system enables the participating ADSs in collaborative perception
to increase their situational awareness by detecting and localizing the objects beyond their
field of view.
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3.2. Image Fusion and Stitching-Based Collaborative Perception System

Video image stitching has been gaining popularity due to its application in diverse do-
mains, such as virtual reality, unmanned aerial vehicle (UAVs) surveillance, and ADSs [34,35].
Just as with image stitching, in the video stitching algorithm, the individual frames of the
video stream are stitched in real-time. Different algorithms are used in the video stitching
method to find the feature points in each image frame. After feature points are detected,
the random sample consensus (RANSAC) algorithm is used to generate the homograph
matrices for each image frame in the spatial and temporal domains. The linear blending
is applied to the overlapping region of the video image frame for stitching and to get the
panoramic view.

Many feature extractors and keypoint detectors have been proposed, such as oriented
fast rotated brief (ORB) [9], speeded up robust features (SURF) [36], and binary robust
invariant scalable keypoint (BRISK) [37]. However, compared to these stitching and feature
extraction techniques, scale invariant feature transform (SIFT) [38] is more robust for
image transition, scale, illumination, and angle changes, more efficient when processing
them, and easier to implement. Due to these characteristics, SIFT is the most used feature
extractor and image fusion algorithm. In order to extract the features for image fusion
and stitch the image frames, we used the SIFT algorithm. This algorithm is used as a local
keypoint detector and descriptor. The SIFT algorithm extracts the features of objects in
the scene based on different scales, rotations, the geometric transformation of the object,
and illumination. It has good robustness to angle change and noise affine transformation,
which is crucial in the ADSs domain.

The SIFT algorithm first describes the features of the image frame by finding fea-
ture points and related descriptors in an image. The next step is to extract the feature
points of the input image and determine the positions and orientation of the feature points.
The feature vector of the SIFT algorithm uses the nearest neighbor Euclidean (NNE) dis-
tance between the feature points. Based on the NNE distance, the feature points can be
aligned. After calculating the distance between the feature points, the images are fused.
However, the SIFT algorithm detects many feature points; these features are sometimes
mismatched. Therefore, the RANSAC algorithm [39] is applied to remove unnecessary
and mismatched feature points. The RANSAC algorithm also removes the misaligned
feature points, produces a seamless panorama of the stitched image, and removes the
ghosting artifact. The primary purpose of applying image blending is to produce the
fused image where no transition can be observed between the original images and the
fused image (i.e., stitched image). Finally, Faster R-CNN is applied to detect and localize
the object in collaborative perception. In the following subsections, we explain each step
involved in SIFT algorithm-based collaborative perception systems, including SIFT-based
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feature extraction, feature mapping-based image fusion, RANSAC application to remove
ghosting artifacts, mismatched features and blending, and finally, the Faster R-CNN-based
collaborative object detection.

Consider that we have two ADSs with the same configuration. The camera image
stream of ADS_1 and ADS_2 is denoted by I1 and I2, respectively, and both image streams
are acquired by camera sensors over the same geographical location but from different
angles and positions. Let Mk

(
PI1,i, PI2,j

)
be a matched keypoint between the keypoint

PI1,j
(

xI1,j, yI1,j
)

of image I1 and the keypoints PI2,i (xI2,i, xI2,i) of image I2. This research
aims to develop a collaborative perception based on image fusion and stitching techniques.
Our proposed approach can be intuitively deployed to multiple ADSs. However, the
computational and communicational costs may slightly increase.

3.2.1. SIFT-Based Feature Extraction

In the SIFT algorithm, the first step is to identify a set of matched keypoints between
the image streams I1 and I2 to be used for image fusion. Using the gamma correction,
the contrast of the images I1 and I2 are increased to detect the keypoints correctly. As the
SIFT-based image fusion and stitching techniques require keypoints in the form of blobs,
each keypoint PI1,i and PI2,j are then extracted in blob form from each image pair. The
feature vectors of keypoints PI1,i and PI2,j are assigned, which are based on neighboring
pixels that determine the descriptors DI1,i and DI2,j, respectively.

The SIFT algorithm uses the difference of Gaussian (DoG) scale-space to extract the
features. In the scale-space function, the original image with the Gaussian function is
convolved to construct the multiple levels of Gaussian pyramids; the scale-space keypoints
are detected in the constructed Gaussian pyramids. Once the DoG of the image streams
I1 and I2 are obtained, the keypoints are identified by comparing each pixel in the DoG
images with its neighboring regions. Let us consider that we have an image stream Img
from an ADS. During the feature extraction through SIFT algorithms, it first starts searching
for stable feature points from the image stream Img across all potential scales in the scale
space. Consider that we have an image frame Img(x, y) of ADS with the pixel coordinate
(x, y). The scale-space for the input image Img(x, y) can be defined as follows:

L(x, y, σ) = G(x, y, σ)× Img(x, y) (1)

where L(x, y, σ) is the Gaussian transformation, σ is the scale-space factor, and Img is
the input image stream from the ADS camera, while G(x, y, σ) is driven by Gaussian
distribution, which is given as follows:

G(x, y, σ) =
1

2πσ2 e−(x2+y2)/(2σ2) (2)

To detect the position of keypoint features of the input image Img in the scale space,
the establishment of the DoG pyramid is crucial in SIFT. The DoG can be established by
taking the difference in the nearby scales as follows:

D(x, y, σ) = (G(x, y, kσ)− G(x, y, σ))× Img(x, y) (3)

From Equation (1),

L(x, y, σ) = G(x, y, σ)× Img(x, y)

Therefore,
D(x, y, σ) = L(x, y, kσ)− L(x, y, σ) (4)

where the constant k is the proportional factor between two adjacent scales.
Each pixel of the image frame from the ADSs DoG images was compared with its

neighbors at the current scale and adjacent scales to detect the key features invariant to the
scale and orientation.
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The candidate feature points extracted from the camera images of ADSs have to be
refined to determine the location and the scale. This allows some feature points to be
discarded that have low contrast and are poorly localized. Let us consider that X̂ be
the candidate feature point, which is selected to discard the feature points that have low
contrast and are poorly localized in the ADSs camera images. The Taylor expansion of the
DoG function for D(x, y, σ) produces Equation (5) which is used to refine feature points for
best fit to location and scale.

D
(
X̂
)
= D + 1/2

(
∂DT/∂ X

)
X̂ (5)

where X̂ denotes the offset from extremum. All those extrema with a value of D
(
X̂
)

less
than the threshold are discarded and rejected for further image fusion.

3.2.2. Feature Matching, Image Fusion, and Blending

In the feature extraction phase, the SIFT algorithm detects the key feature points and
assigns the location, scales, and orientation. Now, it is important to describe those features
in a highly distinctive way but invariant to possible illumination and viewpoints in the
highly dynamic driving environment. The keypoint descriptor is a unique identifier for
specific keypoints. The SIFT algorithm uses the gradient magnitude and directions of the
keypoints as a keypoint descriptor. The image fusion and stitching combine the two image
frames into a single image frame. In our domain, the ADSs camera sensors’ image frames
are shared with other ADSs within close vicinity to detect the occluded objects. Image
fusion and stitching consist of two steps: feature matching and image blending.

