
End-to-end Timing Model Extraction from
TSN-Aware Distributed Vehicle Software

Bahar Houtan∗, Mehmet Onur Aybek†, Mohammad Ashjaei∗, Masoud Daneshtalab∗, Mikael Sjödin∗, Saad Mubeen∗
∗Mälardalen University, Västerås, Sweden; †Arcticus Systems, Järfälla, Sweden

∗firstname.surname@mdu.se; †onur.aybek@arcticus-systems.com

Abstract—Extraction of end-to-end timing information from
software architectures of vehicular systems to support their tim-
ing analysis is a daunting challenge. To address this challenge, this
paper presents a systematic method to extract this information
from vehicular software architectures that can be distributed
over several electronic control units connected by Time-Sensitive
Networking (TSN) networks. As a proof of concept, the proposed
extraction method is applied to an industrial component model,
namely the Rubus Component Model (RCM), and its toolchain.
Furthermore, the usability of the proposed method is demon-
strated in an industrial use case from the vehicular domain.

I. INTRODUCTION

The Time-Sensitive Networking (TSN) standards [1], [2],
[3] have emerged as an attractive solution to address the high-
bandwidth and real-time communication requirements in many
Cyber Physiccal Systems (CPSs) in various domains such as
vehicular and automation domains. These standards enhance
switched Ethernet with deterministic traffic shaping mecha-
nisms. More specifically, TSN supports hard real-time, high
bandwidth with low-latency and low-jitter traffic transmis-
sion. These features are supported by offline scheduled time-
triggered traffic enabled by the Time-Aware Shaper (TAS)
mechanism, resource reservation for different classes of traffic
by traffic shapers (CBS), and clock synchronization [4].

The software architectures of these CPSs, in particular in
the vehicular domain, are described by various domain-specific
languages or component models [5]. The modeling of timing
information and its extraction from the software architectures
is vital in supporting automated timing analysis of the systems.
Even the modelling languages that allow functional modelling
of distributed systems, with both software and communication
models, typically use several different types of modelling
concepts internally, e.g., different model concepts for software
objects and for communication objects [6]. The use of differ-
ent modelling languages and/or different modelling concepts
makes the extraction of the end-to-end timing information
difficult and time-consuming.

In this paper, we present an automated method to ex-
tract end-to-end timing information from the software ar-
chitectures that are modelled with the Rubus Component
Model (RCM) [7]. RCM is an industrial component model
that supports modelling of various types of real-time networks,
including TSN. We also integrate the proposed method to the
model-based development tool-suite called Rubus-ICE [8] and
demonstrate its applicability on a vehicular use case.

II. BACKGROUND AND RELATED WORKS

A. Modeling the Software Architecture (SWA)

There are several SWA modelling languages and com-
ponent models [9], [10], [11], such as AUTOSAR, RCM,
AMALTHEA, EAST-ADL, AADL, to mention a few. AU-
TOSAR is widely used for developing SWA for automotive
systems. SymTA/s [12] is a commercial timing analysis and
optimization framework that complies with AUTOSAR. A
recent work in [13] integrates AUTOSAR adaptive with ap-
plicable standards to develop more sophisticated systems.

RCM comprises of hierarchical entities which are necessary
to model a distributed embedded system that supports TSN.
At the highest level, the system contains at least two nodes
and a network element that interconnects the nodes. A node is
a processing element that provides run-time environment for
one or more Software Applications (SA). The SA provides
spacial and temporal isolation to the part of overall SWA
within the system. A SWA is modelled by interconnecting
a set of Software Components (SWCs). An SWC is a design-
time entity that corresponds to a task at run-time or in the
timing model. The SWCs communicate with each other by
their interfaces (a set of data and trigger ports).

To the best of our knowledge, RCM is the first and only
component model that supports comprehensive modeling of
TSN [10]. Recently, there have been some efforts in increas-
ing the performance and applicability of the other modeling
approaches to RCM by model transformation [14]. The work
in [15] proposes a mapping technique between AMALTHEA
and RCM to enable timing analysis of AMALTHEA-based
models in RCM. In addition, the work in [16] presents a
mapping from EAST-ADL models to RCM with the aim of
enabling the timing analysis of a non-RCM model.

