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Sammanfattning

Under årtionden har automatiska robotar som är förprogrammerade för att
utföra repetitiva uppgifter i industriell produktion nått framkant inom teknik.
Det kommer nästa utveckling med autonom kontroll, där en robot kan ha vissa
nivåer av sitt eget beslut, det vill säga självstyrande, utan direkta kontroller
från människor. Detta ger autonoma robotar i stor utsträckning tillämpliga
inte bara inom industrin utan ocksåi vanligt tillgängliga tjänster i vårt dagliga
liv, till exempel självkörande bilar, automatiserad sjukvård eller underhållning.
Ändåmåste en av ryggraden i robotsystemet, navigering och vägplanering, möta
allt fler utmaningar, inklusive ostrukturerade miljöer, osäkerhet kring rörliga
föremål, samexistera med människor och flera robotagenter. Syftet med ett
pålitligt, dvs tillgängligt, tillförlitligt och säkert, vägplaneringssystem för att
övervinna sådana utmaningar, föreslår denna avhandling att utveckla flervägs-
planering tillsammans med algoritmer för att undvika hinder och överbelastning.
Till en början föreslås ett nytt dipolflödesfält, som är konstruerat från ett flödes-
fält för att driva robotar till sina mål och ett dipolfält för att skjuta robo-
tar långt bort från potentiella kollisionsriktningar. Algoritmen är effektiv vid
implementering men kan övervinna nackdelen med konventionellt fältbaserat
tillvägagångssätt, som lätt fångas av en lokal optimering av energifunktioner.
För det andra utvecklas en mekanism för överbelastningskontroll med Petri net
för att synkronisera rörelser hos robotar när de kommer in i ett kors eller smalt
område. Olika Petrinät utvärderas för att hitta den optimala konfigurationen
för att minska trafikstockningen genom möjliga konfliktregioner. I nästa bidrag
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åtgärdas problemet med död- eller livlåsning av ett vägplaneringssystem. Lös-
ningen baseras påmultipelvägsplanering där varje robot har alternativa vägar
till målet. Alla robotar i samma arbetsutrymme kommunicerar med varandra
för att uppdatera sina platser och vägar såatt lämplig konfiguration kan väljas
för att undvika potentiella dödlägen. Algoritmen tar ocksåhänsyn till hin-
derundvikande såatt robotarna kan undvika inbördes kollisioner såväl som kol-
lisioner med oväntade rörliga föremål som människor. Slutligen implementeras
en decentraliserat algoritm för multipla banplanering för att hjälpa systemet att
hantera vissa nivåer av fel, vilket händer när det centrala styrsystemet för rob-
otar slutar fungera eller en del av kommunikationsnätverket mellan robotarna
oväntat kopplas bort. De föreslagna tillvägagångssätten har utvärderats genom
omfattande experiment för att visa deras effektivitet för att hantera kollisioner,
trängsel och blockeringar. Implementeringen av algoritmerna har utförts påall-
mänt tillgänglig plattform, robotoperativsystem (ROS) och överförts till riktiga
robotar.



Abstract

Over decades, automatic robots that are pre-programmed to perform repetitive
tasks in industrial production has been reaching the cutting edge of technol-
ogy. There is emerging the next development with autonomous control, where
a robot is able to have some levels of its own decision, i.e. self-governing,
without direct controls from humans. This brings autonomous robots exten-
sively applicable not only in industry but also in commonly accessible services
in our daily life such as self-driving cars, automated health care, or entertain-
ment. Yet, one of the backbone of the robotic system, the navigation and path
planning, has to face more and more challenges including unstructured envi-
ronments, uncertainty of moving objects, coexist with humans, and multiple
robotic agents. Aiming toward a dependable, i.e. available, reliable, and safe,
path planning system to overcome such challenges, this thesis proposes the
development of multiple path planning along with obstacle avoidance and con-
gestion control algorithms. At first, a novel dipole flow field, which is con-
structed from a flow field to drive robots to their goals and a dipole field to
push robots far away from potential collision directions, is proposed. The al-
gorithm is efficient in implementation yet is able to overcome the drawback
of conventional field-based approach, which is easily trapped by a local opti-
misation of energy functions. Secondly, a congestion control mechanism with
Petri net is developed to synchronise the movement of robots when they enter
in a cross or narrow area. Different Petri nets are evaluated to find the optimal
configuration to reduce the traffic jam through possible conflict regions. In the
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next contribution, the dead- or live-lock problem of a path planning system is
addressed. The solution is based on multiple path planning where each robot
has alternative paths to the goal. All robots in the same working space commu-
nicate with each other to update their locations and paths so that the appropriate
configuration can be chosen to avoid potential deadlocks. The algorithm also
takes into account the obstacle avoidance so that the robots are able to avoid
mutual collisions as well as collisions with unexpected moving objects like
humans. Finally, a decentralised multiple path planning algorithm is imple-
mented to help the system to deal with some level of failures, which happens
when the central controlling system of robots stops working or a part of com-
munication network between the robots is unexpectedly disconnected. The
proposed approaches have been evaluated by extensive experiments to show
their effectiveness in addressing collisions, congestion, as well as deadlocks.
The implementation of the algorithms has been performed on widely accessible
platform, robot operating system (ROS) and transferred into real robots.
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Status: Published in Frontiers in Neurorobotics, volume 12, 2018.

Paper B Dependable Navigation for Multiple Autonomous Robots with
Petri Nets Based Congestion Control and Dynamic Obstacle Avoidance
Authors: Lan Anh Trinh, Mikael Ekström, Baran Cürüklü
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Chapter 1

Introduction

There has been an undeniable inclination of the revolution in robotics and au-
tonomous control over the last decade. The trend has started since the new
definition of Industry 4.0 [1] based on the foundations of robotics, Internet of
thing (IoT), wireless communication, and artificial intelligence was introduced.
Furthermore, the pandemic with Covid-19 increases the needs of autonomous
robots and virtual communications to reduce direct contacts among humans.
So far, numerous intelligent robotic systems have been developed to support
humans in a variety of tasks in both daily life such as healthcare services,
smart home, autonomous driving, as well as industrial environments such as
warehouse systems, cargo robots, or robotics hands. Generally, an autonomous
system primarily composes of four specific yet interconnected components in
which they are integrated and influenced by the design of the system architec-
ture varying for different applications, i.e., (i) sensors and sensor fusion, (ii)
modelling and control, (iii) map building and path planning, and (iv) decision
making and autonomy.

Obviously, artificial intelligence is now a crucial part of an autonomous
robot system to help it to deal with decision making without receiving direct
commands from humans in some extends. To fulfil the mission, particularly
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4 Chapter 1. Introduction

for autonomous mobile robots, path planning and navigation is one of the core
components, which needs to be efficiently designed for the controlling sys-
tem of robots. There are certain issues (Figure 1.1) related to solving the path
planning problem, including how to generate a natural move, i.e the moving
trajectory of the robot is smooth and has few turns; multiple robotic agents,
i.e how the robot can coordinate with others to avoid mutual collisions; en-
vironment uncertainty where the robot needs to handle unpredictable moving
objects such as humans; deadlocks in which the robot is able to avoid/escape
a loop trajectory to approach its defined goal; lastly, efficiency means that the
robot is able to choose the most optimal path to accomplish its navigation tasks
with minimal energy consumption.

Whatever solution is used to address any of those issues, the main aim has
led to the development of a dependable, i.e, availability, reliable, and safe, algo-
rithm for a navigation system [2, 3]. Hitherto, dependability has been well stud-
ied in the literature to introduce a pathway to understand faults and to proac-
tively prevent them to happen inside and outside a system. Targeting toward a
dependable path planning algorithm makes it more widely acceptable for both
daily life and industry applications. To reach there, first the analysis of what
are the root that could cause the failures of a path planning algorithm is per-
formed. The assumption is that the robot is equipped with sufficient hardware
and software to know the relative location of the robot with respect to others
and to destination. The robot must have the map of environment and sensors
to be able to detect surrounding obstacles. Finally, it is able to communicate
wirelessly to share information among each others in the same working space.
Those requirements are kinds of standard in robotics where all functions now
are easily reachable by just using embedded devices and computational board.
Back to the main focuses of this study, the first question is how to ensure ef-
ficiency of the path planning algorithm. The answer to this question relates to
the amount of energy spent by a robot for a moving task. It is obvious that
routing a robot through a zigzag path is not optimal as the activity of slowing
down the robot and speeding it up again usually consumes energy unnecessar-
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Figure 1.1: Certain issues in navigation and path planning.

ily. Thus, smoothening the path plays an important role here to address such a
problem. Second, the path planning algorithm needs to be reliable to correctly
drive each robot to its goal. The continuity of the service is also important to
make it always available to the robot system. However, a robot while trying to
avoid moving obstacles and other robots could face live- or dead-locks which
make it no longer be able to move. The problem happens if the robot thinks a
single global path to the goal and only takes into account the local information
in a short range to decide the next move. Planning multiple paths and utilising
global information shared by all robots in the working space are the key to help
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robot to predict and avoid the congestion region. Finally, it is critical to have a
safe path planning algorithm to ensure no mutual collisions among robots and
collisions between robots and humans. This is to avoid any fatal consequence
on humans, a robot itself, and surrounding environments.

With regards to above analyses, the main contribution of this thesis is to de-
velop a dependable path planning algorithm for a system of multiple robots by
focusing on collision avoidance, congestion control, and centralised as well as
decentralised multiple path planning. The work has started with the introduc-
tion of an effective path planning frame work based on dipole flow field, which
includes the static flow field to drive the robot to its goal and the dipole field for
obstacle avoidance. The proposed algorithm has low computational complex-
ity yet is effective to mitigate the local optimisation of conventional field-based
approach. The path driven by the flow field is suitable to plan dynamic motions
of mobile robots and has been proved with real implementation. Continuously,
the obstacle avoidance is advanced into the next level with congestion control.
The basic idea is that routing too many robots into a same place could lead to
a congestion that robots must go around and around to avoid collisions. Some-
times, they block each other inside a narrow area. A Petri net, an efficient tool
to solve resource conflict for a dependable system, has been utilised in this
work to synchronise the movements of multiple robots through a region or a
cross. An optimisation problem is formulated to model the traffic of multi-
ple robots where its solution returns the most suitable Petri network to control
robots’ movements. Finally, in order to tolerate up to some level of failures
of a navigation system, a centralised as well as decentralised framework with
multiple path planning is proposed. Each robot will has several possible paths
to the goal which can be the shortest path found by conventional searching al-
gorithms or any longer path but to provide alternative selection for a robot. The
robots communicate with each other to negotiate the moving paths so that they
are able to proactively avoid the conflicts that may cause a potential deadlocks
in future. The obstacle avoidance is also taken into account to help robots to
avoid collisions with any moving obstacles on the moving way. In overall, the
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summary of the dependable multiple path planning system proposed in this
thesis is depicted in Figure 1.2.

Figure 1.2: Overview of the proposed path planning algorithms. The multiple
potential paths of three robots (marked with red, green, and yellow colours) to
move from one vertex of the graph to other are described by dash arrows. The
actual moving trajectories are chosen to minimise the conflicts and collisions
and expressed by bold lines without arrows.

Thesis Overview

This thesis is divided into two main parts.

• The first part of the doctoral thesis is organised as follows. Chapter 2
presents the basic foundation of the research work, including the defini-
tion of dependability, and the key features of dependable path planning.
Chapter 3 summarises the state-of-the art techniques for dependable path
planning for autonomous robots, congestion control and multiple path
planning. Chapter 4 presents the pathway to conduct this research work
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from initialise the target of the research to define the research questions,
and hypotheses. Continuously, Chapter 5 summarises the major con-
tributions of this work and Chapter 6 concludes the thesis with some
discussions on the development of path planning algorithms at present
and in future.

• The second part of this thesis is a collection of four articles (paper A-D)
presenting the main contributions of the thesis in details.



Chapter 2

Dependable Path Planning

This chapter provides the backgrounds of dependability and the proposal of
a dependable path planning system. The chapter is divided into three main
sections. As first, the general definition of dependability and its role in the au-
tonomous system are introduced in Section 2.1. Correspondingly, the overview
of how those dependable properties are applied in the path planning algorithm
is described on Section 2.2. Finally, the implementation for dependable path
planning with the uses of multiple paths, obstacle avoidance and congestion
control is introduced in Section 2.3.

2.1 Dependability and Autonomous Robots

Recently, autonomous robots are being widely used in numerous areas in which
the robot either collaborates with other robots and humans to complete a task or
even performs the task alone. For those robots to be able to work with humans,
safety is the most important factors to avoid possessing any dangers. For those
robots operating by themselves, they must be able to handle failures without a
humans assistant. The above issues raise new research challenges in robotics,
the dependability of robotic systems. Although the implementation of a de-
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10 Chapter 2. Dependable Path Planning

pendable system increases the cost in the short-term, it gains the sustainability
of the system over long-term runs.

Originally, dependability is defined by Avižienis et al. [2] as the ability
to provide services that can be trusted. Basically, to assess the dependability
of the system, five main attributes availability, reliability, safety, integrity, and
maintainability are introduced including as given in Table 2.1.

Table 2.1: Dependable properties.

Availability Be available or ready to provide services at any time
Reliability Continuously provide of correct services within a period

of time
Safety Avoid any fatal consequence on operators, other robots,

and environments
Integrity Avoid improper system changes, like unauthorised

access, or modification of program
Maintainability Support the processes of modifications and repairs

In overall, the autonomous robotic system must be able to recognise, work
with, and adapt to humans and other robots’ behaviours in a possibly unstruc-
tured and unknown environment. These possess challenges corresponding to
different aspects to implement the dependability of an autonomous system such
as:

• Learning and adaption: Adaption of robots to unknown conditions in
new environments with limited learnt knowledge.

• Modelling, analysis, and simulation: Development of a model simula-
tion to analyse and verify the dependability of robot systems.

• Control and planning: Robot control under some levels of uncertainty
and co-operation with other robots.

• Perception: Perception of environments in hazardous and complex situ-
ation.
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• Human-robot interaction: Collaboration and interaction between hu-
mans and robots.

This thesis mainly addresses the challenges related to the navigation con-
trol and planning of autonomous systems and focuses on the three main prop-
erties including availability, reliability, and safety.

In order to implement the dependable properties [2, 3], threats are defined
to understand any factor which affects system dependability. In overall, threats
include failures, errors, and faults. The failure happens when the provided ser-
vice is deviated from the correct service due to an error. As the cause of the er-
ror is fault, fault is considered as the root of every failure happening both inside
and outside of the system. Therefore, in order to enhance system dependabil-
ity, the system must be prevented from faults with the introduction of means.
There are four certain means including fault prevention, fault removal, fault
forecasting, and fault tolerance. Fault prevention requires the use of appro-
priate development methodologies, standard implementation techniques, and
good practices to design the system; Fault removal utilises verification tools
through a log-file to identify, diagnose, and remove faults; Fault forecasting
estimates the possible incidence and what can be the consequence of faults
with safety or risk analysis; Finally, fault tolerance is implemented with redun-
dant hardware or software to provide recovery mechanisms once a system fails
to complete its task. The last mean is usually applied during the operations of
a system.

The taxonomy showing the relationship between dependability and its com-
ponents is given in Figure 2.1.

2.2 Dependable Path Planning

Path planning, basically, is defined as finding a sequence of points to construct
a free collision way for a robot to reach a desired goal. In general, the path
planning system is divided into global path planning and local path planning.
The global path planning system of the robot perceives information on the
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Figure 2.1: Dependability taxonomy.
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surrounding environment to generate a route from a starting point to a prede-
fined goal. Meanwhile, the local path planning controls movement of the robot
along the global path to avoid collision with all the obstacles within a local
area. Conventionally, the global path planning mainly applies for static envi-
ronment, i.e., the presence of other moving objects such as other robots and
human is not taken into account when the global path is established. There are
numerous algorithms used for global path planning, however the graph/map/-
grid search-based algorithms are the most popular techniques for searching in
a map. For the local path planning where the robot has to deal with both fol-
lowing the global path and collision avoidance.

In this thesis, a dependable path planning algorithm is proposed with the
aim to cope with both global and local range and to avoid both static and uncer-
tain dynamic obstacles like humans. As aforementioned, three main depend-
able attributes are focused including availability, reliability, and safety. Given
the robot an interval time to finish a navigation mission, those three attributes
are expressed as following:

• Availability: The availability is measured by the continuity of the path
planning algorithm. Therefore, the availability of the navigation system
is measured by the probability that the system is functioning correctly at
an instance time.

• Reliability: This attribute presents the continuity of correct services.
This means the path planning algorithm is expected to operate without
interruption. Thus, the reliability in the given interval time of the naviga-
tion system is measured by the probability that the robot is still running
under the control navigation system without any failures.

• Safety: This attribute is assessed by the ability that the navigation system
can avoid any catastrophic consequences on the users, other robots and
the environments. This means during the given interval time for the robot
to complete the navigation task, the navigation system enables the robot
to avoid all obstacles including moving objects such as humans to reduce
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the danger to the environment, also the robot is less interrupted while
operating.

To aim toward a dependable path planning algorithm, at first, it needs to be
ensured to be implemented on a good platform with ready functions of coding
standardisation, unit-testing, building system, documentation, etc. By choos-
ing the well developed open-source framework ROS [4], and adapting its path
for implementation, the necessary tools for the first two means, fault prevention
and fault removals, are basically realised in thesis. This thesis mainly concen-
trates on the development at algorithm levels to address the fault prediction
and fault tolerance. They are expanded into specific aims for the path planning
algorithm. First, the algorithm is able to drive all robotic agents to reach their
goals with optimal paths correctly. Here, the optimal path is defined as a path
with a minimum cost calculated based on one or some the elements including
the total length of the path, the energy used by a robot to complete the path,
the complexity of the terrain over the path, etc. Second, for safety reasons the
robot needs to avoid collisions with other robots and humans in its working
space. Lastly, the robots are also required to complete the moving tasks. This
means that if the robots are not able to reach the goals or take a long time to
do so, it is considered that the robots are in the deadlock situation and failed to
complete a path planning task. It is obviously that should potential failures of
a path planning algorithm be proactively located, they can be mitigated. The
congestion control is developed in this thesis as a new mechanism to reduce
traffic in congestion areas, so that several robots are not routed into a same nar-
row place, which possibly leads to a deadlock. Meanwhile, during operations
of robots, fault tolerance enhances the system ability to handle with failures by
using backup solution. Adapting fault tolerance into a path planning algorithm,
this thesis proposes the uses of multiple path planning to allow each robot to
have several options to reach to its goal and the communication of all robots
in their work space to find optimal path assignments. The overall dependable
path planning approaches presented in this thesis include obstacle avoidance,
congestion control, and multiple paths.
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2.3 Dependability with Obstacle Avoidance, Con-
gestion Control, and Multiple Path

In summary, the conventional global path planning provides the basic depend-
able properties of a navigation system with the function to drive a robot to a
goal within the map of static objects. Obstacle avoidance enhances all safety,
availability and reliability by avoiding the collisions with moving obstacles that
can lead to the stop of navigation services. The congestion control and multi-
ple path drive the robots to less crowded and less risky areas, thus indirectly
help to improve all three dependable properties. Finally the extra implementa-
tion of the system with decentralised manner reduces the dependency of robots
to one central node to enhance the availability and reliability in general. The
dependable attributes are mapped into different component of path planning
algorithms in Table 2.2.