In the feature-matching process, the descriptors of the keypoints in the image frames
from multiple ADSs are compared. The criteria for matching the features are that if the
difference between the descriptors of two keypoints (i.e., from different ADSs camera image
frames) is below the thresholds, they turn into keypoint pairs. These keypoint pairs with a
negligible difference between their keypoint descriptor are taken as reference keypoints,
which are then stitched into one frame in the image blending process. The multiple-image
frames from different ADSs are blended into a single image frame in the image blending.
The pixel values in the overlapping region are equal to the average weighted values of the
blended frames. Consider that we have two ADSs image frames I1 and I2, respectively. The
pixel values in the overlapping region can be obtained using Equation (6).

Pval =
DI1

DI1 + DI2
PI1 +

DI1

DI1 + DI2
PI2 (6)

where DI1 and DI2 are the distance of the overlapped pixels from the edge of the image I1
of ADS_1 and image frame I2 of the ADS_2, respectively. While PI1 and PI2 are the pixel
values of the image frame I1 and I2 in the overlapping region. Pval is the pixel value of the
overlapped region after image frames are fused and stitched.

As SIFT detects and generates much more abundant feature points, those features can
sometimes be mismatched. These inaccurately matched features can affect the geometric
transformation of the fused image. The RANSAC algorithm removes the mismatched
feature points to improve the accuracy and quality of image frame stitching. The RANSAC
algorithm estimates the model’s parameters from observed data containing outliers through
an iterative approach and finds optimal fitting by removing outliers.

3.2.3. Collaborative Perception and Object Detection

Object detection models have achieved tremendous accuracy and precision in recent
years. Despite achieving high accuracy and precision, these models still have limitations in
detecting occluded objects and objects beyond the sensors’ field of view. Various solutions
have been proposed to overcome these limitations, such as homogenous sensor data fusion,
heterogeneous sensor data fusion, and co-operative perception.
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The image fusion, stitching algorithm, and real-time object detection model considered
in our approach require camera sensor data. Each camera sensor on ADSs generates the
image frames, which are then processed through the SIFT algorithm to extract features
for feature-based fusion. The image fusion allows the aggregation of information about
the object in the detection zone through the collaboration of spatially diverse observation,
which detects the occluded object and objects having low visibility to the sensor. The
image fusion phase begins with processing each sensor’s image on the local processor of
ADSs. It first extracts the features from the image and then compresses it to transmit to
the nearby by ADSs in VCPSs for collaborative perception. When each image frame is
transmitted to other ADSs, it is concatenated with the image frames of receiving ADSs
into one image frame. The concatenated image frames are then fed to the object detection
model based on Faster R-CNN to detect, classify, and localize the object in the scene. The
collaborative object detection system returns a list of the detected objects with bounding
boxes. Figure 3 shows our proposed collaborative perception system’s fusion scheme and
object detection system.
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The joint object detection system in our collaborative perception system is based on
Faster R-CNN. Faster R-CNN follows the multi-task learning procedure that combines
classification and bounding box regression for object detection. It uses a convolutional
backbone, such as visual geometry group (VGG), and residual neural network (ResNet) in
the feature extraction process from the input images. The Faster R-CNN consists of two
stages: (1) a region proposal network and a (2) Fast R-CNN header network. The RPN
uses the extracted features to predict the class-agnostic box proposal, such as objects or
backgrounds. The class-agnostic box proposal is achieved by predicting multiple candidate
boxes for each location by using multi-scale reference anchors. However, fewer proposals
are selected as the region of interest (ROI) and forwarded to the header network. These
selected ROIs are used as a base for cropping the features through an ROI pooling operation.
The cropped feature maps are then fed to the backbone network to predict a class and the
bounding boxes around the detected object. As Faster R-CNN shares the convolutional
features between both stages, the accuracy and detection speed is comparatively faster
than the existing approach. After getting the feature fusion, these features are passed to
the RPN, which produces two outputs. The first output is the loss function that calculates
the classification and regression losses. The second output is the probability score of the
proposed region of interest and the location of the proposed region. The probability score
Pscore ∈ [0, 1] has a value between 0 and 1.

The location of the proposed regions can be defined as P =
(
Px, Py, Pz, Pθ , Pl , Pw, Ph

)
,

where P =
(
Px, Py, Pz

)
is the center of the proposed region and (Pθ , Pl , Pw, Ph) defines

the rotation angle, length, width, and height.

4. Experimental Setup

We used the CARLA simulator to evaluate the proposed collaborative perception
system. It allows us to simulate complex driving environments. Additionally, it also helps
in obtaining ground truth data to train and evaluate deep learning models. The dataset
we collected from the CARLA simulator for collaborative perception can be used to train
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and evaluate the real-time object detection and localization models. For this experiment,
we simulated the collaborative perception using two ADSs. These two ADSs share their
sensor information to increase their situational awareness by detecting more occluded
objects. In the first phase, the camera sensor data are collected from different simulation
environments, and the Faster R-CNN model is trained for real-time object detection and
localization. Once the model is trained, the models are deployed on each ADSs. The
feature extraction of the camera sensor image frames of each ADSs, along with shared
image frames, is done using the SIFT feature extractor model. The extracted features are
then fused to detect and localize the object using Faster R-CNN. The proposed system was
evaluated in different traffic scenarios such as roundabouts, T-junctions, intersections, and
multilane roads. We used the Ubuntu16.04 64-bit system with NVIDIA GeForce RTX2060
GPU for our experiment. The system was equipped with a core i7 processor and 32 GB
RAM for the experimental setup. In the following, we describe the experimental setup
in detail.

4.1. Dataset

The dataset used in our experiment was obtained using the CARLA simulator. It con-
tains camera images of mixed traffic environments such as roundabouts, T-junctions,
intersections, and multilane roads. We chose these testing scenarios because such driving
scenarios are challenging for ADSs, and complex driving maneuvers are needed to drive in
such complex scenarios. Occluded objects, pedestrians, and cars in these driving scenarios
pose serious safety concerns for the ADSs and manual-driving cars. In contrast to the exist-
ing approaches for collaborative perception, where the sensors are fixed on roadsides [33],
we used the camera sensors mounted on ADSs to generate the dataset for our experiments.

We configured the camera sensors of two ADSs in CARLA simulators to gather the
desired data. As the ADSs can move independently of each other, we can test entire driving
scenarios in simulated environments. Overall, we collected 1895 image frames of different
driving scenarios, and we prepared our own 1895 labeled simulation-based images that
can be used for object detection in real-time in the CARLA simulator. This can also be used
to evaluate the performance of the real-time object detection algorithm in collaborative
perception. The dataset contains four classes: walker, passenger_car, truck, motorcycle, and
cycle. We split the dataset into the training set, consisting of 1713 labeled images and
182 images for the test set. The data augmentation, including rotating, flipping, zooming in,
and zooming out, was done on the original dataset to overcome the problem of imbalanced
data. (The dataset can be made available upon request.)

