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Abstract

Programming Language for EXchanges, PLEX, is a pseudo-parallel
and event-driven real-time language developed by Ericsson. The lan-
guage is designed for, and used in, central parts of the AXE telephone
switching system. The language has a signal paradigm as its top execu-
tion level, and it is event-based in the sense that only events, encoded
as signals, can trigger code execution. Due to the fact that a PLEX
program file consist of several independent subprograms, in combina-
tion with an execution model where new jobs are spawned and put in
queues, we also classify the language as pseudo-parallel. This report
presents a structural operational semantics for fundamental parts of the
language, i.e., over jumps and signal sending statements, and it should
be seen in a further perspective, where the aim is to extend and modify
the language with a possibility to run in a multi-processor environment.

Earlier attempts to map the language to description languages, like
SDL, have not been as successful as expected, which is probably due
to the fact that the semantics of the language and its execution model
have not been paid enough attention. With this report, a formal basis
for further investigations in that direction is provided.
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Chapter 1

Introduction

1.1 Background and Problem Definition

The programming language PLEX (Programming Language for EXchan-
ges) is a pseudo-parallel and event-based real-time language developed
by Ericsson. The language is designed for telephony systems and used
in central parts of the AXE switching system (from Ericsson). The lan-
guage has a signal paradigm as its top execution level, and it is event-
based in the sense that only events, encoded as signals, can trigger code
execution. The term pseudo-parallel has arisen due to the fact that a
PLEX program file consist of independent sub-programs (which will be
discussed in Section 3.1, and Fig. 3.3), in combination with an execu-
tion model (Fig. 3.11) where new jobs are spawned and put in different
queues, called job buffers, for later execution.

The language has been continuously evolving since the 1970’s when
it was originally designed. But in parallel with this, attempts have been
made to introduce more ”modern” languages like C++ for instance, or
specification languages like standard SDL, and let the system execute
this code as well as PLEX code. However, most of these attempts have
failed and considerable money has been spent. It is probable that the
failure is due to properties of the language and its execution model, i.e.
the semantics of the language has not been paid enough attention. For
example, to use SDL successfully, the unique semantics of PLEX were
considered in creating an extension to SDL, called SDL-10 which could
then be code generated to PLEX.

Until now, the semantics for PLEX has been defined through its im-
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plementation. A formal semantics for the language can serve as an ex-
act documentation, which could be referred to when the implementation
is updated (e.g., when a new hardware platform is introduced).

This report should also be seen in a further perspective, where the
aim is to extend and modify the language with a possibility to run in a
multi-processor environment, see Fig. 1.1. This could already be done
today due to the modular structure of the language, but as shown by
Lindell [Lin03], there are problems that need to be solved.

1.2 Limitations

This report will focus on the basic concepts of signals since this is con-
sidered to be the most important aspects of the language, and the parts
that most significantly differentiate PLEX from other languages. It will
give an operational semantics for the individual PLEX statements, as
well as for sequences of statements. However, the semantics for se-
quences of statements is restricted to well-formed constructs (which will
be defined in Section 6.19).

1.3 Aim

The aim of this report is to give a semantic definition of the most im-
portant parts of PLEX, mentioned in Section 1.2. With this in hand,
a formal basis for further investigations and comparisons with other
languages is provided since the meaning of a (PLEX)program has been
given a semantic definition. The semantics will also reveal ambiguities
and prevent ”ad hoc” solutions when the language is moved to a new
hardware platform.

A second aim is to form the basis for further investigations in the
direction of executing PLEX in a multi-processor environment.

1.4 Organization

This report is structured in two main parts:

• Part I includes the Technical Report ”The Execution Model of
APZ/PLEX - An Informal Description” by J. Erikson and B Lin-
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dell [EL02]. This part serves as an introduction to the execution
model of PLEX for the reader not familiar with the language and
its environment1. This part could be skipped, without any loss, by
the reader familiar with PLEX.

• Part II is the main part of this report. This part deals with the se-
mantics for PLEX. Chapter 5 serves as an introduction to semantic
notation and describes the most common frameworks. Chapter 6
could be seen as the main chapter of this report, since the seman-
tics for PLEX is defined here. The semantics is developed through-
out the chapter, when we look at the different statements in the
language. Appendix A then summarizes the semantics that are
defined in Chapter 6.

"A Structural
Operational

Semantics for PLEX"
(Erikson)

"The Execution Model of
APZ/PLEX - An Informal

Description"
(Erikson & Lindell)

"Analysis of reentrancy
and problems of data

interference in the parallel
execution of a multi
processor AXE-APZ

system"
(Lindell)

PLEX
Extensions and

Modifications for parallel
execution

Figure 1.1: This report and its context.

1Also, a general survey of PLEX as well as of the AXE switching system can be found
in [AGG99]
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Chapter 2

The AXE System and the
PLEX Language

2.1 The AXE System

The AXE telephone exchange system from Ericsson, developed in its
earliest version in the beginning of the 1970s, is structured in a modular
and hierarchical way. It consists of the two main parts:

APT: The telephony or switching part

APZ: The control part including central and regional processors

which both consist of hardware and software. The two main parts are
divided into subsystems.

A subsystem is divided in function blocks. Function blocks consist
of function units which is either a central software unit or a hardware
unit, a regional software unit and a central software unit. The original
structure of the system is shown in Fig 2.1.

Somewhere around 1994-95, the concept of Application Modularity
(AM) was integrated into the system. This will be discussed in Section
2.1.2

2.1.1 Central- and Regional Processors

The hardware aspects that is of interest in this report is the distinction
between Central- and Regional Processors. This is because different
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System Level 1

System Level 2

Subsystem

Function Block

Function Unit

CPS NMS

LIC LIR LIUCJU

AXE

APZ APT

MAS FMS SSS GSS

CJ KR LI

  APT - Telephony/Switching part
  APZ - Control part including central and regional processors

as well as operating system
  CPS - Central Processor Subsystem
MAS - Maintenance Subsystem

AMAM . . .

Figure 2.1: The (original) hierarchical structure of the AXE system. (The
parts that will be of interest in this report is marked with bold text.)

forms of interwork is performed between different kinds of processors.
The distinctions are briefly discussed in this subsection and explained
in more detail in Section 3.1.

Regional Processor (RP): There are several regional processors in
an AXE system. The main task of a regional processor is to relieve
the central processor by handling small routine jobs like scanning
and filtering.

Central Processor (CP): This is the central control unit of the sys-
tem. All complex and non-trivial decisions are taken in the central
processor. This is the place for all forms of non-routine work. The
work of the processor can be separated into two specifically dis-
tinct parts, namely instruction execution and job administration.
Instruction execution means handling of uninterrupted sequences
of operations where the work consists of address table look-up and
calculations, plausibility checks, storage accesses and data manip-
ulations. The job administration mainly consists of signal han-
dling, signal conversion and signal buffer handling. The execution
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of instructions is a single-stream work by nature, whereas the job
administration to a great extent is a question of prioritized job
queues (Section 3.2) and transfer of signal data.

The CP is always duplicated. The two sides work in parallel, per-
forming exactly the same operations. During normal operation,
one CP is executive and the other is stand-by. A continuous check
is made to ensure that both processors reach the same result - If
they don’t, some form of recovery action is performed (Section 3.4).
The CP duplication also enables function changes (installation of
new software versions) while the exchange is in an operational
mode by first installing new software on the stand-by side and
then change the executive and stand-by order between the proces-
sors. As a last step, the new software is installed on the former
executive (now stand-by) side.

The CPs store all central software and data. The CP memory con-
sists of the register memory and the different stores. Programs
are stored in the program store (PS) and data is stored in the data
store (DS). The reference store contains information about where
to find the different programs and data, Fig. 2.2.

Program Store

PS

Reference Store

RS

Data Store

DS

Figure 2.2: Stores in the central processor (CP). (The interaction between
the different stores are covered in Section 3.3.)

2.1.2 The Application Modularity (AM) Concept

The AXE Source System is a number of hardware and software re-
sources developed to perform specific functions according to the cus-
tomer’s requirements. It can be thought of as a ”basket” containing
all the functionality available in the AXE system. Over the years, new
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source systems has been developed by adding, updating or deleting func-
tions in the original source system. But in the 1980’s, the development
of the AXE system for different markets (US, UK, Sweden, Asia, etc.)
has led to parallel development of the source system since functionality
could not easily be ported between different markets.

The solution to this increasing divergence was the Application Mod-
ularity (AM) concept, which made fast adaption to customer require-
ments possible. The AM concept specifically targeted the following re-
quirements:

• the ability to freely combine applications in the system,

• quick implementation of requirements, and

• the reuse of existing equipment.

The basic idea is to gather related pieces of software (and hardware)
into something called Application Modules (AMs). Different telecom
applications, such as ISDN, PSTN (fixed telephony), and PLMN (Public
Land Mobile Network), are then constructed by combining the neces-
sary AMs. The idea is described in Fig. 2.3, where it is also shown that
different AMs can be used in more than one application.

AXE

APTAPZ

Separate
telecommucination
applications

Aplication Modules (AMs)
shared between different
applications

ISDN PSTN PLMN

AM AMAMAMAMAM

Figure 2.3: The AM concept incorporated into the AXE system.
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The introduction of the AM concept ended the problem with parallel
development of different source systems. Instead, with AMs as building
blocks, the required exchange was constructed by combining the neces-
sary AMs into an exchange with the required functionality (i.e., with
the necessary applications).

2.1.3 Input and Output statements

An AXE exchange needs to communicate with its environment and its
operation and maintenance (O&M) staff. Some typical situations could
be the following:
- An exchange technician changes subscriber categories, replaces de-
vices or connects new subscribers.
- The exchange informs the O&M staff of important events, e.g., if an
RP is blocked due to a fault. In other words, the I/O statements are an
important part of the recovery mechanism. (See Section 3.4.)
- Input/output includes certain routine tasks to, e.g. dumping data on a
hard disk.
There is a large number of I/O devices used; alarm and hard copy print-
ers, display units, work stations and PC’s, magnetic tape drivers, hard
and flexible disks.

Before communicating with an I/O device, the PLEX program has
to seize the device. Likewise, the device has to be released when the
communication ends. This guarantees exclusive access to the device.
All I/O devices are connected to a support processor (SP), and function
blocks that receive or send information via the I/O system are called
user blocks. Fig. 2.4 shows the interaction between the I/O system and
a user block. When seizing an I/O device, the I/O system assigns a free
line buffer and a free analysis buffer (see Fig. 2.4) to this device. These
buffers temporarily store the I/O text. The analysis buffer handles input
from the I/O device, and the line buffer handles output.

The basic (PLEX) statements for transferring information between
the buffers and the I/O device, and between the buffers and the user
blocks are:
- FETCH: transfer information from the analysis buffer to the user block.
- INSERT: transfer information from the user block to the line buffer.
- WRITE: orders the I/O system to print out the text in the line buffer to
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SP

Line Buffer
72 Characters

Analysis Buffer
144 Characters

I/O System

User
Block

2 Insert

3 Write

4 Read

1

1 Fetch
23

4

Program Store

I/O device

Figure 2.4: The I/O system and its communication with the environ-
ment.

an I/O device.
- READ: transfer information from the I/O device to the analysis buffer.
Again, see Fig. 2.4.

Typically, I/O communication starts with the operator entering a
command on an I/O device. The command is received by the I/O sys-
tem and delivered to the software unit where it has been defined by the
programmer. A command is received in a program (i.e., a software unit)
in the same way as a signal (Section 3.1) but the command receiving
statement must be preceded by the keyword COMMAND to indicate that
this is a statement used by the I/O system.

2.1.4 Load, Reload and Dump

An AXE exchange may exist for up to 40 years, which implies certain
requirements regarding the operation and maintenance of the software.
The terms Load, Reload and Dump are covered in this section since
they will be used in this report when we discuss variables (Section 2.2.3)
and software recovery (Section 3.4).

When all the software blocks have been written and compiled, the
programs and data, initial and exchange, are written, dumped, to a
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magnetic tape which is loaded into the exchange. This process is called
initial loading. On loading of new blocks, or new revisions of existing
blocks, an incremental re-linking occurs, as well as an initialization of
data store variable values, if required according to their given variable
properties1. A DCI (Data Conversion Information) is written for each
block being loaded to specify the data initialization between the old (if
existing) and new blocks. During the function change process (Section
2.1.1) the new block can get its new value from either of the following
three ways:
- Get value from data sector2.
- Get value from DCI.
- Get value from existing software.

In the case of system failure where a system restart3 has been per-
formed, software backup copies are reloaded into the exchange. When
reloaded, some variables will receive reload values from the magnetic
tape, whereas other variables will not have values until the program
is executed by a signal4. Whether or not a variable receives a reload
value is determined by the variable properties set by the designer. This
is covered in Section 2.2.3.
Reloading means that the contents of DS (i.e., only RELOAD declared
variables) are reloaded into the exchange again. If a change has oc-
curred in PS and RS, they will be reloaded as well.

The contents of Program-, Reference- and Data store are regularly
saved to a hard disk (or a magnetic tape). This process is called dump
and enables the reload action described above.

2.2 Programming Language for EXchanges

Programming Language for EXchanges (PLEX) is designed by Ericsson
and used to program telephony systems. It lacks common statements
from other programming languages such as WHILE loops, negative nu-
meric values and real numbers. These are not needed in a telephony

1Variable properties is covered in Section 2.2.3
2The data sector is mentioned in Section 2.2.1
3The system restart process is explained in Section 3.4
4Signals are examined in Section 3.1
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exchange system. The language was designed and developed in its first
form in the 1970s and extended in 1983. The version under considera-
tion in this report, PLEX-C, is used in the AXE central processors (see
Section 2.1.1). Other languages used in the AXE system are shown in
Fig. 2.55. The reason for developing a new language for the AXE sys-
tem was that no other languages under consideration fulfilled Ericsson’s
requirements.

Some important characteristics of the language are listed below:

• PLEX is an event-based language with a signaling paradigm as
the top execution level. Only events can trigger code execution
and events are programmed as signals. A typical event is when a
subscriber lifts the phone to dial a number.
The execution model is described in Chapter 3 and signals in Sec-
tion 3.1.

• The signals are executed on one of four priority levels (explained
in Section 3.2), which results in very little overhead when a higher
level interrupts a lower since each priority level has its own regis-
ter set.

• Jobs (Section 3.2.1) at the same level are ”atomic” and can never
interrupt each other.

2.2.1 The structure of a PLEX program

When we talk about a PLEX program, or a PLEX program file, we mean
the PLEX file that specifies a function unit (Section 3.0.7). This docu-
ment, the Source Program Information (SPI), shown in Fig. 2.6, consists
of the following main parts:

• The Declare sector, which contains the variable and constant dec-
larations that are used in the program sector. Variables with the
property DS, Data Store, (Section 2.2.3) will exist beyond the exe-
cution of subprograms.

5As could be seen in Fig. 2.5, there is another dialect of PLEX (PLEX-M). However,
these dialects are similar, and when we talk about PLEX in this report, we mean the
dialect used in the central processors, i.e, the PLEX-C dialect.
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EMRPD

EMRP

EM

RPG

CP

STR STC RPD RP

GARP

C/C++

Plex-M
ASM 6809

ASM 6809 ASM 6809 C/C++

ASA 21R
ASA 210R

Plex-C
ASA 210C

 EMRPD - Extension Module Regional Processor Digital
 EMRP - Extension Module Regional Processor
 STR - Signaling Terminal Remote
 STC - Signaling Terminal Central
 RPD - Regional Processon Digital
 RP - Regional Processon
 CP - Central Processon
 EM - Extension Module
 RPG - RP with group switch interface
 GARP - Generic Application RP

C/C++

C/C++

Figure 2.5: The different languages used in different parts of the AXE
system
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• The Parameter sector, where specific AXE parameters are placed.
These parameters are not local to a block, and permit global access
from all parts of the exchange. They can be changed by customers
since they are placed in an SQL database.

• The Program sector contains the executable statements, i.e., the
PLEX source code that will run in the exchange. This sector is
normally divided in several subprograms (explained in Section 3.1
and Fig. 3.3).

• The Data sector: Some variables, i.e. Data Store variables, needs
to have initial values when the program (i.e., the SPI) is loaded
into the exchange6. These initial values can be provided in the
data sector. Also, the position, i.e. the base address, of stored vari-
ables in memory can be allocated in the data sector. This enables
a faster function change (briefly described in Section 2.1.1).

• The ID sector is used for internal documentation only.

The SPI is compiled together with the following documents7:
- The Signal Survey, SS, which is a list of all the different signals that
one function unit (i.e., the function unit specified in the SPI) receives
and sends. There is one SS per function unit. There is no information
about senders and receivers in the SS, this information is added later
during loading.
- The Signal Description, SD. The function blocks and function units
communicate with signals (Section 3.1). The SD describes the purpose,
type and data of one signal. SDs are stored in separate signal handling
libraries.

2.2.2 Records, Files and Pointers

Records collect variables that describe properties of a group of items,
for instance, calls or subscribers8. Record variables may be stored field,
symbol or string variables (Section 2.2.3). Variables in a record may

6The initial loading is described in Section 2.1.4.
7The different steps of the compilation process, as well as the PLEX compiler, is

described in [AE00]
8A (PLEX) record is similar to a struct in C.
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  DOCUMENT KRUPROGRAM;
  DECLARE;
  :
  :
  END DECLARE;
  PARAMETER;
  :
  :
  END PARAMETER;
  PROGRAM; PLEX;
  :
  :
  END PROGRAM;
  DATA;
  :
  :
  END DATA;
  END DOCUMENT;
  ID KRUPROGRAM TYPE DOCUMENT;
  :
  :
  END ID;

Figure 2.6: Structure of the SPI, i.e., a PLEX program file.

be indexed or structured, and they are called individual variables. DS
(Data Store, described in Section 2.2.3) variables that are not part of a
record, are known as common variables.

