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Abstract—Fault management is a key function to guarantee the
quality of the service. Research has done a lot to improve fault su-
pervision, and investigation is ongoing in fault prediction, thanks
to the potentials of artificial intelligence and machine learning. In
this study, we propose a fault management framework that puts
an emphasis on fault recovery: a framework developed on multi-
layer function and a fault recovery methodology distributed over
several technological layers. The basic principle of our proposal
is that the system’s complexity exposes it to a higher probability
of temporary error. Newfound attention to the fault recovery
phase is the key to keeping the service’s quality high and saving
maintenance costs by decreasing the return rate.

Index Terms—Fault Management, Resilient system, Recovery
methodology.

I. INTRODUCTION

Fault management is a system function that has the purpose
of detecting, locating, isolating, and recovering possible fault
conditions in the system [1]. In recent years, connectivity
between devices with different functions has increased expo-
nentially [2], together with the complexity of interconnected
systems and the difficulty of efficient fault management. Fault
management has become synonymous with reliable systems,
security and performance optimization [3], [4].

The need to design a system with dedicated fault manage-
ment support is well-known, and it already emerged during
the ’90s. However, the attempts to add knowledge of the
correctness model into the system create drawbacks, like
increased resource usage, increased design complexity, and
reduced maintainability [5], [6]. The research in the Artifi-
cial Intelligence and Machine Learning (AI&ML) field has
aroused new attention in fault management design based on
fault prediction [7]–[14]. A fault management implementation
designed to maintain the impact on performance and satisfy
fault prediction solutions based on AI&ML has increased the
number of system requirements used in selecting hardware
and software components. The main goal of matching the

new requirements is supporting the implementation of reliable
systems. [15]–[17]. Nevertheless, there is still one of the main
functions of fault management that needs attention to increase
the product lifetime: fault recovery.

This paper introduces:
• a multi-level representation of the fault management

framework showing significant fault recovery oriented
functions.

• a multi-technologies fault handling approach where the
fault management framework develops as recursive iter-
ations on different technological layers to recover from a
fault condition.

The multi-level functions diagram (figure 1) shows the re-
lationship between typical fault management functions (for
example, fault tolerance, logging, and reporting), and the five
strategies with which it is usual to define fault management:
supervision, isolation, location, prediction, and recovery. The
multi-level function representation integrates the research done
in three areas:

1) early hardware design
2) early system design
3) recovery procedures

Both multi-level function framework and multi-technologies
fault handling approach focus on system resilience. The
functions in the fault management framework use the hard-
ware and software capabilities to increase recovery abilities
in production and runtime. At the same time, the multi-
technologies look at a holistic methodology to recover from a
fault condition.

II. RELATED WORKS

Even if fault management is not a new concept, several
ongoing projects are reconsidering the fault management prin-
ciple due to the higher complexity of the latest network-
ing solutions. Arfaoui et al. [18] provided a non-exhaustive
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list of current security, trust, and resilience issues that are
critical to be explored in 5G. They introduced two ways
to ensure the security and resilience of critical nodes for a
software-defined network: cross-layers fault management and
metric identification. However, the cross-layers proposal is
referring to specifically SDN-NFV architecture. Sanchez et
al. [19] focused more on the product’s service reliability and
the software-defined network’s contribution to the diagnostic
process. They propose fine granularity templates that model
network nodes and provides more detailed diagnostic suitable
for SDN-NFV. However, they didn’t consider how to use
the diagnostic in the recovery phase. Cherrared et al. [1]
propose a comprehensive state-of-the-art fault management
techniques and a new classification of the recent fault man-
agement research achievements in the network virtualization
environments and compare their significant contributions and
shortcomings. Several studies groups ( [20]–[24]) investigate
the usage of machine learning and artificial intelligence to
predict a possible system’s faulty condition.

We can summarize that the ongoing fault management
research focuses on three main areas: security in the modern
networking solution, fault supervision and information propa-
gation in the cloud or distributed system, and machine learning
and artificial intelligence impacts and contributions to fault
management. In this paper, we revise the fault management
framework to emphasize the strategic role of fault recovery
actions for the system’s resilience.