Table 2.2: Dependability attribute map.

Attribute Obstacle Congestion Multiple Decentralised
avoidance control path manner

Availability X X X X
Reliability X X X X

Safety X X X





Chapter 3

Related Works

As aforementioned, the requirements that an autonomous navigation system
needs to be dependable, i.e. safe, available, and reliable, are becoming more
and more important. This chapter provides overall literature of related re-
searches. The dependability for autonomous robots is surveyed in Section 3.1
while the introduction of path planning algorithms is given in 3.2. Continu-
ously, other works about obstacle avoidance are surveyed in Section 3.3, and
about congestion control and multiple path planning are given in Section 3.4
respectively.

3.1 Dependability and Autonomous Robots

Over decades, separate dependable attributes of an autonomous system have
been developed. For example, an intelligent home care robot, Care-O-bot,
was introduced by Birgit et.al [5] for elderly people assistance. The robot was
mounted with extensive sensors to detect motion, and also to prevent accidents
caused by a person hitting the robot with different levels of safety. Meanwhile,
a dependable platform has been concerned in industrial robots to create col-
laborating working environment between human and robot in manufacturing

17
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factories. For instance, ABB has been working on an open robotics platform
[6] with analysis tools in order to monitor and find the failure robot causes
with a testing procedure. Close to the works presented in this thesis, there has
been a rise on the development of self-driving cars from big companies like
Tesla, Google, Uber, or Volvo. To minimise the risks of causing accidents to
human, autonomous cars would have to tested to be driven in different environ-
ments like city traffic, busy highways, etc. to demonstrate a safe and reliable
self-driving system [7, 8].

Regarding definition from software perspective, the dependability of a sys-
tem is evaluated by attributes including availability, reliability, safety, integrity,
and maintainability [9]. The dependability of a system can be assessed by
one, several, or all attributes mentioned above. The researches on dependabil-
ity have shown that faults are the roots of failures occurring inside or outside
of autonomous system. Thus, different means are developed to prevent faults
and enhance the tolerance of a system to failures. Fault prevention focuses the
use of appropriate tools. This can be accomplished by good implementation
techniques, good tools, and the component-based designed of a system such as
LAAS [10], RAX [11] or standardised middleware like robot operating system
(ROS) [4], OROCOS [12], etc. Fault removal deals with identifying, diag-
nosing, and removing faults. Fault identifying is performed with verification
tools including dynamic verification (run test to find faults through log-file and
analysis) [13] and static verification [14] (system analysis, model checking,
etc.). Besides, during the operation stage, all failures must be logged for the
maintenance cycle. Fault forecasting deals with the prediction of the potential
future incidence and its consequence. If the robot system is described by uni-
fied modelling language (UML) [15], then the safety analysis is studied with
Hazard and Operability Studies (HAZOP) [16] or Fault Tree Analysis (FTA)
[17]. Other common approaches are Bayesian network and Petri net (PN). Fi-
nally, fault tolerance is implemented by using redundant hardware and software
[18, 19, 20].
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3.2 Global Path Planning

First of all, conventional algorithms about path planning are introduced in this
section. Many of them have focused on searching to find a path from a source
to a destination in static map without considering moving obstacles. One of the
most conventional yet still effective approaches for the navigation of an agent
in a large map is related to Dijkstra-based algorithm [21], its extension of A*
searching algorithm [22, 23], and incremental search [24]. In details, the A*
algorithm improves the Dijkstra’s algorithm by approximating the cost-to-go
function with heuristics to reduce the expansive of the searching tree to the
goal. Meanwhile, incremental search algorithms seek for the shortest paths by
utilising the results of similar searches to make the search faster, instead of
solving each search problem separately. By applying incremental search on
top of the A*, Koenig et al. [25] developed lifelong planning A* (LPA*) as
an initial variant of A*, in order to address path planning for dynamic graphs
where edge costs are updated. In the D* algorithm [26], incremental search
is applied to repeatedly update the shortest paths between the current position
of a robot and a goal, during the travelling of robots to approach to the goal.
Koenig and Likhachev [27] improved the D* by LPA* to have D*-Lite and
alternatively Sun et al. [28] developed dynamic fringe saving A* to reuse the
OPEN and CLOSED lists from previous A* searches.

Although different variants of A* are able to address a graph change due
to the moving of a robot to a new vertex, or the incremental updates of edge
costs, there are lacking particular versions of A* to deal with moving obstacles.
One of the approaches have been developed by Hu and Brady [29] was to
model the uncertainties of mobile obstacles using probability map. However,
the complexity of path planning significantly increases when the cost of the
edges on the graph are presented by random variables. Therefore, the most
common solution is to keep a robot moving on global path but the obstacle
avoidance is handled separately.
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3.3 Obstacle Avoidance

The limitation of global path planning to deal with dynamic moving obsta-
cles is addressed by obstacle avoidance, which is considered as path planning
within a local range. Conventionally, a field-based approach is of the way to
combine the global path planing with obstacle avoidance. The solution is usu-
ally constructed by the combinations of two fields including a repulsive field
to push a robot away from the obstacles, and an attractive one to pull the robot
towards the goal. The Voronoi diagram was proposed by Ok et al. [30] to
partition the working space into regions which are close to static obstacles.
Correspondingly, the repulsive field was built along with the attractive field
to route a robot to it goal. Meanwhile, the physics model of heat flow was
used by Wang and Chirikjian [31] and Golan et al. [32] where obstacles were
presented by hot obstacles and the goal was the cold one. Solving partial differ-
ential equations of heat exchanges among objects has revealed a way to drive
a robot to a goal without colliding with obstacles. Obviously, the biggest lim-
itation of using the field-based approach is the trap into local optimum due to
the cancellation of repulsive and attractive field. In consequence, a robot stops
moving at local optimal point where no forces are generated. Attempts have
been introduced to reduce the local convergence with extra elements. For in-
stance, Garcı́a-Delgado et al. [33] customised the repulsive field with regards
to the angle between an attractive force to an obstacle. The basic idea is to mit-
igate the cancellation of the two opposite attractive and repulsive forces once
present. Unfortunately, velocity is one of the key factor to avoid collision with
moving obstacles but it has not been utilised effectively in most of field-based
approaches.

So far, there has been another direction to use velocity constraints to seek
for a collision free path. Particularly, by knowing the current location of robots
and their moving directions with velocities, the collision regions are defined
in velocity space (VO). Owen and Montano [34, 35] extended this definition
of VOs into the obstacle avoidance of robots. Similarly, Damas and Santos-
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Victor [36] developed the forbidden velocity zones with the bounds on robots’
velocity so that a robot adjusts its moving speed accordingly to avoid obsta-
cles. In addition, other extensions of VOs have been investigated such as the
integration with acceleration in the works presented by Berg et al. [37, 38] and
by Wilkie et al. [39], or the consideration of different robot shapes tackled by
Lee et al. [40]. However, the complexity of the VO-based approach increases
significantly once static obstacles are included. In particular, each static obsta-
cle is presented by a VO where its shape needs to be taken into account with
representation as a polygon or a similar kind of complex geometric object. Us-
ing velocity control sometimes results in oscillatory motion once robots come
back to the preferred path after escaping from a collision area. Finally, a fast
collision avoidance is necessary under urgent situations, for example, when a
human approaches closely to the robot.

In order to address the above mentioned issues, in this thesis, a new obstacle
avoidance with dipole flow field has been proposed. Obviously, the lacking of
a mechanism to drive a robot to follow the global path to the destination could
lead to a trap by a local optimum. The dipole flow field integrates the global
path planning into the navigation field to address such an issue. For global
planning, the method applies any-angle path planning algorithm of Theta* [41]
to generate smooth paths with few turns, from a starting point to a goal for a
pool of agents. Although different A* variants of any-angle path planning have
been proposed, such as A* post smoothing, block A* [42] and field D* [43],
the Theta* is able to provide the optimal path with effective implementation
once compared with others [44]. As the computations of the Theta* algorithm
is costly, the a static flow field along the planned path is defined to pull the
robot back to the continue reaching to the goal if the robot has a small devia-
tion from the planned path. Meanwhile, the dipole field is developed to help
robots avoid collision with others and humans the shared working space. So
far, conventional field-based methods generate pushing forces with respect to
the location of robots. In this thesis, the moving directions and velocity ampli-
tudes of robots are taken into account in dipole field to push robots far away
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from prospective collision area. Last yet importantly, the proposed dipole flow
field is simple but effective to provide a quick response of a robot to sudden
events like the appearance of an unexpected moving obstacles in a very close
distance.

In overall, different obstacle avoidance mechanisms help to gain the de-
pendability of a navigation system to mitigate the effects from external factors
like moving obstacles on its performance. Continuously, the availability and
reliability of a navigation system is improved further with proactive manner
using congestion control as presented in the following section.

3.4 Congestion Control and Multiple Path Plan-
ning

As mentioned in the previous chapter, fault tolerance is one of key mean to
implement dependable system with redundancy. However, the redundancy is
also needed to be combine with an analysis method to proactively predict what
could wrongly happens to the system. Therefore, congestion control is com-
bined in this work to help the system to analyse surrounding environments and
make a right decision.

Commonly, the term of congestion control has been widely applied in trans-
portation to avoid traffic jams [45]. To take advantage of this into robotics, it
has been used to monitor and control the moves of the swarm robots [46]. In
order to extend the definition of congestion controls in path planning, in this
work, PN has been utilised to organise the path planning tasks of multiple
robotic agents solve conflicts and collisions among them. The PN framework
is chosen because it provides solution for fault analysis and fault prevention
in both development and operational stages of a system. Related works of PN
with dependability are found in [47, 48, 49], PN for system modelling and anal-
ysis in [50, 51, 52, 53, 54], PN with collaborative robots in [52, 55, 56, 57], PN
to design and implement robots in [58, 57, 59, 53], PN and fault tolerance in
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[49, 60, 15], and PN with ROS in [61].

Aforementioned, the main aim of this thesis is to develop a dependable
navigation system for multiple autonomous robots. To avoid congestion lead-
ing to deadlock situation where the robot is blocked by human or other robots
to reach the goal. Besides, to make the navigation system more dependable,
i.e., fault-tolerant system, a proactive multiple path planning algorithm is pro-
posed in which the autonomous robots are equipped with multiple global paths
to the goal. Multiple robots are able to communicate to exchange information
about the planned paths and negotiate to find the optimal paths for all robots in
a global scale.

For the graph-based solutions, the robots move on a connected graph from
a vertex to its neighbours in one time step to reach their goals. A conflict hap-
pens when two robots occupying on a single vertex at the same time and the
main aim of the path planning is to find a conflict-free solution satisfied by all
robots. An extra cost function, namely sum-of-cost, like the total maximum
time for all robots to reach their goals (or the sum of all path cost) is intro-
duced as an optimal condition for the search. As the problem is shown to be
non-deterministic polynomial-time (NP) hard [62], numerous approaches have
chosen to seek for a close optimal solution to reduce processing time. A*-based
optimal search finds a non-conflict solution among all combinations of assign-
ing k-agent into the graph. To avoid the exponential grows of the state-space
with respect to the number of agents, different methods have been applied,
e.g. independence detection (ID) [63] to include robots only when necessary
or operator decomposition (OD) [63] to treat a move as an operator to control a
single robot at a time. Alternative to A*, the increasing cost tree search (ICTS)
[64] proposed two-layers including high-level and low-level searching where
the lower is used as a goal test of the higher. Another solution different from
A*, conflict based search (CBS) is introduced by Sharon et al. [65]. In CBS,
the agents are constrained by a triple of parameters including agent, occupy-
ing vertex, and time step. It means that the agent at the particular time step
is refused to occupy an occupied vertex. The path is found only if all agent’s
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constraints are satisfied. The searching is completed when the paths for every
agents are resolved.

Beside above solutions, there have been suboptimal solutions for multiple
agent path planning. For instance, hierarchical cooperative A* (HCA*) [66]
introduced a reservation table which is used to store the path assigned into an
agent. The other agents according to their priority in the group search for their
paths not registered in the reservation table and update the table accordingly
after the paths are found. In an improved version of HCA* like Windowed-
HCA* (WHCA*) [66], the reservation table is only applied for a limited time
slot, i.e., window, when the other agents are rejected to reserve to the table.
Later, in the work of Bnaya and Felner [67], a dynamic window focused around
conflicts and agents likely to be involved to a conflict are prioritised to be pro-
cessed next. In overall, the heuristic search A* and its variants are still costly
computational solutions.

There have been researches developed to reduce the running time of the
search-based algorithms with rule-based algorithms. Specific rules are defined
for the movement of the agents to reduce searching time. Yet, the resulted
paths from the rule-based algorithms are not always optimal. Alternatively,
in the work of Yu and Lavalle [68], the path planning problem for multiple
agents is modeled as a network flow and the collision-free paths are found by
the integer linear programming (ILP) solver.

Most of conventional works on multiple path planning are based on an
assumption of a working environment without the presence of human. Due
to the safety reasons, the operation of robot will be terminated when a human
enters the working zones or crosses the moving trajectories of robot. In this
thesis work, a new method of multiple path planning is proposed to consider the
human and other uncontrolled moving objects as factors into the path planning
problem. This help to enhance autonomous functions of robot navigation to
allow more flexibility of robots to continue working even with the presence of
other robots in unfamiliar environment.
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Research Overview

The research presented in this thesis has been divided into four main stages
(Figure 4.1) which reflect the step-by-step evolution to build up the whole sys-
tem.

In the beginning of research, the investigation on a dependable path plan-
ning algorithm was conducted. The details of dependability properties and
their roles in autonomous control system have been reviewed in comprehensive
surveys, which result in the research of using Petri net to analyse the failures
happened inside a system of multiple robotic agents. The study was presented
in a conference paper (ICCART, 2017). Based on that, the dependable proper-
ties suitable for a navigation system are selected where a dependable, i.e., safe,
reliable and available, path planning algorithm is proposed based on a novel
dipole flow field which consists of a static flow field and a dynamic dipole
field. The static flow field is to drive the robotic agents to the goals with less
requirements to update the global path, meanwhile the dipole field plays an
important role to prevent collision with other agents and moving obstacles ap-
pearing in the working space. The idea was initially presented in a workshop
paper, later extended into a full paper [Paper A]. After the principle of the al-
gorithm is evaluated through extensive experiments, its implementation on the
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middle-ware ROS framework has been performed to transfer from theory into
a practical system. Eventually, the implementation was done on Husqvanar
Research Platform within the scope of UNICORN master project.

Relying on a single path could lead to deadlock or congestion when mul-
tiple robotic agents are routed into a narrow area. Therefore, in the second
stage, a proactive multiple path planning algorithm has been proposed to avoid
deadlock situations with congestion control. In this work, the global paths of
the robots are formed as a graph of a Petri net network. The movement of the
robot along its global path is synchronised into the movement of a token in
the network. Moreover, a communication channel is also established to help
the agents to share their information of positions and velocities to each other.
Hence, the control place, i.e., the place where the potential congestion happens,
in the Petri net of the agents is estimated, so that the agent can predict when
the congestion happens before hand. Thank to the integration with the dipole
field, the agents are able to avoid collision at the control place of the Petri net.
The result of the work initially is presented in a conference paper published at
CODIT, 2019. Later, the proposed algorithm is extended into a full paper [Pa-
per B]. In this paper, each robot is equipped with different paths from starting
point to its goal. The travelling time of all trajectories of the robots are anal-
ysed by analysing the Petri net. The most optimal configuration of paths for
the robots is chosen which is based on the criteria for congestion avoidance.

Finally, an optimisation problem for multiple path planning has been pro-
posed to optimise the paths for all the robots with obstacle avoidance con-
straints. The evaluation of the proposed method is presented in [Paper C]. As
the above proposed multiple path planning has been evaluated in a centralised
manner, the interrupt of the centre node could cause the system failures. A
decentralised approach is proposed to cope with such a problem, making the
robotic agent less dependent on each other, aiming at a self-governing system.
The result has been condensed in a journal paper [Paper D] with the implemen-
tation on Turble bot 3 to evaluate the presented method.
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Figure 4.1: Comprehensive research flow.

4.1 Research Methodology

The path way to conduct research presented in this thesis follows inductive
reasoning methodology. First of all, the overall objectives of the research are
defined. With regards to the goals, the comprehensive literature review of pre-
vious works related to the research topics are studied. The research questions
are defined based on the analyses of pros and cons of different approaches and
of the missing pieces to be solved to achieve the main goals. Continuously,
the hypotheses are stated to define what are expected to be evaluated with the
ideas/algorithms proposed by the researches. In the next steps, the new ideas
are invented and deployed to answer research questions. The experiments are
performed to test the developed algorithms with regards to the defined hypothe-
ses. Once the cycle of researches is finished, the limitations of the works are
evaluated again to formulate the next iteration of researches. The research
progress is therefore performed a step-by-step to build up the complete solu-
tion.
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Along the pathway to conduct my research with inductive methodology, I
always present the ideas of new theory in conferences to get comments from re-
search communities to improve the contents of the work. Once the preliminary
results are evaluated, the complete studies with more expensive experiments
are performed to report the results into a journal before the next iteration of
my research is circulated. In the implementation pathway, after a successful
test in a comprehensive simulation, i.e. Gazebo, the real implementation is
transformed into a real robot. The robotic platform, i.e. ROS, is chosen in
both simulated and real environment to reduce the implementation efforts. My
research strategy is summarised in Figure 4.2.

Figure 4.2: Research methodology.
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4.2 Research Goals

In overall, the goal of the research works presented in this thesis is to develop
a dependable path planning system for multiple robots to navigate them to
reach the goals, assuming that the robots coexist with users/operators on the
same working space. With regards to availability, reliability, and safety as the
main dependable properties, the aims consist of driving all robots to the goals
correctly, minimising the possibility and factors that could cause the stopping
of the services like the live- and dead-locks, and finally, avoiding collisions
among robots and between robots and humans. The hypothesis are defined at
each step of my research accordingly.

4.2.1 Research questions

In the initial phases of this research, the research questions mainly focus on
how to define the dependability of an autonomous system and then how to
develop a dependable path planning for multiple robots system. Continuously,
the ideas of obstacle avoidance, congestion control, and multiple path planning
have been formulated. At every stages, the research questions (RQs) are raised
accordingly:

1. RQ1: How to define a dependable path planning framework for multiple

robotic agents working in a sharing environment with human subjects ?

The answers to this question help to define the basics of a dependable
system to extend them into path planning algorithms. This includes the
theory of dependability, the means to implement a dependable system,
the essential components of a path planning system, and the effects of
multiple humans and robots on the sharing space into the design of path
planning system.

2. RQ2: How to develop a path planning algorithm to provide safe and

reliable moving paths for multiple robots?
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RQ2 is a follow up of RQ1 to deploy dependability properties on a path
planning algorithm. The questions are put in a context where humans
and robots are living together and safety is a critical factor needs to be
ensure to no serious collisions between them. It is noted that the posi-
tions of human subjects are estimated from the observation of sensors,
thus some levels of uncertainty should exist. The complexity of envi-
ronment is also taken into account to reach a robust solution that is not
limited to a restricted area. Effectiveness on energy consumption is an
extra factor to be considered in a path planning algorithm to target sus-
tainable and environmental friendly solutions for long-term uses.

3. RQ3: How to avoid a deadlock situation through multiple path planning

and congestion control?