4.2. Testing Scenarios

Using the dataset we collected from the CARLA simulator, we simulated a list of
different driving scenarios such as intersections and roundabouts, T-junctions, and mul-
tilane roads. Road intersections and T-junctions are among the most challenging driving
scenarios where vehicles are congregated and thus cause occlusion. In such scenarios, the
camera sensor-based ADSs face serious safety concerns as the camera’s vision are blocked
due to the occlusion caused by the vehicle in front, and the situational awareness of the
ADSs becomes severely limited. We used these driving scenarios to validate our proposed
collaborative perception.

Another testing scenario to validate the proposed collaborative perception systems
is multilane roads and roundabouts. Such roads are always prone to accidents due to
the combination of high-speed driving. Early detection of moving cars and other objects
through perception sharing may increase road safety. Therefore, we considered the round-
about driving and multilane road as a testing scenario to validate the performance of the
proposed system.
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4.3. Training Process

We trained the object detection model for each scenario using the fused camera image
features of multiple ADSs. This paper used the Faster R-CNN inception-v2 pre-trained
model on the dataset collected, as described in Section 4.1. To accelerate the training process
and reduce the overfitting, the weights of each batch normalization layer in the pre-trained
model (i.e., Faster R-CNN inception-v2) are kept frozen. First, the RPN is trained using
the fused images on a minibatch, and the RPN and base network parameters are updated.
Once the base network and RPN parameters are updated, then the positive and negative
proposals generated by the RPN are used to train and update the classifier. The Faster
R-CNN inception-v2-based classifier and RPN share the base convolutional layers. We used
the same method to calculate the loss function and parameterization method of bounding
box regression as those in the original Faster R-CNN model. The Adam optimizer [40] is
used to optimize the loss function. During the training, the learning rate was set to 10−3.
The network was trained for the 30,000 global steps.

5. Performance Evaluations
5.1. Research Questions

We considered the following research questions to evaluate the proposed collaborative
perception system.

• RQ1 (Effectiveness): How effective is the proposed collaborative perception system in
detecting occluded objects?

• RQ2 (Performance): How does the collaborative perception system precisely detect
occluded objects and affect the model’s detection performance?

• RQ3 (Safety Analysis): What is the impact of collaborative perception on the safety
of ADSs? How does the logistic chaos map-based encryption enhance safety in the
collaborative perception system?

• RQ4 (Comparative Analysis): How does the proposed collaborative perception system
compare with the detection confidence of Cooper [32] and F-Cooper [10]?

We evaluated the performance of the collaborative perception systems for object
detection based on Faster R-CNN through a series of experiments. The testing scenarios
used to evaluate the performance of the proposed systems are T-junctions, roundabouts,
intersections, and multilane roads. The evaluation of the proposed systems was carried out
on the collected dataset and the evaluation metrics such as intersection over union (IoU),
mean average precision (mAP), and recall are used.

5.2. Evaluation Metrics

We used the IoU, precision, recall, and mAP evaluation metrics related to object
detection to evaluate the proposed system. Additionally, the average data volume exchange
between the ADSs for collaborative perception was measured in kilobit (kbit). The IoU
measures the spatial similarity between the estimated ground truth boxes and the actual
ground truth set. The IoU can be defined as follows:

IOU (BbAGT , BbEGT) =
area(BbAGT ∩ BbEGT)

area(BbAGT ∪ BbEGT)
(7)

where BbAGT and BbEGT are defined as the actual ground truth and the estimated ground
truth bounding boxes. BbEGT includes a set of all positive boxes identified by the Faster
R-CNN-based object detection model. Each bounding box has confidence above the set
thresholds. The IoU takes the size, location, and orientation of both bounding boxes
(i.e., BbAGT , BbEGT). The value of IoU ranges between 0 and 1, where IoU is defined
to be 0 if the BbAGT , BbEGT both do not have any overlapping regions. On the other
hand, if the value of the IoU is 1, then it means the location, size, and orientation of both
BbAGT , BbEGT are equal and completely overlapped. When the value of the IoU metric for
the BbAGT , BbEGT is above a certain threshold, then BbEGT can be defined as the matching
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estimation of BbAGT . Note that we can set the IoU threshold by our choice. A typical value
for the threshold can be 0.5, 0.7, or 0.95.

The precision metrics used in our systems are average precision (AP) and mAP. The
precision metric is the ratio of matched estimated bounding boxes to the total number
of bounding boxes in the estimated set by the model. Similarly, the recall metric can be
obtained by taking the ratio of matched estimated bounding boxes to the total number of
bounding boxes in the ground truth set. The AP is the weighted sum of all precision at each
threshold which can be defined using Equation (8). The weight is defined as an increase
in recall.

AP =
k=m−1

∑
k=0

[recall(k + 1)− recall(k)]× precision(k) (8)

where the m is the total number of the estimated boxes and the recall value recalli∈
(recall1, . . . . . . , recallk) in Equation (8) can be obtained by assuming that the thresholds and
the confidence score of the bounding box at kth position are equal.

The mAP can be obtained by using the AP for each class considered in the object
detection model. The mean of all classes is the mAP which can be obtained by Equation (9).

mAP =
1
m

k=m

∑
k=0

APk (9)

where APk is the average precision of the class k, and m is the total number of classes.

5.3. Top-Level Performance Evaluation of Proposed System

In order to evaluate the performance of the collaborative perception, we analyzed
the performance of the models individually as well as the performance of the model in
collaborative perception. We used the term “top-level performance evaluation” as an
alternative to the visual analysis of proposed systems. We can see the result of the image
fusion of two ADSs in Figures 4 and 5, with receiving ADS (i.e., ADS_1) and data sender
ADS (i.e., ADS_2). Figure 4 illustrates the performance of the object detection model at the
intersection testing scenario, where Figure 4a is the bird-eye view of the road intersection.
Figure 4b shows the detection result of ADS_1 (i.e., the receiver), just as Figure 4c represents
the sender ADSs (i.e., ADS_2) perception. Finally, Figure 4d shows the detection result
of the collaborative perception system of ADS_1. The performance evaluation was done
based on the confidence threshold of 0.5, 0.7, and 0.95 for the object detection model
on the individual system as well as the object detection model used in collaborative
perception. Figures 4 and 5 illustrate the top-level performance of the proposed systems
with a confidence threshold of 0.7. When the confidence is above 0.7, the object detection
model marks the bounding box for the detected object. In Figures 4d and 5d, we can see
the detection results of the object detection model used in collaborative perception for
intersection and roundabout testing scenarios.