A File is a set of records. One file consist of one or more records, all
with the same individual variables.

Pointers address the relevant record in a file. In PLEX, pointers
are simply record numbers. The records in a file are numbered, and
the value of the pointer is the number of the current record. In other
words, pointers in PLEX are not similar to pointers in C and can not
be manipulated in the same way. Fig. 2.7 shows an example file with
its records and a pointer. The number of records in a file may be fixed
or changeable. A fixed size is specified in the Data sector of the SPI
(Section 2.2.1), while alterable file sizes are set by commands (Section
2.1.3).

2.2.3 Variables

Depending on how variables is to be treated at a software error and a
following recovery action, the PLEX designer can assign different prop-
erties to the variables. This is to be covered in this section.
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n

4
3

2
1

SUBNUMBER

NAME

STATE

0
POINTER

Figure 2.7: An example file with n records and a pointer with the current
value 2.

There are three different data types in PLEX:
- Field variables for numeric information. They contain non-negative
integers only. (Negative integers are not needed in the AXE system.)
- Symbol variables for symbol information, e.g., IDLE, BLOCKED, BUSY,
etc.
- String variables store text strings.
These data types (variables) can be stored or temporary.

• The value of a temporary variable exists only in the Register Mem-
ory (RM - internal CP registers) and only while its corresponding
software is being executed. Variables are by default temporary.

• Stored variables are stored in the Data Store (Fig. 2.2), loaded
into a register in the RM for processing and then written back
to the DS. Thus, its value is never lost, even if the program is
exited and re-entered later. DS variables are also a natural way to
communicate between different forlopps9.

It is the stored variables that may be assigned the different properties
already described. These properties are DS, CLEAR, RELOAD, DUMP,

STATIC, BUFFER and COMMUNICATION BUFFER. The properties will
all be described in this section.

9Forlopps are explained in Section 3.4.1
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From a storage point of view, the variables can be divided into the
following types: Temporary and stored have been described above. The
third category is the buffers. Buffer variables10 are allocated dynami-
cally in an area reserved for dynamic buffers by using an allocate state-
ment. The size of the buffers can be specified static (COMMUNICATION
BUFFER) or dynamic BUFFER. The fixed size is specified in the Declare
sector (Section 2.2.1) while the dynamic size can be set in the Program
sector. The dynamic buffers are slower than the static since they must
be administered dynamically. These categories are pictured in Fig. 2.8
together with its properties.

VARIABLES
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 VARIABLES
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Figure 2.8: Variables and properties (from a storage point of view).

Under normal circumstances, the exchange starts the (application)
software and it never stops. After serious errors, however, the APZ (i.e.,

10Buffer variables are similar to the array structure in C.
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the operating system part) stops the program execution and restarts
the software. The following properties describe the variable behavior at
start or restart:

• CLEAR - ”Clearing at start/restart”
Field variables are set to zero; symbol variables to the first value
in their declaration list.

• RELOAD - Loading at ”restart with reload”
The variable value is reloaded from tape/hard disk to ensure that
the values before and after the ”restart with reload” are the same.

• DUMP - ”Dumping at restart”.
This property is used for testing and tracing purposes.

• STATIC - When a software unit in an operating exchange is to be
updated, a function change takes place. Remember from Section
2.1.1 that the CP is always duplicated. This means that new soft-
ware can be installed while the exchange is running. A STATIC

declared variable means that the variable value is not updated
with a new software version.

Not all combinations of the variable properties are possible (i.e., legal).
Fig. 2.9 contains a table listing all valid combinations of variables and
properties.

2.2.4 Data Encapsulation

All variables and constants declared in the Declare sector of the SPI,
see Section 2.2.1, have their scope inside the software unit specified. All
subprograms (Section 3.1) of that SPI can access these variables and
constants. Subprograms not part of that function unit cannot access
these variables and constants.
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 Field
 Variable

 String
 Variable

 Symbol
 Variable

 DS
 DS DUMP
 DS STATIC
 DS RELOAD
 DS RELOAD DUMP
 DS RELOAD STATIC

 DS CLEAR
 DS CLEAR DUMP

BUFFER
 BUFFER DUMP

 Temporary

Yes

Yes

Yes No

NoYes
(1)

Yes No

 (1) Except for one- and two-dimensional arrays

Figure 2.9: Permitted combinations of variable properties and variable
types.

Signal
ENTRY 1

Signal
ENTRY 2

Signal
ENTRY 3

Signal
ENTRY 4

... ... ...
Signal

ENTRY n

Variable A

DATA
Common Data Storage
for all Variables in all
entries of the whole

Block

Figure 2.10: The structure of a software unit (block). The possibility of
several sub-programs accessing the same data within the block is shown.
All sub-programs (signal entries) can access all DS variables inside the
same block (except for individuals that are DS variables inside a record).
This conveys a DS variable can be used as a communication channel
between all sub-programs inside the same software unit.



Chapter 3

The Execution Model

A brief discussion of the execution model has already been given in Sec-
tion 2.2 and we continue and deepen the discussion in this section. We
first briefly discuss PLEX structure, operating system requirements,
function blocks and application system before we look deeper at pro-
gram interwork (i.e, signals), Section 3.1, and job buffers, Section 3.2,
both central concepts in the PLEX/APZ environment.

3.0.5 PLEX structure and OS requirements

PLEX is an asynchronous concurrent event based real-time language
and, as stated in Section 2.2, it has a signaling paradigm as the top
execution level which means that only events can trigger code execution
and these events are programmed as signals. Signals will be further
explored in Section 3.1. The main task of an operating system that is to
run PLEX, is to buffer incoming signals and start their execution in the
right signal entry statement.

3.0.6 Software Units

In large software systems, such as a telecommunication system, there
is a need to group code into modules, for example, to control a certain
hardware, or to implement in software add-on functionality. A Software
Unit is a quantity of PLEX code for the different jobs1 needed for such
a module, called a function. A Unit can not access data in another unit,

1Jobs are covered in Section 3.2.1.
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Figure 3.1: APT Application system.
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i.e, a unit has data encapsulation (see Section 2.2.4).

3.0.7 Function Blocks

A function block is a software unit by itself or a software unit in the
CP with the associated software unit in the EMRP or RP and possibly
associated hardware needed to implement a function.

If we relate the function blocks to the AM concept, described in Sec-
tion 2.1.2, it should be pointed out that an AM is not a PLEX language
construct. From a PLEX language point of view, each AM and the com-
mon resources can be seen as a collection of blocks. Signals between
AMs and to/from the common resources are gathered into standard in-
terfaces.

3.0.8 Application System

An application system is a group of function blocks that interwork to-
gether to form a complete application, such as the control of a certain
telephone exchange, see Fig. 3.1. All the signals and units of the part
of the application system hosted on a certain processor take part in a
”linking” process. (For units written in PLEX-C, the host is the CP.)
The linking process resolves that signals sent from a certain unit are
directed to the right entry point in the right unit.

3.1 Program Interwork - Signals

A signal is an externally defined language element in PLEX for the in-
terwork between software units. A signal can be described as a message
within one or between two software units or as an asynchronous (one
way) function call, i.e., it is signals that perform the communication be-
tween different function units. Signals can be classified in numerous
ways (Section 3.1.1, 3.1.2, 3.1.3 and 3.1.4) but the main distinction
is between direct and buffered signals (Section 3.1.1). A direct signal is
similar to a jump from one function unit or program to another, whereas
a buffered signal is more like a fork2 system call except that the ex-

2fork is a nonANSI C function that ”copies the current process and begins executing
it concurrently”, [KP96]. The execution will then continue in this newly created ”child-
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ecution continues in the ”parent process” whereas the ”child process”
is put in the job queue (Section 3.2) for later execution. In this way,
after the sending of the buffered signal, the two execution paths are
independent parallel threads, unsynchronized with each other. The dif-
ference is explained in more detail in Section 3.1.1, but we already state
that buffered signals is the ”norm” and that the classification referred
to only applies to CP-CP signals. CP-RP and RP-CP signals are always
buffered.

As shown in Fig. 3.2, signals are sent between software executing
on the different processor types described in Section 2.1.1.

RP - CP CP - RP RP - CPCP - RP

CP - CP

CP - CP

Function Block A Function Block B

Hardware

Regional
Software

Central
Software

H
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W
A

R
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F
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W
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R
E

Figure 3.2: The different types of software signals.

Most signals could be seen as a jump from a signal-sending state-
ment in one program to a signal-receiving statement in another pro-
gram (even if buffered signals first go through a buffer). This implies
that the code in a PLEX program unit3 never executes from the begin-
ning to the end (i.e., from the beginning of the program file to the end of
the program file), but from a signal receiving statement (e.g., ENTER), to
either a direct signal-sending statement (e.g., SEND) or an EXIT state-
ment. In PLEX, a subprogram is the code sequence from ENTER to
EXIT. It is possible to leave a subprogram with an EXIT without a pre-
vious signal sending statement, but it is also possible to send several
buffered signals before an EXIT statement. Fig. 3.3 illustrates a gen-

process”.
3A PLEX program unit = a PLEX source code file
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eral program divided into subprograms. Note that since programs writ-
ten in PLEX do not normally execute from start to end, or in any order,
it can not be assumed that the program in Fig. 3.3 receives SIGNAL1
before or after SIGNAL3, or SIGNAL4 before or after SIGNAL6. This
can result in unpredictable values of stored variables.

PROGRAM; PLEX;
    ENTER SIGNAL1;
    ....
    SEND BUFFERED SIGNAL2;
    ....
    EXIT;

    ENTER SIGNAL3;
    ....
    SEND DIRECT SIGNAL4;

    CUSELESS = 0;

    ENTER SIGNAL5;
    ....
    SEND BUFFERED SIGNAL6;
    ....
    SEND DIRECT SIGNAL7;

    ENTER SIGNAL8;
    ....
    EXIT;

    ....
    END PROGRAM;

a subprogram

a subprogram

a subprogram

a subprogram

Figure 3.3: A PLEX program file divided in subprograms. Note that the
assignment CUSELESS = 0; will never be executed since it is placed be-
tween an exit and an enter statement. (See also Fig. 2.6 where a complete
program file is described.)

Since the exchange handles several calls simultaneously while the
CP can only execute one program at a time, the CP must queue the
signals somewhere. This is done in job buffers, a job table or in time
queues and this will be explored in Section 3.2.

As was said earlier there are different parameters that describe the
signal properties of a CP-CP signal. Three groups classify these prop-
erties and each signal has one property from each group. Each group is
described below and all possible combinations is shown in Fig. 3.7.
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3.1.1 Direct and buffered signals

As was stated in Section 3.1, the main distinction between (CP-CP) sig-
nals is whether they are direct or buffered. Buffered signals start a new
job, whereas direct signals continue the current job. (Jobs are covered
in Section 3.2.1). That is, they are handled differently in the execution
model.

Direct signals reach the receiving block immediately, they could be
seen as direct jumps to another unit. By using direct signals, other
signals have no possibility of coming-in-between, i.e., the programmer
retains control over the execution. However, direct signals are normally
only allowed to be used in very time-critical program sequences, such as
call set-up routines.

With buffered signals, it is not predictable when the signal reaches
the receiving block. Direct and buffered signals are illustrated in Fig.
3.4.

Unit A Unit B

A Direct Signal

Unit A Unit B

A Buffered Signal

Job Buffer

Figure 3.4: Direct and buffered signals.

3.1.2 Unique and multiple signals

This distinction concerns the number of receivers of the signal. A unique
signal can only be received in one particular block, while a multiple
signal can go to any block as shown in Fig. 3.5. However, it is not
possible to send a multiple signal to more than one block simultaneously
which means that a multiple signal does not perform multicast4. But
even if a multiple signal can go to any of the receiving blocks specified in

4Multicast: Send once - received by all
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the Signal Survey5, the signal sending statement must always contain
one (and only one) receiver of the multiple signal.

Unit A Unit B

A Unique Signal

Unit D

Unit C

Unit B

Unit A

A Multiple Signal

Figure 3.5: Unique and multiple signals.

3.1.3 Single and combined signals

The third distinction concerns whether the sending block expects an
answer. Combined signals demand an immediate answer, while single
signals do not require such feedback. For this reason, combined signals
can never be buffered (as shown in Fig. 3.7). Instead, they behave
like direct jumps from one unit to another. When the execution in the
other unit (the receiver of the signal) finishes, execution jumps back to
the originating unit. Combined signals are always direct signals, which
means that execution continues without interrupt and all other signals
have to wait. Fig. 3.6 illustrates these kind of signals.

When discussing the sending and receiving of combined signals, one
will also mention forward and backward signals. A communication be-
tween two parts6 is always initiated by one of the parts. The initiating
part is sending the forward signal whereas the part that replies to the
call is sending the backward signal. This is pictured in Fig. 3.8.

5The Signal Survey is described in Section 2.2.1
6Which, in our target domain, is the sending and receiving of signals between func-

tion blocks.
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Unit A Unit B
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Figure 3.6: Single and combined signals.
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Figure 3.7: Possible properties for CP-CP signals. X indicates a le-
gal/possible combination, shaded with Grey indicates an illegal alter-
native. NOTE: A combined backward signal can not be multiple since
this signal is an answer (i.e., an acknowledgment) to a ”caller” and must
therefore return to the ”caller” and nobody else.
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Figure 3.8: Forward and Backward signals.
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3.1.4 Local and Non-local signals

In the beginning of Section 3.1, we said that signals are used ”for the
interwork between software units”. But signals can also be used for
the interwork between different parts of the same software unit. These
signals are called local signals, since they are local to the software unit
they belong to. I.e., the recipient resides in the same software unit.
(Consequently, all other signals are called non-local signals.

The behavior of a local signal is similar to that of a GOTO statement
since they result in direct jumps to the recipient. (And in that sense,
they can be regarded as direct signals.)

Whether a signal is local or not, is specified in the Signal Description
(which was briefly explained in Section 2.2.1, and covered in more detail
in Appendix B). The distinction between local and non-local signals is
of importance in, for instance a semantic framework for PLEX.

3.1.5 Signals and Priorities

Every signal that is sent in the system is assigned a priority level, A -
D. The priority level is of importance when the signal is to be buffered
(Section 3.2), and it tells the ”importance” of the source code that is trig-
gered to execution by the signal. The priority of each signal is specified
in the corresponding Signal Description.

3.1.6 Signals and Data

Signal Data are variable values sent with a signal7. The data may con-
sist of field variables, symbol variables, pointers, numerals, string ob-
jects, buffer variables and field expressions. For single and combined
signals, it is possible to send 25 signal data. The data is loaded to the
register memory in the central processor (see Section 2.1.1) if the signal
is direct, or to the job buffer if the signal is to be buffered.

3.2 Jobs, Signal Buffers and Job Handling

In the following sub-sections, we will discuss the definition of a job (Sec-
tion 3.2.1), the different ways of delaying/buffering a signal (Section

7This is similar to a call by value function call.
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3.2.2) and, finally, how jobs are handled at runtime (Section 3.2.3).

3.2.1 What is a Job?

A job is a continuous sequence of statements executed in the processor.
A job begins with an ENTER statement for a buffered signal and ends
with an EXIT statement.

Between the ENTER and the EXIT statement, several buffered sig-
nals (or no signals at all) may be sent. A job is not limited to one CP
software unit, several units and blocks can take part in a job.

A job does always have a single entry point but it may have multiple
exit points.

In Section 3.1.5 we discussed the priority of a signal. In the following
subsections, we will instead talk about the priority of a job. This make
sense since it is more natural to look at whole jobs when discussing
execution of PLEX code, than it is to look at a single8 signal. The reason
is that a job includes the actual PLEX code that is triggered to execution
by the signal, as well as the signal itself.

3.2.2 Signal Buffers

Some jobs in the AXE system are not time-critical and can wait to be
executed, while others need to be executed immediately. The first case
holds for administrative jobs and the second case for jobs related to traf-
fic handling (i.e., telephone calls9) and CP faults.

Buffered signals (which could be read as ”the start of a new job”)
may be delayed using one of the following methods:

• Job Buffer: delays a signal until all ”older” jobs have been processed

• Job Table: sends signals at short periodic intervals

• Time Queue: delays signals by relative or absolute time

We will look further to these different ways of delaying a signal.
8By single signals, we do not mean single signals as described in Section 3.1.3.
9A normal load on the system is 200 telephone calls that is to be handled every

second. These jobs are all time critical and have the same priority, but the performance
would not be acceptable with a ”first-come-first-served” approach. A solutions is to use
buffered signals as a ”time sharing” mechanism.
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Job Buffers: Job buffers are queues with a FIFO-semantics10. There
are four buffers for CP-CP and RP-CP signals and one for CP-RP
signals; Job Buffer A, Job Buffer B, Job Buffer C and Job Buffer
D, all for CP-CP and RP-CP signals, where Job Buffer A has the
highest priority. Job Buffer R is the buffer for CP-RP signals.