The aim of this question to enhance a path planning algorithm with fault
tolerance. This means if a robotic agent fails to do a moving task to
the target (deadlock situation), there should be a backup plan for it to
recover its navigation activities. The question are to how to formulate
the multiple path planning and how to use congestion control to help
a group of robotic agents to proactively synchronise their movements
through a cross intersection to avoid congestion.

4. RQ4: How to integrate the proposed path planning algorithm on real

robots? What case studies with real autonomous robots can be used to

test the whole system?

Many challenges related to a realistic environment need to be concerned.
They include how to choose a right framework to utilise existing devel-
oped solutions, how to detect and monitor the moving trajectories of
humans and other objects, how to build a map and localise the robot
in there, how to develop a communication method to share information
among robots etc.
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4.2.2 Hypothesis

At the beginning of this research, the basic framework for a planning algorithm
is investigated along with the new navigation method for multiple robots. Aim-
ing at the simple yet effective method to drive the robots to goals safely, the
dipole flow field is invented. An any-angle-path planning with Theta* algo-
rithm is employed to initialise the paths from a starting point to a goal for a set
of robots. To deal with the movements of the robots, a static flow field along
the configured path is defined. This field is used by the robots to navigate and
reach their goals even if the planned trajectories are changed. In parallel, a
dipole field is calculated to avoid the collision of robots with others and human
subjects. In this approach, each robot is assumed to be a source of a mag-
netic dipole field in which the magnetic moment is aligned with the moving
direction of the robot. The magnetic dipole-dipole interactions between these
robots generate repulsive forces to help them to avoid collision. Note that the
collision happens if the distance between a robot and the target is smaller than
predefined thresholds. The first hypothesis is stated to evaluate the proposed
path planning approach as follows:

Hypothesis 1: Using the path planning algorithm as the combination of

the dipole field and flow field, it is possible to correctly drive a robot to its

desired goals and avoid the collisions of the robot with humans, other robots

and obstacles on the moving way.

Conventionally, path planning algorithms have addressed the navigation
problem for multiple robots with a single path planning. Relying on a single
global path planning could lead to a deadlock situation where a robot takes
a very long time to reach a goal or even is not able to do so. This happens
in the case of multiple robots moving in a narrow area. Since the local path
planning to avoid obstacle only takes into account the collision of other robots
in the vicinity, a robot must turn back to the predefined path to reach a goal.
However, if two robots are routed through a very narrow area, like a corridor,
and enter it through two opposite sites, robots may face a deadlock situation
where they repeat the same moving trajectories through that area again and
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again without finding the path to the goal. Considering human as a big obsta-
cle due to safety reason could block a robot to enter a small way to follow its
global path. Therefore, it is important for a robot to prepare different solutions
to reach a goal and the robot needs to proactively switch between solutions
whenever necessary to avoid dead lock situation. With regards to the studies
about PN and the new path planning algorithm with dipole field, the research
in this proposal is continued with the uses of PN for congestion control. Obvi-
ously, the navigation of several robots into one narrow area may make them to
block each other and harder to find the way out from the area or to take longer
time to reach their goals. To address the congestion of routing multiple robots
into one place, a group of robots should find effective routes to avoid conflicts
with each other. As PN is an effective tool in dependable autonomous control
to resolve conflicting problems, it is able to apply PN to plan the paths of mul-
tiple robots with a delay to avoid routing many robots into a same place so that
the robot may not need to turn around with longer paths to approach to their
goals.

The next hypothesis to be tested is formulated as:

Hypothesis 2: Using multiple path planning with PN to synchronise the

movements of robots to cross through an intersection or narow region, it is able

to avoid the deadlock situation or the livelock situation, i.e. agents ”dance”

back and forth when directly opposing each other.

The multiple path planning using PN to resolve traffic jams of multiple
robots is centralised, meaning that if the central controlling node is offline,
the whole system stops working. In order to enhance the fault tolerance, it is
important to decouple the centralised system to reduce the dependency on the
communication network and on a single node to remain operations. The work
has started with the introduction of an optimisation framework to integrate both
controlling congestion of multiple robots and avoiding collisions. The for-
mer involves discrete variables while the other is the continuous optimisation
problem. Their combination forms the mixed-integer quadratic programming
(MIQP) problem where its solution on embedded devices have been introduced
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recently, making the solution widely available for mobile robots. As solving
the navigation in a centralised manner poses a risk as aforementioned, the dis-
tributed algorithms is investigated to solve the MIQP problem. The hypothesis
is stated as:

Hypothesis 3: The MIQP optimisation problem to address multiple path

planning with congestion control and obstacle avoidance can be solved in the

decentralised manner.





Chapter 5

Thesis Results

5.1 Contributions and Results

The works done by the thesis have led to five main contributions to the re-
searches of dependable path planning. First, the general theory about depend-
ability has been investigated to find the fundamental properties and means to
achieve a dependable path planning algorithm. Thereafter, a new path planning
algorithm with dipole flow field has been developed. Third, a new application
of PN on path planning algorithm to avoid congestion has been proposed. The
fourth contribution is multiple path planning with its role to improve a depend-
able path planning with fault tolerance. Finally, the basic ideas of the thesis
have been implemented in ROS to be applicable in real robots and practical
application. The combination of different approaches presented in this thesis
reveals the implementation of three layer protections for a robot at different
ranges (Figure 5.1).

Dependable properties of a path planning algorithm For a path plan-
ning algorithm, it is crucial to enhance three dependable properties including
reliability, availability, and safety. Both reliability and availability are assessed
by the correctness of the path planning algorithm, i.e. robots are precisely
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Figure 5.1: Multiple layers proposed to enhance path planning dependability.

navigated to the defined goal. Also they are shown by the continuity of path
planning services, e.g. not facing a dead-lock situation so that the robots are no
longer to be able to operate. Meanwhile, safety is realised by protecting robots
free from collisions with any static and moving obstacles.

Dipole flow field A new path planning algorithm with dipole flow field has
been developed. The algorithm is able to process path planning with a fast and
effective algorithm by developing a navigation field so that the movements of
agents are just simply controlled by the forces generated from the field. The
attractive forces that drive the agents toward their desired goals are created by a
static flow field. Simultaneously, the repulsive forces that prevent agent-agent
and human-agent collisions are generated by a magnetic field of dipoles. The
combination of the static flow field and dipole field forms a force to determine
the moving directions of the agents at a specific time instance. The simula-
tion results showed that the static flow field safely navigated the autonomous
agents to their goals, meanwhile the dipole filed is effective in avoiding col-
lisions. However, routing several robots into a narrow area, e.g., a corridor,
might lead to a dead-live lock situation where robots try to avoid collisions
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with each other but not able to escape from the trapped region. One solution
to address this problem is locating potential areas that have high possibility to
cause traffic jams and controlling the movements of robots through that area
with the following contribution.

Congestion control with PN The application of PN is utilised to control
the movement of the robots when they are routed through a cross or a nar-
row area. The cross/intersection regions of the moving paths are considered
as a conflict resource so that a PN is an appropriate approach to avoid traf-
fic congestion among robot. A PN is applied to control the movements of
robots at every intersection by organising one by one passing through a cross.
Those PN analyses and controls are available with robots when they are able
to communicate and share information with each other. For humans and other
moving objects, the previous work with dipole field is integrated with dynamic
window approach is implemented based on the local planning of the system
to help robots to avoid collisions. By regarding the velocity and direction of
such dynamic obstacles as a source of a virtual magnetic dipole moments, the
dipole-dipole interaction between the moving objects will generate repulsive
forces to prevent collisions. Analyses and experiments demonstrated with the
Gazebo simulator have revealed that the PN control is able to synchronise the
movements of multiple robots passing through the intersection, which helps to
shorten the travelling paths of the robots. Meanwhile, the dipole field imple-
mented on DWA is able to advance the local path planning with an ability to
avoid moving humans and other robots in the shared work-space.

Multiple path planning in both centralised and decentralised manner
The next contribution is the proposed multiple path planning and its role to
improve dependable path planning with fault tolerance. Relying on a single
global path planning could lead to a dead - or live lock situation which hap-
pens when multiple robots moving in a narrow area and they repeat the same
moving trajectories through that area again and again without finding the path
to the goal. Thanks to the use of multi-paths, or back-up planned paths, the
robot is able to switch to another planned path when the currently planned path
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could lead to blocking. This helps to improve the availability of the system
with the ability to provide correct services by proactively preventing the sit-
uation when the system fails to complete their planning tasks. The proposed
multiple path planning is combined with obstacle avoidance in a unique opti-
misation framework. The solution for the problem is developed and presented
both centralised and decentralised manner.

Implementation on ROS Lastly, one of the crucial contributions of this
thesis work is the attempt to transfer the developed framework into the middle-
ware, Robotic Operation System, which can be effectively implemented on real
robots. Most of the thesis’s experiments and evaluations are implemented on
ROS and tested with Gazebo simulator. A basic part of the dependable path
planning which is Theta* combined with dipole field, is implemented on a
real HRP robot, showing that the implementation works well on a real robotic
system and helps the robots avoid both static and dynamic obstacles including
moving humans.

5.2 Summary of Papers

The contributions and results are detailed in four articles (Papers A-D) that are
summarised as follows.

Paper A This paper presents the basic framework for dependable path plan-
ning for multiple robotic agents (or agents in short) with a field-based ap-
proach. The main navigation aim is to drive an agent to the goal with a shortest
path and to avoid collisions with other agents and moving obstacles, e.g. hu-
mans. The definition of dipole flow field is proposed with the combination of
static flow field and dipole field. For the static flow field, the Theta* is applied
to initialise a single path from a starting point to a desired goal for each au-
tonomous agent. Thereafter, a static flow field is configured along the found
path to navigate the agents back to their planned routes if they are deviated
from the path due to the meeting with static or dynamic obstacles. To deal
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with collisions that may happen among moving agents, a novel dipole field
is introduced. The field generates dipole forces between two moving agents
(presented as two dipole magnets) approaching to each other to push them far
away to avoid collision. The combination of these two fields results in a safe
path planning algorithm for controlling autonomous agents to reach to their
goals. Several scenarios are used to evaluate the effectiveness of the proposed
approach. For a static flow field, one hundred trials of experiments have been
performed to evaluate this field to drive a single agent from a start to a goal in
a 50m×50m map with static obstacles. Experimental results have shown that
the agent is able to move to its goals in a binary map of static obstacles with a
small number of re-initialising the global path using the Theta* algorithm. The
dipole field is evaluated with the simple crossing scenario of two agents mov-
ing toward each other in different orientations in an empty map. The dipole
force helps them to avoid collisions yet keep them in smooth moving trajec-
tories to their goals. With the combined dipole-flow field, the robotic agents
are well routed to their destinations, while possible collisions with other agents
and human are taken into account to protect them and environments from dam-
ages caused by a hit and to ensure safety to operating users. In conclusion,
the basic dependable properties of completing navigation tasks to the goal and
of protecting agents free from collisions have been realised with an simple yet
effective approach with dipole-flow field.

Paper B In this paper, the next direction to enhance the dependability of a
path planning system is investigated with the uses of Petri net (PN) for con-
gestion analysis and movement control. Obviously, the indirect reason behind
the failures of a path planning algorithm for multi-robots links to a traffic jam
at a narrow area or at a crossing place. To tackle this problem, in a transporta-
tion system, the controls at each intersection, like the uses of traffic light or
the moving in a queue at round-about, have been well implemented. This pa-
per adapts those mechanisms for multiple robots to analyse and control their
movements using a PN. For each robot, several paths to the goal are created and
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shared among robots. A central node collects information of global paths and
construct an map of intersections where each of them are crossed by at least
two paths. Correspondingly, the PN is built where each robot is modelled by a
token while the control place is defined a critical resource. The PN control the
robot movement by allowing only a limited number of robots passing through
the intersection. Other control places are also formulated at a narrow area to
determine a maximum number of robot simultaneously going through it.

The whole proposed algorithm is divided into two main stages. In the first
stage, the simulation of firing a token through the PN analyses how the move-
ments of the robots look like with a specific configuration of a global path. All
combinations of multi-paths assigned to robots are evaluated to find the opti-
mal configuration of the global path for each robot. Once the global path is
decided, in the second stage, the PN is utilised to synchronise the movement
of a robot through the intersection in first-in-first-out manner with a link of a
robot to a token in PN. The PN is mainly applied to help robots avoid mutual
collisions with each other. For humans and unexpected moving obstacles, the
dipole field is integrated to prevent collisions by repulsive forces generated by
moving objects modelled as dipole magnets. The whole framework is imple-
mented on an common and open platform ROS with possibility to be applicable
on real robots. Analyses and experiments are demonstrated with an extensive
simulator to evaluate the effectiveness of the proposed approach.

Paper C Continuously, this paper presents a simplified version of congestion
control for multiple path planing. As aforementioned, a single path planning
may lead to a deadlock when a robot fails to continue its moving plan. The
deadlock can happen when two or more robots occupy a same place at an in-
stance of time and the obstacle avoidance in a local range is insufficient to
drive robot to another way to escape from the deadlock. Multiple-path plan-
ning plays an important key to overcome this limitation. The missing question
to solve the puzzle is to how to find the right path among multiple choices
to go. Therefore, this paper formulates the multiple path planning with ob-



5.2 Summary of Papers 41

stacle avoidance as an optimisation framework where the cost function is the
summation of the path length and the minimal change in velocity and direc-
tion. The obstacle avoidance is presented by a constraint in a velocity obstacle
space to select a moving direction not collide with other incoming robots. The
congestion constraint is to prevent more robots moving through a narrow area.
The optimisation problem is solved in a centralised manner with IBM CPLEX.
Once the right path and velocity are found, they configure the moving plan
of the robots with the ROS platform. The simulated experiment is conducted
with three HRP robots which travel from one side of the map to the oppo-
site one and through a narrow corridor. The starting and goal are randomly
placed. The experiment has shown that the proposed optimisation has reduced
the number of deadlocks and collisions, compared with conventional dynamic
window approach (DWA) [69] and DWA+VO.

Paper D This paper presents a decentralised framework to tackle the path
planning algorithms for multiple robots. The path planning is stated as an op-
timisation problem to find the optimal path to a goal for every robots in the
working space to minimise or maximise a cost function. At first, the solution
requires the needs of constructing multiple paths for each robot to address the
situation that two or more robots occupy a same location or a same moving way
at an instance of time. Correspondingly, the check of where or when a collision
happens is performed to provide the constraints for the optimisation problem
to avoid the conflicts. However, it is hard to determine the exact constraints
of the meeting time of robots under uncontrolled environments with randomly
moving obstacles and humans as the robot has to adapt its speed and moving
directions to avoid them. The paper therefore proposes soft constraints which,
instead of finding a conflict-free, attempt to reduce the congestion on the mov-
ing way of robots. The congestion constraints are estimated by the number of
crosses or narrow areas on a specific path. By avoiding the path with heavy
traffic jams, the robots proactively avoid the possibility of congestion, which
could lead to a collision or a dead-locks to prevent them reaching their goals.
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As allowing a change of several robots meeting each other, the obstacle avoid-
ance is required in this situation. Several constraints are integrated into an
optimisation problem with a quadratic utilisation function including an object
function to minimise the travelling path and a regularisation term to make the
moving path to become smooth. In overall, the whole problem is formed as
a mixed integer quadratic programming (MIQP) with the integer variables to
select a suitable path for each robot. The problem is NP-hard in general where
its complexity grows with respect to the number of robots. Therefore, the prob-
lem is solved faster by sharing their computational resources to search for the
solution of the problem. This is also to enhance the reliability of the system to
reduce all dependency on one central node. The optimisation at a local robot
is performed with OSQP, a light and efficient solver designed for mobile robot.
The algorithms are implemented on ROS and evaluated with simulations on
Turtlebot 3.



Chapter 6

Conclusions and Future
Works

6.1 General Conclusions

Undoubtedly, navigation is considered as the one of the core components of
an autonomous robot system. Starting from a simply requirement of routing
a robot to a defined goal, nowadays the path planning problem has become
increasingly challenging due to new requirements of an autonomous robot to
cooperate with others and even humans to perform a task. In consequence,
there have been raising questions to achieve a dependable path planning sys-
tem, leading to the researches done in this thesis to find the answers for those
questions. At first, a board research about dependability and its role in au-
tonomous control has been conducted. Corresponding, three main dependable
properties including reliability, availability, and safety for a path planning al-
gorithm have been focused within the scope of this thesis. To aim at a de-
pendable path planning system, the roots to affect those dependable proper-
ties are caused by a fault, which could happen due to operator’s errors, un-
expected events from surrounding environments, or even wrong designs. To
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reach an acceptable level of dependability, different means have been used as
the tools to improve the dependability of a system including fault prevention,
fault removal, fault forecasting, and fault tolerance. From above information,
the pathway towards the dependable path planning algorithm has been estab-
lished to drive the researches in the rest of this work. The thesis begins with
the development of a safe, reliable, and effective path planning algorithm for a
group of robotic agents that share their working space with humans based on
a novel dipole flow field including static flow field and dynamic dipole field.
The results show that the static flow field is able to drive agents to the goals
with a small number of requirements to update the path of agents. Meanwhile,
the dipole field plays an important role to prevent collisions. The combination
of these two fields results in a safe path planning algorithm to drive agents
to their desired goals. Continuously, a fault analysis with a group of multi-
ple robots working together to complete a shared task has been investigated
using PN. Consequently, PN is applied to manage the path planning tasks of
multiple robots to reduce congestion. The research of this work is continued
with multiple path planning with an aim to help multiple robots to avoid the
deadlock situation to ensure the availability and reliability of the path planning
services. Last yet importantly, it is crucial for a dependable system to always
have a reserved solution even with redundancy to avoid the completely failed
of the whole system. The final attempt of this thesis work has solved the puz-
zle of how to bring the implementation of the whole system in a decentralised
manner. The key dependable properties including reliability, availability, and
safety are evaluated through extensive simulations with Gazebo. The imple-
mentation of the proposed algorithm has been transferred into ROS platform to
be used in real robots. In overall, the works presented in this thesis have estab-
lished a pathway and achieved important improvements to approach toward a
dependable path planning system.
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6.2 Future Works

Research directions have been planned for future works as follows.

Implementation on more real robots/Large scale evaluation In this the-
sis, the design for the dependable path planning algorithm and the theoretical
analysis are developed with ROS and evaluated through Gazebo simulation.
The algorithm is initially implemented on ROS-based robots, e.g. HRP. In the
next stage, the implementations on other robots as well as more real world sce-
narios will be planned to show the effectiveness of the proposed method. Fur-
thermore, a large scale evaluation of hundred of robots will be planned with
the uses of a powerful computer for simulation.

Diverse fault tolerance and congestion control mechanisms Currently,
alternative paths to the goal have been established to provide a backup path
if the robot no longer follows the current path. The works can be improved
by utilising different algorithms to generate global paths, like RRT-based algo-
rithms [70] to provide more variations of the routes to the goal. A hardware
solution for fault tolerance will be also considered. Meanwhile congestion con-
trol should focus more on potential areas with high probability of traffic jams
instead of applying control on every intersections to reduce complexity of the
system.