B. Timing models and timing analysis

Mubeen et al. [17] proposed modeling and extraction of tim-
ing models from SWAs of component-based multi-criticality
embedded systems while considering several onboard com-
munication protocols like Controller Area Network (CAN),
CANopen, HCAN, AUTOSAR COMM and generic switched
Ethernet. However, it does not TSN, which is the main
focus of our work. The work in [10] complements [17] by
describing several aspects of modeling TSN standards from
timing analysis perspective. However, the presented timing
model and extraction method is not automated. In this paper,

1



we address this gap in automated extraction of end-to-end
timing information for TSN.

Vehicular software architectures are often modelled with
chains of SWCs (tasks at runtime) and network messages.
In order to verify the timing requirements on these chains,
end-to-end data-propagation delays (age and reaction) should
be calculated and compared with the corresponding age and
reaction constraints [18], [19]. The age delay is the time
elapsed between the arrival of data at the input of the chain
and the latest availability of the corresponding data at the
output. Whereas, the reaction delay corresponds to the earliest
availability of the data at the output of the chain corresponding
to the data that just missed the read access (of the event) at
the input of the chain.

There are several works that present the end-to-end timing
analysis [20], [21]. The work in [22], [23] considered the
end-to-end timing analysis for distributed embedded systems
that are based on CAN network. The work in [24] considers
the systems that use Ethernet networks. The works in [20]
and [25] presented the end-to-end timing analysis for auto-
motive applications, where some of the techniques have been
implemented in tools to support component-based software
development, e.g., [22] and [26]. The works in [27], [8]
present open research challenges and their solutions when
integrating the timing analysis with model-based development
tools. However, these works only focus on traditional onboard
networks such as CAN without considering TSN. In the case
of TSN, there are several additional features that need to
be considered such as synchronization of the nodes, and the
presence of different shaping mechanisms for different TSN
classes. A recent work in [28] shows that the existing end-to-
end timing analysis supports the non-scheduled TSN classes,
but it does not support the scheduled traffic in TSN.

III. END-TO-END TIMING MODEL EXTRACTION METHOD

The timing model extraction method bridges a TSN-aware
end-to-end timing model with the model- and component-
based software development framework for distributed em-
bedded systems. An end-user is able to interact with the
component model directly by means of modelling the SWA.
The end-user is typically a software modeller/developer, with
limited or no knowledge about detailed timing information in
the system. In order to retrieve the required timing information
to analyse and verify the modelled SWA, we propose a timing
model extraction method that is conceptualized in Fig. 1.

The timing model extraction module in Fig. 1 coordinates
a set of methods to extract the end-to-end timing model. On
one hand, some information can be directly obtained from
the SWA. On the other hand, some information needs to be
extracted through the configuration step, where the retrieved
information from the component model is processed either
by the system integrator/configurator or by the automated
configuration tools. Furthermore, at the integration layer all
the retrieved information from the previous steps are prepared
to be extracted into the end-to-end timing model according to
the following classification.

1) User-defined (User): The properties in this category are
extracted from the input specified by the end-user while
developing the SWA. The end user is the software devel-
oper or software modeler with an abstract overview of the
system. The end-user does not have any information about
the timing aspects of the system.

2) Software-architecture-derived (SWA-d): The properties
that are either inherited from other components in the
software-architecture; or are calculated according to the
user-defined properties; or implicitly initialized based on
other properties.

3) Configurable (Conf.): This category holds the parameters
obtained from the SWA, which are configured according
to some logical constraints, and algorithms for the sake
of optimizing timing performance of the system. Such
parameters could also be defined by system experts based
on their knowledge of the system requirements, i.e., system
configurators or integrators.

4) Analysis-derived (Analysis): The values of the parame-
ters in this category are obtained by performing various
analyses, e.g., response-time analysis of individual nodes,
response-time analysis of TSN network, and end-to-end
timing analysis response-time analysis.

Fig. 1: Model Extraction Method.
The mapping of the parameters in the system timing model

to each category is presented in Table I.

IV. EVALUATION WITH AN AUTOMOTIVE USE-CASE

The end-to-end timing model extraction method presented
in the previous section is implemented as a proof of concept
in the Rubus-ICE tool suite. In this section, we take advantage

2



TABLE I: Extracting timing model for TSN.