The buffers carry the following type of tasks:
Job Buffer A - urgent tasks of the operating system; preferential
jobs, e.g., errors in traffic equipment.
Job Buffer B - telephone traffic.
Job Buffer C - I/O communication. The command statement de-
scribed in Section 2.1.3 is handled at this level.
Job Buffer D - APZ routine self-tests.
Job Buffer R - CP-RP signals queue in JBR, a buffer for signals
sent from the CP to a RP.

The Job Table: The job table contains jobs executed at short periodic
intervals, for instance, incrementing clocks for time supervision.
The job table has higher priority than any of the job buffers. Since
the possible execution time after a job table signal is very short,
this signal only initiates a program sequence in the receiving block,
which inserts a buffered signal in one of the job buffers. The
buffered signal initiates the ”real” work in the program which from
an application point of view, has the priority of the buffer it is in-
serted in.

Time Queues: Time queues delay periodic and other jobs at longer in-
tervals than the job table. There is one absolute time queue and
three relative ones. The absolute time queue stores the absolute
time for signal execution (month, day, hour and minute). Every
minute, the time queue compares this value with the system cal-
endar. When there is a match, the signal is moved to one of the
four job buffers. The three relative queues have a counter for each
job. Every 100 ms, 1 second and 1 minute, respectively, the time
queue receives a periodic signal from the job table and decrements
the counter. If a counter reaches the value zero, the correspond-
ing signal is forwarded to one of the job buffers. I.e., a signal that

10First In First Out
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is fetched from a time queue is almost never executed at once11.
Execution of the signal is performed when the operating system
fetches it from the job buffer it was inserted in.

Fig. 3.9 shows how a software unit sends a delayed (and multiple) sig-
nal. The signal is first placed in a time queue and after that in a job
buffer. After it is taken from the job buffer, the execution is started in
the receiving unit.

...
Enter SigA

...

Unit B

...
Enter SigA

...

Unit C

Time Queue Job Buffer

...
Send SigA

...
Delay 200ms

EXIT
...

Unit A

Figure 3.9: Sending of a delayed (and multiple) signal. The signal is
sent from Unit A and received in Unit C but, as could be seen in the
figure, it is possible to receive the signal in Unit B as well if Unit B is
specified as the receiver by the PLEX designer.

3.2.3 Job Handling

The priorities at runtime correspond to the priorities among the job
buffers (Section 3.2.2), as will be shown below.

As already stated, Section 3.2.2, depending on their purpose and
time requirements, jobs are assigned to certain priority levels - five dif-
ferent levels exist. But the important thing, when discussing job pri-
orities, is how different priority levels can interrupt each other and, as
could be seen in the following discussion, we could view the five differ-
ent priority levels as only three if we take the possibility for one job to
preempt another into consideration.

11The only exception is when the receiving job buffer (and every job buffer with higher
priority) is empty.
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Tasks initiated by a periodic Job Table signal use the traffic-handling
level 1 (THL 1), JBA signals use traffic-handling level 2 (THL 2), JBB
use traffic-handling level 3 (THL 3), JBC use base level 1 (BAL 1) and
JBD use base level 2 (BAL 2), see Fig. 3.10.

The Job Table has a higher priority than all the job buffers. JBA has
a higher priority than JBB, and so forth. The jobs in the job buffers are
executed in order of priority - JBA is emptied before JBB, and so on.
Data used in interrupted jobs stay in the processor register memory,
and THL, BAL 1 and BAL 2 jobs have their own processor registers.
That means all THL jobs share the same register buffers. Hence, no job
at one sub level of THL can interrupt a job at another sub level of THL,
since they share the same set of registers and the temporary variables
would be destroyed otherwise.

I.e., jobs from the job table, JBA and JBB have to wait for each other,
but all three can interrupt job from JBC and JBD. As BAL 1 and BAL 2
have different register memories, JBC can interrupt JBD.

Job Table
JBA
JBB
JBC
JBD
JBR

Job Buffers for CP-CP
and RP-CP signals

Job Buffer for CP-RP signals

JBA - urgent tasks of the operating system: preferential traffic
JBB - all other telephone traffic
JBC - input/output to operator and I/O devices
JBD - APZ routine self-test
JBR - signals from Central Processor to Regional Processor
THL - traffic-handling level
BAL - base level

THL 1
THL 2
THL 3
BAL 1
BAL 2

THL

Own processor register
Own processor register

Shared processor
register

Figure 3.10: Job buffers and runtime priorities in the AXE system.

In some cases, however, it may be necessary to prevent the system
from interrupting an important task. For example, an operation and
maintenance (O&M, Section 2.1.3) routine at C-level (BAL 1) is writing
to variables that are also accessed by traffic-handling routines at B-level
(THL 3). In this situation, it is best to inhibit the interrupt function as
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long as the writing at C-level is in progress. The interrupt function is
inhibited by the DISABLE INTERRUPT statement and activated by the
ENABLE INTERRUPT statement.

We conclude this subsection with an exampel. Fig. 3.11 illustrates
the execution of several jobs. In the figure, the execution starts in block
1 with the first job, proceeds in block 2 with the second job and finally
ends in block 1 with the execution of the last job. Fig. 3.12 gives a closer
look of the link (into job buffers) and execute process.

If a new job enters an empty job buffer, the buffer sends an inter-
rupt signal for that priority level. If the ongoing job has a lower priority
level, that job is interrupted. However, a job can not interrupt a job on
the same (or higher) priority level.

Timeblock 1 block 3block 2

enter

send

exit enter

send

send

exit enter

enter

send

exit

signal 1

signal 2

signal put in
job buffer

signal 5

signal put in
job buffer

signal put in
job buffer

signal 3

signal 4
exit

Figure 3.11: The execution model - Four jobs are executed. The process
of transfering a buffered signal from the sending block to the receiving,
via a job buffer, is shown in Fig. 3.12. NOTE the ”parallel” architecture
that could become real parallel execution.
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(module)
block A

  Signal
  Number

1

5
4
3
2

Link   Signal
  Number

ENTER

EXIT
ENTER

SEND siganl
name

EXIT
ENTER

EXIT

  Signal
  Number 1

4
3
2 Block number of B

APZ

(module)
block B

ENTER

EXIT
ENTER

EXIT
ENTER

EXIT

  Hop address

SSTSST

SDTSDT

 APZ -  Operating System
 SDT -  Signal Distribution Table
 SST -  Signal Sending Table

Job Buffer

 Signal
 Number

DataBlock Nr of
B

Figure 3.12: Linking and execution for a buffered signal in APZ. See also
Fig. 3.11. NOTE: The procedure is the same for direct signals except that
they not are inserted in a Job Buffer.
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3.2.4 Execution Time Limits

As stated in Section 3.0.5, PLEX is a real-time language. This means
that a system programmed in PLEX is a real-time system12. When talk-
ing about execution times limits, one always refer to the execution time
of a job. There are limits for the execution time, but this is not mea-
sured in absolute times. Instead, there are programmer guidelines that
specify how many lines of code that may be placed in a software unit (or
units) for one job.

3.3 Linking Encapsulation

All blocks used in the system are compiled separately and it is also pos-
sible to ”load“ them separately, even at run-time. This process is called
a Function Change and it was described in Section 2.1.1. When do-
ing a Function Change, the Signal-Sending Table (SST) and the Global-
Signal Distribution Table (GSDT) has to be updated. The update has
to be done because all signal sendings has to look in the SST and the
GSDT to find which signal to invoke.

When updating the tables, by the Rationalized Software Production
(RSP) functionality, the (new) introduced signal is given a unique num-
ber, the Global Signal Number (GSN). This number is stored in the
GSDT as well as in the SST of the Function Unit (block) using this
”new“ signal. The GSDT also stores Block Number Receiving (BN-R),
(the unique number of the block receiving the signal) and the Local
Signal Number (LSN) which is the position holding the local relative
address of the entry point of the signal entry.

The Signal Distribution Table (SDT) is not updated, as the SDT
holds the relative address to the signal entries inside the Function Unit.
SDT is set with a local number in the object step (during compilation).

SDT: Contains the relative entry address, set during compilation, of
the specific program sequences where signals are received.

SST: Contains the global signal number (GSN) of signals to invoke
12And, as shown by Arnström et. al, the AXE system is classified as a soft real-time

system [AGG99].
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Signal
Distribution Table

(SDT)

Signal Sending
Table (SST)

Program Code

PS

One function Unit
(Block)

Figure 3.13: PS, showing SDT, SST and Program Code of one function
unit.

from function unit using ”this“ SST, created in the object step and
changed by the RSP.

GSDT: Contains the global signal number (GSN), the Block Number
Receiving (BN-R) and the Local Signal Number (LSN).

In DS, values are stored for all variables.
In PS, the programs for all blocks are stored together with the Signal-

Sending Tables (SST), the Signal Distribution Table (SDT) and the Global-
Signal Distribution Table (GSDT), see Fig. 3.13

RS is used for addressing DS and PS, and contain the Program Start
Address (PSA) and Base Start Address (BSA), see Fig. 3.14.

3.3.1 Addressing a Program Sequence

Fig. 3.15 shows ”unit A” sending a signal to ”unit B”; the global signal
number (GSN) is found in the Signal-Sending Table (SST) of ”unit A”.
The GSN is used to find the Block Number Receive (BN-R) and the Local
Signal Number (LSN) in ”unit B” (”unit A” doesn’t know it is ”unit B”
that holds the signal entry for the signal sent from ”unit A”). The BN-R
is used to obtain the Program Start Address (PSA) in the Register Store
(RS). The PSA is an absolute address in the Program Store (PS), and by
knowing the LSN and PSA, and also using the Signal Distribution Table
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Block 1

RS

Block 2

Block 3

...

...

...

Block   n

PSA

PSA = Program Start Address

Reference Table

Figure 3.14: RS, showing the Reference Table.

Unit A GSDT
Reference
Table (RS)

UNIT B

GSN

LSN
PSA

BN-R

Figure 3.15: The information flow in determining the signal entry when
sending a signal.

(SDT) of ”unit B” the entry point of the program code can be determined
in ”unit B”. See Fig. 3.16.
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SDT

SST

Program
Code

SDT

SST

Program
Code

Block  X

Block  Y

PSA

PSA / LSN

GSN

GSN

GSN
GSN

GSDT

LSNBN-R

1

2

PS RS

PSA

3

SSP

GSN

BN-R /
LSN 4

PSA / LSN

5

IA

6 LSN
BN-R = Block Number Receive
GSDT = Global-Signal Distribution Table
GSN = Global Signal Number
IA = Instruction Address
LSN = Local Signal Number
PS = Program Store
PSA = Program Start Address
RS = Register Store
SDT = Signal Distribution Table
SSP = Signal-Sending Pointer
SST = Signal-Sending Table

PSA + IA

7

Figure 3.16: The consecutive order of handling a signal sending.
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Addressing in DS

RS actually consists of two parts: the Reference Table (RT) and the
Base Address Table (BAT). In the RT there is one PSA and Base Start
Address (BSA) for each block, and the BSA points to the starting point
of BAT, see Fig. 3.1713.

RT: is part of Register Store and hold the Program Start Address and
Base Start Address.

BAT: holds the address of the variables in DS. For each block a variable
is given a number from 1 and upwards. This number is called the
Base Address Number (BAN). To get the address of a variable in
DS, the BSA + BAN will give the position holding the address in
DS.

BSA: holds the address of current start point of BAT.

3.4 Software Recovery

After the initial loading (Section 2.1.4), the exchange is supposed to run
smoothly during its lifetime. This is also the normal situation for the
system. However, errors can’t be entirely eliminated and in this section
we will study software recovery actions. The goal with the automated
recovery action is to minimize the exchange down-time. This is achieved
by first trying to release only the dysfunctional forlopp14 (which nor-
mally stretches over parts of several blocks) and leave the rest of the
system unaffected. As a last step, if nothing else works, the entire sys-
tem is restarted.

This section will cover the different steps regarding software recov-
ery actions. In Section 2.2.3 we stated that variables are treated dif-
ferently at recovery actions depending on the properties set by the de-
signer. We will end this section with a summary of variable properties
and their ”behavior” at recovery actions.

13Actually, this is how addressing is performed in some architectures. The addressing
principles may differ among the APZ versions

14Forlopp will be described in Section 3.4.1



CHAPTER 3. THE EXECUTION MODEL 40

PSA BSA

Base Address 1
(the word-address of a

stored variable)
Base Address 2

.....

Base Address  n

Base
Address

Table

Reference
Table

PS

BN-R RS DS

1

2

3

Block A
Block B

Block  n

.....

Block A

Block B
.....

Block  n

1 = BSA indicates the starting point of base address table for block A located in reference
store. The BSA will give the absolute address.
2 = BAN indicates where the BAT word address for the specific variable is found. BAN is a
relative address.
3 = The word address indicates where the value of the specific variable is stored in DS.

Figure 3.17: Show how addressing to DS is performed in RS. BSA points
to the starting point of BAT
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3.4.1 Forlopp

The first line of defense for maintaining system availability is the For-
lopp release. The purpose of a forlopp release is to allow a single process
chain, e.g., a call, to be released without adversely affecting any other
processes in the system.

Forlopp originates from the Swedish word ”förlopp” meaning ”se-
quence of related events”. In the contents of AXE, a typical forlopp
will result in a ”path through the system” which generally will be rep-
resented by a chain of linked software resources, such as records. In
AXE, the word forlopp can be used to denote both the ”sequence of re-
lated events” and the resulting ”path through the system”. The forlopp
mechanism is implemented in the Maintenance Subsystem, MAS, Fig.
2.1. Examples of forlopps are an ordinary telephone call or a command.
Some concepts associated with forlopps:

• A forlopp identity (FID), stored in a special register, is assigned to
each process (a call or forlopp). All parts participating in the same
forlopp have the same forlopp identity.

• The forlopp manager (FM) stores information concerning the dif-
ferent forlopps.

• When a software error is detected, the FM sends release signals to
the blocks involved according to the information stored in FM. A
forlopp release is hereby performed.

• At a forlopp release, a software error dump is performed, which
means that the contents of the records participating in the current
forlopp are dumped15.

To summarize, a detected software fault may result in a forlopp release,
provided that the function block in which the fault occurred is forlopp-
adapted and the forlopp function is active.

3.4.2 System Restart

The system restart has been the traditional recovery action taken by the
APZ (Section 2.1) when it detects a software fault. The system restart

15Section 2.1.4 describes what a dump is.
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affects the entire system and not only the forlopp in which the fault
occurred. The purpose of a system restart is to restore the system to a
predefined state.

During restart, restart signals are sent to each block, so that during
successive restart phases, blocks perform actions to complete the initial-
ization or restoration to a consistent value of their data store variables.

The system restart procedure could be initiated manually, by a COMMAND
(Section 2.1.3), or automatically. A manual system restart clears error
situations, for instance the disconnection of a hanging device. An auto-
matic system restart is detected by programs, microprograms and su-
pervisory circuits. At a system restart, the job table, the job buffers and
the time queues (Section 3.2) are cleared.

There are three levels of system restart activities:

• Small system restart, which does not affect calls in speech position
and semi-permanent connections. Other calls are disconnected.
This is a minimal system restart.

• Large system restart in which all calls are disconnected. Semi-
permanent connections are not affected.

• Reload and large system restart in which a reload is performed
first to ensure that RELOAD-marked variables contain correct val-
ues. This is then followed by a large system restart. Semi-permanent
connections are disconnected and automatically reestablished.

The reason to have different types of system restarts is to disturb traffic
handling as little as possible during the restart phase.

With the occurrence of the first fault in a normal block that leads to
a system restart, the system tries to repair itself without disturbing the
traffic too much - A small system restart is initiated. If another serious
fault occurs within a predefined time interval, a large system restart
will be initiated. In the event of the occurrence of a third serious fault
within another predefined time interval, a reload and a large system
restart will take place. This represents the system’s most extreme error-
recovery action. The described phases is pictured in Fig. 3.18.

Finally, it is sometimes unnecessary to immediately initiate an auto-
matic system restart. The system restart could be delayed or inhibited.
This is done by calling the selective restart function.
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time
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Small
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Small
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Restart

Reload
+

Large
Restart

Figure 3.18: Different types of system restart.

3.4.3 Forlopp Release or a System Restart?

In Section 3.4.1 we described the concept of forlopps as a way to recover
from a software error without affecting more than the faulty forlopp.
Then, in the following Section, 3.4.2, we described the system restart
and the different levels of restart and when they apply. This section
explains when the system restart action takes over from the forlopp
release mechanism.

As we said in Section 3.4.1, a forlopp release is always a first choice if
an error has been detected. The system restart ”function” applies when
and if:

• The forlopp release fails to recover the system (i.e., the faulty for-
lopp), or

• The faulty process has not been forlopp-adapted, or

• The number of faults have been to high according to a predeter-
mined limit.

The last case is checked against an intensity counter. This counter keeps
tracks of the quantity of software faults. The counter is stepped each
time a fault is detected leading to a delayed system restart or a forlopp
release. When the counter reaches the predetermined limit, a system
restart is initiated. The counter is then reset and starts again from
zero. Fig. 3.19 shows the intensity counter and Fig. 3.20 shows the
different levels of software recovery.
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Figure 3.19: The intensity counter.
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Figure 3.20: Different levels of recovery after a detected software error.
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3.4.4 Variables and Software Recovery

As said in Section 2.2.3, the variable properties determine how the vari-
ables are to be treated (i.e., from a data point of view) in the case of a
system restart. Fig. 3.21 shows the principles of how different types of
variables should be treated after a system restart.