III. FAULT MANAGEMENT FRAMEWORK

In a previous work, we propose a fault taxonomy as an
extension to a model described by Wuhib et al. [25]. We utilize
the findings of our previous study as starting point for this
paper. Our extended fault management framework considers
five main components: fault supervision, fault location, fault
isolation, fault prediction and fault recovery depicted as yellow
blocks in figure 1.

Blue lines identifies logical links between the fault man-
agement’s main components. Fault supervision, for instance,
detects and forwards a suspected fault to the fault location.
Fault location forwards the info to the fault isolation to
avoid fault propagation into the system. Eventually, the fault
management runs all possible fault recovery actions, using
fault prediction information if available, to prevent a possible
fault in advance. The five components of fault management
represent the fault management macro functions, depicted as
yellow blocks in figure 1. We call these components ”first
level function”. The innovative contribution of this paper is
the representation of the multi-level functions. The framework
shows functions on different levels, depicted in the figure with
varying colors for info-graphic purposes. The ”depth” for the
levels must not be confused with an assignment of priority or
hierarchical order among the functions listed in the figure.
Instead, the multi-level functions in the figure 1 shows an
extra level of detail: the higher the function level, the lower
the function abstraction. This level-view is necessary because
first-level functions use many features or sub-functions, which

we call ”second-level functionality”. Figure 1 marks second
level functionalities as green blocks. Second level functions
have more significant consequences (direct or indirect) in the
fault recovery mechanisms compared to the previous, first level
functions. In details:

• Error Report Support uses our previously introduced
fault taxonomy to classify and collect information on the
detected fault. Our fault taxonomy definition enables us
to propagate the fault information based on any possible
recovery actions, as described in a recent study [26].

• Filtering & thresholding implements mechanisms for ver-
ifying the persistence of errors over time and frequency,
such as, for example, leaky buckets or hysteresis process
thresholds [27]–[29].

• Hardware-Assisted Fault Management is a hardware fea-
ture. Our ambition is to encourage hardware vendors
to consider this feature a mandatory requirement when
designing new devices. Hardware-assisted fault manage-
ment enables the hardware to provide fault information
at high granularity, the feature of the hardware to imple-
ment self-test mechanisms, and to automatically correct
possible error conditions (in run-time or its own while
performing the self-test) [30]–[33].

• Both error report support and filtering & thresholding
function have a relationship with the self-test & validation
function, depicted as a purple block in figure 1. This func-
tion requests an embedded system to perform self-test and
validation. Hardware assisted fault management allows
better test coverage and execution time, and reduces the
impacts on the performance of the self-test. Self-test and
validation procedures are also applicable throughout the
overall lifetime of the product, for example:

– The production test.
– The ”cold” test, a functional verification test per-

formed during the system power-on phase in run
time or on-demand in the case of programmed fault
recovery actions.

– The repair center test, when a board installed by
the customer is sent for assistance due to a reported
malfunction status.

The natural users of hardware designed assisted fault
management are fault location and fault isolation. The
ability to locate errors with a very detailed granularity
allows, by definition, its identification and the domain
where to operate the actions to avoid the propagation of
the fault.

• The fault recovery component uses the fault tolerance
function. This function is hardware (or software) capable
of supporting and managing redundancy elements and
compensating for local errors [34]–[36]. Various disk
RAID configurations [37] are typical examples of fault
tolerance mechanisms and attempts to make the system
survive critical data corruption on disk. Especially with
the recent development of cloud infrastructures and the
consequences of deployment in a virtual environment,



Fig. 1. Fault Management multi-levels function Framework

fault tolerance also uses the hardware and software at-
tribute to allocate a ”slice” of the available infrastructure
to any (virtual) functions [2]. In case of a non-recovered
fault in a part of the infrastructure, a new slice allocation
(not already in use by other services) allows the virtual
function to continue (or restart) its service instead of
permanently suspending execution.

• As described above, the connection between the degraded
function handling and the fault recovery should appear

evident: suppose redundancy characteristics or availabil-
ity of infrastructural slices are not sufficient in terms of
fault tolerance. In that case, dynamic management of re-
sources by the system should identify the new allocation
to be reserved for the various vertical services to allow
the system to work in a state of degraded function.

