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Abstract—Autonomous systems are supposed to automatically
plan their actions and execute the plan without human interven-
tion. In this paper, we propose a model-based two-layer frame-
work for policy synthesis and test-case generation for autonomous
systems. At the high-level layer of the framework, we have two
kinds of methods for synthesizing policies whose correctness
is guaranteed by model checking. The autonomous system’s
controller executes synthesised policies at the low-level layer. As
the kinematics of autonomous systems is often nonlinear and the
environment may influence the results of their actions, formally
verifying the controllers is extremely difficult. We propose a novel
method for generating test cases for the controllers at the low-
level layer. The method employs reinforcement learning for test-
case generation and model checking to ensure that the test cases
faithfully realize the execution of the policy. The framework is
designed in Uppaal Stratego, which integrates model checkers
and algorithms for policy synthesis. Therefore, the framework
separates concerns and seamlessly interchanges the information
between two layers.

Index Terms—autonomous systems, model checking, testing,
test-case generation

I. INTRODUCTION

Autonomous systems, such as self-driving vehicles, are
systems that operate without human intervention. They are
often designed to collaborate to accomplish a mission that
requires executing a sequence of tasks repetitively. Therefore,
such systems need to be intelligent in the sense that they
can plan their paths toward the target positions without a
collision, schedule their tasks with respect to a regulated order
of execution, and accomplish the mission eventually.

Path-finding algorithms such as A* [1] are often used for
navigation. However, task scheduling is outside the scope
of such algorithms, which requires the task executors (e.g.,
autonomous systems) to carry out the mission by conforming
to the prerequisites of its tasks, such as task A must be
followed by task B. Even if a mission plan that includes
paths and task schedules is computed, the actual execution
of the mission plan is error-prone because the real trajectories
of executing a plan have tracking errors. Figure 1 depicts
a planned path and a possible real trajectory tracking this
planned path. First, the planned path is infeasible for any
vehicle because of the sharp turning at each waypoint. Second,
due to the limited mobility or inertia of vehicles, a deviation
from the planned path is inevitable. The deviation is often
known as tracking errors. Hence, we need to find an approach
to check if the execution of the mission plan is correct. For
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Figure 1. Examples of a planned path and a possible real trajectory

brevity, we call a mission plan for a set of autonomous systems
a policy henceforth.

Software development of autonomous systems has to fol-
low safety regulations and standards. These standards require
rigorous testing practices [2]. Software testing is a practice to
gain confidence that the autonomous system works as intended
or that new faults can be discovered. In this domain, software
testing often aims to find faults as early in the development
process as possible in a more efficient way. Design and
architectural models are created during software development
and testing using these designs as input to create tests intended
to check if the system meets its specifications in terms of the
overall interactions among the system components. This type
of testing is sometimes known as system testing [3], and its
main purpose is to discover design problems. Testing, in this
case, may address such properties as functional correctness,
real-time guarantees and performance [4].

In this paper, we introduce our framework for policy synthe-
sis and test-case generation for testing the correctness of policy
execution. As policy synthesis and execution are inherently
different and concern different aspects of autonomous systems,
our framework provides a separation of concerns. Concretely,
the framework consists of two layers, where a high-level
layer (HL) is responsible for policy synthesis and a low-level
(LL) focuses on the execution of the synthesized policies. As
a continuation of our former framework for modelling and
verification of autonomous systems [5], this new framework
has the following improvement:

« A more comprehensive methodology for policy synthesis.
Policy synthesis in the new framework considers the
actions of both the systems and the environment. Methods
for synthesis can be based on graph search or learning.
Most importantly, policies synthesized by the HL can



be directly used in the models at the LL and control
the (possibly nonlinear) model of autonomous systems
to move and perform their tasks.

e An approach for automatic test-case generation is pro-
posed for the LL. The test-case generation is based on
model checking [6] and reinforcement learning [7] and
is useful in experiments (Section V).

The framework is developed in UPPAAL Stratego [8], which
integrates the Uppaal suite of (statistical) model checking
[9] [10] and policy synthesis for timed games [11]. We
use (priced) timed games ((P)TG) for policy synthesis and
test-case generation [12]. At the HL of the framework, we
provide a graph-search-based method [13] and a learning-
based method [14] to synthesize policies that are guaranteed
to accomplish the mission. At the LL of the framework, we
provide a method for generating trajectories that faithfully
realize the execution of policies. These generated trajectories
are used as test cases for detecting errors where the deviation
from the policy exceeds the boundary of tracking errors.

In all, the contributions of this paper are listed as follows:

o A framework for policy synthesis and test-case genera-
tion for autonomous systems. As far as we know, this
framework is the first attempt to integrate both aspects
into a holistic solution.

o An automatic test-case generation for testing the policy
execution of autonomous systems. The generation is
based on reinforcement learning and the test cases are
guaranteed to be a faithful realization of a policy by
model checking.

The remainder of the paper is organized as follows. Section II
presents the background knowledge for reading this paper.
Section III defines the key concepts of our framework and
methods and presents the problem this paper solves. Section IV
is a description of our framework and methods for policy
synthesis and test-case generation. Section V is about the
experiments for showing the applicability of our methods. We
introduce the related work of this study in Section VI before
presenting the conclusion and future work in Section VII.