From Figure 4b, we can see that the ADS_1 could only detect four objects (i.e., one
motorcycle and three passenger cars), and Figure 4c shows that the ADS_2 approaching
the intersection from another road could detect five objects (i.e., one motorcycle and four
passenger cars). However, it would be beneficial for both vehicles to know the information
regarding the static and dynamic objects on their future trajectory, and such information
may increase the situational awareness of both cars in terms of planning and decision.
This can be achieved by fusing the perception of each ADS into collaborative perception
where both the camera sensor data are fused in order to detect more objects, including
occluded ones. Figure 4d clearly illustrates the effectiveness of the collaborative perception
system where the receiver ADS can detect more objects on the road that its sensors could
not detect. Taking a closer look, we can see that there is occlusion for both ADSs. Those
objects in the field of view of ADS_1 are not visible to ADS_2 and vice versa. Hence, by
sharing the perception of ADS_2 with ADS_1, the ADS_1 can see the object on its future
trajectory, which helps the ADS_1 make better planning and decisions. However, this is not
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the same for all cases, as some objects could not be detected by either ADS_1 and ADS_2 or
the collaborative perception. The red-colored bounding box illustrates that neither ADSs
detected the pedestrian and their collaborative perception. There could be many reasons for
not detecting these objects, for instance that the object detection models’ performance varies
with the object’s size. Other reasons could be the occlusion caused by other comparatively
big objects.
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Figure 5. Top-level performance analysis of individual perception system of ADS_1 (receiver), ADS_2
(sender), and collaborative perception of ADS_1 at a roundabout driving scenario. (a) represents a
roundabout driving scenario, (b) represents the perception of ADS_1, (c) represents the perception of
ADS_2, and (d) represents the collaborative perception of ADS_1.

Similarly, in the roundabout driving scenario, where two ADSs are approaching the
roundabout from the opposite direction, it would be suitable for both ADSs if they had
more information about their surroundings. From Figure 5b, we can see that ADS_1 detects
only two passenger cars, and ADS_2 (i.e., Figure 5c) detects three objects (two passenger
cars and one truck). However, after the fusion of the camera sensor data of both ADSs,
we can see that the detection rate of ADS_1 increased drastically. Figure 5d presents the
collaborative perception of the receiver car (i.e., ADS_1) in the roundabout driving scenario.
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By closely inspecting the collaborative perception of ADS_1 at the roundabout scenario, we
can see that it detected six objects, including one passenger car, that both ADS_1 and ADS_2
did not detect by their individual perception systems. From these comparisons, we can
conclude that the average detection rate of collaborative perception was 45.4% more than
the individual perception system of ADSs. The fusion of multiple ADSs camera sensor data
increased the detection rate of occluded objects compared to individual perception systems.

5.4. Quantitative Performance Analysis of Collaborative Perception System

After taking the overview of the top-level performance analysis of our proposed
collaborative perception systems, we now dive into the quantitative analysis of collaborative
perception compared to the individual perception systems.

The data used to evaluate the collaborative perception comes from the dataset we
collected using the CALRA simulator for testing scenarios. The results were reported using
the IoU thresholds at 0.5, 0.7, and 0.95 for object detection. When the object detection
confidence score for any object is above the IoU threshold, the model marks the bounding
box on that object. The precision was calculated by comparing the detected objects with
their ground truths using the evaluation metrics mentioned in Section 5.2. The quantitative
performance analysis was carried out for intersections, T-junctions, roundabouts, and
multilane road-testing scenarios.

Effectiveness (RQ1): To answer the research question RQ1, we present the experimental
results in Figure 6 and Table 1. Table 1 and Figure 6 report the efficacy of collaborative
perception in detecting occluded objects on mAP metrics. It also reports the superiority
of collaborative perception over individual perception systems. The results show that
the detection performance increased in terms of mAP. We observed that the precision of
the collaborative perception system was increased when the IoU threshold was set to 0.5.
For example, in the T-junction driving scenarios, the increase in mAP was 6.3% compared to
ADS_1, and 5.2% compared to ADS_2. As in the intersection scenario, the gain in mAP was
5.9% compared to ADS_1, and 4.6% compared to ADS_2. The same trends were recorded
in another driving scenario (i.e., multilane road (same direction)). The increase in mAP
was 7% compared to ADS_1, and a 6.4% gain in mAP was recorded compared to ADS_2.
However, it can be observed that there are some variations in detection performances. For
example, when IoU = 0.7 at T-junction, the gain in mAP of collaborative perception was
only 0.1% compared to ADS_1.
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table presents the detection confidence in the percentage of each ADSs, as well as the collaborative
perception of ADS_1.



Sensors 2022, 22, 6610 15 of 25

Table 1. The detection performance of individual perception systems of ADS_1, ADS_2 vs. collabora-
tive perception system.

Testing Scenarios

Mean Average Precision (mAP)

ADS_1 ADS_2 Collaborative Perception System
of ADS_1

IoU = 0.5 IoU = 0.7 IoU = 0.95 IoU = 0.5 IoU = 0.7 IoU = 0.95 IoU = 0.5 IoU = 0.7 IoU = 0.95

T-junctions 79.1 75.2 30.5 80.2 75.6 31.5 85.4 75.3 35.3
Intersection 78.3 76.1 33.6 79.6 78.3 30.4 84.2 78.8 36.4
Roundabout 78.2 75.6 29.2 77.3 76.1 28.6 78.6 82.3 36.1

Multilane road
(opposite direction) 80.1 78.6 27.9 78.6 79.4 28.9 80.9 79.9 29.0

Multilane road
(same direction) 79.8 77.3 28.8 80.4 78.2 28.4 86.8 83.2 35.2

In most cases, no significant increase was observed in mAP when the IoU threshold
was set to 0.7. Only in two scenarios (i.e., roundabout and multilane road (same direction))
the mAP was increased up to 6.7% compared to ADS_1, and a 6.2% increase in mAP was
observed compared to that of ADS_2 in the roundabout scenario. As in the multilane road
(same direction) testing scenario, the gain in mAP was observed at 5% compared to ADS_2,
while a 5.9% increase in mAP was recorded compared to ADS_1. When we set the IoU
threshold to 0.95, we observed a significant gain in all five driving scenarios except in
multilane road (opposite direction) driving scenarios. The gain in mAP does not increase
further as the performance gain reaches its saturation levels. The performance gain may
increase if participating ADSs in collaborative perception systems increases. However, the
average object detection rate of collaborative perception is 45.4% more than the individual
perception system of ADS_1 and ADS_2, as shown in Figure 6. We use only the front
camera images for fusion. However, the front camera of both ADSs does not cover the large
detection areas. As the detection area increases, the participation of more ADSs in collabo-
rative perception systems would need to maintain the increasing trends in the performance
gain. Although the participating ADSs in collaborative perception systems were only two
in our current experiment, we can still observe a significant increase in the precision and
object detection rate. More participating ADSs in collaborative perception systems can
increase detection precision; however, the computational cost may also increase.

The location and alignment information of features for fusion has a significant impact
on the object detection model’s performance. The change in alignment or translation may
cause a bad impact on detection accuracy, despite the fact that in the dynamic driving
environment, the precision of the object detection model is quite high in our experimental
results. We can observe that the performance of the model in terms of mAP is stable.
Meaning that there is no significant change in mAP with respect to driving scenarios on the
same IoU thresholds. For example, the average difference between mAP at the same IoU
thresholds is less than 4% in most cases. This shows the stability of object detection models
in highly dynamic driving scenarios.