• Finally, our model can incorporate elements from the
emerging artificial intelligence and machine learning
field as a means of predicting a previous functional



Fig. 2. Multi layers implementation approach for the fault management framework

degradation, i.e., when the fault prediction is used in turn
as a fault recovery function [38], [39].

The third level functions are support functions that provide
data management utilities as input to our previously explained
second level functions. The third level functions are fundamen-
tal efficiency enablers. For example, the fault tolerance level
can be very low or impossible without a good redundancy
solution. Similarly, it is challenging to achieve acceptable
levels of degraded function without the ability to manage the
available resources dynamically. The third level functions are
represented in figure 1 by the white blocks.

IV. THE MULTI-LAYERS APPROACH

The fault management multi-layer functions framework in
the previous section describes fault management as a discipline
that both detects faults and recovers the system from faulty
conditions.

We depict different system events using the following
colors:

Green: working state,
Red: faulty state and
Yellow: recovery state.
Figure 2 represents our multi-layers concept, including the

different system states. The sequence of green-red-yellow state
spreads over the multi-technology layers of the system. Any
single layer tries to manage the state using its features or
functions to either recover from a fault or involve a higher
level to do it. Therefore, the attempt to recover from a faulty
condition is iterative. In every single technological layer, the
implementation of fault management admits only two possible
output paths:

1) the return to a working condition, the green state
2) If the recovery attempt is unsuccessful, the passage to a

higher level from a recovery condition (from a yellow
state).



Fig. 3. Firmware-by-first model.

The process in figure 2 describes the propagation of a faulty
condition up to the system level. In the final stage, the
system manages the malfunction state. The recovery action
contemplates a review of the allocation of available resources
(considering as unavailable any resources whose condition
remains faulty despite the several recovery attempts performed
by the underlying technological levels). Malfunction handling
can bring the system back to a working condition in a
redundant resource system, distribute the remaining resource
differently for a degraded function condition, or end up in a
faulty system if neither redundancy nor resource reallocation
is possible.

Fault management must pay special attention to quality
control executed at each technological layer. The goal of the
quality control is performing filtering of the error occurrence
distribution. If the error is recoverable but continuously de-
tected, the high occurrence frequency can be the sign of an
aging issue, or it can cause performance degradation. In both
cases, the resource seems compromised, and it is better to
consider it a permanent fault condition.

Reliability, availability, and Serviceability (RAS) is a well-
known model [40]. One of the fundamental concepts of the
RAS framework is that an error indication from the hardware
must be analyzed, localized, and possibly corrected by the
firmware and be propagated to the operating system only if
the firmware cannot recover the fault condition. The mecha-
nism just described is called firmware-by-first, represented in
figure 3 and major hardware vendors, especially processors
and System-on-chip devices, and most common operating
systems, support it. The firmware-by-first requires firmware
(e.g., BIOS/UEFI) to receive and manage all hardware fault
indications. Suppose it cannot find a suitable recovery action.
In that case, firmware propagates the fault detection to the

middleware level (operating systems, e.g., Windows or Linux,
can manage communications of hardware errors based on this
model). The multi-layer technology implementation approach
extends error management at the system level to enrich the
fault recovery phase: the system can execute recovery actions
requiring more complex functions and resource re-allocation
than a re-initialization of a device or a board restart.

V. USE CASE EXAMPLE: MEMORY HARD-ERROR
HANDLING

Soft or hard memory error means an error in the memory
that cause an unwanted change of the data value. It is possible
to further classify soft memory errors into chip-level and
system-level. Chip-level errors are soft memory errors typi-
cally caused by radioactive decay of the proton in the chip or
a bit-flip typically caused by cosmic rays. It is a rare event but
the nanometer technology increase the likelihood of it. System-
level soft-error refers to power supply, power distribution,
clock problems, multiple software problems such as incorrect
memory configuration or read/write problems which similarly
can cause bit-flips. The soft-error classification refers to the
physical condition of the non-persistence of the error, and
it doesn’t refer to the root cause of the fault. Similarly,
by hard-error, we mean a permanent error in the memory,
for which a fault recovery action is not possible. Recovery
actions, with increasing but limited impacts for the system,
are writing back the correct value, device re-initialization,
and rebooting the system. The concept of persistence requires
special attention. The persistence of the fault should not be
confused with the persistence of the cause of the problem in
the case of a software problem: a wrong configuration of the
read/write cycle by the software will continue to cause soft-
error, even if this should not be considered hard-error. The