II. BACKGROUND

In this section, we introduce the background knowledge of
this paper, including timed games and their policies. We also
introduce a tool for solving timed games. In this paper, we
denote the sets of real numbers as R.

A. Timed Games and Uppaal Stratego

A timed automaton (TA) is a finite-state automaton ex-
tended with real-valued variables, called clocks, suitable
for modelling real-time systems [15]. A timed game (TG)
is a TA with its set of actions partitioned into controllable
and uncontrollable ones. Uppaal Stratego [8] is a tool that
integrates the Uppaal suite: a symbolic model checker [9], a
statistical model checking [10], a symbolic policy synthesizer
[16] and a statistical policy synthesizer [8] for timed games
(TG). Imagine there is a game of disk throw. The goal of
winning the game is to keep the disk in the air as long

as possible and catch the disk when it comes back. Fig. 2
depicts two TG of such a game in Uppaal Stratego. In a
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Figure 2. An example of a network of (P)TG in Uppaal Stratego.

TG template, locations (e.g., L2) are blue circles. The double
circles (e.g., S1) denote the initial location. Clocks (e.g., t)
are special variables that increase simultaneously when the
TG is executed. Invariants (e.g., t<=10) on locations must
be true when the TG stays at the location. Edges connecting
locations are partitioned into controllable ones (solid lines)
and uncontrollable ones (dashed lines). Delays allow time to
elapse on locations as long as the associated invariants are
not violated. Edges are enabled when the guards (e.g., t>=5)
on them are true. Assignments on edges reset clocks (e.g.,
t=0) or update data variables (e.g., score = 10). When
ordinary differential equations are used in TG, the changing
rates of clocks are defined (e.g., pos’ ==cos (PI/4)). These
TG are called priced timed games (PTG). A network of (P)TG
(NPTG) is a parallel composition of (P)TG that can synchro-
nize via channels (e.g., back! is synchronized with back?).
Transitions can take place when a channel is declared as a
broadcast channel even when no other synchronous transitions
are enabled. When a location is marked as committed (e.g.,
L1), no delay is allowed at that location, and the next transition
must start from one of the committed locations in the NPTG.

B. Policy Synthesis and Model Checking

A solution for winning a timed game is a policy that
chooses controllable actions at different states of the model
such that it eventually reaches a winning state. For example,
in the disk throw game in Figure 2, players can choose the
direction of throwing their disks, but when the disks return
is decided by the environment (i.e., uncontrollable actions). A
winning policy always chooses to throw the disk to the left
because it makes the disks fly the longest time (i.e., [15,
20]. A formal definition of policies for timed games is in
literature [11]. Uppaal Stratego provides various methods of
synthesizing winning policies and linking a library to the tool
as an external learning algorithm. In this paper, we utilize this
function to implement our policy synthesis methods and test-
case generation method.

Model checking is a technique that explores the state space
of a model and checks if it satisfies properties expressed by
logic formulas, such as computation tree logic (CTL) [6].
Uppaal Stratego has a model checker that we utilize in this
paper to verify whether the generated test cases hold our
desired features. In this paper, we use the following forms
of CTL properties, where p is an atomic proposition over the
locations, clocks, and data variables of TG:



(1) Invariance: A[] p, meaning that for all the states at all
paths of the model, p is satisfied,

(ii) Liveness: A<> p, meaning that for all paths of the model,
p is satisfied by at least one state at each path.

C. Automated Test Case Generation

If software testing is severely constrained, this typically
means that less time is devoted to manually designing highly
effective test cases. As a solution to this problem, automated
test generation [17] has been proposed to complement manual
testing and allow some test cases to be created with less effort.
However, it has been a problem for software professionals
and researchers over the last decades to develop effective,
applicable and practically relevant test generation techniques,
and tools [18]. In the case of using a model for test generation,
we speak about model-based testing (MBT), which has gained
a lot of attention [19]. In MBT, test artefacts are generated
using an explicit model representing the environmental, func-
tional and non-functional behaviour of the system based on
a certain modelling language and notation such as Unified
Modelling Language (UML), finite state machine (FSM) or
timed automata, just to name a few formalisms.

III. PROBLEM DEFINITION

In this section, we describe the system and problem that
this paper solves. Figure 3 depicts the structure of an au-
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Figure 3. The structure of an autonomous system

tonomous system that works in a confined environment, where
the system’s data flow is also shown. From the beginning,
the information of the environment (namely mission map or
shortly map) is input into a module called mission planner,
where a policy for the autonomous system is constructed.

A. Mission Map, Controller, and Policy

We define the input of the mission planner as follows:

Definition IIL.1 (Mission Map). A mission map is a 5-tuple
M =< X,0,,I,G,Req >, where (i) X € R% is the state
space of the map, (ii) O, C X is the unsafe area, (iii) Z C X
is the initial area, (iv) G = {G | G C X'} is a set of goal
areas, and (v) Req is a set of temporal logic formulas.