Hierarchy path planning The complexity of the mixed integer optimi-
sation grows exponentially with respect to the number of discrete variables
including in the problem. Therefore, the divide-and-conquer mechanism is the
key to tackle the complex path planning problem involving a large number
of robots in a big terrain. Robots close together in a configuration space are
grouped into clusters and consequently the path planning problem is divided
into the local navigation within a cluster and the global navigation among clus-
ters through inter-connections.

Machine learning in path planning Lastly, learning techniques, such as
deep reinforcement learning [71], can be investigated to make path planning
decisions more accurate and fast by learning experiences from collected data.
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Besides, once the system is distributed, finding the right decision will be a
heavy task for each independent robot. The path planning task can be miti-
gated by searching information for learning/collecting data. In another aspect,
applying learning methods for data fusion from extensive sensors could also
help to fully perceive surrounding environment to achieve a higher level of
dependable path planning for a multiple robot system.
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Abstract

Recent industrial developments in autonomous systems, or agents, which as-
sume that humans and the agents share the same space or even work in close
proximity, open for new challenges in robotics, especially in motion planning
and control. In these settings, the control system should be able to provide these
agents a reliable path following control when they are working in a group or
in collaboration with one or several humans in complex and dynamic environ-
ments. In such scenarios, these agents are not only moving to reach their goals,
i.e. locations, they are also aware of the movements of other entities to find a
collision-free path. Thus, this paper proposes a dependable, i.e. safe, reliable
and effective, path planning algorithm for a group of agents that share their
working space with humans. Firstly, the method employs the Theta* algorithm
to initialise the paths from a starting point to a goal for a set of agents. As
Theta* algorithm is computationally heavy, it only reruns when there is a sig-
nificant change of the environment. To deal with the movements of the agents,
a static flow field along the configured path is defined. This field is used by
the agents to navigate and reach their goals even if the planned trajectories are
changed. Secondly, a dipole field is calculated to avoid the collision of agents
with other agents and human subjects. In this approach, each agent is assumed
to be a source of a magnetic dipole field in which the magnetic moment is
aligned with the moving direction of the agent. The magnetic dipole-dipole in-
teractions between these agents generate repulsive forces to help them to avoid
collision. The effectiveness of the proposed approach has been evaluated with
extensive simulations. The results show that the static flow field is able to drive
agents to the goals with a small number of requirements to update the path of
agents. Meanwhile, the dipole flow field plays an important role to prevent
collisions. The combination of these two fields results in a safe path planning
algorithm, with a deterministic outcome, to navigate agents to their desired
goals.
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7.1 Introduction

Until recently, robots have played a critical role in the manufacturing industry
where the automatic robots perform repetitive and sometimes heavy tasks. The
majority of these solutions assume high precision with respect to movements
and positioning of the robots, without relying on sensors, or at least exten-
sive sensor feedback. However, technological advancements in recent years
have resulted in a shift of attention from pre-programmed automatic solutions
to (semi)-autonomous systems that can operate in unstructured environments,
and even co-exist with humans. As a result of this shift, robots will be more
involved in our daily activities. Thus, they will be allowed to have more inter-
actions with humans, share working space with humans as well as make their
own decisions with some accepted levels of uncertain information collected
from the surrounding environment. For instance, there is a rise of interest in
self-driving cars where the fully autonomous mode has been investigated to
help drive the car in city centers, substandard roads or busy highways without
causing accidents. In the health care domain, robots are assumed to assist el-
derly people in their daily activities. In this context, different levels of safety
need to be taken into account, e.g. develop an autonomous control to avoid exe-
cuting any movements that the users do not expect and also to prevent accident
caused by a person being hit by the robot. The challenges, and the oppor-
tunities, in the health care domain becomes more evident considering care at
home. Going back to the main application domain, i.e. industrial robotics, it
is evident that the next generation solutions assume high degree of interaction
and collaboration between mixed teams of humans and robots. Obviously, the
approach taken by these solutions will not exclude today’s standard solutions.
Thus, it is most likely that different solutions will exist side by side in the near
future.

Nevertheless, the developments in autonomous robots that co-existence of
humans and robots, have opened new challenges in research areas of robotics,
e.g., in motion planning and control. In particular, the control system should be
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able to provide the robots a reliable motion planning and control ability when
the robots are working in a group or in collaboration with one or several hu-
mans in complex and dynamic environments. This means that the robots must
meet certain requirements on trustworthiness/dependability in order to be al-
lowed to work with humans. The dependability of a robotic agent is presented
by main attributes including availability, i.e. the continuous operations of the
system over a time interval, reliability, i.e. the ability of the system to provide
correct services, and safety, i.e. the robotic agent must ensure safe controls to
avoid any catastrophic consequences on users, other robots, and finally the en-
vironment. In order to implement a dependable robotic agent, important efforts
have been attempted in several directions. Firstly, level of robot autonomy is
automatically adaptive to the working context in order to address alternative
complexities of environments. Secondly, the robot is willing to share the con-
trol with humans and other robots to optimise the working performance as
well as to deal with complicated tasks that the robot cannot complete by itself.
Lastly, to some extent, the robot must be able to handle the dynamic changes
that occur in the environment, and to operate in accordance with the presence
of other robots and humans in the same working space. This work mainly fo-
cuses on the last approach to enhance the robustness and dependability of the
agents while working together with others and humans to complete a task.

Note also that, the high-level specification of a complicated movement of
robots can be constructed through a sequence of lower level motion and path
planning. A common problem is the movement of a robot arm, which can be
composed of a sequence of trajectory planning and collision detection steps
[30, 29]. Therefore, motion and path planning are concerned as the basic, and
separate, constructions for plans of robotic actions. Path planning is the process
which is utilised to construct a collision-free path from a starting point to a
destination given a full, partial or dynamic map. Motion planning, meanwhile,
is the progress in which a series of actions are needed to be defined to follow
the planned path. The most common practice in robotics is to address the
navigation problem using path planning, i.e. pure geometric planning from
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point to point, then motion planning is to realise the feasibility of the path.
As the output of path planning will later determine the way to plan robots’
motion, the path planing algorithm is better incorporated with motion planning
to optimise the movement of the robot. This means that the path planning
could be realised at every locations within the form of navigation field to make
transformation from path to motion planning easier. Besides, the moving path
must be estimated to avoid many changes of moving directions to save energy
used to perform movements.

With regard to above mentioned issues, this paper addresses path plan-
ning of robotic agents in the context of shared working space of humans and
agents. The aim is to develop a path planning algorithm to deal with the dy-
namic changes of environments and complicated maps with multiple static ob-
stacles having a wide range of shapes. The algorithm also helps agents avoid
collisions with humans and others in the shared environment, in which a group
of agents are designed to collaborate with each in order to plan their optimal
paths, in real-time. Finally, how to combine the aforementioned factors of mo-
tion planning into the developed path planning algorithm is investigated.

So far, numerous path planning approaches have been proposed to address
control movement of robots. Most of them have been focused on searching
to find a path from a starting point to a destination in either static or dynamic
map. Meanwhile, a family of path planning algorithms address the problem
of avoiding moving obstacles with field-based approaches. Regarding search-
based algorithms, one of the most conventional yet still effective approaches for
the navigation of an agent in a large map is related to Dijkstra and its extension
of A* searching algorithm [17, 18], and incremental search [23]. In detail,
the A* algorithm improves the Dijkstra’s algorithm by approximating the cost-
to-go function with heuristic knowledge to reduce the searching space to the
goal. Meanwhile, incremental search algorithms seek for the shortest paths
by utilising the results of similar searches to make the search faster, instead of
solving each search problem separately. By applying incremental search on top
of the A*, [19] developed lifelong planning A* (LPA*) as an initial variant of
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A*, in order to address path planning for dynamic graphs with changing edge
costs. In the D* algorithm [24], incremental search is applied to repeatedly
update the shortest paths between the current position of a robot and a goal,
during the robot’s approach to the goal. Koenig and Likhachev [20] improved
the D* by LPA* and alternatively Sun et al. [22] developed dynamic fringe
saving A* to reuse the OPEN and CLOSED lists from previous A* searches.
Although different variants of A* are able to address a graph change due to
the moving of a robot to a new vertex, or the updates of edge costs, those
algorithms still face difficulties to deal with moving obstacles. In addition, as
stated by Hu and Brady [1], a probabilistic approach is necessary to model the
uncertainties of mobile obstacles in the environment. However, the complexity
of path planning will be significantly increased if either the cost of the edges,
or the links of the graph are presented by random variables.

In order to handle the uncertainties of observed obstacles, a field-based ap-
proach is another way to find the path for the agents. The field is calculated for
each location, in time and space, and determines the directions of movement
of an agent to reach the destination. The field consists of a repulsive field to
push the agent away from the obstacles, and an attractive field to pull the agent
towards the goal. For instance, Ok et al. [3] proposed Voronoi uncertainty field
which is build from Voronoi diagram from the start to the goal to create the at-
tractive field and the repulsive field from the robot to the obstacles. The works
of Wang and Chirikjian [5] and later Golan et al. [4] presented an artificial
potential field based on the exchanges of heat flow. If obstacles are visualised
as hot objects, the target is then presented as the cold one and the temperature
is discretised at each location on the grid. The temperature gradient solved by
partial differential equation generates the appropriate forces to drive the robot.
One of the big issues of using the potential field is that the repulsive field may
push the agent to reach other obstacles or statures with the attractive field. Due
to these problems, the agent may be trapped into a local optimum or loose its
way toward the goal. To mitigate the local converge to a local optimal, some
additions to the potential field have been introduced. Valbuena and Tanner [7]
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proposed the way of adding velocity constraints, meanwhile Garcı́a-Delgado
et al. [8] extended the repulsive function with the change of magnitude depen-
dent on the angle between the attractive force and the obstacle. The main aim
is to avoid the cancellation of the repulsive and attractive forces when applied
in opposite orientations. However, the interactions of the agents with the en-
vironment, especially changes in the map, were not clearly addressed in above
mentioned works. Besides, most of field-based navigation approaches lack the
global information of a feasible path to the destination that could actually help
avoid a trap that would lead to a local optimum.

Controlling the speed and directions of a robot are also key factors, which
plays a role to provide the robot a collision free path. Owen and Montano
[10, 11] defined velocity space to estimate the arrival time of moving objects
to a region of potential collisions and thereby potential solutions to avoid these
collisions. The velocity space in which the motion of the robot, as well as static
and moving objects are mapped, is applied to predict when the collision may
happen and when the robot may escape from the collision. Damas and Santos-
Victor [12] developed a map of forbidden velocity zones which is constructed
as a limit on the velocity of the robot to avoid collision with obstacles. When
the robot moves into the forbidden zones, it may adjust its speed to avoid the
obstacles. Berg et al. [9] Wilkie et al. [14], and Berg et al. [13] further inte-
grated the acceleration while Lee et al. [15] concerned the shape of the robots
as an ellipse for obstacle avoidance. Yoo and Kim [16] proposed a modified
uni-vector field to present obstacles with respect to relative their velocities and
positions where the gaze control which concerned the error of localisation and
the distances to surrounding obstacles was also combined into the system to
find the best moving trajectory. Belkhouche [2] introduced virtual plane to
present moving objects with information of velocity into stationary ones. As a
consequence, path finding in a dynamic environments is converted to a simpler
problem of navigation in a static environment. However, it is noted that, it is
not always optimal to use velocity planning when to drive the robot. Using only
velocity control for path planning usually results in oscillatory motion. Given
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a typical differential drive mobile robot, there are a number of constraints on
the linear and angular velocities, as well as the acceleration, in order to save
energy for extending operation time, and finding the path to the goals with few
turns. To the best of our knowledge, these concerns have not been investigated
extensively in combination with obstacle avoidance in dynamic environment.

In order to address the above mentioned issues, in this paper, a novel
method for path planning of mobile agents, in the shared working environment
of human and agents, called as the dipole flow field, is proposed. The dipole
flow field combines both global and local path planning in a unique framework.
For global planning, the method applies any-angle path planning algorithm of
Theta* [6] to generate smooth paths with few turns, from a starting point to a
goal for a pool of agents. Although different A* variants of any-angle path
planning haven been proposed, such as A* post smoothing, block A* [25]
and field D* [21], the Theta* is able to provide the most optimal path with
simple and effective implementation [26]. As the computations of the Theta*
algorithm is costly for a big map, the algorithm is updated when there is a sig-
nificant change on the static map of the environment. To cope with dynamic
movements of the agents, a static flow field along the planned path is defined
to attract the agent back to continue reaching the goal even when the agents
may be deviated from the planned path. In addition, a dipole field is used to
avoid the collision of the agents with others and human within shared working
space. To the best of our knowledge, most conventional approaches attempt to
generate the pushing forces based only on the location of the agents, whereas in
this work, it is assumed that, those should be better aligned with both moving
directions and velocity magnitudes of different agents. The generated dipole
field is able to push other agents far away based on their respective moving di-
rections and the velocity magnitude of the agents. Static flow field and dipole
field are combined to assure a dependable path of each agent from the starting
point to the goal without colliding with each other.

The rest of paper is organised as follows. The methodology of the proposed
path planning based on dipole flow field is presented in Section 2. The evalu-
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ation of the proposed method through the experimental results is described in
Section 3. Finally, the paper is concluded with discussion in Section 4.

7.2 Methodology

In this section the agent architecture together with the different modules used
for path planning are described in Section 7.2.1. Meanwhile the core path
planning algorithm is presented in Section 7.2.2.

7.2.1 Autonomous agent architecture

The overall architecture of the autonomous agent to support the proposed plan-
ning algorithm is presented in Figure 7.1.

Figure 7.1: The Architecture of Autonomous agent. The backbone of the path
planning algorithm consists of the Map Generation module, Global Planning
including the Path Initialisation module and the Static Flow Field Configura-
tion module, and Local Planning including the Collision Avoidance module
and the Velocity Planning module.

The core algorithm includes the following five modules, Map Generation,

Path Initialisation, Static Flow Field Configuration, Collision Avoidance and
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Velocity Planning. In addition, there are four external modules including Sen-

sor Data Collection, Update, Object Classification, and Movement Manage-

ment to help the planning algorithm collect information from the surrounding
environment and update control.

Path planning architecture

After that the global information of the environment is acquired from the ex-
ternal modules, a 2-D map is generated. The 2-D map is presented as a binary
map in which static objects and obstacles are shown as black areas whereas the
allowed moving areas are illustrated with white colour. Global path planning
with Theta* algorithm is applied in the Path Initialisation module to initiate a
path from the starting point to the destination for the agents. While moving to
the goal, the agent may deviate from the original path due to obstacle avoid-
ance, or accumulated errors related to velocity and pose estimating. As a result,
a static flow field generated in the Static Flow Field Configuration module will
drive the agent back to the designed path. Only when the agent moves far away
from the region covered by the static flow field, Theta* is activated to renew the
path from the current position to the goal. After the static flow field is config-
ured, the agents start moving to reach their individual goals, while checking for
collision with other moving objects. The dipole field is calculated in the Colli-

sion Avoidance module to avoid collision with the agents. Finally, the motions
of the agents are controlled by the superposition of the static flow field, and dy-
namic dipole field to generate the dipole-flow force. The dipole-flow force is
presented by the adjustments of the agents’ heading angles. A velocity function
is established to help the agent well adapt its moving velocity according to two
factors, energy consumption and obstacle avoidance. If there is no collision,
the agent will move with a stable speed along the configured path. Meanwhile,
if there is a dynamic obstacle, the agent needs to adjust its moving direction to
avoid the obstacle while still maintaining, or at least minimising, the deviation
from the time to goal.



7.2 Methodology 69

External modules to support path planning algorithm

The Sensor Data Collection module is designed to continuously collect in-
formation of the environment. For instance, the visual data obtained from a
camera, together with the data from the other sensors, is used to build the map
of the environment and to recognise different objects. The pose of the robot is
collected from the inertial measurement unit (IMU). Similarly, the positioning
tracking system registers the position of the robot within the map. The Ob-

ject Classification module receives the data from the Sensor Data Collection

module to determine which objects in the environment that are static objects
and which ones are moving objects. In this work, the proposed path plan-
ning algorithm deals with two types of moving objects. Firstly, autonomous
agents, which share information about their locations, and velocities, with the
other agents. Secondly, uncontrolled moving object, e.g. a human, who can
suddenly appear in the working space of the agents. Especially when the hu-
man subjects are present, the agents need to adjust their movement to avoid
them. The Movement Management module plays a central role in managing
the location, and moving trajectories of all agents and human(s) found in the
environment. The data from the Movement Management module is sent to the
path planning algorithm for velocity estimation. The Update module updates
the internal model based on the changes in the environment, and applies the
control commands from the Velocity Planning module to move the agents ac-
cordingly.

7.2.2 Path planning with dipole flow field

In this section, the dipole flow field is firstly formulated by the combination
of the static flow field and the dynamic dipole field. Later, the direction of the
dipole flow field at every point is turned into velocity planning to control the
linear and angular velocities of agents.
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Static flow field for global path planning

The global path consists of a sequence of line segments from the start to the
goal, and is configured using the Theta* algorithm. Within the neighbourhood
of the found path, a navigation field parallel to the path segment, is defined, as
the static flow field.

Path Initialisation To initialise the path from a starting point to an ending
point, the Theta* algorithm is applied. This algorithm improves A* by adding
a line-of-sight (LOS) detection to each search iteration to find a less zigzaggy
path than those generated by A* and its other variants. The primary difference
between the Theta* and the others is that the Theta* algorithm determines the
parent of a node to be any node in the searching space. Thence, the LOS detec-
tion feature is purposed to help decrease the undesired expanding by checking
for whether the offspring node and the parent are in a straight line, i.e. line-of-
sight. By this means, the path found by Theta* is not a connection of adjacent
nodes but a connection of line-of-sight ones. The pseudo codes of the Theta*
is described in Algorithm 1.

As a heuristic-based search algorithm, Theta* approximates the length of
the shortest path based on cost evaluation. The cost evaluation is conducted
from the f -value, i.e. the lowest cost from the starting node to the last node, s,
in a path, referred to as f(s), and a heuristic value called h-value which is the
cost estimation from the node s the goal. The estimated cost of the cheapest
node through node s is, thus expressed by

f(s′) = f(s) + h(s, s′). (7.1)

In this work, the heuristic function is simply defined as the Euclidean distance
i.e., h(s, s′) = w.Euclidean(s, s′) where w is a weight that determines the
size of the area to search for the optimal path around the straight-line between s
and s′. With w > 1, Theta* is able to reduce the searching area but may return
a longer path, therefore the value w = 1 is used in this work to search for the
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Algorithm 1 Theta* algorithm

procedure THETA*(sstart, sgoal) . Find the shortest path from start to goal
location

open← ∅, closed← ∅,g[sstart]← 0, parent[sstart]← sstart
open.insert(sstart, g[sstart] + h[sstart])
while open 6= ∅ do

s← open.pop()
if s = sgoal then

return ”path found” . The found path is stored in parent[]
end if
closed← closed ∪ {s}
for s′ ∈ neighbor(s) do

if s′ 6∈ closed then
g[s′]←∞, parent[s′]← NULL

end if
gold ← g[s′]
COSTEVALUATION(s, s′)
if g[s′] < gold then

if s′ ∈ open then
open.remove(s′)

end if
open.insert(s′, g[s′] + h[s′])

end if
end for

end while
return ”no path found”

end procedure

procedure COSTEVALUATION(s, s′)
if LOS(parent[s], s′) then . LOS check between parent[s] and s′

if f(parent[s]) + h(parent[s], s′) < f [s′] then
parent[s′]← parent[s]
f [s′]← f(parent[s] + h(parent[s], s′)

end if
else

if f [s] + h(s, s′) < f [s′] then
parent[s′]← s
f [s′]← f [s] + h(s, s′)

end if
end if

end procedure
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shortest path. It is assumed that the straight line distance between two nodes
would never be longer than any other path connecting them. However, the
shortest path generated by the A* algorithm is connected by the neighbouring
grid nodes, and thus entails many turning points to the robot. The path found
by Theta* is a sequence of LOS nodes so that it is smoother with few turns
and closer to a straight-line path between the start and the goal. The algorithm
for LOS function is implemented with a drawing-line algorithm in graphics to
optimise processing time and is referred to approach proposed by Nash et.al.
[6].