Fig. 4. Multi layers implementation approach Memory Error use case



use case describes the application of the multi-layers approach
for memory bit-flip management. Figure 4 shows the logical
flow. we take into consideration the single-bit error case. The
description doesn’t consider the possibility of an error on
several bits. Still, the implementation flow of the recovery
action is not very different if we exclude the impossibility for
the memory controller to write back in the memory the exact
value. Whenever a recovery action has been successful and the
flow ends in the working state, fault management considers the
memory error corrected.

One of our previous studies [26] uses the typology of
memory fault detected by the hardware to apply defined topol-
ogy between fault and recovery actions domains. This paper
extends the case described in the previous study: it distributes
the recovery actions on different technological levels and
considers the handling of the hard-error and degraded function.

In the lower layer, the control mechanism available in the
hardware reveals memory corruption. One of the most popular
algorithms is ECC (Error Correction Code). According to
the implemented algorithm, the hardware can detect an error
condition on a single bit or multiple bits. If the hardware can
autonomously correct the error, fault management only propa-
gates the error as corrected for statistics purposes. Otherwise,
it communicates the error as correctable to the firmware if the
value before corruption is known. The firmware is the first
to receive error information in memory. If feasible, the first
recovery attempt is to write the correct value into memory
and check that the write was successful. If the error is hard-
error, writing the correct value will fail. Recovery actions are
available on different layers. Using multiple recovery actions
minimizes the risk that software issue misleads to a hard-error
conclusion: new initialization of the memory, device restart
(but this action is not always possible without a restart of the
entire board) and board restart. As figure 4 shows, both the
restart of the single device and the restart of the inter-board
is a possible recovery action defined in the middleware layer.
In the majority of soft-error cases, these recovery actions are
very effective (see benchmark in [41]. In case of hard-error,
the above recovery actions are not enough to fix the problem,
and the fault management flow continues at the system level.
If there are spare memory arrays, Fault management can use
this redundancy capability instead of the faulty one. Finale
status is ”working state” because the final result does not alter
the service performance. If, on the other hand, the reallocation
could not count on available spare resources, then service can
count on fewer resources. Therefore the service is working in
a degraded function condition.

VI. CONCLUSION AND FUTURE WORK

With a multi-level functions vision, the development of fault
management solutions is more attentive to the completion of its
final goal. Fault management must not limit itself to detecting
a defect or faulty condition but holistically manage a fault by:

• Collecting the information necessary to manage the fault;
• Finding the best localization possible of a fault thanks to

the optimal usage of the hardware features;

• Preventing the error propagation through the system;
• Constantly gathering system statistics to react in advance

to a fault condition, with the great advantage of signif-
icantly limiting possible performance drawbacks on the
service;

• Performing one or more actions to recover from a faulty
condition and return to an operational state.

• In case of a non-recoverable fault, guaranteeing working
condition even if under degraded function state.

None of the components of fault management has a higher
priority than the others. Each of them is fundamental to
the economy of the product. In particular, the fault recovery
component directly impacts the maintenance cost. The above
considerations allow us to outline interesting fields for future
studies.

We think that an analysis of the distribution of the cost of a
fault will show that investments to improve fault management
during the development and design phase of a product has
a cost in the order of thousands of times lower than the
management of a fault during the maintenance phase.

For the same reason, it will be beneficial to identify a series
of hardware and software requirements aimed at realizing the
support functions of the fault management with a minimum
impact on functional performance.

Among the possible functions to support fault management,
this study mentioned using AI&ML in a cloud-based
environment. The extension of the multi-layer functions
approach in a cloud environment is essential for developing
fault management in the latest generation (5G and 6G)
networking and telecommunication systems.
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