For brevity, we use map instead of mission map in the
remainder of the paper. Figure 1 shows a map of 2-dimensional
space (i.e., d = 2). In other scenarios, the dimension of the
state space can be high, such as in robotic arms [20]. The
safety of such robotic arms is not only about their physical
positions in a 3D space but also the time points and speeds

of arriving at different positions. Hence, time and speed are
another two dimensions of the map. There are multiple goal
areas and a set of requirements written in temporal logic in
a map because autonomous systems are required to not only
reach the goal areas but also fulfil the requirements of when
to reach there or the order of reaching there, etc.

Given a map, a mission planner can generate a guaranteed
policy to guide the autonomous system to avoid unsafe areas,
reach the goal areas, and satisfy the requirements, regardless
of how the environment may behave. For example, according
to its schedule, a self-driving bus can decide when to leave the
bus terminal and the order of arriving at the bus stations, but
the travelling time is influenced by the environment, such as
the weather. Our policy must tolerate such uncertainties and
guarantee the system to always accomplish its mission. Poli-
cies can be in various forms, such as score tables in Q-learning
[7] and artificial neural networks [21]. Regardless of its form, a
winning policy guides autonomous systems to reach their goal.
Winning policies are referred to as policies in the remainder of
this paper. Note that a policy alone is not executable because
it must be executed by a controller. Nevertheless, a policy can
be deployed on different controllers as it has no knowledge of
its controller. Additionally, policies make several assumptions,
such as the time intervals of performing actions, which must
reflect a correct estimation of the actual policy execution. We
call the assumptions the premises of a policy.

B. Reference Trajectory and Real Trajectory

As depicted in Figure 3, when a reference controller exe-
cutes a policy, it generates a reference trajectory for the system
to track. As the physical system often has tracking errors, its
tracking controller is designed to produce control commands
for compensating for the system’s deviation from the reference
trajectory. Intuitively, a policy in Figure 1 may consist of
waypoints of the planned path and actions of moving to
different directions at each of the waypoints. A corresponding
reference trajectory is the piece-wise continuous path denoted
by the blue line, and a real trajectory tracking this reference
trajectory is the dotted red line.

As aforementioned, autonomous systems can only partially
control the results of their actions because the environment
can also impact the results. Therefore, in Figure 3, we use
two kinds of states, namely states (states of the autonomous
system) and state. (states of the environment). The former
consists of variables controlled by the autonomous system,
such as the system’s speed. The latter consists of variables
(partially) controlled by the environment, such as the time
of finishing actions performed by autonomous systems. As
Defintion III.1 defines the stationary elements in an environ-
ment, state. reflects its dynamic states. For example, when
a robot picks up a box and puts it on a conveyor belt, the
states refers to its state, which changes when the robot’s
actions are done. However, when to change state., i.e., when
the box is delivered, is decided by the environment, as the
speed of the conveyor belt may vary. If there is another robot
waiting for the box at the other end of the conveyor belt, its



policy must consider the varying time of delivery. Hence, when
executing a policy, a reference controller must perceive state,,
read the policy, and generate a reference trajectory accordingly
to accomplish the mission no matter how the environment
behaves. Formally, a trajectory in a map M over a duration D
is a function ¢ : [0, D] — X, which maps each time ¢ € [0, D]
to a state z € X.

As policies neglect the details of action execution, reference
trajectories are supposed to fill in such details. For example, a
policy may not have information on the velocity at which an
autonomous system should travel. When a reference controller
executes the policy, it needs to fill in the system’s velocities
at different positions such that it can catch the deadline of
the mission and fully stop when reaching the destination. In
summary, reference trajectories have four features:

1) Reference trajectories must comply with the physical
capability of the system, e.g., the highest speed.

2) Reference trajectories must hold the premises of the
policy, e.g., time intervals of executing actions.

3) Reference trajectories must realize the policy faithfully.

4) Reference trajectories must satisfy Proposition III.1.

The first two features are straightforward because the details
of the action that reference trajectories fill in must be realistic
(i.e., compliant with the system’s capability) and compatible
with the policy (i.e., holding the policy’s premises). The third
feature means that the reference trajectories must not contain
behaviours not allowed by the policy (i.e., faithfulness) and
miss any behaviours that the policy presents (i.e., realization).
The fourth feature is about the validity of reference trajecto-
ries. Specifically, we want the reference trajectories to avoid
unsafe areas and visit the goal areas in a manner that satisfies
the mission’s requirements. Moreover, to ensure the validity
of the real trajectories, reference trajectories must tolerate
errors, that is, the differences between the real trajectories
and reference trajectories. Formally, we define the reach-avoid
property that we want the trajectories to hold.

Proposition III.1. Given a map M =< X,0,,Z,G, Req >,
a reference trajectory 1, and a real trajectory p tracking
with an error e = p(t) — ¥(t) € X, @ and p are valid if

(i) Y(0)+ecZ

(ii) Vt € [0, D], (¥(t) +e) N0, =
(iii) VG € G,3t € [0, D], ((t) +e) NG #
(iv) Vr € Req,¥(t) +e=r

Many existing studies synthesize trajectories satisfying
Proposition III.1 [22] [23]. Hence, as long as the tracking
controller of an autonomous system can keep the tracking
errors within the tolerance of the reference trajectories, the real
trajectories are guaranteed to be valid too. However, formally
verifying whether real trajectories are within the boundary of
tracking errors is extremely difficult as the autonomous sys-
tems’ kinematics is nonlinear, and the environment’s reactions
are uncertain. In this paper, we combine formal methods, e.g.,
model checking and testing, in our framework. A correctness-
guaranteed mission planner is designed at the high-level layer

of the framework, and a learning-based test-case generation is
proposed for discovering faults in the real trajectories at the
low-level layer.