As mentioned in Section 7.2.1, the input to the Theta* algorithm is the
binary map of the environment (Figure 7.2A). However, to avoid searching the
path on a dense graph, a grid-based graph is used (as visualised in Figure 7.2B).
The obstacle areas are also dilated corresponding to the size of agents so that
the path found by Theta* will not cause the boundary of the agent touching the
edges of the map while the agent is moving.

Figure 7.2: Binary map for static flow field and derived information, (A) the
original binary map in which the white pixel presents available regions of
agents, (B) the grid-based graph derived from the binary map, and (C) the cor-
responding repulsive field in which the amplitude of the field from the lowest
to the highest is mapped into colors from blue to red respectively.

Path Configuration with Static Flow Field Searching for a global path from
a start to a goal in a big map is a computationally heavy task, thus it is not
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desired to re-calculate the path for small updates of the map, or small deviations
from the configured path. The static flow field is to draw the agents back to their
moving paths in those situations. In the form of force interaction, the static flow
field is also easily combined with a dynamic field for obstacle avoidance. As
the shortest path found by Theta* is the connection of several line segments,
the static flow field is created within the neighbour of the line segments. For
each path, it is assumed that there are n line segments from the start to the end
points. Each line segment i is presented in a vector form of x(t) = ai + tni

where ai is the starting of the line segment and ni is the unit vector of the line.
To ensure that the static flow field will draw the agent to its goal, those line
segments also includes the last line segment with ai is set to the goal and ni

to a zero vector. The flow field force at the point p close to the provided path
found by Theta* is calculated by

Fflow(p) = Fa(p) + Fr(p) (7.2)

where Fa(p) is the attractive force to draw agent back to the configured path,
andFr(p) is the repulsive force from nearby static obstacles. The configuration
of the global path and the formulation of the flow force are described in Figure
7.3.

Let Fai(p) be the attractive force of a point to each line segment and ex-
pressed by

Fai(p) = (1− e−k1d(p,ai))((ai − p)− ((ai − p) · ni)ni) + k2e−k1d(p,ai)ni

(7.3)
where d(p,ai) is the distance from the point p to the line segment i-th, k1, k2
are constants, and ” · ” denotes the inner product of two vectors. As ni is
a unit vector, the vector (ai − p) − ((ai − p) · ni)ni is normalized before
(7.3) is calculated. Two constants k1 = 0.01 and k2 = 1 are selected to
control the impact of the first and second terms of equation (7.3). The attractive
force Fa(p) is set equal to the attractive force Fa∗i

of the line segment a∗i
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Figure 7.3: The configuration of the global path.

closest to the point p, a∗i = argmin
ai

d(p,ai). Meanwhile, the repulsive force

Fr(p) = −∇Urep(p) is the negative gradient of the repulsive field

Urep(p) =

 η
(

1
d(p,p0)

− 1
d0

)2
d(p,p0) ≤ d0

0 d(p,p0) > d0
(7.4)

in which d(p,p0) = ‖p − p0‖ is the Euclidean distance from the agent’s po-
sition p to the closest obstacle’s position p0, d0 is the influence distance of
the force, and η is a positive constant. To avoid singularities of equation (7.4)
when d(p,p0) = 0, a linear transformation f(d) = κd + 1 is applied to map
d(p,p0) and d0 to non-zero values f(d(p,p0)) and f(d0) in equation (7.4).
The influence distance of the force, d0, is selected based on the size of agents
(the diameter of agents) to prevent touching the agents to static obstacles. With
respect to 0 < d0 < 100, κ = 0.01 and η = 104 are chosen. An example of re-
pulsive field of the binary map given in Figure 7.2A,B is shown in Figure 7.2C.
The static flow fields without and with added repulsive forces are presented in
Figure 7.4A and Figure 7.4B respectively.

The affecting area of the static flow field is determined by the window size
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Figure 7.4: The representation of the static flow field (unity vectors), (A) the
initial path with the configured static attractive field, (B) the static flow field
with added repulsive force to the obstacles.

(W ). This means that the static flow field remains influence on the agent if the
distance from the agent to the designed path is less than W . Once the agent
moves out of the affecting area, the Theta* algorithm needs to be recalculated
to update a new static flow field.

Dynamic dipole field

To cope with the problem of collision avoidance, the dipole field for each dy-
namic object is generated. The development of the dipole field is inspired by
the way that humans naturally avoid moving obstacles: When facing an obsta-
cle that is approaching, the human may turn, and continue to move, to avoid
the obstacle instead of going backwards. Such a movement shows a moving
trajectory similar to that of a dipole magnetic field line. This method is also a
more skillful obstacle avoidance strategy than the conventional method of us-
ing radial potential field. Munasinghe et.al [31] introduced an implementation
of this obstacle avoidance method by designing a force to drive a robot through
an elliptical trajectory to go around and then behind obstacles. In the work
of Igarashi et.al. [32] the dipole characteristics is expressed as a vector field
to push an object to a goal. In this work, to model the moving behaviour of
agents, instead of developing dipole-like vector field the theory of dipole mag-
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netic field in physics is directly applied. Each agent can be seen as a source
of a magnetic dipole field, in which the magnetic moment is proportional to
the velocity vector of the agent. This means that the orientation of the mo-
ment is aligned with the moving direction of the agent and the magnitude of
the moment is equal to the speed of the agent. The aim of having the moment
proportional to the speed is to ensure that among different obstacles having
the same distance to the agent, the one with the larger speed will contribute a
stronger effect on driving the agent. In physics, the magnetic field M of the
dipole moment vector m is expressed by

M(m,d) = ρ(3(m · d̂)d̂−m)/d3 (7.5)

where d is the distance vector, d = ‖d‖ is distance between two agents, and
d̂ = d/‖d‖ is a unit vector. The magnetic constant ρ = 1/3 (3ρ = 1) is
applied in this work instead of using ρ = µ0

4π in electromagnetic theory (µ0 is
the permeability of free space). An agent with the magnetic moment mj within
the magnetic field Mk generated by the other magnetic source mk would be
affected by the force

F = ∇mj ·Mk (7.6)

where the gradient∇ presents the changes of the quantity mj ·Mk per unit dis-
tance. Hereby, the repulsive force of an agent k on an agent j can be formulated
by,
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Fdipole(mj ,mk,d) = ρ∇
(
mj ·

3(mk · d̂)d̂−mk

d3

)
= ρ∇

(3(mj · d)(mk · d)

d5
− (mj ·mk)

d3

)
= ρ
(

3(mj · d)(mk · d)∇ 1

d5
+

3(mj · d)

d5
∇(mk · d)+

3(mk · d)

d5
∇(mj · d)− (mj ·mk)∇ 1

d3

)
=

3ρ

d4

(
(mj · d̂)mk + (mk · d̂)mj + (mj ·mk)d̂− 5(mj · d̂)(mk · d̂)d̂

)
(7.7)

where mj , and mk are the dipole moments of the agents. To lead to equation
(7.7), the gradients of two functions,∇ 1

dn = −n d
dn+2 and∇(m ·d) = m, are

used.

The magnetic force Fdipole(mj ,mk,d) is aligned with the direction of
from mk to mj to generate repulsive forces. This means Fdipole(mj ,mk,d)

will be reversed if it has an opposite direction of a vector pointing from an
agent k to an agent j. In order to increase the interaction range of dipole field,
an adjustment factor γ, 0 < γ ≤ 1 and close to one (γ ≈ 1), is added as
follows,

Fdipole(mj ,mk,d) =
3ρ

d4γ

(
(mj · d̂)mk + (mk · d̂)mj + (mj ·mk)d̂−

5(mj · d̂)(mk · d̂)d̂
)
. (7.8)

The smaller value γ is, the further distance the dipole field of one agent has
influence on the others. In addition, a small term ε = 10−12 is added into d in
the denominator of equation (7.8) to avoid singularities.
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Dipole flow field

An agent needs to adjust its moving path according to its relative locations and
orientations to other agents. Also, the agent concerns the possible collisions
with uncontrolled moving objects i.e, humans, which does not share informa-
tion about their locations, and intentions regarding how they will move. As-
sume that there are a set ofN agents, i.e. robotsA = {j|j ∈ 1, 2, ..., N} in the
working space. All agents are designed using the same architecture to coop-
erate with each other to plan global movements so that each of them transmits
location information to the other agents in A. Let Oj = {oj |oj ∈ 1, 2, ..., Nj}
be a set of Nj human subjects recognised by the agent j within its detecting
range. In this context, the relative location and velocity information about hu-
man subjects are estimations from observations over time. The dipole flow
field for an agent j is formulated by integration of the static flow field, and the
dynamic dipole field as

F
(j)
df = αF

(j)
flow/‖F

(j)
flow‖+ βA

∑
k∈A,k 6=j

Fdipole(mj ,mk,djk)+

βO
∑
l∈Oj

Fdipole(mj ,ml,djl) (7.9)

where ||F(j)
flow|| =

√
(F

(j)x
flow)2 + (F

(j)y
flow)2 is the magnitude of the flow force

F
(j)
flow = [F

(j)x
flow, F

(j)y
flow]T , here α, βA, and βO are constants. Those constants

determine the impact of dipole flow forces over static flow forces to control the
moving of agents. Since the static flow force is normalised in equation (7.9),
the coefficient α > 0 represents for the magnitude of the static flow field term.
To simply reflect the effective area of the static flow field, α = 10 is chosen
(correspondent to the agents’ diameter of 1m, or 10 pixels, in all experiments).
Meanwhile, the dipole field coefficients, βA and βO, determine the effecting
area of the dipole field. It is able to define this area of influence of the agent (k)

on (j) by a circle Cjk that has a center at the agent (k) and a radius rjk to ensure
that if djk < rjk then βA||Fdipole(mj ,mk,djk)|| > α. As the magnitude of
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||Fdipole(mj ,mk,djk)|| is proportional to 1/d4γjk , the dipole forces has strong
influence on the agent (j) when the agent is inside Cjk. On the contrary this
influence is significantly decreased outside Cjk. In this work, the two constants
βA and βO are set to be equal (βA = βO) and defined to control the desired
effective area of the dipole field. This area has a radius that is proportional
to (βA/α)−1/4γ and to the magnitude of dipole moments of agents. It is also
noted that two agents (j) and (k) receives the dipole forces with the same
amplitude but with opposite directions. Only agents are affected by the dipole
forces generated by human subjects. Thus, in the model human subjects are
not subject to these forces.

Velocity planning

In this work, an autonomous agent is presented by the kinematics model of a
unicycle-type mobile robot [34]. This model is chosen because despite its uni-
cycle name, it approximates many widely used differential drive robots and can
be easily extended to car-like mobile robots with two parallel driven wheels.
The state of a robot (Figure 7.5) is described by a set of triple parameters
s(t) = [x(t), y(t), θ(t)]T , and r(t) = [x(t), y(t)]T are the coordinates, θ(t)
is the orientation with respect to the x−axis of the robot, and t is time. The
state s(t) is updated for every interval ∆t as

x(t+ ∆t) = x(t) + u(t)∆t cos θ(t)

y(t+ ∆t) = y(t) + u(t)∆t sin θ(t)

θ(t+ ∆t) = θ(t) + ω(t)∆t (7.10)

where u(t) and ω(t) are the linear and angular velocities of the agent respec-
tively. Those velocities are computed by the following equation
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u(t) = ku tanh(||r(t)− rgoal||)

ω(t) = −kω
(
θ(t)− arctan

(
F ydf
F xdf

))
, (7.11)

where ku > 0 and kω > 0 are two constant control gains. From this definition,
the linear velocity u(t) is about ku while an agent is moving on its ways and
decays to zero when it is closer to the goal. Therefore, ku is set to the expected
speed of agent. Meanwhile, the angular velocity ω(t) is used to adjust the
heading angle θ(t) of the agent to make the agent’s orientation aligned with
the direction of dipole field force Fdf . By this, the dipole flow field mainly
affects the angular velocity ω(t) of the agent to drive it to the goal and to
avoid the static obstacles, and moving objects when they are close. The second
coefficient, kω , controls how smooth the moving trajectory of the agent is and
how fast the agent is able to adapt to the changes of the dipole field force.

Figure 7.5: Visualisation of an agent with kinematic parameters and human
from (A) a real world space in (B) a 2D mapping space, and (C) a simplified
visualization used in the proposed work.
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7.3 Experiments

A number of experiments are conducted to validate the effectiveness of the
proposed path planning algorithm. Different with most of existing approaches
which have focused on alternative aspects of local or global path planning for
a single agent, this work has developed a new promising framework to ad-
dress the navigation problems of multiple agents sharing working space with
human. This also adds a new dimension to existing solutions of robotics nav-
igation with the definition of dynamic dipole field inspired from electromag-
netic physics and of the static flow field based on Theta* algorithm. Thus, the
main aim of this section is to investigate on the characteristics of the proposed
approach through various scenarios. The starting point is an experiment with
static flow field. This experiment shows how this field is able to navigate agents
to goals within the map of complicated static obstacles. The next experiment
exploits the benefit of dipole field to help agents avoid moving obstacles com-
ing from different directions. Finally, a set of experiments are conducted in
order to evaluate how well the proposed path planning algorithm with the com-
bination of flow and dipole flow fields, i.e. dipole-flow field, both drive agents
toward the goals, and at the same time avoid collisions with moving objects.
Data showing the agent-agent and human-agent distances in the presence of
the dipole-flow field is also shown as part of the last experiment.

7.3.1 Static flow field

The aim of the static flow field is to convert the path found by Theta* into a
navigation field to avoid the needs of running Theta* for every update of the
agent position, and also to allow a more robust integration of the path planning
with obstacle avoidance and velocity controls. Thus, only when the agent de-
viates from its designated path, due to slow adaptation to follow the navigation
field, the path is required to be renewed using the Theta* algorithm. Different
examples of agent movements with static flow field are shown (Figure 7.6). In
most situations, like examples given in Figure 7.6A and Figure 7.6B, the agent
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approaches the goals without the needs of renewing the shortest path to the
goal. However, in a particular case where the agent deviates from the designed
path, Theta* is reused to update the path to the goal (Figure 7.6C).

Figure 7.6: Agent moves from start to goal with static flow field where the
window of static flow field is set as two times as the size of the agent. (A) and
(B) an agent approaches the goal without the needs of re-estimating a new path,
and (C) Theta* is reactivated when the agent gets close to the second obstacle
along its path (the location for activation is shown by the arrow symbol).

Different windows of the static flow field are evaluated. One hundred trials
are attempted for each specific value of the window. In this experiment, a
binary map of 50 x 50 m with a resolution of 10 pixels per meter is used. Each
agent is presented by a bounding circle with a radius of 0.5m and has the speed
of 0.5m/s with kω = 1.2 (ku is set to the speed of agents in all experiments).
The influence distance d0 is set to 10 pixels (or one meter). For each trial, an
agent moves from a starting point to a goal using only static flow field with
velocity control. Pairs of starting and ending locations are selected randomly
in the map. The results reveal that the bigger window is, the less number
of running Theta* the static flow field needs (Table 7.1). For the following
experiments in Section 7.3.2 and Section 7.3.3, the window of two times of the
agent size (W = 2S) is applied.
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Table 7.1: Relationship between an average number of Theta* used for static
flow field to successfully drive an agent to its goal and window size (W ). (The
size of an agent is S)

Window size Average number of Theta*
W = S/4 10.85
W = S/2 4.57
W = S 1.53

W = 3S/2 0.73
W = 2S 0.43
W = 5S/2 0.23

7.3.2 Dipole flow field for crossing scenarios of two agents

To analyse the behaviour of dipole flow field for obstacle avoidance, two sim-
ple scenarios, in which two agents are crossing each other are chosen (Figure
7.7). In Scenario 1, one of the agent moves from left to right and the other
agent moves in the opposite direction. In Scenario 2, the first agent moves
as previously, whereas the other agent starts in a position approximately 90o

to the first agent and moves from the left-hand to the right-hand side similar
to the first agent. The variation of the moving directions of the two agents is
also evaluated by validating different values of the heading angle of the second
agent (φ = 0, φ > 0 and φ < 0, as seen in Figure 7.7).

The size of the agents is set to a bounding circle with a radius of 0.5 m

while the ratio βA/α = 5 and the coefficient γ = 1 are used. In both scenarios,
the two agents moves at the same speed of 0.5m/s (with kω = 4) so that their
path intersects in the middle of their way. However, with the help of repulsive
forces generated by dipole field, the two agents are able to avoid the collisions
(Figure 7.8). Besides, after a small deviation from the path, due to the dipole
field interaction the agents turn back directly to their original paths to continue
their routes towards their goals. The distance plots show that the minimum
distance of two agents are remained above the agent’s diameter (marked with
the green line at 1.0 m, in Figure 7.9), thus there are no collisions present in
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Figure 7.7: Crossing scenarios of two agents (A) Scenario 1: Two agents move
toward each other with opposite directions and (B) Scenario 2: Two agents
move toward each other with the heading angles of around 90o.

the presented cases.

7.3.3 Dipole flow field for multi-agent and human-agent in-
teraction

In the first part of this section, the behaviours of multiple agents within dipole-
flow field are analysed. In the second part, the comprehensive evaluation of
the dipole-flow field with the appearances of both agents and humans are pre-
formed. Also, in the second part, the concluding experiment, which demon-
strates the behaviour of the agents in presence of human in a large and realistic
area, is presented.

Four agents, positioned at different orientations with the same distance to
the centre of the map, take part in the first testing scenario (Figure 7.10). All
agents are planned to cross the centre, and move towards their goals symmet-
rical to their starting positions. The agents travel within a binary map of a size
of 50 x 50 m with a resolution of 10 pixels per meter and with static obstacles
so that the free-space of moving and avoiding other moving objects is limited.
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Figure 7.8: Trajectories of two agents in two scenarios. The first rows visualise
the moving behaviors in dipole field of agents in Scenario 1 with different value
of φ, (A) φ = 0, (B) φ > 0, and (C) φ < 0. Similarly, the second rows show
the results of Scenario 2 with (D) φ = 0, (E) φ > 0, and (F) φ < 0. The time
indices are used to show the location of agents at every 10 seconds.

Also, the way to reach the goal is narrowed down and there is a traffic circle in
the centre of the map. Each agent has a radius of 0.5 m and a moving speed of
0.5m/s (with kω = 4). The quantitative measurement of obstacle avoidance
(with βA/α = 5 and d0 = 25) is given by measuring the minimum distance
among agents over time . The closest distance of two agents when they are
moving if smaller than their size will reveal a collision between them.