Component Parameters User SWA-d Conf. Analysis
Node Application ✓

Application Criticality ✓
SWC WCET ✓

Period ✓ ✓
Offset ✓ ✓
Priority ✓
Jitter ✓
Blocking ✓
Response Time ✓
Deadline ✓ ✓

Network Speed ✓
Link Set ✓
Class Set ✓
slopeA ✓ ✓
slopeB ✓ ✓
Preemption ✓ ✓

Message Transmission Mode ✓
Transmission Time ✓
Priority ✓
Payload ✓
Period ✓
Path Links ✓ ✓
Jitter ✓
Blocking ✓
Response Time ✓
Offset per Link ✓ ✓
Deadline ✓ ✓

SWC Chain Transaction end/start ✓
Data path ✓
Period ✓
Age Delay ✓
Reaction Delay ✓
Timing Constraints ✓ ✓

of a real automotive use-case to validate the applicability of
the proposed method. For the sake of evaluations, we first
model a SWA of a distributed embedded system, consisting
of a set of transactions, in RCM. Then we extract the end-
to-end timing model from the SWA in Rubus-ICE. Using the
extracted model, we perform the end-to-end timing analysis of
the SWA using the end-to-end timing analysis implemented in
Rubus-ICE [28] and discuss the analysis results.

A. Use-case Setup

In the use-case setup, we assume the Camera node is capa-
ble of generating TSN traffic, whereas HU and AVSink nodes
only receive TSN traffic from the Camera node. There are
2 distributed chains (transactions). Each transaction includes
tasks from two different nodes and one message between
the nodes. The initiator node has only one task that sends
the message to the network. The transaction terminator node
includes two tasks. On the receiver’s side, the first task receives
the TSN message and activates the second task in the receiver
node. We assume that all tasks in an node belong to the same
application. The WCET of all the task within the system are
set to 0,05 ms. The offsets of the sender tasks within the
system are set to the default value which is 0. The period of
all the tasks in the transaction 1 are set to 10 ms. Task 1 of
transaction 1 has the highest priority within the Camera node,
with the priority value of 2. The message inherits the period
of the Task 1 of transaction 1 and the payload size of the
message is 1542 Bytes. The message is transmitted utilizing

the TSN class ST . The offset of the message is configured as
0.013 ms.

Furthermore, the period of all the tasks within the transac-
tion 2 are set to 20 ms. Task 1 of transaction 2 has is the
lowest priority task in the Camera node (priority 1) and it
is transmitting a message with the payload size 1542 Bytes
utilizing class BE. The BE message has no offset.

Finally, the idle slopes are set to 0 for all the links since
the AVB classes are not used in the use-case. The reaction
and age constraints on all the transactions are subsequently
70 ms and 45 ms. These constraints are specified by expert
integrators from the industry (providers of the use-case).

B. Modelled use-case in Rubus-ICE

The system-level SWA of the use-case modeled with RCM
is depicted in Fig. 2. The system-level SWA consists of 3
node models. All the nodes are connected to one TSN network
model, as shown in Fig. 2. In the internal model of the TSN
network as shown in Fig. 3, the flow from all the sender nodes
are either towards HU or AVSink (the only sink nodes within
the system). The SWA of each node is depicted in Fig. 4,
where the RCM representation of the set of SWCs within
each node is shown by yellow components. For example, the
SWA of the Camera node consists of two SWC, where SWC1
in the Camera node that is used in transaction 1 has period
of 10 ms and sends an ST message with the priority of 2.
Besides, SWC2 in the Camera node is used in transaction 2
and has a lower priority than SWC1 (priority 1). The period
of SWC2 is 20 ms. Transaction 1 is initiated from the SWC1
in the Camera node and is terminated at the SWC2 in the HU
node, which has the priority of 4. The terminator task of the
transaction is triggered by the SWC1 in the HU node. As a
result, the terminator task inherits the period of its predecessor
task, namely SWC1 in the HU node.

Fig. 2: System-level SWA of the use-case.