 DS
 DS DUMP
 DS STATIC
 DS RELOAD
 DS RELOAD DUMP
 DS RELOAD STATIC

 DS CLEAR
 DS CLEAR DUMP

Start
Small

system restart
Large

system restart

System restart
with

reloading
   Cannot
   be
   trusted

   Cannot
   be
   trusted

  Can be trusted
  Can be
trusted

  Can be trusted

  Cannot be trusted
  Exception: when the variable value
  is checked in system restart routine

Figure 3.21: Data security of different start/restart types.
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Chapter 4

Related Work

In Section 1.1, we mentioned that efforts have been made to replace
PLEX with, or ”map” PLEX to, specification languages like SDL for in-
stance. The latest version of SDL (Specification and Description Lan-
guage), SDL2000, has been given a formal (semantic) definition1. Work
on this can be found in [IT00] and [EGG+01]. Whether or not SDL
and PLEX are ”compatible” with each other is still discussed within the
PLEX design group, and will not be a subject of study in this report.

Another language used for specification is UML, Unified Modeling
Language. The relation between PLEX and UML has been discussed
in [AGG99]. A dialect of UML, UML-RT, is discussed by Herzberg in
[Her99]. This paper investigates the mapping between PLEX and UML-
RT. This paper is published within the E-CARES project2, which also
explores the AXE system, but from a ”re-engineering” point of view.

Another language used in the same domain, i.e., the telecommuni-
cation domain, is CHILL (CCITT High Level Language), which was de-
veloped by the International Telecommunication Union (ITU), [IT99].
The language has been specified by the Vienna Development Method,
[BJ82], in [IT82]. This is a denotational framework and could be of in-
terest since CHILL is used in the same domain as PLEX. But, since the
VDM is more of a specification method, that goes from abstract notation

1See the home page of the SDL Formal Semantics Project on:
http://rn.informatik.uni-kl.de/projects/sdl/

2Home page:
http://www-i3.informatik.rwth-aachen.de/research/projects/ecares/Main.html
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to formal specification, whereas this work goes from an implemented
language to a formal specification, the VDM will not be considered in
this report.

CHILL has also been covered by Winkler in [Win00].



Chapter 5

Programming Language
Semantics

What is programming language semantics and how/when is it used?
The first section in this chapter is devoted to answer these questions.
We will explain what we mean by a semantic description of a program-
ming language. The following sections will look at the most common
forms of semantics.

5.1 The meaning of a program

Programming language semantics is concerned with rigorously speci-
fying the meaning, or the effect, of programs that are to be executed.
By effect we mean, for instance, the contents of the memory locations,
which parts of the program that is to be executed, or the behavior of the
hardware affected by the program. A semantic specification captures
these things in a formal way, and later in this chapter we will study
different approaches to this formal description.

Formal descriptions of programming languages are becoming more
and more popular, e.g. the BNF1 is used to specify the syntax of PLEX.
The problem is that a formal description of the syntax says nothing
about the meaning of the program since ”syntax is concerned with the
grammatical structure of programs” whereas ”semantics is concerned

1Backus-Naur Form
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with the meaning of grammatically correct programs” [NN92]. It is also
possible to distinguish between static and dynamic semantics [Mos01].
Static semantics corresponds to the compile-time behavior of the pro-
gram, the dynamic semantics hence corresponds to the run-time behav-
ior.

But now when we know what programming language semantics is,
how can we use it? We consult [NN92] for an answer to this question:

• The semantics can reveal ambiguities and complexities in what
may look as a clear documentation of the language (e.g. the lan-
guage manual).

• The semantics can also form the basis for implementation, analy-
sis and verification.

Even with these obvious advantages with formal semantics, it is still
widely regarded as being of interest only to theoreticians [Mos01].

5.2 Semantic approaches

The formalizations of a programming language may differ, i.e. the ex-
planations (or the meaning) can be formalized in different ways. Most
frameworks, or approaches, can be classified as one of the following
three categories:

• Operational semantics - How to execute the program. The opera-
tional approach(es) is (are) concerned with how the effect of the
computations is produced. The meaning is often specified by an
abstract machine and/or a transition system.

• Denotational semantics - The effect of executing the program. De-
notational semantics, in contrast to operational semantics, is only
concerned with the effect of the computation, not how it is ob-
tained. Meanings are modeled by mathematical objects represent-
ing the effect of executing the constructs.

• Axiomatic semantics - Partial correctness properties of the program.
The axiomatic approach is concentrated on specific properties of a
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program. These properties are expressed as assertions. Axiomatic
semantics involves rules for checking these assertions. There may
be aspects of the executions that are ignored since only specific
properties are considered.

These different categories will be further investigated/explained in their
own sections (5.4, 5.5 and 5.6), but we can already state that in the
general case, the semantics will tell us something about the relation
between an initial and a final state2.

5.3 Notation

In the following studies of the different approaches, some ”semantic”
notations will be used3. These notations may seem unfamiliar to the
reader and we will summarize some basic notations here.

• By [x �→ 5] we mean the function that maps the symbol x to the
numerical value 5. I.e. x has the value 5.

• s0 = [x �→ 5] is called a state. The state s0 where x maps to 5. We
will also use the general form s x to denote the variable x in state
s. For a value 3, bound to x in the state s, we will write s x = 3.

• By 〈x := z, s0〉 → s1 we mean that the execution of x:=z in the state
s0 will result in the new state s1.

• We will later talk about semantic functions and use the notation [[ ]]
to denote the syntactic argument (enclosed in syntactic brackets)
to the semantic function.

• We will use tt and ff to denote the truth values true and false,
respectively.

• 〈 S1, s 〉 → s′, 〈 S2, s′ 〉 → s′′
〈 S1; S2, s〉 → s′′ is called a rule. It has a number of

premises above the solid line and one conclusion below the solid
line. A rule may also have a number of conditions that have to be
fulfilled whenever the rule is applied.

2The meaning of a state is explained in the following subsection.
3The notation used in this report are the same as used in [NN92]
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• We will use ⇒ as the transition relation, i.e., when we go from one
state to another with the execution of one statement.

• ⇒∗ means that we take zero or more steps from an initial to a final
state.

5.4 Operational Semantics

In Section 5.2 we said that a semantic formalism tells us something
about the relationship between the initial and the final state. In the
Operational approach we are not only interested in this relationship.
We also want to know how the computations that lead to the final state
modify the intermediate state(s) as well. The different operational ap-
proaches differ in the level of details:

• In the Natural semantics, the focus is on how the overall results of
the executions are obtained, whereas

• in the Structural operational semantics, it is of interest in how the
individual steps of the execution takes place4.

These two different approaches will be studied in the following subsec-
tions (5.4.1 and 5.4.2). For both styles of operational semantics, the
meaning of statements is specified by a transition system with two dif-
ferent configurations:

• 〈S, s〉 which means that the statement S is to be executed from the
state s.

• s that represent a terminal state, i.e. a termination of the compu-
tation.

5.4.1 Natural Semantics

The relationship between the initial and the final state of the execution
of a statement is in focus for the natural semantics (ns). The transition
system specifies this relationship for every statement and is written in

4Natural semantics is also known as Big Steps Semantics, whereas the structural
operational approach sometimes is called Small Steps Semantics. These alternative
names tell us something about how detailed the transition is specified.
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the form 〈S, s〉 → s′ which, intuitively, means that the execution of the
statement S from state s will terminate and the resulting state will be
s′. The execution of the statement S on the state s will:

• terminate iff5 there is a state s′ such that 〈S, s〉 → s′, and provided
that the language under consideration is deterministic, or

• loop iff there is no such state s′.

An example on how a natural semantics may look is given in Fig. 5.16.
In this table, we see a compound statement consisting of the individual
statements S1 and S2. We see that the execution of S1 from s results in
a final state s′, a final state that also is a start state in the configuration
〈 S2, s′ 〉 which has the final state s′′. So, the execution of the compound
statement S1; S2 from the start state s result in a final state s′′.

[compns]
〈 S1, s 〉 → s′, 〈 S2, s′ 〉 → s′′

〈 S1; S2, s〉 → s′′

Figure 5.1: The compound statement expressed in natural semantics.

5.4.2 Structural Operational Semantics

In the natural semantics, we were interested in the relationship be-
tween the initial and the final state when a statement was executed. In
the structural operational semantics (sos), we are also interested in the
intermediate states as well. I.e., if the execution of the statement S in
state s leads to the final state s′, the structural operational semantics
will tell us something about the intermediate states that are ”visited”
during the execution. In other words, the focus is on the individual steps
of the execution. The transition system has the form 〈S, s〉 ⇒ γ where γ

5if and only if
6This, and other examples of semantic styles/approaches in Section 5.2 are all from

[NN92].
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is either of the form 〈S′, s′〉 or of the form s′. This means that the tran-
sition system expresses the first step of the execution of the statement
S from the state s and the result of this is γ.

• If γ is of the form 〈S′, s′〉 then the execution of S from s is not
completed and the rest of the computation is expressed by the in-
termediate configuration 〈S′, s′〉.

• If γ, on the other hand, is of the form s′, then the execution of S

has terminated and the final state is s′.

In Fig. 5.2 we express the compound statement in a structural opera-
tional semantics style. Unlike the natural semantics in Fig. 5.1, we see
two ”cases” for the compound statement. In the first case, the execution
is not completed and the next configuration (from 〈S1, s〉) is the inter-
mediate configuration 〈S′

1, s
′〉. In the second case, the execution of S1 is

completed and the final state is s′. From this state, the execution of the
configuration 〈S2, s

′〉 can start.

[comp 1
sos]

〈 S1, s〉 ⇒ 〈 S′
1, s′ 〉

〈 S1; S2, s 〉 ⇒ 〈 S′
1; S2, s′ 〉

[comp 2
sos]

〈 S1, s〉 ⇒ s′
〈 S1; S2, s 〉 ⇒ 〈 S2, s′ 〉

Figure 5.2: The compound statement expressed in structural operational
semantics.

5.5 Denotational Semantics

With the operational approach, the focus was on how the program was
executed - ”How to compute.” In the denotational approach, the empha-
sis is on ”the effect of computing”. By effect, we mean the relationship
between the initial and the final state. The denotational approach con-
sists of defining semantic functions for each syntactic category. This
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semantic function maps each syntactic construct to a mathematical ob-
ject, most often a function, that describes the effect of executing the con-
struct. In Fig. 5.3, we see a denotational description of the compound
statement (previously shown in Figure 5.1 and 5.2). In the Figure, we
see that the effect of computing the compound statement S1; S2 is the
functional composition of executing S1 followed by S2.

Sds[[S1; S2]] = Sds[[S2]] ◦ Sds[[S1]]

Figure 5.3: The compound statement expressed in denotational seman-
tics.

5.6 Axiomatic Semantics

With the operational as well as the denotational approach, we are con-
cerned with the meaning of a given program. This is in contrast to
the axiomatic approach were we study properties of a given program.
These properties (expressed as assertions) could, for instance, be exe-
cution times (see [NN92] for an example) or the degree of resource uti-
lization. But, since the focus is on specific properties and not on the
meaning (as in the previously described styles) ”there may be aspects of
the execution that are ignored” [NN92]. Axiomatic definitions is often
given in the form

{P}S{Q}

where P is a Pre-condition, S the statement to be executed and Q a Post-
condition. This is to be interpreted as: ”If P holds and the execution of
S terminates, then Q will hold”. In Fig. 5.4 we show the compound
statement in the axiomatic style. From this, we can say that if the pre-
condition P holds and the execution of S1 followed by the execution of S2

terminates holds, then the post-condition R will hold.
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Sp[[S1;S2]]
{P}S1{Q}, {Q}S2{R}

{P} S1; S2 {R}

Figure 5.4: The compound statement expressed in a axiomatic semantics
style.



Chapter 6

Semantic Approach

6.1 Selected Approach and Motivation

In the process to determine a proper semantic approach for PLEX, it
was early agreed that the axiomatic approach (described in Section 5.6)
was not a suitable choice because of the rather abstract notation and
also because its focus is on properties more than the effect. So, the
selection had to be made between some form of operational semantics,
or the denotational approach. Some considerations that were taken into
account:

• The operational semantics has its main advantages1 in the fact
that it is relatively easy to understand and also that the execu-
tional steps are explicit. A possible disadvantage may be the fact
that the approach is tightly connected to how a statement is exe-
cuted (i.e., it is closer to the actual execution than the denotational
approach).

• For the denotational approach, the advantage is that since mathe-
matical objects are in focus, it abstracts away from how programs
are executed. It can therefore be seen as the denotational ap-
proach provides a more formal basis for reasoning about programs.
The disadvantage lays in the notation - Mathematical notation
may ”scare” the unfamiliar reader.

1This is the authors opinion.
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[NN92] claims that the denotational approach may be preferred when
reasoning about programs whereas the operational approach may be
preferred when implementing the language. The decision to use an op-
erational approach was based on the following considerations:

• It was a pre-request that the notation would be relatively easy to
understand even by a reader unfamiliar with semantic notation.

• The language PLEX is continuously updated and new hardware is
introduced in periodic intervals. This means that our semantic de-
scription also could be seen as a reference manual for new (future)
implementations of the language.

A second decision had to be made whether we should use the nat-
ural semantics (described in Section 5.4.1) or the structural operational
semantics (described in Section 5.4.2). Even if the PLEX language does
not provide parallelism today, it is shown that many constructs are suit-
able for parallel execution [Lin03], and to be able to deal with this in a
future extension of the (language and the) semantics, the structural op-
erational approach were preferred2.

6.2 The State of the System

In order to develop a semantic framework for PLEX, we have to deter-
mine what a state of the system is since the execution of a statement will
change the current state, i.e., with the execution of a statement, we go
from an old state to a new state. Our starting point will be:

• With the state of the system, we mean the contents of the memory.

So, in order to determine the state of the system, we will look at the
different forms of storage that exist in the system.

The first thing we have to consider is the memory and stores of the
Central Processor. The memory in the Central Processor (CP) consists
of the register memory and the different stores.

2[NN92] shows why the structural operational semantics is well suited for parallel
constructs.



CHAPTER 6. SEMANTIC APPROACH 59

The register memory is used for storing of temporary variables, point-
ers and for transferring of signal data between different ”processes”3.
Values in the registers are lost after an EXIT from a job, or other reg-
ister killing statements such as direct signals, combined signals or IO
statements, for example. These are all statements that force the exe-
cution to leave the current block. Temporary variables are only ”alive”
(i.e., containing a value in a register) from the first write to it, until the
last use. The PLEX compiler keeps track of write-read chains and only
allocates registers while the variables are alive during the execution.

The different stores in the CP were shown in Fig. 2.2. They are re-
peated in Fig. 6.1. The different forms of storage contains the following
information:

• The Program Store is used for the storage of programs.

• Variables that is to survive the termination of a ”process” or a sys-
tem restart, are stored in the Data Store.

• The Reference Store, finally, contains information about where to
find the different programs and data.

However, the Program Store and the Reference Store will be omitted
when we specify the state of the system since the statements we look at
(starting in Section 6.12) don’t effect these storages. The second thing

Program Store

PS

Reference Store

RS

Data Store

DS

Figure 6.1: The different stores in the central processor (CP).

that is important, is the different kind of job buffers (which are used to
store the different kinds of signals). A simplified figure of the job buffers
is shown in Fig. 6.24. The semantics of the job buffers are the FIFO5

3The transferring of signal data have similarities to an ordinary function call: Just
as variables are loaded when the function is entered, are the signal data loaded at the
start of a sub-program, i.e., at a SIGNAL ENTRY.

4A more detailed description is found in Fig. 3.10.
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 JBA - urgent tasks of the operating system; preferential traffic
 JBB - all other telephone traffic
 JBC - input/output to operator and I/O devices
 JBD - APZ routine self-tests
 JBR - Signals from Central Processor  to Regional Processor

Job buffers for CP-CP
and RP-CP signals

Job buffer for CP-RP signals

JBA

JBB

JBC

JBD

JBR

Figure 6.2: A simplified figure of the job buffers in the PLEX/AXE envi-
ronment. (See also Fig. 3.10)

approach, as shown in Fig. 6.3. Associated with each job buffer are
two pointers, Job Buffer In (JBI) and Job Buffer Out (JBO). These
pointers make it possible for the APZ (the operating system) to know
where, in a job buffer, to insert a signal that is to be buffered, or from
where to fetch a new signal. The memory layout, in a job buffer, for one
buffered signal is pictured in Fig. 6.4. The job buffer will consequently
consist of several items of the form described in the picture. So, as

...
Enter SigA

...

Unit B

Job Buffer...
Send SigA

...
EXIT

...

Unit A

JBI JBO

Figure 6.3: The FIFO-semantics of the job buffers.

stated in the beginning of this section, our starting point in determining
the state of the system, was:

• With the state of the system, we mean the contents of the memory.
5First-In-First-Out
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W0

W1

W2

W3

W4

W5

W6

W7

W8

W9

W10

W11

Wn

IPOINTER LI

0 BN|R

0 BN|S

BN|S ND

FORLOPP ID      B0 15

STYPE 0L F

FORLOPP ID      B16 31TR

POINTER       B0 15

POINTER       B16 27

DATAWORD 0

DATAWORD 1

DATAWORD N

0 LSN   (SNX)

 LI - Lengt Indicator
 LSN  - Local Signal Number. The entry point in
    the Signal Distribution Table of the receiving
    block
 DATAWORD <p> - Where the actual data is
    placed

Figure 6.4: Organization of the job buffers. NOTE: The pointer registers,
W8-W9, are treated as one register (and referred to as POINTER B0).
This is due to the fact that the register in W9 is only used when a pointer
is too large to fit only in W8. In this case, the pointer will be split up and
placed in W8 with its first half, and in W9 with its second half.
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And, we can now tell that the contents of the memory is the contents of
the register memory, the contents of the Data Store, and the contents of
the job buffers. The state of the system can, at this point, be represented
as a tuple of the form6:

〈RM,DS, JBA, JBB, JBC, JBD, JBR〉

where RM = Register Memory, DS = Data Store, JBA = Job Buffer A,
JBB = Job Buffer B, JBC = Job Buffer C, JBD = Job Buffer D and JBR
= Job Buffer R.