From Table 1, we can see that the detection confidence sometimes varies in different
scenarios. It is the location and dynamic driving environment that causes the small variation
in detection confidence. However, from Table 1, we can see that the object detection
model performed extremely well in detecting objects in individual perception systems
and collaborative perceptions. The highest mAP (i.e., 80.1% and 80.4% when the IoU
threshold was 0.5) was reported on the individual perception system of ADS_1 and ADS_2,
respectively. On the other hand, the highest mAP was recorded at 86.8% when the IoU
threshold was set to 0.5 on the collaborative perception system of ADS_1. This indicates that
the fusion of camera images increases the precision of object detection models. We believe
that if the number of participating ADSs in collaborative perception systems increases, the
mAP will also increase.

Performance (RQ2): Moving to the comparative analysis of individual perception
systems and collaborative perceptions in terms of detection rate, we can answer research
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question RQ2. The average number of the detected object in the collaborative perception
system in each testing scenario is 45.4% more than in the individual perception system of
both ADSs. Figure 6 depicts the number of objects detected by the ADS_1 and ADS_2 and
the collaborative perception system of ADS_1. In Figure 6, the table presents the detection
confidence in percentage in each testing scenario. The vertical axis represents the number
of objects detected by each ADSs, and the collaborative perception of ADS_1 and the testing
scenarios are given on the horizontal axis. The empty cell on the table represents that there
are no more objects in the range of camera sensors. The red-colored cell represents the
objects in the range of the camera sensor. However, the object detection models of both
individual and collaborative perception systems could not detect them. The green-colored
cells illustrate objects detected by both ADSs (i.e., all those objects in the range of both
ADSs’ camera sensors.). Another important cell representation is the blue-colored cell.
These blue-colored cells represent the objects that were not detected by the individual
perception of both ADSs; however, due to the image fusion of both ADSs, the collaborative
perception system detected those objects.

From Figure 6, we can see that the collaborative perception systems outperformed the
individual perception systems of both ADSs. Starting from the T-junctions testing scenario,
it can be noted that the number of detected objects in the collaborative perception system of
ADS_1 is two times more than its own perception system, as ADS_1 could only detect three
objects by its own perception systems. Due to limited sensing range and occlusion, it could
not detect more objects on its future trajectory. However, after fusing the camera sensor
image of ADS_2, we can see a significant increase in the number of the detected object in
collaborative perception. Now, the ADS_1 can detect four more objects those were not in
its sensor range. As in the roundabout testing scenario, the collaborative perception system
of ADS_1 detected four more objects due to image fusion. An interesting phenomenon
was observed in both roundabout and intersection testing scenarios. In each case, the
collaborative perception system detected one extra object, which was not detected by the
individual perception systems of both ADSs. This phenomenon was very unexpected and
interesting to analyze in our experiment, and the detected object and their confidence are
given blue-colored cells in Figure 6.

The intersection testing scenario has another interesting phenomenon to analyze,
as expected. The collaborative perception system detected more objects (i.e., 10 objects
compared to ADS_1, which detected only four objects, and ADS_2, which detected only
five objects). However, one extra object (i.e., the blue-colored cell in Figure 6 in the
intersection testing scenario) that has 90% detection confidence has been detected. Another
unique phenomenon to analyze in the intersection testing scenario is the red-colored
cell representing objects that were not detected by either individual perception systems
of ADSs or collaborative perception. Upon careful investigation of simulation logs and
results, we observe that there was a pedestrian (i.e., the red bounding box in Figure 4c,d)
in the range of the camera sensor of ADS_2. However, it could be detected by neither
the object detection model of ADS_2 nor the object detection model of the collaborative
perception. There may be plenty of reasons for not detecting such objects. Firstly, this may
happen due to the occlusion due to other big objects. As we can see in Figure 4c,d, the
pedestrian is surrounded by other big objects compared to its size and therefore causes
occlusion and results in the pedestrian not being detected. Another reason is that the object
detection models’ performance varies with the objects’ size. The object detection model
performs worse when detecting small-sized objects than large objects [11]. As expected,
the collaborative perception system also outperformed the individual perception system
of ADS_1 and ADS_2 in detecting more objects in multilane (approaching from the opposite
direction) and multilane (approaching from the same direction) road testing scenarios. As we can
see, some objects (i.e., cells with green color) in Figure 6 were detected by both ADS_1 and
ADS_2. We believe that these phenomena are due to the specific driving scenarios, as these
objects were in the range of camera sensors of both ADS_1 and ADS_2. However, only a
single instance of these redundant objects is detected in a collaborative perception system.
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Hence, this proves the effectiveness of the proposed collaborative perception, meaning that
if more than one ADSs driving system detects a single object, then only a single instance of
that object is detected in the collaborative perception.

5.5. Analysis of Communication Cost and Computational Time

Having taken the overview of top-level performance analysis and the quantitative
analysis of proposed collaborative perception systems, we now dive into a detailed analysis
of communication costs metrics (i.e., kbit) and computation time (i.e., ms) for all testing
scenarios. As the fusion scheme for all testing scenarios was the same, therefore, there was
no significant change observed in communication cost. After compression, the average
image frame size was 357 kbit in all testing scenarios, which is quite feasible for low
computational powered systems. The average frame rate was set to 10 frames/s during the
simulation. The required communication link capacity to send the camera sensor image
frame from one ADS to another for fusions depends on the processing frame rate. We
set the frame rate in our simulations at 10 frames/s. This means that the image fusion
of two ADS for a collaborative perception system with a processing rate of 10 frames/s
would require a communication link with a capacity of 3.57 Mb/s (i.e., 357 kb/frame times
10 frames/s). We did not consider the communication delay as the detailed investigation of
communication delay is beyond the scope of this article.

However, the transmission rate of 10 frames/second can be easily supported by
commercially available wireless communication links. Table 2 presents the communication
cost and computational time required to process the image fusion of two ADSs. As we
can observe, each frame with a size of 357 kbit requires only 301 ms for the whole process
(i.e., from the transmission of image frames to inference). However, the computational
time is dependent upon the hardware specification. In our experiment, we used NVIDIA
GeForce RTX2060 GPU with 6GB GPU dedicated memory, and the system was equipped
with core i7 processor and 32 GB RAM. During the experiment, we observed the total GPU
utilization was 75%.

Table 2. The average communication cost and computation time.