IV. FRAMEWORK AND METHODS

In this section, we introduce our framework for policy syn-
thesis and test-case generation for testing tracking controllers.
We also briefly introduce the concrete methods for policy
synthesis before we describe our test-case generation methods.

A. The Two-Layer Framework

Figure 4 depicts the two-layer framework that we propose in
this paper. The high-level layer is for policy synthesis, where
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Figure 4. The two-layer framework

the models are timed games, and synthesis methods are based
on either graph search [13] or learning [14]. Products of this
layer are policies that are either score tables or artificial neural
networks. Policies are sent to the low-level layer, where the
reference and tracking controllers are modelled as timed games
and priced timed games, respectively. Ordinary differential
equations (ODE) are used in priced timed games to describe
the dynamic function of controllers.

Testing at the low-level layer checks if the tracking errors
of the real trajectories ever exceed the tolerance of their
reference trajectories and never adjust back within a time
frame. Therefore, the test cases we generate at this layer are
the sampled points at the reference trajectories, which are
periodically fed to the tracking controller.

In some studies [22] [24], a reference trajectory is a
single path connecting waypoints. This does not apply to
our problem, as executing a policy usually forms multiple
reference trajectories due to uncertain environmental reactions.
When executing a policy, the reference controller only gets
to choose controllable actions and waits for the reaction
from the environment, which can be uncertain and result in
various trajectories. Therefore, our reference controller has to
be aware of the environment’s dynamic states (i.e., state.) and
generates reference trajectories accordingly, which present a
faithful realization of the policy.

B. Policy Synthesis

We have two ways of synthesizing correctness-guaranteed
policies, that is, a graph-search-based method [13] and a



learning-based method [14]. As the focus of this paper is
the two-layer framework and the novel method for test-case
generation, policy synthesis is presented in Appendix B'.

1) Models for Policy Synthesis: Models play an essential
role in our framework, as they are used in both policy
synthesis and test-case generation. Although models for these
two aspects are slightly different, they are all timed games and
designed in UPPAAL Stratego [8].

We abstract two kinds of actions of the autonomous systems,
namely moving and executing tasks, and define two kinds
of TG models for policy synthesis, namely movement TG
and task-execution TG. However, users of our framework
may want to abstract the actions differently, but it would not
influence the applicability of our methods. Figure 5 shows
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Figure 5. Structures of the TG models.

the structures of the TG models. Locations P1 and P2 stand
for any valid positions in the environment, and location F1T2
models the travelling duration (i.e., cost) from P1 to P2.
Figure 5(b) depicts the task-execution TG that models the best-
case-execution time (i.e., BCET) and worst-case-execution
time (i.e., WCET) of the task. In both TG models, controllers
only choose when to start the actions of finishing moving and
task execution. When to finish, the actions are uncontrollable,
as they are performed by the environment. Policy synthesis
generates policies that guide autonomous systems to choose
controllable actions to eventually reach their goal regardless
of how the uncontrollable actions are performed.

After a policy is synthesized, we test if controllers of
the autonomous system can execute the policy correctly, i.e.,
if its real trajectory ever exceeds the boundary of tracking
errors. Next, we introduce the model for the controllers before
describing the test-case generation method.

C. Controller Model

As shown in Figure 3, the tracking controller is responsible
for producing commands that control the physical system to
follow the reference trajectory. Physical systems are entities in
the real world, so our goal is to test tracking controllers where
software and hardware can have faults. As a tracking controller
periodically takes in points on a reference trajectory as the
tracking target, test cases for tracking controllers are reference
trajectories. Our test-case generation is model-based, which
extends the TG models for policy synthesis. Figure 6 depicts
how the movement details are modelled by a TG of reference
controllers (RTG)?. Figure 6(a) partially shows the adjusted
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Figure 6. Movement models at different levels

TG model for movement (MTG). In allow (), MTG searches
the policy to see if going from P1 to P2 is allowed. When the
movement starts, the RTG transfers to a committed location D1
synchronously with the MTG via channel drive. At D1, the
RTG needs to choose a speed between zero to the maximum
speed. This is one movement detail that is not considered in the
original MTG because when synthesizing policies travelling
times are estimated. Other movement details, such as the
turning angle, are modelled similarly, which are not shown
in Figure 6(b) for the sake of brevity.

After making a series of decisions, the RTG comes to
location Moving, from where the model periodically transfers
back to location D1. The period is set to be a constant
number period, which means that we sample points on
the reference trajectory every period time units via function
move (). After getting back to D1, the RTG starts to make
a series of decisions again. First, as the travelling time is
one of the premises of the policy when the MTG transfers
to location P2, the RTG also transfers synchronously via
channel leave. In this way, reference trajectories generated
by the RTG hold the policy’s premises about travelling time.
Second, the function assignReward () is called on this
edge because the reference controller must ensure that the
reference trajectories satisfy several conditions. For example,
we may want the system to stop when arriving at P2. So,
the periodic decision on speed must let the system be able to
reach P2 with cost time units and stop (cost is defined
in MTG). The function assignReward () is for assigning
rewards when a reference trajectory meets such conditions.
In Section IV-D, we introduce how to utilize the rewards to
generate valid reference trajectories. RTG for describing the
details of task execution is constructed similarly.