The above representation would indeed be sufficient if PLEX was a
strictly sequential language, i.e., if statementA precedes statementB in
our source code file, then we could be absolutely certain that statementA

would execute before statementB. This holds in a language without the
possibility to manipulate the Program Counter, e.g., with a JUMP state-
ment. But since these kind of statements do exist in PLEX7, we also
have to model the possibility of ”moving” the execution to somewhere
different from the following statement. If we had been dealing with
some kind of assembler code, the above could easily be managed by ad-
justing the Program Counter according to the instructions executed by
the CPU. But we are not looking at the semantics from an instruction
level point of view, instead we are working with statements that consists
of n instructions.

• Our solution is to define the Virtual Statement Counter, VSC

The VSC contains an address (an integer value), which tells where the
first instruction in the next statement resides in memory. By stepping
up the VSC with 1, we step it up to the first instruction in the next
statement8. If nothing else is stated, the VSC will always be stepped up
to the next statement after the execution of a previous statement, i.e.,
s[VSC �→ VSC+1]. For convenience, we will use the notation s[VSC++]

6The contents of the memory could also be extended with the contents of the DATA

SECTOR (see Section 2.2.1), which is used in a startup phase as well as in a system
restart phase. But since we do not cover those phases in this report, the contents of the
Data Sector is omitted in our description of the systems state.

7E.g., the GOTO statement.
8The approach is similar to the one described in [Lis98], where the program counter

is modified in a similar way.
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to denote s[VSC �→ VSC+1]. In situations where this is obvious, we will
omit this ”information”. A situation where this is the case would for
instance look like: 〈S1, s〉 ⇒ 〈S′

, s
′〉

The above leads us to the following definition of the state of the sys-
tem:

〈VSC, RM,DS, JBA, JBB, JBC, JBD, JBR〉

6.3 Lexical Units and Syntactical Categories

In this section9, we will follow the conventions in [AB02] and use the
same variant of EBNF (Extended Backus-Naur Form) notation.

• ::= is used as the ”definition operator”.

• We will mark a KEYWORD with bold, upper case letters.

• The vertical bar, |, represents a choice between elements.

• The square brackets [ ] are used to denote an optional construct.
I.e., the construct inside the brackets may be omitted.

• Optional properties are marked in a separate way, like in ”length”.

• Curly brackets, { }, are used to delimit an operand, or simply to
improve readability. { }∗ represents a possibly empty sequence of
elements, i.e., the element may be repeated zero or more times.
Finally, { }+, are used for the non-empty sequence of elements.

The lexical units and the syntactic categories10 in PLEX are as follows:

• upper-case-letter ::= A|B|C|...|X|Y|Z

• lower-case-letter ::= a|b|c|...|x|y|z

• letter ::= upper-case-letter | lower-case-letter
• decimal-digit ::= 1|2|3|...|7|8|9

• hexadecimal-digit ::= 1|2|...|8|9|A|B|...|E|F

• special-character ::= !|"|#|%|1|’|?|(|)|*|+|,|-|.|/|:|;|<|=|>|_

|[|]|$|@

9The syntactical material in this section is basically compiled together from the
following internal Ericsson documents: [AB98, AB02, AB86]

10Please note that the syntactical categories in this section are only a subset of the
language.
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• character ::= letter | decimal-digit | special-character
• identifier ::= letter {letter | decimal-digit | _{ letter | decimal-digit}}∗

• decimal-numeral ::= decimal-digit{decimal-digit | _}∗

• hexadecimal-numeral ::= hexadecimal-digit{hexadecimal-digit | _}∗

• numeral ::= [+]{decimal-numeral | hexadecimal-numeral}
• string-object ::= ”character{character}∗”
• arithmetic-operator ::= ’+’ | ’-’ | ’*’ | ’/’
• bit-operator ::= ’(-)’ | ’(*)’ | ’(+)’ | ’(=)’ | ’=>’ | ’<=’
• relation-operator ::= ’<’ | ’=<’ | ’=’ | ’/=’ | ’>=’ | ’>’

• binary-operator11 ::= arithmetic-operator | bit-operator12 |
relation-operator

† There are no syntactic categories such as arithmetic or boolean
expressions in PLEX. Instead, there is the field-expression. A field
expression is one or several operands separated by arithmetic or
”logical”13 operators14. We could say, ”separated by binary opera-
tors”, but that would include bit operators that don’t ”give” logical
values. Field expression is evaluated from left to right and accord-
ing to the priorities shown in Table 6.1.

• field-expression ::= [+|-] sub-expression

• subexpression ::= operand | negation-operator sub-expression
| subexpression binary-operator subexpression
| ’(’subexpression’)’

• operand ::= field-variable | pointer | numeral | number-symbol

† Operands and (sub)expressions can only adopt positive integers
[AB02]!

• field-variable ::= identifier

† When a field-variable is declared, the variable properties must also
be specified. The variable properties is concerned with if the vari-
able is stored or temporary, and how the variable is to be treated

11The meaning of, and the priority among the operators are summarized in Table.
6.1.

12All bit operators are binary operators except the NOT-operator ’(-)’.
13With logical operators, we mean operators that are used in expressions that we

think of as being true or false, and these operators are marked as logical in Table 6.1.
14I.e., arithmetic and boolean expressions exist, but are both called field expressions.
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during software recovery actions. The property is specified as a
valid15 combination of the keywords: DS, BUFFER, COMMUNI-
CATION BUFFER, CLEAR, SEMICLEAR, RELOAD, DUMP,
STATIC and TRANSIENT

• pointer ::= POINTER pointer-name ’(’record-name’)’ ’;’

• pointer-name ::= identifier
• record-name ::= identifier

† [AB98] states that the pointer-name should end with the suffix
pointer, ptr or p.

†† Pointers are not more than record numbers (i.e., positive integers).
A pointer is always associated with a file and the value of the
pointer is the number of the current record in that file. (See Sec-
tion 2.2.2 for details.)

††† Pointers behave like, and are treated as, temporary variables,
i.e., pointers are stored in the register memory and they may loose
their value whenever the execution of the software unit termi-
nates.There is no explicit pointer arithmetic, instead they are treated
and used as operands in field-expressions (described above) and in
assignment statements (described later in this section).

• number-symbol ::= identifier
† Number symbols have the same semantic meaning as constants in
C (for example).

†† Number symbols are declared in the Declare Sector (see Section
2.2.1) with the statement:
NSYMB identifier ’=’ {decimal-numeral | hexadecimal-numeral}’;’

• condition ::= field-expression relation-operator field-expression
| symbol-variable [’=’ | ’/=’] symbol-value
| string-object [’=’ | ’/=’] string-object

• symbol-variable ::= SYMBOL VARIABLE
’(’symbol-value {, symbol-value}∗’)’ [properties] ’;’

• symbol-value ::= identifier

• properties= A valid combination of: DS, BUFFER, COMMUNI-
15The valid combinations of the variable properties, as well as the meaning of the

different properties is covered in Section 2.2.3.
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CATION BUFFER, CLEAR, SEMICLEAR, RELOAD, DUMP,
STATIC and TRANSIENT

† Symbol variables are also known as enumeration type variables, a
concept that is familiar to C programmers. Their use is to hold
symbol values, which in the AXE domain could be IDLE, BUSY,
BLOCKED for instance. A symbol variables can be assigned symbol
values and compared to other symbol variables.

†† The code generation phase16 replaces the symbol values with nu-
merical values. This is why symbol variables can be assigned to,
and compared with, field variables (that store numerical values),
i.e., if a field variable is assigned a symbol value, the numerical
value of the symbol is assigned the field variable.

Priority Operator Meaning Type
1 (-) Logical NOT Bit operator (logical)
2 => Shift right Bit operator
2 <= Shift left Bit operator
3 * Multiplication Arithmetic
3 / Division Arithmetic
4 +, - Addition, Subtraction Arithmetic
5 = Equality Relation (logical)
5 /= Inequality Relation (logical)
5 < Less than Relation (logical)
5 > Greater than Relation (logical)
5 =< Less or equal than Relation (logical)
5 >= Equal or greater than Relation (logical)
6 (*) Logical AND Bit operator (logical)
7 (=) Logical XOR (Exclusive or) Bit operator (logical)
8 (+) Logical OR Bit operator (logical)

Table 6.1: Priorities and meaning of the PLEX operators. Priorities are
numbered from the highest (1) to the lowest (8).

16The code generation phase is the process of translating (in several steps) the source
code (PLEX) to machine code. (The compilation process, in which the code generation
takes place, is covered in [AE00].)
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6.4 Statements for Variable Assignments

The general form of the assignment statement has the following syntax:

• assignment-statement ::= [SET] variable ’=’ expression ’;’

We recall (from Section 2.2.3) that PLEX have three different types of
variables; Field variables for numerical information, symbol variables
for symbolic values, e.g., IDLE, BLOCKED, BUSY, etc and string vari-
ables which store text strings. This implies the following three state-
ments for variable assignment:

• field-assignment-statement ::= [SET]
{ { {pointer | field-variable} ’=’ }+

{field-expression | maxnum-expression} }
| { field-variable ’=’}+ symbol-variable ’;’

• maxnum-expression ::= MAXNUM OF variable

† The value of a maxnum-expression is the number of individuals in
the file associated with the given variable name.

• symbol-assignment-statement ::=
[SET] {symbol-variable ’=’}+ symbol-value ’;’

• string-assignment-statement ::=
[SET] {string-variable ’=’}+ string-object ’;’

6.5 Jump Statements

PLEX offers both conditional and unconditional jump statements. The
”programmer guidelines” for the use of jump statements are: ”Please
avoid backward jumps as far as possible, because they are difficult to
follow.” and ”Try to avoid jump statements, since they can give rise to
a poor program structure. It is very difficult to read a program with a
great many jump statements.” [AB98]. But still, they are part of the
language, and we will look at their syntax here.

The unconditional jump statement simply interrupts the sequential
execution order and its syntax is as follows:
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• unconditional-jump-statement ::= {GOTO | GO TO} label ’;’

The conditional jump statement offers a possibility to jump if the given
condition is met. It has the form of an if-statement with a goto:

• if-statement ::= IF [NOT] condition [PROCEED ELSE]
{GOTO | GO TO} label ’;’

Since condition will return in other statements, its syntax is given here:

• condition ::= {field-expression1 relation-operator field-expression2}
| {symbol-variable {’=’ | ’/=’} symbol-value}
| {string-object {’=’ | ’/=’} string-object }

In connection to the jump statements, there is also the BRANCH state-
ment which selects between a number of program sequences, but since
this statement has been ”removed”17 from the language, we will not
cover it here.

6.6 Conditional Statements

The if-statement in Section 6.5 is a rather primitive construction since
it does not have an else clause and because the only permitted action
is an unconditional jump. This is the motivation for the following more
recent statement:

• improved-if-statement ::=
IF [NOT] condition THEN sequence-of-statements

{ELSEIF [NOT] condition THEN sequence-of-statements}∗

[ELSE sequence-of-statements]
FI

17I.e., it is an old statement and should be avoided in new design [AB98].
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6.7 Selections

The CASE statement is used for selection between an arbitrary18 num-
ber of unambiguous choices:

• case-statement ::=
CASE expression IS

{WHEN choice {’,’ choice}∗ DO sequence-of-statements}+

OTHERWISE DO sequence-of-statements
ESAC ’;’

• expression ::= field-expression | symbol-variable | string-object

• choice ::= numeral | number-symbol | symbol-value | string-symbol
| text-string

It is not allowed to use a signal reception statement (Section 6.9) inside
the sequence of statements part19. Neither is it allowed to jump into a
CASE statement.

6.8 Iterations

The well known While statement is missing in PLEX. The main reason
is that such a construct is not considered necessary in the application
domain (which is the central part of the AXE switching system). A sec-
ond reason is that the construct may give rise to unpredictable execution
times, which is not the case with the iteration statements in PLEX (see
below).

Instead, PLEX offers three different statements for iteration: ON,
FOR ALL and FOR FIRST. They are all used for scanning files or in-
dexed variables between given start and stop values. The three it-
eration statements are compared in Fig. 6.5 and their syntax are as
follows:

• on-statement ::=
ON {pointer | field-variable} FROM field-expression

{UPTO | DOWNTO} field-expression

18I.e., one or more
19Which also holds for iterations and conditionals.
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DO sequence-of-statements
NO ’;’

• for-statement ::=
FOR {FIRST | ALL} {pointer | field-variable}

FROM field-expression-1 [UNTIL field-expression-2]
[WHERE { [NOT] condition

| field-variable IS CHANGED TO field-expression}]
{ {GOTO | GO TO} label
| DO {statement | statement-block-name} } ’;’

Criterion ON FOR ALL FOR FIRST
Ascending or descending order Yes Always descending

Several statements in action
part

Yes No, except in state-
ment blocks, IF, CASE
and loop statements

Condition in iteration state-
ments

NO Possible Always

Iteration ends after matching
condition once and handling
one individual

Not applica-
ble

No Yes

Iteration variable/pointer after
loop

Undefined Undefined Defined if
matching
individ-
ual/condition

Generates high-speed loop No20 Possible Possible

Figure 6.5: PLEX iteration statements - a comparison.

6.9 Signal Sending/Receiving Statements

In Section 3.1 it was stated that the main distinction to be made be-
tween the different kinds of signals in PLEX is between direct and
buffered signals. And this is true from the point of view of the execu-
tion model, but from a syntactical point of view, the main distinction
is between single and combined signals. Every signal will fall into one
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of these categories. I.e., from the syntactical point of view it is only of
interest whether one has to wait for an ”answer” (a combined signal) or
not - Whether the signal is direct or buffered, or unique or multiple,21

is specified in the Signal Description, described in appendix B, and is
certainly of interest from a semantic point of view.

6.9.1 Statements for Single Signals

There are two statements that are concerned with single signals - The
first one given is the statement for sending a single signal, whereas the
second receives a single signal:

• single-signal-transmission-statement ::=
SEND signal [REFERENCE field-variable]

[WITH signal-datum {’,’ signal-datum}∗]
[ [’,’] { BUFFER

| HURRY
| DELAY {numeral

| field-variable
| field-expression}
{MS | S | M}

| DELAY UNTIL {numeral | field-variable}} ]’;’

NOTE: The reference ”variable” must be given if the signal is a multiple
signal, which is stated in the Signal Description. The ”WITH signal-
datum” part is the data that the signal is carrying. Current program-
ming guidelines says that the keyword BUFFER, which states that the
signal is to be buffered, should not be used in new design [AB98]. The
remaining keywords is concerned with if the signal is to be buffered
or not (HURRY), and if it is to be buffered, for how long (DELAY. . . ).
However, if the signal is to be buffered or not, also depends on the in-
formation given in the Signal Description, and this will be covered in
more detail in Appendix B.

• single-signal-reception-statement ::=
ENTER signal [WITH signal-datum { ’,’

signal-datum}∗ ]’;’
20Except for BUFFER CLEAR/COPY (Section 2.2.3).
21The different signal types is described in Section 3.1
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NOTE: When a signal is fetched from a job buffer, this statement nor-
mally marks the entry point in the corresponding code that is to be
executed22.

6.9.2 Statements for Combined Signals

• combined-forward-signal-transmission-statement ::=
SEND cfsignal [REFERENCE field-variable]

[WITH signal-datum {’,’ signal-datum}∗]
[’,’]
WAIT FOR cbsignal1 IN label

{OR cbsignaln IN label}∗ ’;’
NOTE: As could be seen in the syntax for the sending of a combined
forward signal, it must be specified where (in the code) the ”answer” is
supposed to arrive. Also, note that it is allowed to wait for more than one
backward signal. This is useful when one wants to take action accord-
ing to the result of the execution in the block that received the forward
signal (and then sent the backward signal).
The following statement is used for receiving of a forward signal.

• combined-forward-signal-reception-statement ::=
RECEIVE cfsignal

[WITH signal-datum {’,’ signal-datum }∗] ’;’

The following two statements is concerned with the answer to the ini-
tiating part. The first statement is sending the ”reply” whereas the
second receives the ”answer”.

• combined-backward-signal-transmission-statement ::=
RETURN cbsignal

[WITH signal-datum {’,’ signal-datum}∗] ’;’

• combined-backward-signal-reception-statement ::=
label’)’ RETRIEVE cbsignal

[WITH signal-datum {’,’ signal-datum}∗] ’;’

22The entry point for code execution could also be the statement for receiving a com-
bined (forward) signal (described in Section 6.9.2).
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6.9.3 Statements for Local Signals

The following statements is for the sending, and receiving of a local sig-
nal, respectively. (Local signals are described in Section 3.1.4.)

• local-signal-sending-statement ::=
TRANSFER signal

[WITH signal-datum {’,’ signal-datum}∗] ’;’

• local-signal-receiving-statement ::=
ENTRANCE signal

[WITH signal-datum {’,’ signal-datum}∗] ’;’

6.10 Exit

The exit statement is a deactivation statement for the sequence of state-
ments that begins with a signal reception statement for a single signal
or a command reception statement.