Communication Cost
(Kilobit)

Computation Time
(Millisecond)

Frame Rate
(Frames/s)

357 kbit 301 ms 10 frames/s

5.6. Impact of Collaborative Perception on Safety

To answer RQ3, we analyze the impact of collaborative perception on safety. While
performing the safety analysis of collaborative perception, we consider a safety-critical sce-
nario presented in our motivation, i.e., Figure 1b. The safety analysis in this article is based
on time-based risk assessment methods. Generally, the forward collision algorithms with
risk assessment methods have two approaches: time based and distance based. However,
we considered a time-based approach in our experiment as time-based risk assessment
methods are proven effective on the road [41]. Time-based risk assessment is based on
time-to-collision (TTC). In our collaborative perception, we used a forward collision avoid-
ance algorithm based on a time-based risk assessment method to avoid collisions with
pedestrians by considering the scenario presented in Figure 1b. We simulated the scenario
using two cars (i.e., ADS_1, the sender, and ADS_2, the receiver). To analyze the impact of
collaborative perception on safety in such scenarios, we present two scenarios: hazardous
scenarios and safe scenarios. In the following, we explain each scenario.

In order to simulate the hazardous scenario, we did not use the collaborative percep-
tion system. The ADS_2 was moving forward with a speed of 10 m/s. Due to occlusion
caused by the bus, the ADS_2 could not detect the pedestrian, and, as a result, caused a
hazardous scenario. Despite applying the emergency brake, we confirmed that the distance
between the ADS_2 and the pedestrian was close to zero. This hazardous scenario was
analyzed using the velocity logs and the distance between the ADS_2 and the pedestrian.
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Figure 7 shows that the ADS_2 was moving with a speed of 10 m/s; the ADS_1 detected a
pedestrian in the middle of the road at 16th seconds. However, as the ADS_2 was not using
the collaborative perception, it responded to the situation on the 17th. Despite applying
the brake, the ADS_2 could not stop and collided with the pedestrian. We can see that the
ADS_2 started deceleration at the 17th s and stopped at the 18th. Due to the late response,
the safety distance between the ADS_2 and the pedestrian was close to zero.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 26 
 

 

Table 2. The average communication cost and computation time. 

Communication Cost 
(kilobit) 

Computation Time 
(millisecond) 

Frame Rate 
(frames/s) 

357 kbit 301 ms 10 frames/s 

5.6. Impact of Collaborative Perception on Safety 
To answer RQ3, we analyze the impact of collaborative perception on safety. While 

performing the safety analysis of collaborative perception, we consider a safety-critical 
scenario presented in our motivation, i.e., Figure 1b. The safety analysis in this article is 
based on time-based risk assessment methods. Generally, the forward collision algorithms 
with risk assessment methods have two approaches: time based and distance based. How-
ever, we considered a time-based approach in our experiment as time-based risk assess-
ment methods are proven effective on the road [41]. Time-based risk assessment is based 
on time-to-collision (TTC). In our collaborative perception, we used a forward collision 
avoidance algorithm based on a time-based risk assessment method to avoid collisions 
with pedestrians by considering the scenario presented in Figure 1b. We simulated the 
scenario using two cars (i.e., ADS_1, the sender, and ADS_2, the receiver). To analyze the 
impact of collaborative perception on safety in such scenarios, we present two scenarios: 
hazardous scenarios and safe scenarios. In the following, we explain each scenario. 

In order to simulate the hazardous scenario, we did not use the collaborative percep-
tion system. The ADS_2 was moving forward with a speed of 10 m/s. Due to occlusion 
caused by the bus, the ADS_2 could not detect the pedestrian, and, as a result, caused a 
hazardous scenario. Despite applying the emergency brake, we confirmed that the dis-
tance between the ADS_2 and the pedestrian was close to zero. This hazardous scenario 
was analyzed using the velocity logs and the distance between the ADS_2 and the pedes-
trian. Figure 7 shows that the ADS_2 was moving with a speed of 10 m/s; the ADS_1 de-
tected a pedestrian in the middle of the road at 16th seconds. However, as the ADS_2 was 
not using the collaborative perception, it responded to the situation on the 17th. Despite 
applying the brake, the ADS_2 could not stop and collided with the pedestrian. We can 
see that the ADS_2 started deceleration at the 17th s and stopped at the 18th. Due to the 
late response, the safety distance between the ADS_2 and the pedestrian was close to zero. 

 
Figure 7. The behavior of an ADS with and without collaborative perception. Figure 7. The behavior of an ADS with and without collaborative perception.

In contrast to the hazardous scenario, we simulated the safe scenario using two ADSs
that use collaborative perception. Figure 7 shows that the ADS_2 was moving forward
with a speed of 10 m/second. The ADS_1 detected the pedestrian at the 16th s and shared
its real-time perception with ADS_2 via collaborative perception. The ADS_2 proactively
responded to the situation one second earlier compared to the scenario in which it was
not using the collaborative perception. Additionally, after analyzing the safety distance
(i.e., distance to collision) between ADS_2 and the pedestrian, we confirmed that the safety
distance was 1.2 m. Figure 7 shows that ADS_2 proactively started reducing the speed
at the 16th s right after detecting the pedestrian in collaborative perception. Therefore, it
could stop at a safe distance, i.e., 1.2 m from the pedestrian. In contrast, while the ADS_2
was not using the collaborative perception, the safety distance was almost equal to zero.

However, the collaborative perception system is always prone to attack from mali-
cious vehicles sending phantom information, which may cause hazards for participating
ADSs. Therefore, in order to avoid the phantom information sent by malicious vehicles in
collaborative perception, we use the chaotic map-based encryption technique. The logistic
map is a chaos system with highly complex behavior [42] and is very sensitive to the initial
condition. Mathematically it can be described as:

xn+1 = r× xn(1− xn)

f (xn) = xn+1
(10)

The parameter r in the logistic map ranges between 0 and 4. x0 ∈ (0, 1) represents
the initial value. Each iteration of the map in logistic chaos generates a value known as
iterates. n = 1, 2, 3 . . . ., N represents the number of iterates and the variable xn represents
the chaotic output, and its values range between [0, 1]. The chaotic behavior in the logistic
map can be achieved after several iterations. The value of r must remain less than the range
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to achieve chaotic behavior—the higher values of r cause impossible to achieve chaotic
behavior [43].

In our proposed encryption scheme, we first generate the chaotic sequences followed
by the confusion process in which the pixel values are confused and then shuffle the pixel
position to generate the encrypted image. Consider that we have an image frame I of
camera sensors of ADS_2, which is to be transmitted to ADS_1 via collaborative perception.
M × N represents the size of the image frame, and the pixel of each image frame I is
I(i, j). The I(i, j) represents the pixel value at the position (i, j). We obtained the initial
value for the logistic map from the secret key. The secret key used in the chaotic map-
based encryption consists of 256bits in ASCII form. After defining the initial condition,
we transformed the I(M× N) into an array and converted each pixel value to an integer
ranging from 0–255. Following by transformation process, we generated the chaotic
sequence xi = (x1, x2, . . . ., xn) using the equation xn+1 = r ∗ xn(1− xn). The confusion
was achieved via XOR operation using the equation Ci = Pi ⊕ xi, where the variable Pi
denotes the array of pixel values. Finally, we shuffle the pixel values to get the encrypted
image. For the decryption process, we follow the inverse of the encryption process as the
decryption is the inverse of the encryption process.