As aforementioned, policies can be in various formats, such
as score tables and neural networks. When a policy is tabular,
we suggest encoding it as a C-code array in Uppaal Stratego.
When the system’s state space is high-dimensional, such as
the Airborne Collision Avoidance System X [25], policies can
use large memory space. Neural networks provide a solution
to represent large policies in much less memory space [25].



However, neural networks require complex computation, but
Uppaal Stratego only supports a subset of the C language.
Hence, we suggest compiling the program of a neural network
as an external library and calling it in Uppaal Stratego as an
external function®.

In a similar way, PTG for tracking controllers (TPTG) that
cope with tracking errors can also be constructed. Though
MTG plus RTG are enough for generating test cases, we build
TPTG for selecting test cases that are more likely to detect
faults. We leave the presentation of TPTG as future work.

D. Model-Based Test-Case Generation

Test-case generation is about automatically creating ref-
erence trajectories that hold the four features mentioned in
Section III-B. We use the MTG and RTG models in Sec-
tion IV-C to generate the test cases. The first feature, that
is, complying with the physical capability of autonomous
systems, is achieved by the constant numbers in the model,
which regulate the limits of variables. For example, when
choosing a speed, the range of selection is set to be [0,
SPEEDMAX] (see Figure 6(b). Before describing how the rest
of the features are achieved, we introduce the method for test-
case generation.

Reference trajectories are supposed to fill the execution
details of their policies, such as the movement details in
Figure 6. To obtain the execution details, RTG needs to make
a series of decisions periodically, such as the speed of move-
ment. However, RTG itself does not know how to make such
decisions. Therefore, we assign rewards to the decisions made
by RTG and adopt reinforcement learning [7] to synthesize
a strategy that guides RTG to make good decisions. Uppaal
Stratego provides queries for learning strategies for timed
games. Query (1) is one form of these queries.

strategy § = maxE (x) [<=T]{dv}-—>{cv}:<> CO

(D
The keyword maxE (x) means simulating the model while
running the learning algorithm with the purpose of maximizing
“x”, which is a formula for calculating the immediate scores
of taking an action at a state. The constant variable T is the
maximum simulation time, dv is a set of expressions regarded
as discrete values, and cv is a set of expressions regarded as
continuous values. The formula “<> CO” means only the runs
that eventually reach a state holding condition CO are selected.
As depicted in Figure 7, when running Query (1), Uppaal
Stratego simulates the model for a fotal number of runs, among
which only a subset of runs are selected (aka. good runs)
because they reach the states holding condition CO. The good
runs and their scores (i.e., the value of x) are then passed to
the learning algorithm, which partially observes the states by
only looking at the expressions in dv and cv. The learning
algorithm calculates the scores of the state-action pairs in the
sampled runs, accumulates the scores, and updates the strategy.
When a user-defined number of good runs are sampled, or the

3This feature is currently only supported in the Stratego version of Uppaal,
version 4.1.20-7 or later. See https://docs.uppaal.org/.

simulation runs reach the total number, learning finishes and
the final strategy is considered to be able to guide the model
to always eventually satisfy condition CO.
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Figure 7. A process of test-case generation. Yellow circles: states holding
CO. Purple circles: states exceeding the simulation time without holding CO.

Now, we set formulate x in Query (1) to be the reward that
is updated by the function assignReward () in the RTG.
We set formulate CO to be time > MAX, where time is
a global clock that is never reset, and MAX is an estimated
time for the system to accomplish its mission. We set the
expressions in dv to be the discrete variables that represent
the sampled points on reference trajectories, and leave cv to
be empty. Running Query (1) with the model composed of
MTG and RTG in Uppaal Stratego gives us a strategy that
guides the reference controller on how to make decisions to
fill the details of policy execution.

We link an external library to Uppaal Stratego to be the
learning algorithm, which receives the input from the model
periodically. Besides learning, the external library can also
store the outputs of the reference controller, which are in dv,
for generating test cases. When the learning finishes, we obtain
a decision-making strategy that contains not only the decisions
the reference controllers should make for executing its policy
but also the test cases (i.e., outputs of the reference controller)
for the tracking controller.

Next, we introduce how the second feature, i.e., holding
the premises of policies, is achieved by the synchronization
between MTG and RTG. When using queries in the form
of Query (1), one must only declare broadcast channels for
synchronization, which means that MTG can transit without
synchronizing with RTG. Hence, we add an auxiliary variable
syn for verifying if MTG is always synchronized with RTG
when actions start and finish. For example, in Figure 6, when
an action of movement starts, the MTG transits from P1 to
F1T2 while the RTG transits from Idle to D1 too. We name
the former transition in MTG the emitting transition as it sends
the signal of synchronization to RTG and the latter one in
RTG the receiving transition. In Uppaal Stratego, synchronous
transitions take place consecutively with the values of clocks
unchanged, and updates on emitting transitions always happen
before the ones on receiving transitions. So, when we flip the
auxiliary variable syn to false at emitting transitions in MTG



and then flip its value back to true at the receiving transitions
in RTG, the value of syn should always be true if MTG and
RTG are always synchronized on the actions of starting and
finishing actions. Formally, we verify the following query, in
which ValidID represents integers ranging from the ID of
the first autonomous system to the ID of the last one.