As depicted in Figure 7.10A, using flow-field navigation all agents are able
to reach their goals. However there are existing collisions between agents (1)-
(4), (2)-(4), and (3)-(4) (Figure 7.11A) with regards to the agent’s radius of
0.5m. With dipole-flow-field navigation, agents show ability to avoid possible
collisions (Figure 7.11B). Finally, the control factor (γ) in dipole-flow field is
evaluated to show its effects on the trajectories of agents in Figure 7.10C and
the results in Figure 7.11A. When γ < 1 is used, the collisions are prevent
in a better way by keeping the minimum distances among agents bigger. It is
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Figure 7.9: Distance of two agents over time in (A) Scenario 1 and (B) Scenario
2. The green baseline depicts the minimum distance between agents to avoid
collisions.

important to note that the trajectories of moving agents are visualised to not
interfering with any static obstacles from the binary map.

In order to evaluate dipole-flow-field for human-agent interaction, Agents
2 and 4 are replaced by two human subjects, which move as their agent coun-
terparts, without caring the conflicts with agents. The moving trajectories of
Agents 1 and 3 are described in Figure 7.12. Again, the collisions between
agents are eliminated when agents are routed by the forces generated by dipole-
flow field.

Finally, a general assessment of the dipole flow field for agent-agent and
human-agent interactions within a large and complex binary map of variations
of static obstacles drawn from a real building is presented. There are five mov-
ing agents and three human subjects in this evaluation. The map represents a
part of the floor of a real building (width and length = 200 x 200 m with the
same resolution of 10 pixels per meter). All agents have a bounding circle with
a radius of 0.5 m, while βA/α = 50, d0 = 25, and γ = 0.95 are applied
with bigger values than those of the previous experiments to help agents pre-
vent collision from a further distance. An example of moving trajectories of
different agents with human is shown in Figure 7.13. The experiments were
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Figure 7.10: Trajectories of multiple agents moving (A) without dipole field,
(B) with dipole field γ = 1, and (C) with dipole field γ = 0.95.

Figure 7.11: Minimum distance of agents over time in (A) multi-agent, and (B)
human-agent interactions within dipole-flow field.

repeated 100 times, and for each trial start and goal positions of both agents
and humans were randomised. The requirement for finding the start position
and goals was that the pairwise distances among them should be at least 2.0m.
The speed of the agents and human during the experiment is randomly assigned
within a range of 0.5 − 1.5 m/s using a uniform distribution (with kω = 4).
For each trial, agent-agent and human-agent the distances are recorded for the
evaluation purposes. The overall result is summarised in Table 7.2.
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Figure 7.12: Trajectories of multiple agents moving and interacting with hu-
man (A) without dipole field, (B) with dipole field γ = 1, and (C) with dipole
field γ = 0.95.

Table 7.2: Evaluation of the minimum, and average, of agent-agent and human-
agent distances over all 100 trials.

Minimum of Minimum of Average of Average of
agent-agent agent-human minimum agent minimum agent
distances distances -agent distances -human distances

(m) (m) (m) (m)
2.4 1.0 10.0 8.8

7.4 Conclusion and Discussion

This paper has introduced a novel path planning algorithm for agents sur-
rounded by static and multiple moving objects, including other robotic agents
as well as humans subjects, all populating a realistic working space. The algo-
rithm is able to process path planning in real-time by developing a navigation
field so that the movements of agents is just simply controlled by the forces
generated from this field. The attractive forces that drive the agents toward
their desired goals are created by a static flow field. Simultaneously, the repul-
sive forces that prevent agent-agent, and human-agent, collisions are generated
by a magnetic field of dipoles. The combination of the static flow field and
dipole field forms a force to determine the moving directions of the agents at a
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Figure 7.13: Dipole-flow field to control movements of multiple agents with
the presence of three human in a 200 x 200 m large map which is visualised
from a real working space. All agents are able to reach their goals with different
speeds. While moving to goals, the two agents with indices 2 and 3 try to avoid
the collision with human with index 6. Meanwhile, two agents with indices 1
and 4 also change directions to avoid collision with each other. In the case
of the agent with index 3, the goal G3 is very close to the moving trajectory
of human, therefore its way to the goal seems to be blocked until human with
index 6 passes through G3. In consequence, the agent 3 must go back and later
turn around to reach its goal. This behavior of moving is quite different with
the scenario described in Figure 7.10B.
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specific time instance.

The evaluation of the proposed approach with the static flow field, dipole
field and their combinations are conducted with distinctive experiments. With
static flow field, it is obvious that an agent is able to move to its goals in a
binary map of static obstacles with a minimum number of re-initialising the
global path using the Theta* algorithm. As can be seen in Table 7.1, the number
of running Theta* instances except the first initiation is less than one time in
average (if the window effects of the static flow field is set to at least twice
the size of the agents, W ≥ 2S). However, an unnecessary large window may
cover otiose areas that affect the static flow field, leading to the trap of agent
into a corner of the map. Therefore, the window sizeW = 2S is recommended
to increase the robustness of the static flow field and to avoid the possibility of
local traps.

Within the combined dipole-flow field, the robotic agents are well routed
to their destinations, while possible collisions with other agents and human are
taken into account. Regarding overall evaluation of the dipole-flow field to
navigate agents in a complex scenario, the average minimum distance between
any two agents remains at least double the radius of bounding circle, which
indicates that there are no collisions (Table 7.2). The minimum human-agent
distance is 1.0 m. However, such a recorded observation in which the human-
agent distance is close to 1.0m is only one case in 1500 obtained distance pairs
(there is a group of five agents and three human subjects in the experiment so
that the obtained pairs of human-agent is 1500 over 100 trials). Regarding the
size of the human subjects, the bounding circle radius can be configured even
less than 0.5m, therefore it can be concluded that no occlusions happen in any
of the simulation runs.

Recently, the aim of this work has moved towards holistic navigation solu-
tions in real-world problems more specifically, mobile robots in densely pop-
ulated areas such as, offices, and heavy vehicles in restricted spaces. Thus,
by adding a control mechanism for the velocity e.g., decreasing the speed to
avoid possible collisions, as well as other measures will be investigated. Be-
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sides controlling the agents’ velocity, the configuration of global paths with
regards to multiple agents is also an important factor to ensure the reachability
of all agents to their goals. In the current approach, only one optimal path to the
goal is configured for each agent, without considering the conflicts with others.
If any two agents enter into a very narrow area on opposite directions, as de-
scribed by Kimmel and Berris [33], the dipole forces mainly push them away to
avoid collisions but not help them build new paths to their goals. Therefore, the
two agents tend to follow the same planned paths again and again, leading to a
deadlock situation. The proposed approach could be improved by setting mul-
tiple paths for each agent. Upon evaluating the location information of others
and the binary map of environment, an agent is able to decide which path, even
not optimal, it should follow to reach its goal. The aforementioned problem
could be also addressed by exchanging information of planned paths among
agents. All agents will negotiate to optimise the flow field on a global scale to
avoid any deadlock situation. However, in this case the communication proto-
col will become more complicated and extra processing is needed at each agent
side to optimise the global path with respect to the presence of other agents.
Finally, the work will be extended with different classes of agents [27], and
with multiple heuristics of A* [28] to allow more thoroughly investigation of
the dependability factors, and constraints on the path planning problems. The
intention is also to validate the algorithm using robots and humans in outdoor
settings, that resemble the qualities of construction sites.

Acknowledgments

The research leading to the presented results has been undertaken within the
research profile DPAC - Dependable Platform for Autonomous Systems and
Control project, funded by the Swedish Knowledge Foundation.



Bibliography

Bibliography

[1] H. Hu and M. Brady, “Dynamic global path planning with uncertainty for
mobile robots in manufacturing,” IEEE Transactions on Robotics and Au-

tomation, vol. 13, no. 5, pp. 760-767, October 1997.

[2] F. Belkhouche, “Reactive path planning in a dynamic environment,” IEEE

Transactions on Robotics, vol. 25, no. 4, pp. 902-911, August 2009.

[3] K. Ok, S. Ansari, B. Gallagher, W. Sica, F. Dellaert, and M. Stilman, “Path
planning with uncertainty: Voronoi uncertainty fields,” in Proceedings of

the IEEE International Conference on Robotics and Automation (ICRA),
(Karlsruhe, Germany), pp. 4581-4586, May 06-10, 2013.

[4] Y. Golan, S. Edelman, A. Shapiro, and E. Rimon, “Online robot navigation
using continously updated artificial temperature gradients,” IEEE Robotics

and Automation Letters, vol. 2, no. 3, pp. 1280-1287, 2017.

[5] Y. Wang, and G. S. Chirikjian, “A new potential field method for robot path
planning,” in Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA), (San Francisco, CA), pp. 977-9822, April, 2000.

[6] A. Nash, K. Daniel, S. Koening, and A. Felner, “Theta*: Any angle path
planning on grids,” Journal of Intelligent Robot System, vol. 39, pp. 533-
579, 2010.

92



Bibliography 93

[7] L. Valbuena, and H. G. Tanner, “Hybrid potential field based control of
differential drive mobile robots,” Journal of Intelligent Robot Systems, vol.
68, no. 3, pp. 307-322, December 2012.

[8] L. A. Garcı́a-Delgado, J. R. Noriega, D. Berman-Mendoza, A. L. Leal-
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Abstract

In this paper, a novel path planning algorithm for multiple robots using con-
gestion analysis and control is presented. The algorithm ensures a safe path
planning solution by avoiding collisions among robots as well as among robots
and humans. For each robot, alternative paths to the goal are realised. By
analysing the travelling time of robots on different paths using Petri Nets, the
optimal configuration of paths are selected, the prime objective is to avoid con-
gestion when routing many robots into a narrow area. The movements of robots
are controlled at every intersection by organising a one-by-one passing of the
robots. Controls are available for the robots which are able to communicate
and share information with each other. To avoid collision with humans and
other moving objects (i.e. robots), a dipole field integrated with a dynamic
window approach is developed. By considering the velocity and direction of
the dynamic obstacles as a source of a virtual magnetic dipole moment, the
dipole-dipole interaction between different moving objects will generate repul-
sive forces proportional to the velocity to prevent collisions. The whole system
is presented on the widely used Robot Operating System (ROS) platform so
that its implementation is extendable to real robots. Analysis and experiments
are demonstrated with extensive simulations to evaluate the effectiveness of the
proposed approach.
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8.1 Introduction

Path planning is one of the key components of a robotic control system, with
the function to drive a robot from a starting to a goal position without cross-
ing through obstacles, and do this in an optimal manner. Although the path
planning problem has been addressed since the 1950s [11, 12], it has not been
solved thoroughly until today [13]. Over the years many solutions have been
restricted to static environments or single robot cases. In general, the path is
optimised with respect to a cost function, which primarily is based on the total
length of the path, and in some cases other factors, such as the complexity of
the terrain, areas of interest, and other environmental factors. Recently, new
challenges have emerged for path planning of fully autonomous robots within
the Industry 4.0 context [39] where a mobile industrial robot is no longer sep-
arated from humans in space. More specifically, the robot shares the workshop
floor with workers, and it interacts with them as well as other robots. The
navigation is crucial in such problem domains, since these scenarios demand
collision avoidance capability even if there are only means to predict the exact
movement of moving obstacles to a certain degree. Thus, when a path planning
algorithm is designed, industrial standards should be considered. Dependabil-
ity is important in industrial system engineering with its focus on a system’s (i)
availability, (ii) reliability, (iii) safety, and other properties such as (iv) main-
tainability, (v) integrity, etc.

In this paper, a dependable path planning algorithm is evaluated with re-
spect to the first of those properties, i.e the points (i)-(iii). Reliability is as-
sessed by the correctness of the control system to drive a robot to the goal.
Availability is reflected by continuity of the system within a time limit, not
having the dead-lock situation which happens when the robot takes a very long
time to reach a target, or even not able to do so. Lastly, safety is evaluated by
the obstacle avoidance abilities of the robot to prevent collisions with static and
moving objects.

In general, a path planning algorithm is separated into global and local
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path planning. The former with the target to find a way from a start position
to a goal having no intersection with any static obstacles in the map, while
the latter will help the robot to avoid collisions with moving obstacles. So far,
numerous global and local path planning algorithm have been developed with
the ambition to improve dependability of navigation systems. Efforts have been
made with the global path planning to find a feasible and effective route for a
robot [34, 35, 36]. In many cases, a map of configuration space is represented
as a graph and a graph-based searching algorithms like A*, is used to find
a collision-free path [12, 37]. The Theta* algorithm [22] adds line-of-sight
checks into A* so that the path to the goal becomes more straight, thus contains
fewer turns. Dynamic A* adapts to the changes of a static map in real-time,
allowing the path planning to be more robust in unknown environments. Other
common approaches explore the map by sampling, such as probabilistic road
map (PRM) [28], with the goal of building the map by one-time sampling or
rapidly-exploring random trees (RRTs) [27] to generate samples incrementally
from the initial position until reaching the goal.

For multiple robots, the multi-agent path finding (MAPF) algorithms have
been developed to search for optimal paths to drive the robots to their goals
without conflicts. The conflicts happen when several robots occupy the same
place at an instance of time. In general the MAPF problem is nondeterministic
polynomial (NP) hard [7] where the searching space grows exponentially with
respect to the number of robots. A*-based search [1, 2] was one of early solu-
tions to perform a search with heuristics in higher dimensional space with multi
robots. Conflict-based search (CBS) [6] can be used to find an optimal solution
by a repeated process. First, CBS initialise a root node including all paths as the
shortest paths of robots to the goal without concerning other robots. Continu-
ously CBS expands the tree search starting from the root node by adding child
nodes with conflicting constraints to avoid collisions. Finally, the constraints
about potential conflicts are used to refine the paths at each node. Enhanced
CBS [3] solved the MAPF problem within a suboptimal bound. Cooperative
A* (CA*) [5], also a suboptimal and incomplete approach, prioritises the robot
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to assign the path by checking the number of collisions of the shortest path as
compared to the planned paths. Priority-based search (PBS) [4] is the combi-
nation of CBS and CA* to improve the priority order of CA*. In overall, there
have been a lack of a MAPF solver dealing with complex constraints like al-
lowing several robots to meet at an intersection or one robot to wait for others
to pass through the intersection. This paper investigates an effective tool to
analyse and find optimal settings for global paths of multiple robots on those
situations.

Once the global path to the goal has been generated, obstacle avoidance
with local path planning ensures the safety for both robots and humans by pre-
venting collisions between them. In velocity-obstacle (VO) approaches [23],
a velocity obstacle is defined as a forbidden zone in the velocity space of the
robot where a velocity vector in that zone could result in a collision with mov-
ing obstacles. The reciprocal velocity obstacle (RVO) [29, 30] implements VO
in a distributed manner where each robot has responsibility to avoid collisions
with the rest by choosing a velocity outside VOs. However, after escaping from
the collision, the robot tends to come back to its preferred velocity, possibly
leading into a reciprocal dance. To address this problem, the optimal reciprocal
collision-avoidance (ORCA) [32] casts the solution with a linear programming
optimisation. Simultaneously, the hybrid reciprocal velocity obstacle (HRVO)
[31] seeks for the velocity of the robot more towards one side of the half plane
of VOs. Nonetheless, VO-based methods work with the assumption that the
velocity of a robot is not changed over the time interval. Therefore, these kind
of approaches are more suitable to prevent potential collisions within a local
range. Alternatively, a learning-based approach with reinforcement learning,
has been investigated using Markov decision process to learn from history to
predict the next movement of the robot with respect to observation [33]. Yet,
a long training process needs to be done to collect sufficient amount of data to
perform planning in both local and global scale. Conventional, however still
widely applicable for local path planing, are potential field and dynamic win-
dow methods [38]. Potential field is defined as the combination of a repulsive
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field to push robots away from obstacles and attractive fields to drive a robot
to a goal. Meanwhile, dynamic window approach (DWA) [9] generates a set
of possible future trajectories of a robot with respect to the current dynamic
configuration and evaluates these trajectories to find the optimal solution. As
aforementioned, the manner global and local path planning systems allowing
navigation of several robots into one narrow area might make the robots to
block each other, i.e, lead to dead- or live- lock situations. To address the prob-
lem of congestion when routing multiple robots into a crowded place, a group
of the robots should proactively define effective routes to reduce conflicts with
each other. The problem presented here has some similar key features with
traffic control in urban areas. The most common method used to ensure safe
transportation is to have traffic signals to control the vehicles and pedestrians
through cross ways. A modern monitoring system nowadays can collect infor-
mation about traffic jams and send notification to drivers to avoid moving to-
ward a crowded area. These approaches lead to the introduction of a congestion
control for path planning that is presented in this work to achieve dependability
in a navigation system for autonomous robots in a dynamic environment.

Previously, with respect to solving conflicts and sharing of resources, it has
been shown that Petri net (PN) provides an effective solution to such problems
for an autonomous system. The uses of PN to design autonomous robots are
demonstrated by Yasuda et al. [16], Iocchi et al. [17]. This is further exploered
with the use of other extension with ROS on real robots by Fabre et al. [20]
and also with fault tolerance by Miyagi et al. [18], Lusier et al. [19]. Although
there have been previous works of using PN on path planning [10], they have
mainly focused on the discrete system of robots changing states from one node
to another in a static graph. Such a static configuration is highly dependent on
the fixed and precise travelling time of robots among the nodes. However, this
condition is hard to be satisfied for an autonomous robot at planning time when
the robot must be able to recognise and work with humans and/or other robots,
in an unstructured and unknown environment.

With regard to PN as an effective tool in dependable autonomous control
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to resolve conflicting problems, this paper presents a new approach of using
it in generating the paths of multiple robots to reduce congestion by avoiding
routing many robots into the same place. There are three main contributions
of the paper. First, the paper shows how to model the path finding problem for
multiple robots with PN and how to analyse alternative paths of each robot to
find the optimal configurations with less traffic conflicts along the paths. The
optimisation on PN allows to solve a MAPF problem with complex constraint
such as stopping robots at intersection to wait for other robots. Second, the
paper proposes the way of monitoring moving tokens in the PN to control the
traffic of robots at every path crossing to reduce conflicts. Particularly, the first
contribution helps to find the optimal global path for robots, whilst the sec-
ond one realises the PN control to synchronise the moving of the robots on
assigned paths. Since the PN is mainly designed to control robot movements,
the collisions between them and humans are addressed by DWA. However, the
use of DWA is not effective if it only prevents collisions in a passive manner,
meaning that a robot doesn’t react until the moving obstacles have moved close
enough and then considers them as normal static obstacles. This type of be-
haviour needs to be avoided. In the third contribution, this paper shows the
implementation of the dipole field algorithm on top of the DWA algorithm to
present a new method for obstacle avoidance, which is based on the informa-
tion about directions and speeds of the moving objects. Moving obstacles are
described by magnetic dipoles with their moments aligned with the direction
of velocities. As a consequence, opposite dipoles will generate repulsive forces
to turn the robot so that they do not collide with obstacles. The capability of
PN control with dipole field on DWA allows the whole proposed path planning
system to handle both static and dynamic obstacles for the robots’ paths. In
overall, the whole system is integrated in the navigation stacks of ROS, one of
the most widely used robotic frameworks today.

The rest of the paper is organised as follows. Through Section 2, the prob-
lem of this work is stated, following by the proposed path planning algorithm.
Thereafter, in Section 3 the simulation results to evaluate the proposed sys-
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tem are presented. Finally, contributions of the paper and future directions are
summarised and concluded in Section 4.