C. End-to-end Response-Time Analysis Results

The results of the end-to-end timing analysis include reac-
tion and age delays of the transactions as well as response-
times of the network messages. For instance, transaction 1
which contains an ST message with the response-time of
0,025 ms. The age and reaction delays of transaction 1
are subsequently 20,100 and 30,100 ms. Transaction 2 is
also initiated at the Camera node, though from a different
SWC, namely (SWC2), and it is terminated at SWC4 in HU.
Transaction 2 uses the class BE of the TSN network. The
calculated response-time of the message in Transaction 2 is
0,153 ms. Besides, the age and reaction delays of transaction 2
are subsequently 40,300 and 60,300 ms. As the specified age
and reaction constraints on all transactions are 70 ms and

3



45 ms respectively, it is evident that all transactions meet their
specified timing constraints.

Fig. 3: The TSN network model of the use-case.

Fig. 4: SWA of the nodes modelled in RCM.

V. CONCLUSIONS

In this paper, we presented an automated and comprehensive
model extraction method which retrieves the end-to-end timing
information from the software architectures of TSN-based
distributed embedded systems. As a proof-of-concept, we
implemented the model extraction method in an industrial
toolchain, namely Rubus-ICE. We evaluated the proposed
method using a simple vehicular industrial use-case. The pro-
posed method can be adapted for other component models that
use the principles of model- and component-based software
development and use pipe-and-filter communication among
Software Components (SWC), e.g., AUTOSAR. One future
research direction is to provide an automated configuration
method for TSN by utilizing the proposed extraction method
and the timing analysis results.

Acknowledgement: The work in this paper is supported by the
Swedish Governmental Agency for Innovation Systems (VINNOVA)
through the DESTINE, PROVIDENT and INTERCONNECT projects
and KKS foundation through the projects DPAC, HERO and FIESTA.
The authors would like to thank all industrial partners, especially
Arcticus Systems and Volvo Construction Equipment Sweden.

REFERENCES

[1] IEEE, “IEEE Standard for Local and Metropolitan Area Network–
Bridges and Bridged Networks,” IEEE Std. 802.1Q-2018 (Revision of
IEEE Std. 802.1Q-2014), 2018.

[2] ——, IEEE Std. 802.1Qbv, IEEE Standard for Local and Metropolitan
Area Network–Bridges and Bridged Networks, Amendment 25: Enhance-
ment for Scheduled Traffic, 2015.

[3] IEEE Std. 802.1Qbu-2016: IEEE Standard for Local and Metropolitan
Area Network–Bridges and Bridged Networks, Bridges and Bridged
Networks - Amendment 26: Frame Preemption, IEEE, 2016.

[4] M. Ashjaei, L. L. Bello, M. Daneshtalab, G. Patti, S. Saponara, and
S. Mubeen, “Time-Sensitive Networking in Automotive Embedded Sys-
tems: State-of-the-Art and Research Opportunities,” Journal of Systems
Architecture, August 2021.

[5] L. Lo Bello, R. Mariani, S. Mubeen, and S. Saponara, “Recent Ad-
vances and Trends in On-Board Embedded and Networked Automotive
Systems,” IEEE Transactions on Industrial Informatics, November 2019.

[6] M. Staron, Automotive software architectures. Springer, 2021.

[7] K. Hänninen et al., “The Rubus Component Model for Resource
Constrained Real-Time Systems,” in IEEE Symposium on Industrial
Embedded Systems, 2008.

[8] S. Mubeen, H. Lawson, J. Lundbäck, M. Gålnander, and K.-L.
Lundbäck, “Provisioning of Predictable Embedded Software in the
Vehicle Industry: The Rubus Approach,” in 4th International Workshop
on Software Engineering Research and Industry Practice, May 2017.

[9] A. Johnsen and K. Lundqvist, “Developing dependable software-
intensive systems: Aadl vs. east-adl,” in International Conference on
Reliable Software Technologies. Springer, 2011.

[10] S. Mubeen, M. Ashjaei, and M. Sjödin, “Holistic Modeling of Time-
sensitive Networking in Component-based Vehicular Embedded Sys-
tems,” in 2019 45th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA). IEEE, 2019.