A[] forall (id:ValidID) syn[id] under ¢ (2)

The keyword under forces the model checker to call the
external library where the decision-making strategy ¢ is stored.
Specifically, when the model checker encounters multiple
controllable actions, it calls the external library, which returns
the actions with the best score. Next, instead of exploring
all the actions in classic model checking, the model checker
only chooses the actions returned from the external library. In
this way, the model’s behaviour is controlled by the external
library. If Query (2) is satisfied, we can be sure that MTG
and RTG are always synchronized when they are under the
control of strategy . Hence, the premises of policies, such as
the time intervals of performing actions, are held by RTG.

The third feature, that is, realization and faithfulness of the
reference trajectories, is achieved for the following reasons.

1) Realization: Realization requires that for every path
in a policy, there is a reference trajectory executing the
path. The difficulty in achieving this feature is that if the
reference controller’s policy and decision-making strategy are
synthesized by learning, the results may contain unuseful
information as the learning is based on a random simulation.
In our previous work, we propose a method for compressing
strategies in Uppaal Stratego by removing unuseful state-
action pairs [14]. We adopt that method to guarantee that
the policies and decision-making strategies of reference con-
trollers only contain the state-action pairs that accomplish
the mission eventually. Assume C is composed of MTG and
C* is composed of MTG and RTG, both C and C* have a
Boolean variable m that turns frue only when the mission
is accomplished, policy o is synthesized by C and J is the
decision-making strategy synthesized by C*, the following
queries can remove the unuseful state-action pairs in o and
d, where C*|o means o is encoded in C* (e.g., the allow
function in Figure 6(a)).

A<> C.m under o 3)
A<> C*|o.m under § ()

Similar to the verification of Query (2), when verifying
Queries (3) and (4), the model checker explores the model
state space exhaustively by consulting the external library until
reaching a loop, a state that has no succeeding states, or a
state where C.m or C*|o.m is frue, respectively. In the last
case, the query is satisfied, which means that the model can
always eventually accomplishes the mission regardless of how
the environment behaves. Additionally, in the external library,
we mark the visited state-action pairs. So, once the query is
satisfied, the marked pairs are sufficient to guide the model
toward mission accomplishment. Last, the unmarked pairs are

considered as unuseful information that is removed from the
strategy. In essence, if Query (3) is satisfied, all and only the
paths that eventually accomplish the mission are included in
o. If Query (4) is satisfied, all and only the decisions under
the control of ¢ and § are chosen by the reference controller,
and they also guarantee to eventually accomplish the mission.
Collectively, if Query (2) to Query (4) are satisfied, § stores
the sampled points of the reference trajectories that realize o.

2) Faithfulness: Faithfulness requires that every reference
trajectory executes a corresponding path in the policy. Similar
to the reasoning of realization, faithfulness is also guaranteed
by the satisfaction of Queries (2) to (4).

The last feature of reference trajectories is the satisfaction
of Proposition III.1. As aforementioned, there are many stud-
ies about synthesizing trajectories satisfying the proposition.
Hence, in this paper, we utilize the concept of safe envelope
that is proposed in literature [23]. Essentially, a safe envelope
of a reference trajectory is a region surrounding the trajectory
as an axe. As long as the dynamic function of tracking errors
has a Lyapunov function, they are bounded within the safe en-
velope. We use the width of the safe envelope as the tolerance
of our reference trajectories (i.e., e in Proposition III.1). The
test cases here are for testing whether a tracking controller
goes outside the safe envelope of its reference trajectory.

V. A CASE STUDY ON AN AUTONOMOUS QUARRY

The methods for policy synthesis are evaluated in our
previous studies in an industrial use case of an autonomous
quarry [13] [14]. In this section, we evaluate the performance
of the test-case generation method in this use case provided
by Volvo Construction Equipment, Sweden.

A. Case Description

Trucks and wheel loaders carry out their missions au-
tonomously in an autonomous quarry. Wheel loaders are
responsible for digging stones at stone piles and loading
them into trucks. The latter carries the stones to a primary
crusher and unloads them. After that, trucks transport the
crashed stones to a secondary crusher and unload them again.
An autonomous quarry is supposed to work 24 hours per
day without human intervention. Hence, they need to plan
their paths and schedule their tasks so that all stones are
eventually carried to the secondary crusher. In this case, we
re-use a scenario created in our previous experiments [14],
where we showed how the policy synthesis is accomplished.
In this scenario, we have one wheel loader, one truck, two
primary crushers that the trucks need to choose from, and one
secondary crusher. A policy is synthesized, and in the next
subsection, we introduce how test cases are generated.

B. Test-Case Generation

The synthesized policy regulates the truck to move to a
stone pile first, collaborate with the wheel loader there to get
unloaded with stones, and then move to a primary crusher to
unload stones before it finishes the mission at the secondary
crusher. Now, the reference trajectories of this policy must



fill in the details of movement so that the truck knows when
to accelerate or brake so that it can reach each of the task
positions at a proper speed (e.g., fully stopped) and the
direction of turning when it needs to avoid obstacles.