The logistic chaos map-based encryption and decryption process can be summarized
as follows: first, the pixel values of each image frame of the ADS_2 are transformed into an
array, and secondly, we convert the pixels’ values into an integer between a range of 0 to
255 using mod operation. The third step is to generate the chaotic sequences, and finally, in
the fourth step, confusion and diffusion are performed to get the required encrypted image.
In contrast, the inverse encryption process is followed at the receiving end (i.e., ADS_1) to
get the decrypted image.

In response to the second part of the RQ3, we analyze the impact of chaotic map-based
encryption on safety by considering the key sensitivity, histogram, and adjacent pixel
autocorrelation analysis. During the experiment, we set the initial value for the chaotic map
at 0.1, and the value of the variable r was set to 3.76. We used the 256-bit, i.e., 32 characters
long encryption key. The image frames of ADS_2 were encrypted using the encryption
key 1q2w3e4r5t6y7u8i9o0p!@#$%ˆ&*(){} and these image frames were shared with ADS_1.
At receiving end, each image frame was decrypted using the same key. Figure 8a–c depicts
the encryption process and decryption process using the same key. We can see that there is
no visual difference between encrypted and decrypted images when the key is the same
for encryption and decryption.
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encrypted, and (f) the decrypted image using the incorrect key.
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The encryption and decryption technique should be key sensitive, and the system
must produce entirely different patterns for any change in the key. From Figure 8d–f, we
can see that the proposed encryption technique is highly key sensitive. A minor change in
the key produced an entirely different pattern and produced no visible information in the
decrypted image. The encryption key was set to 1q2w3e4r5t6y7u8i9o0p!@#$%ˆ&*(){}, and
while decrypting the image, the key was set to !q2w3e4r5t6y7u8i9o0p!@#$%ˆ&*(){}. Despite
the fact that the difference between the encryption (1q2w3e4r5t6y7u8i9o0p!@#$%ˆ&*(){})
and decryption key(!q2w3e4r5t6y7u8i9o0p!@#$%ˆ&*(){}) was only one character (i.e.,!), the
decrypted image contains no visual information. This indicates that the encryption scheme
is very key-sensitive. If any malicious vehicle tries to access or send phantom information,
the encryption technique will avoid such phantom information, thus enhancing safety.

The histogram analysis of both encrypted and decrypted image frames proves that our
logistic map-based encryption techniques provide enough safety and security from mali-
cious vehicles. Histograms describe the distribution of image pixels, and a good encryption
technique must produce a uniform histogram for all encrypted image frames. Figure 9
shows the histogram of the original (i.e., Figure 9b) and encrypted image (i.e., Figure 9d).
As it can be seen that the histogram of the encrypted image has more uniform spikes as
compared to the original image. We can see that the histogram of the original image is not
uniform. These figures show no statistical similarity between the original and encrypted
images, consequently providing no meaningful information for the malicious vehicle.

Sensors 2022, 22, x FOR PEER REVIEW 21 of 26 
 

 

 
Figure 9. Histograms of original and encrypted image frames. (a) represents the original sample 
image frame, (b) depicts the histogram of the original image while (c) represents the encrypted im-
age frame, and (d) is the depiction of the histogram of the encrypted image frame. 

To avoid the attack from malicious vehicles on collaborative perception, the adjacent 
pixels in the encrypted image should be noncorrelated and the value of correlation should 
be close to zero. Higher correlation implies higher similarity between adjacent pixels, and 
Figure 10 shows that the original image has a higher correlation than the encrypted image. 
From Figure 10a, the correlation between the adjacent pixel is high in horizontal, vertical, 
and diagonal positions. In contrast, Figure 10b shows a correlation graph of the encrypted 
image, indicating that the correlation between adjacent pixels is very low. The correlation 
graphs of original and encrypted image frames confirmed that the encrypted image 
achieved zero correlation, proving that the encryption technique is robust against corre-
lation attacks of malicious vehicles. 

 
Figure 10. Adjacent pixel correlation graph of original and encrypted image frames. (a) adjacent 
correlation graph of the original image and (b) adjacent correlation graph of the encrypted image. 

5.7. Comparative Analysis with Existing Works 
Comparison (RQ4): To compare our approach with the existing fusion-based collabo-

rative/co-operative perception system, we choose F-Cooper [10] and Cooper [32]. How-
ever, the direct comparison of our approach with these fusion methods would not be 
meaningful due to the sensor type, position, and data used for fusion. Table 3 presents the 
high-level comparative analysis of our approach with the existing baseline approaches. 
Additionally, we compare the object detection performance of Cooper and F-Cooper with 
our approach. F-Cooper reported their detection result in average precision. Both F-
Cooper and Cooper reported the detection precision in two categories based on the dis-
tance between the camera sensor and the detected objects. The first category is the “Near” 
category, representing the object near the camera sensors. The second category is the “Far” 
category, representing the object far from the camera sensors. The cutoff between the 
“Near” and “Far” is 20 m. Regarding the detection performance of both F-Cooper and 
Cooper in multilane road-testing scenarios, the voxel feature fusion method was reported 
as the best-performing method from F-Cooper, with an average precision of 77.46% and 
58.27% for the “Near” and “Far” category, respectively, when the IoU threshold was set 
to 0.7. 

Figure 9. Histograms of original and encrypted image frames. (a) represents the original sample
image frame, (b) depicts the histogram of the original image while (c) represents the encrypted image
frame, and (d) is the depiction of the histogram of the encrypted image frame.

To avoid the attack from malicious vehicles on collaborative perception, the adjacent
pixels in the encrypted image should be noncorrelated and the value of correlation should
be close to zero. Higher correlation implies higher similarity between adjacent pixels,
and Figure 10 shows that the original image has a higher correlation than the encrypted
image. From Figure 10a, the correlation between the adjacent pixel is high in horizontal,
vertical, and diagonal positions. In contrast, Figure 10b shows a correlation graph of the
encrypted image, indicating that the correlation between adjacent pixels is very low. The
correlation graphs of original and encrypted image frames confirmed that the encrypted
image achieved zero correlation, proving that the encryption technique is robust against
correlation attacks of malicious vehicles.

5.7. Comparative Analysis with Existing Works

Comparison (RQ4): To compare our approach with the existing fusion-based collaborative/
co-operative perception system, we choose F-Cooper [10] and Cooper [32]. However, the
direct comparison of our approach with these fusion methods would not be meaningful
due to the sensor type, position, and data used for fusion. Table 3 presents the high-level
comparative analysis of our approach with the existing baseline approaches. Additionally,
we compare the object detection performance of Cooper and F-Cooper with our approach.
F-Cooper reported their detection result in average precision. Both F-Cooper and Cooper
reported the detection precision in two categories based on the distance between the camera
sensor and the detected objects. The first category is the “Near” category, representing the
object near the camera sensors. The second category is the “Far” category, representing
the object far from the camera sensors. The cutoff between the “Near” and “Far” is 20 m.
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Regarding the detection performance of both F-Cooper and Cooper in multilane road-
testing scenarios, the voxel feature fusion method was reported as the best-performing
method from F-Cooper, with an average precision of 77.46% and 58.27% for the “Near” and
“Far” category, respectively, when the IoU threshold was set to 0.7.
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Table 3. Comparison with existing approaches.