• exit-statement ::= EXIT ’;’

NOTE: The exit statement marks the (possible) termination of a subpro-
gram and also the termination of a job, since the control is transferred
back to the operating system (which fetches the next job from the job
buffers).

6.11 Semantic Functions

In order to develop a semantic description of the most important parts
of PLEX, which is considered to be the concept of signals (as mentioned
in Section 1.2), we need some semantic functions 23 24 that will help us
expressing the meaning of the language. Some of them will be defined
in this section whereas the other will be defined when the need arise.

23Semantic functions are briefly introduced in Section 5.3.
24When we, in this section as well as in the following report, denote the state of the

system with s, we mean the tuple 〈VSC, RM, DS, JBA, JBB, JBC, JBD, JBR〉 that
was specified in Section 6.2.
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However, we summarize all semantic functions, that we define and use
in Chapter 6, in Table 6.2.

Function Defined in
N : numeral → Z Section 6.11
ST : string → Characters Section 6.11
A : field-expression → Z Table 6.3, Section 6.11
B : field-expression → {tt, ff} Table 6.4, Section 6.11
P : variable → var-property Section 6.11
ADR : label → Z Section 6.11
STMT : address → statement Section 6.11
SD : signal → sig-property Section 6.17
SIG : signal → address Section 6.17
L : signal → level Section 6.17
BLOCK : address → CodeBlock Section 6.17.2
APZ : state ↪→ state Table 6.5, Section 6.18
CODE : address → code Section 6.19
SPLEX : Code → state Section 6.19

Table 6.2: A summary of the semantic functions defined and used in
Chapter 6 (and in Appendix A).

The first function that we introduce is the function that determine
the number represented by a numeral, and this function is defined in
the following way:

N : numeral → Z

This function is to be read as ”The semantic function N that takes a
numeral as input and returns the corresponding integer value”, i.e., a
number. An example of applying the function is N [[137]] = 137 ∈ Z.
NOTE: It is important to understand the difference between the nu-
meral 137, which is a syntactic construct (and therefore enclosed in syn-
tactical braces), and the meaning of the numeral, which is the number
137. In the following, we will write N [[n]] to denote the ”meaning” of n,
i.e., the corresponding numerical value.
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The second function is similar to the first, but ”operates” on strings:

ST : string → Characters

and returns the meaning of a string-object as in:

ST [[abc]] = abc ∈ Characters

In other words, both N and ST captures what we intuitively think of
when we talk about the meaning of syntactical constructs such as ’137’
or ’abc’.

The third function we will use, is the function that will determine the
meaning of a field expression. We recall, from Section 6.3, that PLEX
does not contain the ”usual” arithmetic and boolean expressions. In-
stead, there is the field expression. But depending on the operator, the
value of a field expression could be seen as numerical or logical. We
will therefore define two semantic functions for field expressions, one
that applies when the expression is to be treated as an arithmetic ex-
pression, and one that applies when the expression is to be treated as
a logical expression. The first function, A, summarized in table 6.3, is
defined in the following way:

• The meaning of a field expression, when the expression is a numeral
as in A[[n]]s, is given by the function N , as specified above25.

• The meaning of a variable x is the value currently bound to the
variable, s x.

• The meaning of a field expression consisting of sub-expressions,
A[[a1 + a2]]s, is determined by the meanings of the sub-expressions.

For field expressions that is to be treated as logical expressions, their se-
mantics is given by the semantic function B as specified in Table 6.426.

The next function defined, is the function P, which will find the spec-
ified properties for the given variable. P is defined in the following way:

P : variable → var-property

25Remember that the s after the syntactic braces, [[ ]], represent the state of the system
which was specified in Section 6.2.

26When specifying the semantics for the Selection statement (Section 6.15), we will
have to compare two strings and see if they are equal. This motivates the rule B[[t1 =

t2]]s in the table.
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A[[n]]s = N [[n]]
A[[x]]s = s x

A[[a1 + a2]]s = A[[a1]]s + A[[a2]]s
A[[a1 − a2]]s = A[[a1]]s −A[[a2]]s
A[[a1 ∗ a2]]s = A[[a1]]s ∗ A[[a2]]s
A[[a1 / a2]]s = A[[a1]]s / A[[a2]]s

Table 6.3: The semantics of ”arithmetic” expressions.

where var-property ⊂ {ε, DS, BUFFER, COMMUNICATION BUFFER,
CLEAR, SEMICLEAR, RELOAD, DUMP, STATIC and TRANSIENT}27.

It is necessary to determine the variable properties, since depending on
which properties that are specified for the given variable, different parts
of the state of the system will be updated in an assignment.

Finally, to be able to determine the start address for a given program
label and also to find the statement that is located at a given address,
we define the following two functions

ADR : label → Z

STMT : address → statement

where ADR takes a program label and returns its corresponding ad-
dress, and whereas STMT takes an address and returns the corre-
sponding PLEX statement.

6.12 The Semantics for Assignment Statements

Now, when the required functions have been specified, we are ready to
approach the language constructs that is to be treated in this report.
We start with the semantics of the assignment statements, since these

27ε is returned if the variable is temporary.

28This rule could also be expressed as: B[[a1(=)a2]]s =

{
tt if B[[a1]]s �= B[[a2]]s

ff if B[[a1]]s = B[[a2]]s
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B[[a1 < a2]]s =

{
tt if A[[a1]]s < A[[a2]]s
ff if A[[a1]]s >= A[[a2]]s

B[[a1 =< a2]]s =

{
tt if A[[a1]]s =< A[[a2]]s
ff if A[[a1]]s > A[[a2]]s

B[[a1 = a2]]s =

{
tt if A[[a1]]s = A[[a2]]s
ff if A[[a1]]s 
= A[[a2]]s

B[[t1 = t2]]s =

{
tt if ST [[t1]]s = ST [[t2]]s
ff if ST [[t1]]s 
= ST [[t2]]s

B[[a1/ = a2]]s =

{
tt if A[[a1]]s 
= A[[a2]]s
ff if A[[a1]]s = A[[a2]]s

B[[a1 >= a2]]s =

{
tt if A[[a1]]s >= A[[a2]]s
ff if A[[a1]]s < A[[a2]]s

B[[a1 > a2]]s =

{
tt if A[[a1]]s > A[[a2]]s
ff if A[[a1]]s =< A[[a2]]s

B[[(−)a1]]s =

{
tt if B[[a1]]s = ff
ff if B[[a1]]s = tt

B[[a1(∗)a2]]s =

{
tt if B[[a1]]s = tt and B[[a2]]s = tt
ff if B[[a1]]s = ff or B[[a2]]s = ff

B[[a1(=)a2]]28s =

⎧⎪⎪⎨
⎪⎪⎩

tt if B[[a1]]s = tt and B[[a2]]s = ff
tt if B[[a1]]s = ff and B[[a2]]s = tt
ff if B[[a1]]s = B[[a2]]s

B[[a1(+)a2]]s =

{
tt if B[[a1]]s = tt or B[[a2]]s = tt
ff if B[[a1]]s = ff and B[[a2]]s = ff

Table 6.4: The semantics of ”boolean” expressions. (See also, Table 6.1
where the different operators, as well as their meaning, are described.)
an represents a field-expression whereas tn represents a string.
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are the statements that most obviously affect the state of the system by
their change of the contents in the memory.

First, from Section 2.2.3, we recall that from a storage point of view,
the main distinction to be made between variables is whether they are
temporary or stored which means that they reside in the register mem-
ory (RM) or the data store (DS), respectively. To determine this, we use
the function

P : variable → var-property

which was specified last in the previous section. As was mentioned ear-
lier (Section 6.11) we will use s to denote the tuple

〈VSC, RM,DS, JBA, JBB, JBC, JBD, JBR〉
and if one item of this tuple is to be updated, we will write (DS)x if x in
the DS is to be updated. We will also use the notation RM �→ UNDEF in
situations where the contents of the register memory should be consid-
ered as non-existing29. Secondly, we have three different kinds of vari-
ables to deal with; field variables, symbol variables and string variables.
The semantics for field variable and symbol variable assignments are
similar, but we write them as separate rules to make it explicit which
kind of assignment we are dealing with. This leads us to the following
rules for assignment statements.:

• [assfield] 〈x := a, s〉 ⇒ s[VSC++, (DS)x �→ A[[a]]s] if P[[x]] = DS
• [assfield] 〈x := a, s〉 ⇒ s[VSC++, (RM)x �→ A[[a]]s] if P[[x]] = ε

• [asssym] 〈x := a, s〉 ⇒ s[VSC++, (DS)x �→ A[[a]]s] if P[[x]] = DS
• [asssym] 〈x := a, s〉 ⇒ s[VSC++, (RM)x �→ A[[a]]s] if P[[x]] = ε

The final assignment statement concerns string variables and for these,
we specify the following rules:

• [assstring] 〈x := c, s〉 ⇒ s[VSC++, (DS)x �→ ST [[c]]s] if P[[x]] = DS
• [assstring] 〈x := c, s〉 ⇒ s[VSC++, (RM)x �→ ST [[c]]s] if P[[x]] = ε

29I.e., we use our own defined constant UNDEF in a way similar to the use of NULL in
C.
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6.13 The semantics for Jump statements

As mentioned in Section 6.5, PLEX offers two kinds of jump statements;
Unconditional and conditional. The unconditional jump statement will
always perform a jump to the specified label, whereas the conditional
is dependent on the evaluation of the given condition. Their respective
semantics are as follows:

• [jumpuncond] 〈GOTO label, s〉 ⇒ s[VSC �→ ADR[[label]] ]

• [jumpcond] 〈IF condition GOTO label, s〉 ⇒ s[VSC �→ ADR[[label]] ]

if B[[condition]]s = tt

• [jumpcond] 〈IF condition GOTO label, s〉 ⇒ s[VSC++]
if B[[condition]]s = ff

6.14 The semantics for Conditional statements

We begin this section by repeating the syntax for the if-statement from
Section 6.6. This statement is denoted as the improved-if-statement
since it improves the above conditional jump statement. As could be
seen, from the syntax, the elseif as well as the else clause are op-
tional. This will be explicit in the semantics for the if-statement.
• improved-if-statement ::=

IF [NOT] condition THEN sequence-of-statements
{ELSEIF [NOT] condition THEN sequence-of-statements}∗

[ELSE sequence-of-statements]
FI

• [condif ] 〈IF condition THEN S1, s〉 ⇒ 〈S1, s〉
if B[[condition]]s = tt

• [condif ] 〈IF condition THEN S1, s〉 ⇒ s[VSC++]
if B[[condition]]s = ff

• [condif ] 〈IF condition THEN S1 ELSE S2, s〉 ⇒ 〈S1, s〉
if B[[condition]]s = tt

• [condif ] 〈IF condition THEN S1 ELSE S2, s〉 ⇒ 〈S2, s〉
if B[[condition]]s = ff
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The case IF...ELSEIF...ELSE can be seen as an instance of the IF...ELSE
rule and is therefore omitted.

6.15 The semantics for Selection statements

The syntax for the selection statement, CASE, was discussed in Section
6.7 and is repeated below:
• case-statement ::=

CASE expression IS
{WHEN choice {’,’ choice}∗ DO sequence-of-statements}+

OTHERWISE DO sequence-of-statements
ESAC ’;’

The pair, expression/choice, is either numerical or strings. Both cases
are covered by B[[expression = choice]]s as could be seen from Table 6.4.

We give the semantics in term of the ”basic case”, i.e., when CASE
is followed by one WHEN DO and terminated by a OTHERWISE DO.
Multiple instances of WHEN DO could be seen as instances of the ”basic
case”.

• [select] 〈CASE expression IS WHEN choice DO S1

OTHERWISE DO Sn, s〉 ⇒ 〈S1, s〉

if B[[expression = choice]]s = tt

• [select] 〈CASE expression IS WHEN choice DO S1

OTHERWISE DO Sn, s〉 ⇒ 〈Sn, s〉

if B[[expression = choice]]s = ff

6.16 The semantics for Iteration statements

As stated in Section 6.8, PLEX offers three different statements for it-
erations; Namely ON, FOR ALL and FOR FIRST. We will give their se-
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mantics30 in turn.31

• [ONUp]

〈S, s〉 ⇒ s′, 〈ON point/var FROM exp1+1 UPTO exp2 DO S, s′〉⇒ s′′
〈ON point/var FROM exp1 UPTO exp2 DO S, s〉 ⇒ s′′

if A[[exp1]]s < A[[exp2]]s

• [ONUp] 〈ON pointer/variable FROM ’expression1 ’ UPTO
’expression2 ’ DO S, s〉 ⇒ s[VSC++]

if A[[expression1]]s > A[[expression2]]s

The semantics for the ON-statement in the case of DOWNTO instead of
UPTO is almost the same in every step, as could be seen in the following
rules:

• [ONDown]

〈S, s〉 ⇒ s′, 〈ON point/var FROM exp1−1 DOWNTO exp2 DO S, s′〉⇒ s′′
〈ON point/var FROM exp1 DOWNTO exp2 DO S, s〉 ⇒ s′′

if A[[exp1]]s > A[[exp2]]s

• [ONDown] 〈ON pointer/variable FROM ’expression1 ’ DOWNTO
’expression2 ’ DO S, s〉 ⇒ s[VSC++]

if A[[expression1]]s < A[[expression2]]s

Then follows the two FOR-statements, and we start with the FOR ALL.
As could be seen from the syntax for the FOR ALL statements (Section
6.8), there are a lot of things that are optional. We omit these parts
here. The reason is that these parts only makes it possible to give more
precise values for the iteration variables. In its basic form (which will
be the form we specify the semantics for), the FOR ALL statements it-
erate from pointer/field-expression1 down to zero.

30Note: PLEX ”offers” the possibility to jump out of an iteration with a GOTO state-
ment for example. This means that a proper semantics could not rely on a sequential
execution order! However, the following rules does not take that into consideration.
I.e., the following rules are specified for well formed iterations, which consequently are
iterations without such jumps.

31For convenience we use point/var for pointer/variable and expn for expressionn.
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• [FORALL]32

〈S, s〉 ⇒ s′,
〈FOR ALL pointer/field-var FROM field-exp1 - 1 DO S, s′〉 ⇒ s′′

〈FOR ALL pointer/field-var FROM field-exp1 DO S, s〉 ⇒ s′′

if A[[field − exp1]]s > 0

• [FORALL] 〈FOR ALL pointer/field-variable FROM field-expression1

DO S/statement-block-name, s〉 ⇒ s[VSC++]

if A[[field-expression1]]s < 0

The difference between the two FOR-statements is that the condition
part (see Section 6.8) is mandatory in the FOR FIRST and optional in
the FOR ALL. This means that when the condition is fulfilled, if it is,
then the FOR FIRST will abort the iteration and transfer the control to
the following statements. This will be captured in the following rules
for FOR FIRST. Also, as with the FOR ALL statement, we omit parts
that are optional and focus on the basic and mandatory parts. The ’ac-
tion’ part in the FOR FIRST statement can either be a GOTO or a DO
statement. We will specify this by giving separate rules for these cases.

• [FORFIRST ] 〈FOR FIRST pointer/field-variable FROM field-expression1

WHERE condition | field-variable IS CHANGED TO

field-expression GOTO label, s〉 ⇒ s[VSC �→ ADR[[label]] ]

if A[[field-expression1]]s >= 0
and

B[[condition|field-variable = field-expression]]s = tt

• [FORFIRST ] 〈FOR FIRST pointer/field-variable FROM field-expression1

WHERE condition | field-variable IS CHANGED TO

field-expression DO S/statement-block-name, s〉 ⇒
〈S/statement-block-name-name, s〉

if A[[field-expression1]]s >= 0
and

if B[[condition|field-variable = field-expression]]s = tt
32Due to space limitations, we will write only S where we mean

S/statement-block-name in the first rule for the FOR ALL statement. For the
same reason, we will say field-var and field-exp where we mean field-variable and
field-expression respectively.
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• [FORFIRST ] 〈FOR FIRST pointer/field-variable FROM field-expression1

WHERE condition | field-variable IS CHANGED TO

field-expression GOTO label, s〉 ⇒
〈FOR FIRST pointer/field-variable FROM field-expression1-1
WHERE condition | field-variable IS CHANGED TO

field-expression GOTO label, s〉

if A[[field-expression1]]s >= 0
and

if B[[condition|field-variable = field-expression]]s = ff

• [FORFIRST ] 〈FOR FIRST pointer/field-variable FROM field-expression1

WHERE condition | field-variable IS CHANGED TO

field-expression DO S/statement-block-name, s〉 ⇒
〈FOR FIRST pointer/field-variable FROM field-expression1-1
WHERE condition | field-variable IS CHANGED TO

field-expression DO S/statement-block-name, s〉

if A[[field-expression1]]s >= 0
and

if B[[condition|field-variable = field-expression]]s = ff

• [FORFIRST ] 〈FOR FIRST pointer/field-variable FROM field-expression1

DO S/statement-block-name, s〉 ⇒ s[VSC++]

if A[[field-expression1]]s < 0

6.17 The Semantics for Signal Statements

As pointed out in Section 6.9, the main distinction between signals is
either between direct and buffered or between single and combined.
The distinction depends on whether one looks at the signals from the
point of view of the execution model, or from a syntactical point of view,
respectively. This means that, since we are specifying their semantics,
we are only interested in their effect, not on their syntax. But, since
the syntax is only concerned with if an answer is expected or not, not on
whether the signal is direct or buffered, we need help. From Section 6.9
(and Appendix B), we recall that the information on whether the signal
is direct or buffered could be found in the signal sending statement and
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in the Signal Description33 So, by defining the function

SD : signal → sig-property

where sig-property ∈ {BUFFER, DIRECT}, which inspects the Signal
Description and tells whether a signal is direct or buffered, we are able
to separate between these categories.