We design a model based on the template in Figure 6, train
it in Uppaal Stratego using Q learning and obtain a strategy
that guides the truck to adapt its speed and moving direction.
Next, we remove the unuseful information in the strategy and
store the strategy as a JSON (JavaScript Object Notation) file.
Then, we parse this JSON file in a Java program, where
the kinematics and tracking controller of the truck is also
programmed. Therefore, the JSON file stores the test cases,
and the Java program is the system under test in this case study.
The ordinary differential equations of the truck’s kinematics
and tracking errors are presented in Appendix C.

C. Experimental Results and Discussion

We evaluate two aspects of the test-case generation method,
i.e., efficiency and effectiveness. Efficiency refers to the gen-
eration time per ten test cases, and effectiveness refers to the
number of faults detected in the same system under test. As we
are looking for the test cases (i.e., reference trajectories) that
faithfully realize the execution of a policy, the results must
satisfy properties in the forms of Queries (2) - (4). Hence,
generation time refers to synthesizing a strategy that satisfies
the properties but does not include the verification time.
However, the verification is considerably short (i.e., within a
second) for all the cases. Additionally, the periods of sampling
points on reference trajectories (i.e., period in Figure 6(b))
reflect the granularity of calling the learning algorithm. Short
periods mean accurate sampling on the reference trajectories
and, thus, a long time for learning.

Table 1
EXPERIMENTAL RESULTS SHOWING THE EFFICIENCY AND EFFECTIVENESS
OF THE TEST-CASE GENERATION METHOD

period efficiency effectiveness
10 1.5 s/10 cases 1 fault
5 4.2 s/10 cases 2 faults
1 26.4 s/10 cases 11 faults

Table I presents the experimental results. Efficiency drops
17.6 times (i.e., 26.4/1.5) when the length of periods decreases
ten times (i.e., 10/1), showing that learning becomes much
more difficult when the sampling periods are shorter. However,
the effort of learning is not in vain, as effectiveness increases
when the sampling period becomes short. The faults are
the points where tracking errors exceed the threshold, and
the tracking controller cannot get the system back into the
boundary of track errors within a time frame.

In summary, our test cases are guaranteed to cover the entire
policy as the generated reference trajectories satisfy properties
in the forms of Queries (2) - (4). The generation time of test
cases is short considering the difficulty of the job, i.e., learning
comprehensive strategies that faithfully realize the execution
of a policy. The test cases can detect faults in the system under
test. Via an observation of the faults, we conclude that when

the turning angle changes dramatically, the tracking controller
tends to lose control over the system, failing to restrict the
tracking errors within a threshold.

VI. RELATED WORK

Testing for multi-agent systems (MAS) is a widely studied
area. Araujo et al. [26] conducted a systematic review of
autonomous systems testing, presenting the state-of-the-art
solutions and research gaps in this area. Our framework fills
the gap of a holistic framework that combines the discrete
and continuous aspects of the systems. The formal qualitative
analysis of our generated test cases is another contribution
that fills a gap. Tao et al. [27] designed a method for
generating test cases based on ontology. They use UML as
the modelling language, whereas we use formal models that
guarantee the quality of the generated test cases. Gongalves
et al. [28] proposed a framework named CPN4M for testing
MAS. CPN4M employs coloured Petri net and generates test
cases for MAS social level. This work is orthogonal to our
study as they aim to find organizational errors, such as when
agents lack resources to achieve goals. In contrast, our study
focuses on the controlling aspect of MAS.

Regarding the frameworks and tools for autonomous sys-
tems, D’Urso et al. [29] designed an integrated framework
to simulate multiple autonomous systems. Their framework
provides a versatile tool for simulation and high-level logic
implementing strategies and control of autonomous systems.
Our framework provides a separation of concerns by splitting
the problem into two layers, supported by different formal
modelling and verification methods. Bersani et al. [30] present
the tool PuRSUE (Planner for RobotS in Uncontrollable
Environments), which supports synthesizing high-level run-
time control strategies for robotic applications. Their tool
is based on Uppaal Tiga, which uses graph-search-based
synthesis. Compared to these works, our study provides a
holistic framework for policy synthesis and testing, which has
not been seen in this research field.

VII. CONCLUSIONS AND FUTURE WORK

We propose a two-layer framework for policy synthesis
and test-case generation. The framework separates the discrete
policy synthesis and policy continuous execution into two
layers, supported by different and suitable formal methods.
The policy synthesis is solved by two kinds of methods: graph-
search-based and learning-based methods. The results of both
kinds of synthesis have a correctness guarantee. For testing
the policy execution, we design a novel approach for test-
case generation. The method employs reinforcement learning
and model checking to find all the reference trajectories that
faithfully realize the execution of a policy.