8.2 Methodology

8.2.1 Problem statement

The basic annotations and preliminaries for the above equations are defined as
follows.

Robots. This work copes with a team of N identical robotic agents A =

{a1, a2, ..., aN} which are simply presented by a unit-circle model with the
common radius r. The robot are freely moving on 2-D planeM = R2. The
location of each robot i at time t is denoted by xi(t) ∈ R2, with corresponding
velocity ẋi(t). The area occupied by a robot is denoted by Ci(xi(t)) ⊂ R2, a
circle at position xi(t) and radius r.

Map and static obstacles. The working environment is presented with a
simple binary grid map where a set of static obstacles (white pixels) are de-
scribed by O ⊂ R2 and robots are freely moving within the black regions of
the map M \ O. Let Or be the subset O dilated by the robot’s radius r. It
is obvious that if there is no intersection of the moving trajectory of the robot
trajectory with Or, then the motion of robots are collision free with respect to
the static obstacles.

Humans and moving obstacles. There are M human subjects present in
the working environments together with the robots. The information about
current locations, planned paths, velocity, accelerations, etc. are shared among
the robots, however, they are unable to know the exact trajectories of humans.
The information about dynamic information of the human subjects, e.g. lo-
cation oji (t) and velocity ȯji (t) are only estimations that are available with
every observation, where j is the index of a human observed by the robot i,
1 ≤ j ≤ ni, ni ≤M . Assume that the human is occupying a circle Hji (o

j
i (t))

with the centre at oji (t) and the maximum radius rh, each robot i will then see
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a set of moving obstacles/humans as {H1
i ,H2

i , ...,H
ni
i }.

Global paths. Each robot is assigned a task to move from a starting point
to a goal. Using a global guidance system, a number of alternative paths are
planned. These global paths are updated frequently to adapt to the changes
in robot trajectories. Let a set of global paths for a robot i be {S1i ,S2i , ...,Ski }
where the path consists of connected line segments. Different paths are leading
into the same goal will simply extend the area Gi, possibly defined by a circle
with a predefined radius.

The problem to be addressed in the proposed work has the aim that all
robots should be able to complete their navigation tasks without colliding with
any static and moving obstacles in the working environment. For all times from
t0i to t1i for a robot i to travel along its trajectory, the collision constraints are
expressed by,

Ci(xi(t)) ∩

(
O ∪

( ⋃
j∈{1,2,...,N},j 6=i

Cj(xj(t))
)

∪
( ⋃
k∈{1,2,...,ni}

Hki (oki (t))
))

= ∅ ∀t ∈ [t0i , t
1
i ] (8.1)

which is correspondent to no intersection of the trajectory with static obstacles,
other robots and moving obstacles in its environment. The requirement to reach
the goal is given by:

Ci(xi(t1i )) ∩ Gi 6= ∅. (8.2)

Routing several robots into narrow areas could lead to congestion, that may
lead to a deadlock situation or prolong the time to complete the navigation task
since robots need to go around to avoid collisions with each other. The main
problem to be solved in this work is to tackle the issues defined by equations
(8.1) and (8.2) with the use of PN to synchronise the movements of robots to
find less not only collision- but also congestion-free paths to reach their goals
correctly.
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The solution starts with the construction of multiple paths for each robot
(Section 8.2.2). A path, which is presented by a set of line segments connect-
ing from a starting point to a goal, is found by the Theta* algorithm. Continu-
ously, each robot broadcasts its paths to all robots within the working space. By
checking the intersections of the planned paths, PNs are constructed to analyse
the movements of the robots when they enter the intersection regions (Section
8.2.3). In each PN, where a single robot is correspondent to one token of the
network. An optimisation algorithm is performed to choose the path for each
robot to minimise the conflict/congestion and the travelling time to complete
the task (Section 8.2.4 ). Once the optimal path is found, the robot then fol-
lows the path and synchronises with other robots to avoid collisions (Section
8.2.6). Collisions with other obstacles that are not able to communicate their
planned trajectories with the robots, e.g. humans, are addressed by using DWA
combined with a dipole field (Section 8.2.7). In the case that one of the robots
is getting stuck, the global path planning is reactivated to generate a new path
from current position to the goal, and PN planning is updated with a new mov-
ing control plan. The overall architecture of the system is described in Figure
8.1.

8.2.2 Multiple global paths

A global path planning algorithm needs information regarding the environment
e.g. as a scanned map beforehand to generate a path from a starting point to a
desired goal. The global path planning mainly applies for a static environment.
This means that in order to compute the global path to a goal for the robot, the
presence of other robots and humans, i.e. dynamic objects, are not taken into
account. Theta* [22] has realised an any-angle path algorithm, which is able to
find an optimal path in any direction, by adding a line-of-sight detection func-
tion to each search iteration. Unlike A* or Dijkstra, the path found by Theta*
is a connection of line-of-sight nodes so that the generated path is smoother,
more realistic, and has fewer turns. With regard to those advantages of Theta*,
it has been used as the main global path planning in this paper. To generate
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Figure 8.1: The overall architecture of the proposed navigation system.

multiple paths, Theta* is utilised to sequentially find a new path after insert-
ing a set of found paths into an obstacle map. This way, the next found path
does not overlap with the previous ones (Figure 8.2). A backup path is critical
if the robot needs to pass through a narrow area with the possibility of facing
another robot so that it has to find an alternative way. On an empty space, the
multiple paths created by this approach can be close to each other. Therefore,
to reduce the complexity of the control PN, multiple paths are only added if
separation among them are big enough. The algorithm to find multiple paths
from a starting point to a destination is summarised in Algorithm 2.

8.2.3 Petri net construction

The basic definitions of a PN are given as follows.
Definition 1(Petri net): PN is considered as a network of places, arcs and tran-
sitions. Mathematically, it is defined as a bipartite graph of a set of tuples
〈P, T,W 〉, where P = {p1, p2, ..., p|P |} and T = {t1, t2, ..., t|T |} are disjoint
sets of places and transitions, |P | and |T | are the number of elements of P and
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Algorithm 2 Finding multiple global paths.
Input:A pair of a source s and destination d, static obstacle map Or, Np
maximum number of paths
Output:A set of global paths Ξ = {ξ1, ξ2, ..., ξn} from s to d, n ≤ Np

Ξ← ∅
i← 0
is find next← True
while i ≤ Np ∧ is find next do

Find a new global path ξi from s to d on Or using Theta*
for ξj ∈ Ξ do

Present global paths by a sequence of points in 2-D (dimensional)
space, ξi = {si1, si2, ..., sili}, ξj = {sj1, s

j
2, ..., s

j
lj
} where li, lj are the num-

ber of points of the two paths respectively
di1, d

i
2, ..., d

i
l1
← a set of minimum Euclidean distance of each point

sii to ξj
dj1, d

j
2, ..., d

j
lj
← a set of minimum Euclidean distance of each point

sjj to ξi
d(ξi, ξj) = max{di1, di2, ..., dili , d

j
1, d

j
2, ..., d

j
lj
}

if d(ξi, ξj) < threshold then
is find next = False
break

else
Dilate ξi by the radius of the robot and add it into Or Ξ :=

Ξ ∪ ξi,
end if

end for
end while
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(A) (B) (C)

Figure 8.2: Multiple path generation. (A) The first path created by Theta*.
(B) Inserting the first path into the binary obstacle map. (C) The second path
also made by Theta* but separated from the first one.

T respectively, and W ⊆ (P × T ) ∪ (T × P ) is a set of arcs connecting from
a place to transition and vice versa. �

In a PN, an input arc of a transition is defined as an arc that runs out from a
place while the contrasting one, i.e, the output arc goes out from a transition to
a place. Both the input and output flows of the transition are added by positive
weights. With regard to a set of output weights O and a set of input weights I ,
PN is described as a set of five tuples G = 〈P, T,W,O, I〉. Places in a PN may
consist of a number of marks named tokens.

Definition 2 (Marking): The markingM is expressed as a vector [M(p1),M(p2)

, ...,M(pi), ...,M(p|P |)]
T , in which pi is a place, |P | is the number of places

in PN, and M(pi) is the number of tokens at the place pi. �

Let O be a two dimensional matrix of weights O(pi, tj) from the place pi
to the transition tj . I is similarly defined by the weight I(tj , pi) from the tran-
sition tj to the place pi. It is noted that 1 ≤ j ≤ |T |, where |T | is the total
number of transition. Thus, a change of the marking vector of a transition from
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M to M ′ is given by a finite sequence of transitions

M ′(p) = M(p) + I(t, p)−O(p, t),∀p. (8.3)

It is said that the marking M ′ is reached by the marking M by firing t. In the
vector form, this transition marking is presented as

M ′ = M + Ip −Op, (8.4)

where Ip = I(·, p) is the column vector p-th of the matrix I, andOp = OT (p, ·)
is of O. In general, if the markingM ′ is reachable fromM by a finite sequence
of k transitions σ = ti1ti2 ...tik , then (8.4) is rewritten as

M ′ = M + C · ς (8.5)

where ς = [σ1, σ2, ..., σ|T |]
T is a vector where each element σj counts the

number of times tij appears in the sequence σ. An example of a PN described
in Figure 8.3 shows the changes of the marking from M = [1, 2, 0]T into
M ′ = [0, 1, 2]T after the transition t0 fires.

(A) (B)

Figure 8.3: A PN example with three places p0, p1 and p2 and one transition
t0. (A) A PN with an enabled transition. (B) The PN after the transition fires.

With an initial marking M0, the full description of a PN consists of six
tuples G = 〈P, T,W, I,O,M0〉. A full graph of all possible markings and
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transitions, i.e. a reachability set, is described by state-space analysis. One
of the methods to construct a PN for the path planning problem is to divide
the working space into non-overlapping regions with a grid layout where each
cell of the grid corresponds to a place of the PN [15]. However, a robot usually
crosses many grid cells along its trajectories and some of them never play a role
in controlling congestion as they are not the junctions of two or more robots’
trajectories. This leads to unnecessary defined spaces and transitions, resulting
in a very sparse PN to control robot movements. In this paper, the place is cre-
ated only at every intersection of the global moving paths of different robots.
Each place of the PN corresponds to a region of intersection and is assigned
the location at the centre of that region. In order to find the area of intersection,
the thickness of the path is dilated by the radius of the robot. For a pair of
paths, there are one or more intersections formed along the paths. Due to the
dilation of the path, an intersection is not presented as a point, but a polygon.
Consequently, small polygons are filtered out based on their perimeters. The
centre of a polygon is estimated by averaging all middle point of the segments
passing through the polygon. PN is applied to avoid the congestion by granting
permission to just one robot to pass through an intersection at an instance of
time. The trajectory crosses that happen inside a narrow area may even lead to
an unexpected situation of making robots getting locked and not able to escape
from the congestion area. Therefore, other control places are created to han-
dle such an area to limit the number of robots allowed to pass through it. For
simplicity, those types of areas are manually given in this work by providing
a list of polygons to cover the restricted areas. Meanwhile, it is also ineffi-
cient to have control places which are very close to each other. To address this
issue, based on the positions of the intersection, the places are grouped by hi-
erarchical agglomerative clustering [8] until the distances among every places
are greater than a predefined threshold. It is also important to avoid creating
places nearby the sources, goals, and the restricted areas. The combination
of merging the paths and remaining only the important control places helps to
create a compact PN to control the movements of robots. In summary, a set
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of intersections are estimated by Algorithm 3. An example of creating control
place is described in Figure 8.4 with three control places numbered 6, 7, and
8, respectively. The three green circles present the starting positions while the
three blue circles are the destinations. Three control places are marked with
the red circles. Control place 6 lies at the middle of the intersected area of two
paths. Meanwhile, the control place 7 is formed by grouping the intersection
from three paths. The restricted area 6 is defined to be inside a corridor to allow
only one robot to pass through at a time. Although there is an intersection close
to the restricted area 6, no control place is created as it stays on the entrance
(or the exit) of the corridor.

Algorithm 3 Finding intersections of global paths.
Input: A set of global paths Ξ = {ξ1, ξ2, ..., ξn} planned for every robots of
the team and a set of restricted areasR = {R1, R2, ..., Rr}
Output: All intersections Υ = {I1, I2, ...} among global planned paths

Let dilate each path ξi,∀i ∈ [1, n] by the radius of the robot
Υ← ∅
for ξi ∈ Ξ do

for ξj ∈ Ξ do
Let Iij be the intersected polygon of two paths ξi and ξj
if perimeter(Iij) > δp ∧ distance(Iij , source/goal) > δsd ∧

distance(Iij , Rk) > δr(∀Rk ∈ R) then
Υ := Υ ∪ {Iij}

end if
end for

end for
HierarchicalAgglomerativeClustering(Υ)
Υ := Υ ∪R

Considering a cross as a space resource allocated to a single robot each
time, the PN model is constructed by Algorithm 4 to synchronise the move-
ments of multiple robots. In this algorithm, a place of PN is added according
to a cross and a transition represents a physical connection between two adja-
cent crosses on a path. An example to add a PN place to control the movements
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(A)

(B)

Figure 8.4: The creation of control places from the intersection of global paths.
(A) Two robots have two alternative paths to their goals (the green and blue
paths) while the other has only one path (the red one). (B) The corresponding
control places.
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of two robots through a cross is described in Figure 8.5. The places assigned
for the moving paths of Robot 1 and Robot 2 are named by P1 {index} and
P2 {index} respectively (the places P1 2 and P1 3 for Robot 1, P2 2 and
P3 3 for Robot 2). The control place C is made to manage two robots to pass
through the intersection. Regarding the location of those PN places on the real
global paths, for every intersection ∀j, Iji , the distances from p2ji and p2j+1

i to
Iji are set to be equal to D2j

i and D2j+1
i , where those distances are estimated

by the Euclidean distance from p2ji , p
2j+1
i to the centre of Iji . Therefore, p2ji

and p2j+1
i lies on the circles which have the centre at the middle of Iji and

radius D2j
i , D2j+1

i (Figure 8.6.A). For restricted areas (Figure 8.6.B), p2ji and
p2j+1
i are on the circles which have the same radius D2j

i , D2j+1
i but their cen-

tres stay at the crossing points between the path ξi and Iji . Some special cases
are described in Figure 8.7. In the first situation (Figure 8.7.A) where the sepa-
ration of two intersections is less than the total distance D2j

i +D2j+1
i , p2ji and

p2j+1
i are placed on the same location with the distance D2j

i away from the
second intersection. In another case described by Figure 8.7.B, p2ji and p2j+1

i

are placed at the starting or the ending point of the path.

Figure 8.5: An example of creating a control place to synchronise the move-
ments of two robots.
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Algorithm 4 Construction of PN model.
Input:A team of robot with initial positions, a set of global paths Ξ =
{ξ1, ξ2, ..., ξn} planned for every robots of the team and the intersection set
Υ
Output: The PN model (P, T,W,M0) of the team

Let P ← ∅, T ← ∅, W ← ∅, M0 ← 0
for ξi ∈ Ξ do

Find a set of intersections I1i , I
2
i , ..., I

j
i , ..., I

ni
i ∈ Υ which are crossed

by ξi
Add two places p2ji and p2j+1

i , before and after an intersection Iji , into
PN P = P ∪ {p2i , p3i , ..., p

2j
i , p

2j+1
i , ..., p2ni+1

i } for every {Iji |∀j}
Add source place p1i and destination place p2ni+2

i

Add one token into the starting place M0[p1i ] = 1
for j ← 1 to 2ni+1 do

Add transition ti,j to T
τi,j , the delayed time at ti,j , is approximated by the travelling dis-

tance between two places
W := W ∪ {(pj , ti,j), (ti,j , pj+1)}

end for
end for
Find all cells C = {c1, c2, ..., cnC} that are passed by at least two paths
for ci ∈ C do

Add a control place into PN P = P ∪ {ci}
Add one token into this control place M0[ci] = 1
Add transitions to connect ci with related places with a description given

in Fig. 8.5
end for
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(A) (B)

Figure 8.6: The position of p2ji and p2j+1
i before and after the control place.

(A) For intersection outside restricted areas. (B) For restricted areas.

(A) (B)

Figure 8.7: The position of p2ji and p2j+1
i under special cases. (A) The distance

between two intersections is less thanD2j
i +D2j+1

i . (B) The intersection with
the distance to a start of a path is less than D1

i or the distance to the end of the
path is less than D2j+1

i .
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8.2.4 Estimation of optimal configuration

When a path has many crossings, it means that the robot’s travelling time is
prolonged. Therefore, the PN construction is improved by first setting multiple
paths for each robot to its goal and then choosing the optimal configuration of
PN to minimise the travelling time of robots and to avoid deadlock situation. In
Algorithm 4, T = [τ1, τ2, ..., τ|T |]

T is the approximation of the delayed trav-
elling time over a transition. Assume that all robots are configured to have the
same speed, the travelling time is therefore proportional to, or for simplicity is
equal to, the travelling distance from one transition into another. With regards
to T , the firing rule is modified to consider the delayed time in the transition
firing: After a transition ti is enabled, it will fire after τi time units. Those ex-
tensions actually introduce timed PN with an associated finite firing duration to
each transition in PN. Assume that after n intermediate markings, all the mov-
ing tasks are accomplished from the initial markingM0. LetMj , j = 1, 2., .., n

denote a sequence of markings and the firing count vector ςj that makes the
moves of one marking to the next, Mj = Mj−1 + C · ςj , j = 1, 2, ..., n. The
total of the corresponding travelling times of all robots after firing the sequence
ςj , j = 1, 2, ..., n is estimated by

∑n
j=1 f(ςj), where f(ςj) is the delayed time

of the whole PN after ςj is performed. For simplicity, each robot is setup with
the same number, k, of alternative paths to reach the goal. Let zi,p be a set of
N × k binary variables defined according to how each robot choose its path,

zi,p =

1 if the robot i selects the path p

0 otherwise,∀p = 1, 2, ..., N.
(8.6)

The constraint that only one path is assigned to a robot is expressed by,

k∑
p=1

zi,p = 1. (8.7)
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Therefore, ςj(zi,p) is a firing sequence decided by the selection of zi,p. The
optimal problem to find best assignments of paths to robots is stated as follows,

argmin
zi,p

n∑
j=1

f(ςj)

s.t. Mj = Mj−1 + C · ςj , j = 1, 2, ..., n

k∑
p=1

zi,p = 1 (8.8)

Mj ∈ NT , ςj ∈ NP , j = 1, 2, ..., n

zi,p ∈ {0, 1}, i = 1, 2, ..., N, p = 1, ..., k.

Solving the optimal problem in equation (8.8) provides a solution for the
optimal path for each robot to construct the control PN. Thanks to PN simula-
tion tools [26], different combinations of assigning the k−th paths to the robots
are examined to find the best configurations of zi,p to minimise

∑n
j=1 f(ςj).

After this, the PN is fixed with the optimal path selection (the paths which are
not selected are disabled) and the use of PN control in path planning is applied
in the controlling stage.