• Our general approach for the semantics of signals is to model them
as assignments or ’jumps’.

I.e., a buffered signal is put in, or assigned to, a job buffer, whereas a
direct signal moves, or jumps, to the signal receiver for further execu-
tion. Fig. 6.6, which we repeat from Section 3.2.3 (Fig. 3.12), explains
the mechanism of finding the receiver of a signal. From the figure, it
is obvious that we can not use the same mechanism as with the jump-
statements, i.e., VSC �→ label, when we specify the semantics for direct
signals since the execution will continue in another block (for a direct
signal) or with the next statement (for a buffered signal)34. To solve our
problem, we define the following function:

SIG : signal → address

which takes a signal as input and returns an address. This address
specifies where in the receiving block the signal receiving statement, for
”this” particular signal is found35. In other words, the function SIG will
perform a ”backward trace” of the linking procedure described in Fig.
6.6.

With the above functions we are able to tell whether a signal is direct
or buffered and we will also be able to specify the semantics for direct
signals (as will be shown).

We claimed above that a buffered signal will be modeled as an as-
signment to ”its” job buffer. We can not, however, use the same notation
as we did when we specified the semantics for assignment statements.

33The Signal Description is covered in Appendix B.
34This implies that labels in different blocks are disjunct sets
35Note from Fig. 3.3 and 6.6 that a block, or the Source Program Information (SPI,

Section 2.2.1), contains one or several sub-programs and that each sub-program starts
with a signal receiving statement. This means that a block contains one, or several,
signal receiving statements - One for each sub-program.
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Figure 6.6: The process of finding the receiver of a buffered signal. (Re-
peated from Section 3.2.3, Fig. 3.12.) NOTE: The process is similar for
direct signals, except that they are not inserted in a Job Buffer. (See
also Figure 6.4 for a detailed description on the organization of the job
buffers.)



CHAPTER 6. SEMANTIC APPROACH 86

The reason is that we don’t change the contents of a buffer in a similar
way as we change the contents of a memory location when we deal with
assignments. The assignment of a buffered signal to a job buffer is more
of a ”insert”-operation to a queue. To capture the insert of a signal, sig,
to job buffer A (for instance) we could use the notation JBA:sig to denote
that sig is inserted at the end of job buffer A (and similar for the other
buffers). But if we examine Fig. 6.4 and recapture what was said in Sec-
tion 3.1.6 we realize that we must be able to separate the case where we
”insert” a signal from the case where we ”insert” signal data36. For this
reason we will write JBAS:sig and JBAD:sig-data to denote that we in-
sert a signal and a signal-data respectively to job buffer A. And, to be
able to tell which of the buffers to assign the signal to (or insert it in)
we define the function:

L : signal → level where level ∈ {A, B, C, D, R}

I.e., the function L inspects the Signal Description for a given signal
and determines the buffer level for that signal.

6.17.1 Single Signals

To determine the semantics of a single signal sending statement, we
will use the above defined functions SD, SDT and SST as in the follow-
ing rules. We will also take care of possible signal data and we recall,
from Section 3.1.6, that single and combined signals may carry up to
25 signal data. Since ”signal data is variable values sent with a signal”
[AB98], we can use our functions A[[ ]] and ST [[ ]] to determine the se-
mantics of the signal data. The keyword BUFFER will be omitted in the
following rules. The reason is that this keyword ”should not be used in
new design” [AB98].

•[single-sigsend] 〈SEND signal, s〉 ⇒
s[VSC �→ SIG[[signal]], RM �→ UNDEF]

if SD[[signal]]s = DIRECT

36What we actually do when a new signal is buffered is to assign the signal and its
data (if any) to a new ”instance” of the form described in Fig. 6.4.
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• [single-sigsend] 〈SEND signal WITH signal-datum1−k, s〉 ⇒
s[VSC �→ SIG[[signal]], (RM)PR0 �→ A[[signal-datum1]],

(RM)DR0 �→
{

A[[signal-datum2]] if k > 1
UNDEF otherwise

(RM)DR1 �→
{

A[[signal-datum3]] if k > 2
UNDEF otherwise

...

(RM)DR23 �→
{

A[[signal-datum25]] if k = 25
UNDEF otherwise

]

if SD[[signal]]s = DIRECT

Note that we have only shown the case where the signal-data is an in-
teger value, i.e., A[[signal-datumk]]. The case where the signal-data is a
string is similar but we would use ST [[signal-datumk]] instead.

• [single-sigsend] 〈SEND signal, s〉 ⇒ s[VSC++, JBAS : signal]

if SD[[signal]]s = BUFFER

and
L[[signal]]s = A

• [single-sigsend] 〈SEND signal WITH signal-datum1−k, s〉 ⇒
s[VSC++, JBAS : signal, JBAD : signal-datum1−k]

if SD[[signal]]s = BUFFER

and
L[[signal]]s = A

The rules for the cases of L[[signal]]s = B, C, D and R in the two
rules above, are similar. We omit them in this report since there is no
difference from the above rules, except that job buffer B, C, D or R are
updated similar to job buffer A above!

To receive a single signal, we must consider the following cases:
• The signal is direct and carries no data.
• The signal is direct and carries data.
• The signal is buffered and carries no data.
• The signal is buffered and carries data.
However, the semantics for the direct and buffered signal that does
not carry data are practically similar. In both cases, the execution will
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continue after the signal receiving statement. This is, of course, also the
case with a signal that carries data, but there are differences in how
the data is retrieved as is shown in the following rules.

• [single-sigrec] 〈ENTER signal , s〉 ⇒ s[VSC++, RM �→ UNDEF]

if SD[[signal]]s = DIRECT

• [single-sigrec] 〈ENTER signal WITH signal-datum1−k, s〉 ⇒
s[VSC++, (RM)PR0 �→ A[[signal-datum1]],

(RM)DR0 �→
{

A[[signal-datum2]] if k > 1
UNDEF otherwise

(RM)DR1 �→
{

A[[signal-datum3]] if k > 2
UNDEF otherwise

...

(RM)DR23 �→
{

A[[signal-datum25]] if k = 25
UNDEF otherwise

]

if SD[[signal]]s = DIRECT

Actually, the signal data has already been put in the register memory
(RM) by the APZ Operating System, which, of course, is the case for all
kinds of transferring of signal data. We write the rule in this way just
to make it explicit where the signal data is located.

In a similar way to when we inserted a signal (and its data) to a
job buffer, and used the notation JBAS:sig and JBAD:sig-data, we will
write sig:JBAS and signal-datum1-k:JBAD to denote the contents of
the job buffer (A in this case) before the statement is executed whereas
the contents of the job buffer, after we have fetched a signal and its
eventual data, is denoted JBAD and JBAS which indicates that the
first item in the buffer has been removed.

With the same argumentation as with the sending of a single/buffered
signal above, we omit the rules for receiving a single/buffered signal
from any of the buffers B - R since there is no difference except which
buffer is to be updated.
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• [single-sigrec] 〈ENTER signal , s[signal : JBAS ]〉 ⇒
s[VSC++, JBAS, RM �→ UNDEF]

if SD[[signal]]s = BUFFER

and
L[[signal]]s = A

• [single-sigrec] 〈ENTER signal WITH signal-datum1−k,

s[signal : JBAS , signal-datum1-k : JBAD]〉 ⇒
s[VSC++, JBAD, JBAS ,

(RM)PR0 �→ A[[signal-datum1]],

(RM)DR0 �→
{

A[[signal-datum2]] if k > 1
UNDEF otherwise

(RM)DR1 �→
{

A[[signal-datum3]] if k > 2
UNDEF otherwise

...

(RM)DR23 �→
{

A[[signal-datum25]] if k = 25
UNDEF otherwise

]

if SD[[signal]]s = BUFFER

and
L[[signal]]s = A

6.17.2 Combined Signals

As stated in the beginning of Section 6.17, the distinction that is of in-
terest is between direct and buffered signals. The syntactical distinc-
tion between single and combined signals is of secondary interest since
the combined signals are semantically equal to the single signals, with
one exception, namely the sending of a combined forward signal. This
is due to the fact that the control of the execution will return to the
”caller”37.

According to the above, all but one rule for the semantics of combined
signals are given in shortened versions together with a few comments.

37From a semantical point of view, the combined signals can be viewed as direct sig-
nals since a combined signal can never be buffered 3.1.
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We refer to Appendix A for the complete set of rules.
The sending of a combined forward signal is in many ways simi-

lar to the sending of a (direct) single signal. However, there are two
things that we must take into consideration when we specify the follow-
ing rule38.

1. We must be able to tell what happens on ”the other side”. I.e., we
must be able to trace the execution in the receiving part.

2. We must also handle the ”reply”, i.e, the jump back. (Recall from
Section 3.1.3 that the execution always returns to the ”caller”.)

To be able to trace the execution in the receiving part, we will define the
code to be executed as a CodeBlock and let blockn be a meta-variable
ranging over CodeBlock. blockn is defined as

• blockn ::= S; RET

• S ::= Statement; S | ε

• Statement ::= Any of the PLEX statements described in Section 6.4
- 6.10 except for the following statements: RECEIVE, RETURN,
ENTER or EXIT.

• RET ::= IF expression RETURN cbsig ELSE RET | RETURN cbsig

I.e., we define CodeBlock as a sequence of PLEX statements with a
Single-Entry-Multiple-Exit ”semantics”.

To ”fetch” a codeblock, we will use the following function

BLOCK : address → CodeBlock

which takes an address (which will be the value of our statement counter
VSC) and returns the corresponding CodeBlock. Finally, to specify the
meaning of this CodeBlock, we will use the function SPLEX . The func-
tion will not be defined before Section 6.19, but we can already say that
this function will determine the meaning of a sequence of PLEX state-
ments.

38We will omit the ”REFERENCE field-variable” part (see Section 6.9.2) since this part
does not change the meaning of the statement.
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• [combined-sig-fwdsend]

〈RECEIVE cfsig, s[VSC �→ SIG[[cfsig]]s, RM �→ UNDEF]〉 ⇒ s′,
SPLEX [[block1]]s′ ⇒ s′′

〈SEND cfsig WAIT FOR cbsig1 IN label1 OR ... cbsign IN labeln, s〉
⇒ s′′[VSC �→ label]

where label =

⎧⎪⎪⎨
⎪⎪⎩

ADR[[label1]] if RM(PR0) = cbsig1

...
ADR[[labeln]] if RM(PR0) = cbsign

and

block1 = BLOCK[[VSC ′++]]

NOTE: Recall that the last statement in block1 is a RETURN cbsigk and
that the name of the return signal is found in the first register (PR0) of
the Register Memory (RM ).

The case where the combined forward signal carries signal data is
equivalent except that the register memory (RM) is updated with the
data. We omit this case since there is no other difference from the above
rule!

• [combined-sig-fwdrec] 〈RECEIVE cfsignal [WITH signal-datum], s〉 ⇒
s[VSC++, . . .]

From the receiver’s point of view, it is of no interest whether the sig-
nal it receives is a single signal or a combined signal. The execution
will continue with the statement that follows the receiving statement,
which is shown above. Depending on if the signal does carry any data,
the register memory (RM) is updated in the same way as with a single
signal. (See Appendix A.)

• [combined-sig-bwdsend] 〈RETURN cbsignal [WITH signal-datum], s〉 ⇒
s[VSC �→ SIG[[cbsignal]], . . .]

Sending a combined backward signal, means an immediate reply to the
initiating block/sender, i.e. a direct signal. Again, we refer to Appen-
dix A for a description on how the register memory is updated (which is
similar to the updating in case of a single, direct signal).
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• [combined-sig-bwdrec]
〈label’)’ RETRIEVE cbsignal [WITH signal-datum], s〉 ⇒

s[VSC++, . . .]

The same argumentation as with the combined forward receiving state-
ment above. After the receiving of the signal the execution continues
with the statement that follows the receiving statement. Appendix A
shows how the register memory is updated (in case of signal data).

6.17.3 The Semantics for Local Signals

Since the local signals are similar to direct signals (Section 3.1.4), their
semantics could be regarded as similar to the semantics for the single-
direct signals (Section 6.17.1). But, since they are implemented as a
direct jump, their semantics could also be seen as similar to the se-
mantics for unconditional jumps (Section 6.13). It is also said that ”a
simple GOTO statement could replace a local signal” [AB98]. From the
same source, we also find out that local signals is not transferred via the
Signal Distribution Table, which means that we can not use the same
functions as in Section 6.17.1.

To solve our ”problem”, we will make use of the following fact: Since
the signal is local, the receiving point is found in the same SPI (Sec-
tion 2.2.1). This means that we can use the signal name as a label
and ”combine” the semantics for the unconditional jump and the single-
direct signals! As for the previous signal statements, we will separate
the case when no data is sent with the signal from the case when the
signal carry one or more (up to 25) signal data.

The main difference between local and ”global”39 signals are that
local signals preserve the temporary variables, i.e., the contents of the
register memory (RM) is left unchanged if no signal data is transferred
along with the signal. This will be shown in the following rules.

• [local-sigsend] 〈TRANSFER signal-name, s〉 ⇒
s[VSC �→ ADR[[signal-name]] ]

39By ”global” signals we mean signals that are not local.
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•[local-sigsend] 〈TRANSFER signal-name WITH signal-datum1−k, s〉 ⇒
s[VSC �→ ADR[[signal-name]], (RM)PR0 �→ signal-datum1,

(RM)DR0 �→
{

A[[signal-datum2]] if k > 1
(RM)DR0 otherwise

...

(RM)DR23 �→
{

A[[signal-datum25]] if k = 25
(RM)DR23 otherwise

]

• [local-sigrec] 〈ENTRANCE signal-name, s〉 ⇒ s[VSC++]

•[local-sigrec] 〈ENTRANCE signal-name WITH signal-datum1−k, s〉 ⇒
s[VSC++, (RM)PR0 �→ signal-datum1,

(RM)DR0 �→
{

A[[signal-datum2]] if k > 1
(RM)DR0 otherwise

...

(RM)DR23 �→
{

A[[signal-datum25]] if k = 25
(RM)DR23 otherwise

]

6.18 The Semantics for the EXIT-statement

As explained in Section 6.10, the EXIT statement is a deactivation state-
ment for a sequence of statements. The meaning of the EXIT statement
is that the control is transferred back to the operating system (APZ),
which selects the next signal to execute based on the contents of the job
buffers. This means, in a sense, that we move our semantic approach
away from the level of statements and look at what’s going on in the
operating system. I.e., the semantics of the EXIT statement is more a
question of the semantics for the execution model than the language40.
However, in contradiction to the job buffer pointers, the EXIT statement
is part of the language, and is therefore treated here. To be able to cap-
ture what happens after an EXIT statement, we introduce the partial
function

APZ : state ↪→ state

40See also Section 6.17 where the similar argumentation is made on the job buffer
pointers.
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which inspects the current state and assign the first ”ready-job” to our
statement counter, VSC. It is defined in Table 6.5.

The function is partial function since it is undefined in the case of all
job buffers being empty at the same time. The absence of a transition
in this situation models the fact that the system ”goes idle”, i.e., it will
simply wait for a RP-CP signal (see Section 3.1 and Fig. 3.2) to arrive
in any of the job buffers.

So, with the introduction of APZ we can specify the semantics of the
EXIT statement as

• [exit] 〈EXIT, s〉 ⇒ s[VSC �→ APZ(s), RM �→ UNDEF]

APZ(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s[VSC �→ first(JBA)] if s[JBA] 
= ∅41

s[VSC �→ first(JBB)] if s[JBA] = ∅ and
if s[JBB] 
= ∅

s[VSC �→ first(JBC)] if s[JBA] = ∅ and
if s[JBB] = ∅ and
if s[JBC] 
= ∅

s[VSC �→ first(JBD)] if s[JBA] = ∅ and
if s[JBB] = ∅ and
if s[JBC] = ∅ and
if s[JBD] 
= ∅

undef if s[JBA] = ∅ and
if s[JBB] = ∅ and
if s[JBC] = ∅ and
if s[JBD] = ∅

Table 6.5: The function APZ which fetches the first ”ready-job” with
highest priority.

41JBA = ∅ is the same as JBI = JBO, i.e., Job Buffer In = Job Buffer Out. (See Section
6.2.)
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6.19 The Semantic Function SPLEX

In the previous sections (6.12 - 6.18) we have specified how the execu-
tion of single PLEX statements change the state of the system. In this
section we will define the meaning of a sequence of statements. But as
claimed in Section 1.2, the semantics for sequences of statements is re-
stricted to well-formed constructs (i.e., well-formed sequences of state-
ments). These sequences have a single-entry-multiple-exit semantics.
They are entered through an ENTER or a RECEIVE statement and
left with an EXIT or a RETURN statement. The entering of such a
sequence, via one of the above statements, must be through a signal
sending statement. I.e., every entering statement must be preceded by
an exit statement (EXIT or RETURN) which unconditionally breaks
the ”normal” sequential execution order. And, since we say that these
constructs have a single-entry semantics, we do not allow a second en-
tering statement before an exit statement!