The next step of this study is to model tracking controllers
in our framework for selecting error-prone test cases. Experi-
menting with other learning algorithms for test-case generation
is also an interesting direction of research. Constructing the
framework upon an existing platform for MAS, e.g., GAMA
[31], is another future work direction.
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Parameters | const agentid_t agentID, const coordinate_t initPos, const kinematics_t initStatus, const coordinate_t

map[NOMILESTONES], const int period
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Figure 11. A reference controller TG that fills in the movement details (this
is the complete model of RTG in Figure 6(b))

APPENDIX
A. Complete Model Templates

Parameters const agentid_t agentID, const milestoneid_t p1, const
milestoneid_t p2, const time_t down, const time_t up,
const task_t taskOnP1, const task_t taskOnP2

. xm>=down
isReady(p1)
go[agentID]!
P1 F1T2 P2

move() reach(p2)
—————————— >
0~ -6 "0

|
\ go[agentID]?

Figure 8. A movement TG for policy synthesis (this is the complete model
of movement TG in Figure 5(a))

const agentid_t agentID, const time_t BCET,
const time_t WCET, const task_t task, const
precondition_t precondition, const bool last

Parameters

lisBusy(agentID task) &&

isExecutable(agentID,task) &&
agents[agent|D].a_status[task.t_id] != FINISHED &&
lisMonitorAlert(agentID)

xe=0,start(agentID,task) =T Executing
PP Xe<=WCET
P “ lisBusy(agentID,task) &&
-7 isExecutable(agentID,task) &&
- agents[agent|D].a_status[task.t_id] != FINISHED

xe>=BCET
xe=9.ﬂnish(agent|D.task.last)

’

xe=0,start(agent|D,task)

B
B
,

© isBusy(agentID.task) &&
isExecutable(agentID,task) &&
Idle agents[agent|D].a_status[task.t_id] != FINISHED && Waiting
lisMonitorAlert(agentID)
xe=0,wait(agentlD,task)

Figure 9. A task execution TG for policy synthesis (this is the complete
model of task-execution TG in Figure 5(b))

Parameters

const agentid_t agentID, const milestoneid_t p1, const milestoneid_t p2, const time_t down, const
time_t up, const task_t taskOnP1, const task_t taskOnP2
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Figure 10. A movement TG for test-case generation (this is the complete
model of MTG in Figure 6(a))

B. Policy Synthesis

There are two ways of policy synthesis in our framework,
namely graph-search-based synthesis [32] and learning-based
synthesis [13]. As depicted in Figure 12(a), the graph-search-
based synthesis explores the state space of TG exhaustively
and finds the traces that accomplish the mission eventually
while satisfying other requirements. As the state-space ex-

ploration here is exhaustive, the graph-search-based synthesis
can guarantee the results to be correct but it suffers from

the notorious state-space-explosion problem [33]. When the
number of models becomes large, the method fails to generate
a result in a reasonable time [32]. Hence, we propose an
alternative method based on reinforcement learning [7].

As depicted in Figure 12(b), learning-based synthesis uses
random simulation to explore the state-space of a system
model instead of an exhaustive state-space exploration. Traces
are sampled from the simulation and fed into a learning
algorithm, such as Q learning [34], together with scores of
the traces. Gradually, the learning algorithm produces a score
table of state-action pairs where actions with the highest score
at each of the states are considered as the optimal solution that
would guide the systems to accomplish their missions.

Regardless of which method for policy synthesis is chosen,
the actual execution of the policies can go wrong because
of the inevitable uncertainties existing in the systems and
environment, such as tracking errors. Unfortunately, formally
verifying the real trajectories of autonomous systems is an
undecidable problem. Therefore, we turn to test generation
and execution which provide a means of detecting possible
errors in the actual execution of policies. Among all the testing
activities, test-case generation usually costs the most time and
effort. In the next subsections, we introduce our controller
models and how to generate test cases automatically.
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(b) Learning-based synthesis

Figure 12. Methods for policy synthesis.



C. Ordinary Differential Equations in Case Study

The autonomous quarry in our case study is a 2D map,
where the kinematics of the trucks are given by the following
equation, where x and y are the coordinates, 6 is the moving
direction, v is the velocity, and w is the angular velocity.

z cos(d) 0 v
y| = |sin(d) 0 [ } (5)
0 o 1] L™

Tracking errors are the differences between the reference
trajectory and the real trajectory in three dimensions, that is, z,
y, and 6. The calculation of tracking errors is straightforward
and given by the following equation.

€ cos(0) sin(@) O| |xpef—x
ey| = |—sin(0) cos(0) Of |yref —y (6)
€ 0 0 1 eref -0

The error dynamics can be various and we choose the follow-
ing equation to describe it.

€y wey — v + Vpepcos(eg)
€y| = | —wey + vressin(ey) 7
€y Wrep — W

The tracking controller produces the value of v and w to
compensate for the tracking errors of x, y, and 6. The
following control law is chosen.

v = vpefpcos(eq) + ey 8)
W = Wres + Vref(ey + sin(eg)) 9)

According to the literature [22], the tracking errors have a
Lyapunov function that is given by the following equation.

1
V=1+ i(ei + 6_12/) — cos(ep)

Therefore, the tracking error of each of the line segments of
the reference trajectory is upper bounded /({2 4 4i), where
l is the initial deviation from the reference trajectory and i is
the index of the line segments. We decrease this value in our
Java program to set a more restrictive boundary and test if
the real trajectory ever deviates from the reference trajectory
further than that boundary.

(10)