[11] A. Bucaioni, P. Pelliccione, and S. Mubeen, “Modeling Centralised
Automotive E/E Software Architectures,” E Software Architectures.

[12] “SymTA/S - Symbolic Timing Analysis for Systems,”
https://www.ida.ing.tu-bs.de/en/symtas, [Online], 2022-04-24.

[13] A. Arestova, M. Martin, K.-S. J. Hielscher, and R. German, “A Service-
oriented Real-time Communication Scheme for AUTOSAR Adaptive
using OPC UA and Time-sensitive Networking,” Sensors, 2021.

[14] A. Bucaioni, L. Addazi, A. Cicchetti, F. Ciccozzi, R. Eramo, S. Mubeen,
and M. Sjödin, “MoVES: A Model-Driven Methodology for Vehicular
Embedded Systems,” IEEE Access, 2018.

[15] A. Bucaioni, M. Becker, J. Lundbäck, and H. Mackamul, “From
AMALTHEA to RCM and Back: a Practical Architectural Mapping
Scheme,” in 2020 46th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), 2020.

[16] A. Bucaioni, V. Dimic, H. Lönn, M. Gålnander, and J. Lundbäck,
“Transferring a Model-based Development Methodology to the Auto-
motive Industry,” in 22nd IEEE International Conference on Industrial
Technology, March 2021.

[17] S. Mubeen, M. Gålnander, J. Lundbäck, and K.-L. Lundbäck, “Extract-
ing Timing Models from Component-based Multi-criticality Vehicular
Embedded Systems,” in 15th International Conference on Information
Technology : New Generations, April 2018.

[18] F. Stappert, J. Å. Jönsson, J. Mottok, and R. Johansson, “A Design
Framework for End-To-End Timing Constrained Automotive Applica-
tions,” in Embedded Real Time Software and Systems Conference, 2010.

[19] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson, “A Compositional
Framework for End-to-end Path Delay Calculation of Automotive Sys-
tems under Different path Semantics,” in Workshop on Compositional
Theory and Technology for Real-time Embedded Systems, 2008.

[20] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “End-to-
end Timing Analysis of Cause-Effect Chains in Automotive Embedded
Systems,” Journal of Systems Architecture, October 2017.

[21] ——, “Synthesizing Job-level Dependencies for Automotive Multi-
rate Effect Chains,” in 2016 IEEE 22nd International Conference on
Embedded and Real-Time Computing Systems and Applications, August
2016.

[22] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Support for End-to-End
Response-Time and Delay Analysis in the Industrial Tool Suite: Issues,
Experiences and a Case Study,” Computer Science and Information
Systems, January 2013.

[23] S. Mubeen, T. Nolte, M. Sjödin, J. Lundbäck, and K.-L. Lundbäck, “Sup-
porting Timing Analysis of Vehicular Embedded Systems through the
Refinement of Timing Constraints,” International Journal on Software
and Systems Modeling, January 2017.

[24] M. Ashjaei, N. Khalilzad, S. Mubeen, M. Behnam, I. Sander,
L. Almeida, and T. Nolte, “Designing End-to-end Resource Reservations
in Predictable Distributed Embedded Systems,” Real-Time Sys., 2017.

[25] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Communications-oriented
Development of Component-Based Vehicular Distributed Real-Time
Embedded Systems,” Journal of Systems Architecture, January 2014.

[26] M. Ashjaei, S. Mubeen, J. Lundbäck, M. Gålnander, K.-L. Lundbäck,
and T. Nolte, “Modeling and Timing Analysis of Vehicle Functions
Distributed over Switched Ethernet,” in 43rd Annual Conference of the
IEEE Industrial Electronics Society, October 2017.

[27] S. Mubeen, M. Gålnander, A. Bucaioni, J. Lundbäck, and K.-L.
Lundbäck, “Timing Verification of Component-based Vehicle Software
with Rubus-ICE: End-user’s Experience,” in IEEE/ACM 1st Interna-
tional Workshop on Software Qualities and their Dependencies, 2018.

[28] B. Houtan, M. Ashjaei, M. Daneshtalab, M. Sjödin, and S. Mubeen,
“Supporting End-to-end Data-propagation Delay Analysis for TSN Net-
works,” Tech. Rep., November 2021.

4