To specify the semantics for sequences of statements in a proper way,
there are two important things that we must take into consideration:

1. We must capture the possibility of a ”non-sequential” execution
order. I.e., the possible occurrence of a GOTO statement must be
handled.

2. An EXIT statement aborts the execution and none of the state-
ments that may follow in the source code file will be executed.

To specify the meaning of a sequence of statements, we first de-
note the syntactic category of sequences of statements, terminated by
an EXIT statement or an unconditional GOTO statement, as Code and
let cn be a meta-variable ranging over Code. cn is then defined as

• cn ::= S; OUT

• S ::= Statement; S | ε

• Statement ::= Any of the PLEX statements described in Section
6.4 - 6.10 except for the EXIT statement (Section 6.18) and the
unconditional jump, GOTO, (Section 6.5).

• OUT ::= EXIT | GOTO label
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Then, we define the function

CODE : address → code

to be the function that takes an address (which will be the value of our
statement counter, VSC) and returns the code sequence that starts at
the given address.

The meaning of a sequence of statements is now given by the func-
tion SPLEX :

SPLEX [[S; c1]]s =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s′ if 〈S, s〉 ⇒ s′ and c1 = ε

s′ if 〈S, s〉 ⇒ s′ and S = EXIT

SPLEX [[c1]]s′ if 〈S, s〉 ⇒ s′ and VSC′ = VSC++

SPLEX [[c2]]s′ if 〈S, s〉 ⇒ s′, VSC′ 
= VSC++,

and c2 = CODE[[VSC′]]

where s is the initial state.
Note, the last case expresses the fact that the sequential execution or-
der is ”broken” (for example by a GOTO statement) and the execution is
”transferred” somewhere different from the following statement.

So, with the definition of SPLEX we have finally specified the seman-
tics for individual PLEX statements as well as for sequences of state-
ments. And by this, we have also specified the semantics of an entire
job (Section 3.2.1) since SPLEX determines the meaning of an arbitrary
sequence of statements which could very well start with an ENTER state-
ment and end with an EXIT statement (which constitutes a job).
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Summary

This report presents a structural operational semantics for the language
PLEX, a pseudo-parallel and event-based real-time language developed
by Ericsson and used to program telephony systems, especially central
parts of the AXE switching system (from Ericsson). We have presented
a formal description of fundamental parts of the language, which is con-
sidered to be jumps and signal sending statements.

By means of the semantics presented in this report, a formal ba-
sis for further investigations and comparisons with other languages is
provided since the meaning, i.e. the semantics, of the language now is
explicit. The semantics presented could also be seen as a reference man-
ual when the language is implemented for new hardware platforms.

This report should also be seen in a further perspective, where the
aim is to extend and modify the language with a possibility to run in
a multi-processor environment, as described in Section 1.1. With a
semantic description of fundamental parts of the language, an impor-
tant step towards executing PLEX in a multi-processor environment
has been taken.
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Appendix A

The Semantics for PLEX

In this section, we have collected the semantics for the individual PLEX
statements that was given (sometimes in shortened versions) in Chap-
ter 6.

The Semantics for Assignment Statements

• [assfield] 〈x := a, s〉 ⇒ s[VSC++, (DS)x �→ A[[a]]s] if P[[x]] = DS
• [assfield] 〈x := a, s〉 ⇒ s[VSC++, (RM)x �→ A[[a]]s] if P[[x]] = ε

• [asssym] 〈x := a, s〉 ⇒ s[VSC++, (DS)x �→ A[[a]]s] if P[[x]] = DS
• [asssym] 〈x := a, s〉 ⇒ s[VSC++, (RM)x �→ A[[a]]s] if P[[x]] = ε

• [assstring] 〈x := c, s〉 ⇒ s[VSC++, (DS)x �→ ST [[c]]s] if P[[x]] = DS
• [assstring] 〈x := c, s〉 ⇒ s[VSC++, (RM)x �→ ST [[c]]s] if P[[x]] = ε

The Semantics for Jump Statements

• [jumpuncond] 〈GOTO label, s〉 ⇒ s[VSC �→ ADR[[label]] ]

• [jumpcond] 〈IF condition GOTO label, s〉 ⇒ s[VSC �→ ADR[[label]] ]

if B[[condition]]s = tt

• [jumpcond] 〈IF condition GOTO label, s〉 ⇒ s[VSC++]
if B[[condition]]s = ff
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The Semantics for Conditional Statements

• [condif ] 〈IF condition THEN S1, s〉 ⇒ 〈S1, s〉
if B[[condition]]s = tt

• [condif ] 〈IF condition THEN S1, s〉 ⇒ s[VSC++]
if B[[condition]]s = ff

• [condif ] 〈IF condition THEN S1 ELSE S2, s〉 ⇒ 〈S1, s〉
if B[[condition]]s = tt

• [condif ] 〈IF condition THEN S1 ELSE S2, s〉 ⇒ 〈S2, s〉
if B[[condition]]s = ff

The Semantics for Selection Statements

• [select] 〈CASE expression IS WHEN choice DO S1

OTHERWISE DO Sn, s〉 ⇒ 〈S1, s〉

if B[[expression = choice]]s = tt

• [select] 〈CASE expression IS WHEN choice DO S1

OTHERWISE DO Sn, s〉 ⇒ 〈Sn, s〉

if B[[expression = choice]]s = ff

The Semantics for Iteration Statements

• [ONUp]

〈S, s〉 ⇒ s′, 〈ON point/var FROM exp1+1 UPTO exp2 DO S, s′〉⇒ s′′
〈ON point/var FROM exp1 UPTO exp2 DO S, s〉 ⇒ s′′

if A[[exp1]]s < A[[exp2]]s

• [ONUp] 〈ON pointer/variable FROM ’expression1 ’ UPTO
’expression2 ’ DO S, s〉 ⇒ s[VSC++]

if A[[expression1]]s > A[[expression2]]s

• [ONDown]

〈S, s〉 ⇒ s′, 〈ON point/var FROM exp1−1 DOWNTO exp2 DO S, s′〉⇒ s′′
〈ON point/var FROM exp1 DOWNTO exp2 DO S, s〉 ⇒ s′′

if A[[exp1]]s > A[[exp2]]s
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• [ONDown] 〈ON pointer/variable FROM ’expression1 ’ DOWNTO
’expression2 ’ DO S, s〉 ⇒ s[VSC++]

if A[[expression1]]s < A[[expression2]]s

• [FORALL]

〈S, s〉 ⇒ s′,
〈FOR ALL pointer/field-var FROM field-exp1 - 1 DO S, s′〉 ⇒ s′′

〈FOR ALL pointer/field-var FROM field-exp1 DO S, s〉 ⇒ s′′

if A[[field − exp1]]s > 0

• [FORALL] 〈FOR ALL pointer/field-variable FROM field-expression1

DO S/statement-block-name, s〉 ⇒ s[VSC++]

if A[[field-expression1]]s < 0

• [FORFIRST ] 〈FOR FIRST pointer/field-variable FROM field-expression1

WHERE condition | field-variable IS CHANGED TO

field-expression GOTO label, s〉 ⇒ s[VSC �→ ADR[[label]] ]

if A[[field-expression1]]s >= 0
and

B[[condition|field-variable = field-expression]]s = tt

• [FORFIRST ] 〈FOR FIRST pointer/field-variable FROM field-expression1

WHERE condition | field-variable IS CHANGED TO

field-expression DO S/statement-block-name, s〉 ⇒
〈S/statement-block-name-name, s〉

if A[[field-expression1]]s >= 0
and

if B[[condition|field-variable = field-expression]]s = tt

• [FORFIRST ] 〈FOR FIRST pointer/field-variable FROM field-expression1

WHERE condition | field-variable IS CHANGED TO

field-expression GOTO label, s〉 ⇒
〈FOR FIRST pointer/field-variable FROM field-expression1-1
WHERE condition | field-variable IS CHANGED TO

field-expression GOTO label, s〉

if A[[field-expression1]]s >= 0
and

if B[[condition|field-variable = field-expression]]s = ff
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• [FORFIRST ] 〈FOR FIRST pointer/field-variable FROM field-expression1

WHERE condition | field-variable IS CHANGED TO

field-expression DO S/statement-block-name, s〉 ⇒
〈FOR FIRST pointer/field-variable FROM field-expression1-1
WHERE condition | field-variable IS CHANGED TO

field-expression DO S/statement-block-name, s〉

if A[[field-expression1]]s >= 0
and

if B[[condition|field-variable = field-expression]]s = ff

• [FORFIRST ] 〈FOR FIRST pointer/field-variable FROM field-expression1

DO S/statement-block-name, s〉 ⇒ s[VSC++]

if A[[field-expression1]]s < 0

The Semantics for Signal Statements

•[single-sigsend] 〈SEND signal, s〉 ⇒
s[VSC �→ SIG[[signal]], RM �→ UNDEF]

if SD[[signal]]s = DIRECT

•[single-sigsend] 〈SEND signal WITH signal-datum1−k, s〉 ⇒
s[VSC �→ SIG[[signal]], (RM)PR0 �→ A[[signal-datum1]],

(RM)DR0 �→
{

A[[signal-datum2]] if k > 1
UNDEF otherwise

(RM)DR1 �→
{

A[[signal-datum3]] if k > 2
UNDEF otherwise

...

(RM)DR23 �→
{

A[[signal-datum25]] if k = 25
UNDEF otherwise

]

if SD[[signal]]s = DIRECT

• [single-sigsend] 〈SEND signal, s〉 ⇒ s[VSC++, JBAS : signal]

if SD[[signal]]s = BUFFER

and
L[[signal]]s = A
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• [single-sigsend] 〈SEND signal WITH signal-datum1−k, s〉 ⇒
s[VSC++, JBAS : signal, JBAD : signal-datum1−k]

if SD[[signal]]s = BUFFER

and
L[[signal]]s = A

•[single-sigrec] 〈ENTER signal , s〉 ⇒ s[VSC++, RM �→ UNDEF]

if SD[[signal]]s = DIRECT

•[single-sigrec] 〈ENTER signal WITH signal-datum1−k, s〉 ⇒
s[VSC++, (RM)PR0 �→ A[[signal-datum1]],

(RM)DR0 �→
{

A[[signal-datum2]] if k > 1
UNDEF otherwise

(RM)DR1 �→
{

A[[signal-datum3]] if k > 2
UNDEF otherwise

...

(RM)DR23 �→
{

A[[signal-datum25]] if k = 25
UNDEF otherwise

]

if SD[[signal]]s = DIRECT

• [single-sigrec] 〈ENTER signal , s[signal : JBAS]〉 ⇒
s[VSC++, JBAS, RM �→ UNDEF]

if SD[[signal]]s = BUFFER

and
L[[signal]]s = A
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• [single-sigrec] 〈ENTER signal WITH signal-datum1−k,

s[signal : JBAS , signal-datum1-k : JBAD]〉 ⇒
s[VSC++, JBAD, JBAS ,

(RM)PR0 �→ A[[signal-datum1]],

(RM)DR0 �→
{

A[[signal-datum2]] if k > 1
UNDEF otherwise

(RM)DR1 �→
{

A[[signal-datum3]] if k > 2
UNDEF otherwise

...

(RM)DR23 �→
{

A[[signal-datum25]] if k = 25
UNDEF otherwise

]

if SD[[signal]]s = BUFFER

and
L[[signal]]s = A

• [combined-sig-fwdsend]

〈RECEIVE cfsig, s[VSC �→ SIG[[cfsig]]s, RM �→ UNDEF]〉 ⇒ s′,
SPLEX [[block1]]s′ ⇒ s′′

〈SEND cfsig WAIT FOR cbsig1 IN label1 OR ... cbsign IN labeln, s〉
⇒ s′′[VSC �→ label]

where label =

⎧⎪⎪⎨
⎪⎪⎩

ADR[[label1]] if RM(PR0) = cbsig1

...
ADR[[labeln]] if RM(PR0) = cbsign

and

block1 = BLOCK[[VSC ′++]]

• [combined-sig-fwdrec] 〈RECEIVE cfsignal, s〉 ⇒
s[VSC++, RM �→ UNDEF]
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• [combined-sig-fwdrec] 〈RECEIVE cfsignal WITH signal-datum1−k, s〉 ⇒
s[VSC++, (RM)PR0 �→ A[[signal-datum1]],

(RM)DR0 �→
{

A[[signal-datum2]] if k > 1
UNDEF otherwise

(RM)DR1 �→
{

A[[signal-datum3]] if k > 2
UNDEF otherwise

...

(RM)DR23 �→
{

A[[signal-datum25]] if k = 25
UNDEF otherwise

]

• [combined-sig-bwdsend] 〈RETURNcbsignal, s〉 ⇒
s[VSC �→ SIG[[cbsignal]], RM �→ UNDEF]

• [combined-sig-bwdsend] 〈RETURN cbsignal WITH signal-datum1−k, s〉 ⇒
s[VSC �→ SIG[[cbsignal]], (RM)PR0 �→ A[[signal-datum1]],

(RM)DR0 �→
{

A[[signal-datum2]] if k > 1
UNDEF otherwise

(RM)DR1 �→
{

A[[signal-datum3]] if k > 2
UNDEF otherwise

...

(RM)DR23 �→
{

A[[signal-datum25]] if k = 25
UNDEF otherwise

]

• [combined-sig-bwdrec]
〈label′)′ RETRIEVE cbsignal, s〉 ⇒ s[VSC++, RM �→ UNDEF]

• [combined-sig-bwdrec]
〈label′)′ RETRIEVEcbsignal[WITH signal − datum], s〉 ⇒

s[VSC++, (RM)PR0 �→ A[[signal-datum1]],

(RM)DR0 �→
{

A[[signal-datum2]] if k > 1
UNDEF otherwise

(RM)DR1 �→
{

A[[signal-datum3]] if k > 2
UNDEF otherwise

...

(RM)DR23 �→
{

A[[signal-datum25]] if k = 25
UNDEF otherwise

]
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• [local-sigsend] 〈TRANSFER signal-name, s〉 ⇒
s[VSC �→ ADR[[signal-name]] ]

•[local-sigsend] 〈TRANSFER signal-name WITH signal-datum1−k, s〉 ⇒
s[VSC �→ ADR[[signal-name]], (RM)PR0 �→ signal-datum1,

(RM)DR0 �→
{

A[[signal-datum2]] if k > 1
(RM)DR0 otherwise

...

(RM)DR23 �→
{

A[[signal-datum25]] if k = 25
(RM)DR23 otherwise

]

• [local-sigrec] 〈ENTRANCE signal-name, s〉 ⇒ s[VSC++]

• [local-sigrec] 〈ENTRANCE signal-name WITH signal-datum1−k, s〉 ⇒
s[VSC++, (RM)PR0 �→ signal-datum1,

(RM)DR0 �→
{

A[[signal-datum2]] if k > 1
(RM)DR0 otherwise

...

(RM)DR23 �→
{

A[[signal-datum25]] if k = 25
(RM)DR23 otherwise

]

The Semantics for the EXIT Statement

• [exit] 〈EXIT, s〉 ⇒ s[VSC �→ APZ(s), RM �→ UNDEF]



Appendix B

The Signal Description

There are two main documents for signals: The Signal Survey, which
is a listing of all the signals sent and received in a unit, and the Signal
Description, which will be studied in this section. These documents are
compiled together with the Source Program Information1, SPI.

The Signal Description, SD, is the document that defines a signal.
The type of the signal, as well as the priority level of the signal is speci-
fied in this document. There is one SD for every signal and all SD’s are
stored in special libraries. We will study how the SD ”interact” with the
SPI during the code generation phase. But as a first attempt to capture
the contents of the SD, it could be seen as similar to the h-file in C

that externally defines a function (among other things).
The SD includes the following items:

• Name of the signal - Every signal has a name that, perhaps,
captures its functionality.

• Signal number - For internal documentation.

• Function - Used to make comments about functionality.

• Signal type - The signal type indicates whether the signal is Sin-
gle or Combined. There are three possible type specifications:

– Type 1: Single signal
1The Source Program Information is the ”source code file”, i.e., the document that

we normally call a program. See Section 2.2.1 for further details.
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– Type 2: Combined forward

– Type 3: Combined backward

If the signal is Multiple, this is indicated by adding the keyword
MULTIPLE to the signal type, like in: TYPE IS 1 MULTIPLE

A Unique signal has no indication at this point! (A signal is unique
”by default” if nothing else is stated.) If the signal is local, the
keyword LOCAL is added to the signal type.

• Possible return signal - For internal documentation.

• Possible sending block - For internal documentation.

• Possible receiving block - For internal documentation.

• Buffer level - The priority level! In Section 3.2, it is described
how every signal is assigned a priority level, and how signals are
stored in different job buffers (in case of a buffered signal). The
buffer level states the priority level of the corresponding job and
also in which job buffer the signal will be buffered (if it is to be
buffered, i.e.).
NOTE: The buffer level can have the following combinations:

– NO BUFFER: The signal is direct. (A combined signal is
always direct, see Section 3.1.3.)

– LEVEL A/B/C/D BUFFER: The signal is buffered and uses
the job buffer specified. This combination overrides a possible
use of the HURRY option in the signal sending statement (see
below).

– LEVEL A/B/C/D: The signal is buffered and uses the job
buffer specified, unless the keyword HURRY is used in the
signal sending statement, which indicates that the signal is
direct.

• Signal data - Specification of the ”arguments” (i.e., the data) that
the signal is carrying.

• ID sector - For internal documentation.