Approaches Dataset Sensor
Placement Encryption Safety

Analysis

F-Cooper: feature-based
co-operative perception for

the autonomous vehicle
using 3D point clouds [10]

LiDAR Point
Clouds

Mounted on
ADSs 555 555

Cooper: co-operative
perception for connected
and autonomous vehicles
based on raw data. [32]

LiDAR Point
Clouds

Mounted on
ADSs 555 555

Co-operative perception
using infrastructural

sensors. [33]

LiDAR Point
Clouds

Fixed
Location 555 555

This work Camera Image Mounted on
ADSs XXX XXX

In contrast to the Cooper and F-Cooper, the detection confidence of our collaborative
perception system was reported in mAP. Compared to the average detection precision of
F-Cooper, our collaborative perception system mAP was reported at 79.9% in the multilane
road-testing scenario. As in the road intersection scenario, the average detection precision
of F-Cooper and Cooper reported for the voxel fusion method was 80.21% for the “Near”
category and 72.37% for the “Far” category, respectively. On the other hand, the mAP
for the road intersection scenario in our collaborative perception system was reported at
78.8%. Although we reported the detection confidence in mean average precision, while
F-Cooper and Cooper still reported detection confidence in average precision, our detection
confidence outperformed both F-Cooper and Cooper in multilane road-testing scenarios
when the IoU threshold was set to 0.7. We also evaluated the performance of collaborative
perception with the IoU threshold at 0.5 and 0.95. The result showed that the detection
confidence when the IoU threshold was set to 0.5, our proposed approach outperformed
F-Cooper and Cooper in both testing scenarios. For example, the mAP was 84.2% of our
approach compared to F-Cooper, and Cooper’s average precision was 80.21% for “Near”
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and 72.37% for “Far” in the intersection scenario. Compared to the existing approach,
each frame size in our proposed system was reported as less than 358 kbit, and the time
required to process the image frames required less than 301 ms. We also compared the
sensor placement techniques with [33], in which all the sensors in co-operative perception
were placed in fixed positions (i.e., roundabouts and T-junctions). The objects beyond the
range of these fixed positioned sensors are still unknown to ADSs, posing safety threats. In
contrast, the sensor placement in our approach is not location dependent, meaning that
the camera sensors are mounted on the ADSs themselves, enabling them to extend the
sensing range.

5.8. Threats to Validity

The first threat to validity is the network delay, although in this study, we did not
consider communication and network delay. Regarding the network delay, the insights
from our study are that it can cause problems in collaborative perception in terms of
false detection or introduce more false positives due to the misalignment of frames or
missing frames. Network delays should be rigorously investigated as missing frames, or
misaligned incoming frames due to network delays can compromise the performance of
object detection models. However, we handle this thread to validity by reducing the frame
size through compression without losing important features. From the experimental result,
we can observe that the average frame size was recorded as only 357 kbit. To process frames
with the size of 357 kbit at the rate of 10 frames/s, we need only 3.7 MB/s bandwidth.
The commercially available wireless communication system can easily support such a
processing rate.

The second threat to validity is the broad security protocol and data integrity aspects.
The article does not cover the broad aspect of the security protocol of data being transferred
from one ADS_1 to another ADS_1. Data security and integrity are very important in
connected vehicles and need to be thoroughly investigated. Malicious ADSs may send
phantom information. Additionally, the participating ADSs in collaborative perception can
be unintentionally malicious due to sensor degradation of faulty sensors. This may pose
serious driving hazards causing accidents. However, this issue was minimized through the
encryption technique. The communication between the two ADSs was secured through
an end-to-end encryption technique. On the other hand, if the tampering in image frames
happens before the encryption, the encryption systems cannot avoid such tampering, which
is another external threat to the validity of this proposed system. Another important aspect
is communication with low latency in practical applications. Latency is a big issue that
needs to be solved in practical applications. We argue that the advancement in wireless
communication has actively accommodated the latency issues. For example, the 5G and
millimeter-wave communication provide extremely low latency [44].

Testing safety-threatening scenarios, as shown in Figure 1, with actual vehicles may
pose a risk to human safety. Therefore, in general, these risk scenarios must be tested
thoroughly by simulated-based testing to ensure safety. Typically, manufacturers perform
very limited infield testing to test complex systems such as ADS [45]. Simulation-based
testing allows for the safe testing of hazardous scenarios. Hence, manufacturers test more
risk scenarios by recording sensor data from infield testing and regenerating them in the
simulation environment. Therefore, we decided to validate the proposed system in the
simulation environment. We believe that testing the proposed system will yield the same
results on real data since the simulator-generated data produces the same results as those
obtained on the real data, as mentioned in [46]. However, on-road testing is necessary for
the final product to be released, which is done by professional field testers.

6. Conclusions

We propose a collaborative perception system to facilitate the ADSs to combine their
sensing data with their co-operator to enhance the perceptual ability and situational aware-
ness regarding the occluded objects, thereby improving detection confidence and traffic
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safety. To the best of our knowledge, no existing works have been reported to implement
the concept of the homogeneous sensor (i.e., camera sensor) data fusion of multiple ADSs
for collaborative perception.

From experimental results, we conclude that not only does the collaborative perception
system increases the detection confidence, but it also increases the object detection rate.
The proposed collaborative perception increases the detection rate up to 45.4% more than
individual perception. Safety analysis showed that collaborative perception positively
impacted on safety of ADSs, as it increased the safety distance up to 1.2 m and the reaction
time up to 1 s compared to the individual perception systems. The collaborative perception
system detected occluded objects and objects beyond the sensor range through data fusion
with nearby ADSs. Additionally, from the experimental results, we confirmed that the
proposed collaborative perception system added the benefits of being lightweight, and
required low bandwidth communication links, enabling the possibility of being used in
practical applications with commercially available low-cost communication links. The
comparative analysis of the proposed system with the existing benchmark revealed that
our proposed system outperformed existing benchmarks in terms of detection precision
and object detection rate. From the experimental results and evaluation, we confirmed that
the data volume and time required for transmitting the data from one ADSs to another fall
under an acceptable range of commercially available communication links and are feasible
for processing the shared data on the local processor of ADSs. We also believe that the
proposed system’s computational and communication specifications are feasible for the
edge computing environment.

In the future, we aim to investigate more ADSs sensor data fusion for detection and
localization where the computation time and bandwidth requirements can be more challeng-
ing. We will validate the performance of collaborative perception with more participating
ADSs and their effect on communication and processing time. Additionally, with high
confidence in the safety of the proposed technique, our future research will focus on con-
ducting on-road testing of the proposed system. We will also investigate the compression
technique for transferring data while maintaining the object detection performance.
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