8.2.5 Computational complexity and solution at a large scale

The computational complexity of the approach is the time needed to evaluate
all combinations of assigning different paths to a robot. Assume that there is a
maximum of K paths for each robot and N is the total number of robots, the
evaluation of all samples runs in O(KN ). As the computational complexity
grows exponentially with respect to N , the algorithm will take a long time to
find the optimal solution with a large number number of robots. Therefore, in
order to apply the solution in a large scale, in this paper, the optimisation with a
subgroup is proposed. The whole working space is divided into separated zones
where the movements of robots inside each zone are synchronised by a PN. A
robot travels through a sequence of zones until reaching its goal. As shown in
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the example of Figure 8.8, Robot 1 (r1) has to pass through Zone 1, Zone 2,
and Zone 3 to approach its goal. To join a zone, robots wait at the boundary
of the zone until the controlled PN of the zone is free. Therefore, Robot 1 and
Robot 2 (r2) must stop until the PN at Zone 2 completes controlling Robot 3
(r3) and Robot 4 (r4). Let D be the maximum number of robots allowed to
enter the zone simultaneously. The complexity of running optimisation at each
PN controller is reduced to O(KD), which is fast if D is small enough.

Figure 8.8: PN control by subgroups.

8.2.6 Movement control on optimal paths

The whole system is organised in a centralised manner where one master ROS
node is used to create the PN model for each robot and share information with
all other robots via communication channels. Once the above PN model is
built, the realisation of the path planning becomes the step-by-step moving of
a robot from one place to another along the generated trajectory until the robot
reaches its goal. The movement of each robot is controlled by firing the enabled
transitions and following a sequence of places visited by the token assigned to
that robot. Each robot is linked to one token given in Line 6 of Algorithm
4. The movement controlling algorithm for a team of robots is implemented
by the Algorithm 5. The PN planning mainly deals with the congestion of
robots by preventing several robots to be navigated into a narrow place at the
same time. The prerequisite requirement for this control with PN is that the
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global planner paths are shared by the robots. However, this is not applied for
humans and other moving obstacles unless they explicitly share their moving
trajectories. Thus,to avoid these objects, the local path planning with DWA and
dipole field is applied.

Algorithm 5 The movement control algorithm.
Input: The Petri net model (P, T,W,M0)
Output: Step-by-step moving strategy for each robot of the team

Let M ←M0

Based on the target goals, define the ending marking Me

while M 6= Me do Find all enabled transitions Ṫ ⊆ T
for t ∈ Ṫ do

Allow a robot to move if its related token is fired into a new place
Use local obstacle avoidance while the robot is on the moving way

to the next place
Time of arrival of the token to the next place is updated by the mov-

ing time of the robot
Update the marking M by firing t, M ←M +W+(t)−W−(t)

end for
end while

8.2.7 Dipole field and DWA for moving obstacle avoidance

The dipole field has been introduced by the authors for obstacle avoidance with
moving human or robotic agents [14]. In this method, robots and obstacles
(named agents in general) are modelled by small magnets with their dipole
moment vectors aligned with the moving directions of the robots and obstacles.
In a consequence, two agents moving toward each other or having the same
poles facing each other are pushed far away by magnetic forces. The magnetic
field B of the dipole moment vector m generated by an agent is given by

B(m,d) = ρ(3(m · d̂)d̂−m)/d3 (8.9)
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where d is the distance vector, d = ‖d‖, d̂ = d/‖d‖, in which ||.|| denotes the
norm of the vector, and ρ is a constant. The magnetic moment m is designed
to be aligned with the moving directions of the agent and its magnitude is
proportional to the speed of the agent. An agent with the magnetic moment mj

within the magnetic field Bk of mk would be affected by the force

Fjk = ∇mj ·Bk = ρ∇
(
mj ·

3(mk · d̂)d̂−mk

d3

)
(8.10)

where the gradient ∇ presents the change of potential mj · Bk generated per
unit distance, and ρ is a constant.

Dynamic window approach (DWA) was introduced by Fox et al. [21] and
later developed in ROS [9] to use multiple constraints of velocity limits, of
acceleration limits, and of following the predefined global path into the local
path planning. The local searching space is reduced to dynamic windows in a
three-step progress (Figure 8.9). Firstly, DWA considers the robot’s trajecto-
ries as circular trajectories or curvatures determined by a set of translation and
rotation velocities (vi = ẋi(t), ωi). Secondly, only admissible pairs of (vi, ωi)

corresponding to their trajectories are considered if the robot is able to move
forward without colliding with obstacles. Finally, the dynamic window limits
the admissible velocities to those that the robot can safely reach to the goal in
a short time with optimised accelerations.

Only the pair of (v∗i , ω
∗
i ) is selected if the objective function reaches to

maximum,
(v∗i , ω

∗
i ) = argmax

(vi,ωi)

F (vi, ωi), (8.11)

where F (vi, ωi) = f
(∑

s qsQs(vi, ωi)
)
, Qs(vi, ωi) and qs are the cost func-

tion and the corresponding weight, and f(·) is an optional function used to
smoothen the weighted sum of the above components. In the implementation
of DWA on the ROS navigation stack1, the objective function given by equation

1http://wiki.ros.org/dwa local planner
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Figure 8.9: Dynamic obstacle avoidance with DWA where the feasible trajec-
tories are blue. The read ones are leading to collisions with obstacles.
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(8.12) is used to score the admissible velocities,

F (vi, ωi) = αD(vi, ωi) + βH(vi, ωi) + γP (vi, ωi). (8.12)

With regards to the grid-based presentation of the cost map, D(vi, ωi) is the
total cost of the grids passed through by the trajectory (vi, ωi). Meanwhile,
H(vi, ωi) is a goal heading which is the distance from the endpoint of the tra-
jectory to the goal, P (vi, ωi) is the distance from the endpoint of the trajectory
to the global path, α, β and γ weight each term of the equation. The trajectory
with the minimised cost F (v∗i , ω

∗
i ) in (8.12) is the one with the highest possi-

bility of avoiding static obstacles, going toward the goal, and being close to the
planned path. Additionally, the dipole field has been introduced in this paper to
take into account the moving directions and velocity of the obstacles to avoid
the collisions with dynamic obstacles.

To integrate the dipole field into DWA, it is noted that the potential changes
reflect the repulsive forces that prevent agents to collide with each other. There-
fore, the new terms Ωj(vi, ωi) are added into equation (8.12) to weight the tra-
jectories based on the possibility of collisions or to minimise the total dipole
forces applied on the robots. The dipole field term is removed if Ωj(vi, ωj)

does not generate repulsive forces (two objects do not move toward each other).
The pair (vi, ωi) and its trajectory are also removed if they will cause the col-
lisions with another robot or moving objects with regards to the velocity con-
straints introduced by Fiorini and Shiller [23]. It means for every neighbouring
robots j 6= i around robot i,

‖xi(t)− xj(t) + (ẋi(t)− ẋj(t))t̃‖ ≥ 2r (8.13)

for all t̃ ∈ [0, τ ], where τ is . and for other humans and moving obstacles,

‖xi(t)− oj(t) + (ẋi(t)− ȯj(t))t̃‖ ≥ r + rh. (8.14)
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8.3 Simulation and Evaluation

The whole system is implemented in the Robot Operating System (ROS) plat-
form [24] with version Kinetic Kame in Ubuntu 16.04 on a laptop with Intel i7
CPU of 8 cores and a clock frequency of 2.90 GHz. The Gazebo simulator is
used to provide realistic simulation of robots working in indoor environments.
The simulated robotic agents are Husqvarna research platform (HRP)2 mowers
with an extra depth sensor, and a LIDAR laser scanner. The centralised con-
trol is performed by a master ROS node and robots in the working space share
their locations and global path information through ROS messages. The PN
planning module is programmed in Python with the support of the SNAKES
library [26]. Meanwhile, the global path planning with the Theta* algorithm
and the obstacle avoidance with dipole field on DWA are implemented in C++.
In all experiments, it is assumed that all robots travel with the same speeds.
Therefore, instead of using the time to analyse PN, the length of the travelling
path is used as the delayed time at each transition in all simulated experiments.

8.3.1 Simulation scenarios

Two simple scenarios are simulated in this section to describe the working
principle of the system.

Scenario 1. In the first scenario, the two robots are placed at opposite
sides of a corridor where one of them moves from top to bottom and the other
robot travels in the opposite direction (Figure 8.10). The size of the map is
set to 10 × 10m. The global path planning returns two alternative paths for
each robot where each robot has one goal location. The shortest path goes
through the corridor and the other goes around the sides, outside the corridor.
For both two robots described in Figure 8.10.B, Path 1 is the shortest path
going through the corridor while Path 2 goes by the side of the map. The green
and blue circles indicate the starting and ending positions of the robots while
the red one is the intersection point if both robots choose the shortest paths.

2https://github.com/HusqvarnaResearch/hrp
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Table 8.1: The time delay at all transitions in the PN model. The time delay is
equivalent to the travel distance from one place to another, so that the time unit
is not necessary used in experiments.

τ0 τ1 τ2 τ3 τ4 τ5 τ6 τ7
0.84 6.45 1.14 12.36 0.64 6.51 1.53 12.59

Thus, if both robots choose the shortest path, they will meet each other at the
centre of the corridor. A restricted area lying at the middle of the corridor is
defined to allow only one robot to pass through. A timed PN is created for the
whole system to analyse the best configurations for all robots (Figure 8.11).
The delayed times at transitions are given in Table 8.1, where the delays at
transition t1 and t5 are 6.45 and 6.51 meters, corresponding to the travelling
distance of robots through the corridor.

Different combinations of pairs of paths for the robots are composed to
find the best routes for the robots. If both Robot 1 and Robot 2 select to follow
Path 2, the firing sequence of transitions is {t3 → t7}, the total travelling time
of two robots is 24.95. Similarly, if Robot 1 chooses the Path 2 and Robot 2

chooses Path 1, the corresponding firing sequence and total travelling time are
{t4 → t5 → t6 → t3} and 21.04 respectively. In case when Robot 1 chooses
Path 1 and Robot 2 chooses Path 2, those values are {t0 → t1 → t2 → t7} and
21.02 and finally when Robot 1 chooses Path 1 and Robot 2 chooses Path 1,
those are {t0 → t4 → t1 → t5 → t2 → t6} and 23.42. The best configuration
achieves when Robot 1 follows Path 1 and Robot 2 is at Path 2. With the best
routes selected by analysing the timed PN, the congestion does not happen in
this scenario (Figure 8.13).

Scenario 2. In the second scenario (Figure 8.14), Robot 2 moves as pre-
viously while Robot 1 moves from left to right. In this scenario, the shortest
path of one robot crosses that of the other at the centre. The size of the map is
also 10× 10m, and each robot is able to find two different paths from starting
to ending points. Similar to the previous experiment, the green and blue circles
mark the starting and ending location of the robots, the red circles mark the
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(A) (B)

Figure 8.10: (A) The simulated working space with two robots that are placed
opposite and move toward each other. (B) The global paths of the two robots.

control places. For Robot 1, starting and ending points are marked by green
circle nr. 0 and blue circle nr. 1. Path 1 is the straight line from 0 to 1 through
the control place nr. 7 and 8. The other path is Path 2. For Robot 2, the straight
line from starting point marked with green circle nr. 2 through the control place
nr. 7 and 5 to the ending position marked with blue circle nr. 3 is Path 1. The
other is Path 2. Based on all the found paths, different moving scenarios are
proposed to select the best scenario for the robots with the timing constraints.
The delay at all transitions are depicted in Table 8.2, where the delays at tran-
sition t1, t3, t6, t8, t11, t13, t16 and t18 are shorter than the values in Scenario 1
since the robots can pass through the crosses with a shorter time. No restricted
areas are defined.

The travelling time for firing sequence {t0 → t1 → t15 → t16 → t2 →
t3 → t17 → t4 → t18 → t19} is 35.14 when Robot 1 moves along Path 1 and
Robot 2 chooses Path 2. For the sequence {t10 → t0 → t11 → t1 → t12 →
t2 → t13 → t3 → t14 → t4} which is in case that both of the robots choose to
follow Path 1, the travelling cost is 20.20. If the robots select Path 2 which is
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Figure 8.11: Generated PN to control the movements of two robots in the first
example. The places are represented by ovals while the transitions are with
rectangles. S1 1, S2 2, D1 1 and D2 2 are the source and destination posi-
tions of Robots 1 and 2. I{robot index} P{path index} {place index} and
C {place index} are the intermediate places and control places of the robots
respectively.
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Figure 8.12: The conventional PN to visualise the generated PN model in Fig-
ure 8.11.

(A) (B)

Figure 8.13: (A) No PN analysis is used. Two robots collide and get blocked
inside the corridor. (B) By analysing the timed PN, one robot is assigned a
route going through the corridor while the other moves outside the narrow area
to avoid congestion/collision. Note that the two global paths are highlighted by
bold lines while the thin ones are the real trajectories.
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Table 8.2: The time delay at all transitions in the PN model. The time unit is
not used in experiments.

τ0 τ1 τ2 τ3 τ4 τ5 τ6 τ7
3.09 1.47 1.07 1.47 0.69 4.76 1.45 0.80
τ8 τ9 τ10 τ11 τ12 τ13 τ14 τ15
1.52 2.46 2.73 1.47 0.90 1.47 1.19 4.72
τ16 τ17 τ18 τ19
1.49 0.94 1.52 2.45

indicated by the sequence {t15 → t5 → t16 → t6 → t17 → t7 → t18 → t8 →
t19 → t9}, the total travelling time is 29.73. Finally, 46.65 is for the sequence
{t10 → t11 → t5 → t12 → t6 → t13 → t14 → t7 → t8 → t9} when Robot
1 chooses Path 2 and the other follows Path 1. With regard to those analyses,
both robots select the path with the same index 1 to follow. In this case, the PN
control is applied to synchronise the movements of two robots passing through
the cross (Figure 10.4).

(A) (B)

Figure 8.14: (A) The simulated working space with two robots that are placed
on the bottom and the left side of the map. Their shortest paths from the start
to the goal are perpendicular to each other. (B) The visualisation of two global
paths for each robot and the intersection of those paths.
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Figure 8.15: Generated PN to control the movements of two robots in the sec-
ond example.



8.3 Simulation and Evaluation 131

Figure 8.16: The conventional PN to visualise the generated PN model in Fig-
ure 8.15.
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(A) (B)

Figure 8.17: (A) Without PN control, the two robot are not able to slow
down before reaching the cross, leading to a collision. (B) With PN control,
one robot stop and wait for the other passing through the cross. Two robots
smoothly approach the goals with no collision. Note that the two global paths
are highlighted by bold lines while the thin ones are the real trajectories.

8.3.2 Evaluation

In this section, the performance of the proposed method is verified through the
evaluation of all the proposed scenarios.

Multiple robots controlled by a single Petri Net

An extensive evaluation is performed with four robots that are placed at dif-
ferent sides of the map (Figure 8.18). The size of the map is set to 20 × 20m.
Similar to the previous examples, each robot is able to plan two different routes
to reach its goal. PN is used to analyse the best routes and to synchronise the
movements of robots. The experiment is repeated 100 times by randomly defin-
ing different goal locations. For each run the starting points are kept the same.
One restricted area is established inside the corridor.

The results of three example runs are depicted in Figure 8.19. The first
row describes the situation of the cross present inside a corridor. Without PN
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Figure 8.18: Gazebo simulation of a working space with four robots.
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control, the two robots follow the shortest paths leading to the collision inside
the corridor even though the two robots manage to keep on moving to reach
their goals (Figure 8.19(A1)). The result with PN control is depicted in the
second row showing that no collisions occur as one robot goes outside the
corridor. In Figure 8.19(A2), there are figures expressing the case in which
the cross is on an empty space. Without the PN control, a collision happens
(Figure 8.19(B2)). The PN control helps to make the moving trajectories of
both robots smooth (Figure 8.19(B2)). A comprehensive example of all paths
included in a single PN model is given in the third row. There is no collision
in two cases of not using (Figure 8.19(C1)) or using the PN control (Figure
8.19(C2)). However, in the latter, with the designed path of less intersections,
a robot with the red global path is able to keep a smoother trajectory to the
goal.

In Figure 8.20 the histogram of all occasions of of when the distance be-
tween two robots is less than 1.0 meters in the overall 100 trials. The results
are compared with the DWA baseline algorithm on ROS [9]. The mean of
those distances is 0.76m for the PN control with a standard deviation (STD)
of 0.14m. Similarly, the mean and STD are 0.73m and 0.14m for the DWA-
baseline algorithm. Using PN to synchronise the movements of robots, the
occasions when the distance is less than 0.7 meters are reduced significantly.
Note that collisions risk to happen when the distance between two robots is in
the range [0.5, 0.7] meters, dependent on whether they are moving toward each
other in an opposite direction or they glide over each other. The summary of
the number of collisions and deadlocks are given in Table 8.3. The deadlocks
happens when the two robots have a strong hit that makes them stop or a robot
is locked inside a corridor. There are several cases where a goal lies on the de-
signed global path of another robot. Once a robot finishes its path and ends at
the goal, it consequently stops its PN control, leading to a collision and/or even
a dead lock. In these cases, two deadlocks are recorded although PN control is
used.
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(A1) (A2)

(B1) (B2)

(C1) (C2)

Figure 8.19: A scenario with four robots with a cross inside corridor. The
trajectories of the robots without PN control (A1), (B1), (C1) and with PN
control (A2), (B2), (C2). Robot 1: red, Robot 2: green, Robot 3, purple, and
Robot 4: blue. Thin lines are planned paths while the thick ones are the real
trajectories.
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Figure 8.20: A histogram of the distances between robots less than one meter.

Table 8.3: The number of collisions/deadlocks of multiple robots with DWA
baseline, with PN control (∗), and with PN control when the cases of a goal on
the global path of another robots are not considered (∗∗).

DWA w PN w PN
Baseline Control∗ Control∗∗

Collision 18 8 5
Deadlock 8 2 0



8.3 Simulation and Evaluation 137

Multiple robots controlled by multiple Petri Nets

The optimisation by subgroups proposed in Section 8.2.5 shows the way to
search for optimal global paths with a large number of robots in a working
space. An experiment is designed in this section to evaluate the effectiveness
of the proposed approach. The map with the size of 40× 40m with several ob-
stacles and narrow corridors is used. Sixteen robots are distributed equally on
each side of the map. The starting positions of the robots are fixed while their
goals are uniformly assigned with the separation of 3 meters. The minimum
distance between a starting point and its corresponding goal is 5 meters.

As depicted in Figure 8.21, the whole working space is divided into 9 non-
overlapping zones where each zone is controlled separately by one PN con-
troller. Zone 4 takes into account only restricted areas (narrow corridors in
the map) to create a PN. The maximum number of 8 robots is allowed to si-
multaneously enter a zone while at most three global paths are assigned for
a source-destination pair. The experiment is repeated 10 times so that a total
number of 160 path planning tasks are evaluated. The proposed algorithm is
compared against the baseline DWA[9] and VO-based DWA path planning[38].
Table 8.4 summarises the success rate of completing the navigation tasks of the
three methods. The baseline DWA mainly fails due to the collisions of robots
in both empty spaces and narrow areas. The VO-based DWA has a deadlock
problem when two robots meet each other in a narrow corridor. Meanwhile,
the failures of the PN-based control usually happens with a single robot when
it has a sharp turn and collides with a wall.

In overall, the PN-based control is superior to the other two methods on
its reliability to complete the path planning tasks in this experiment. The pro-
cessing time (averaged over 50 trials) of running a PN to find the optimal con-
figuration of global paths is 8.7 seconds. Note that the optimisation is only
required once a group of robots enters a new zone.
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Figure 8.21: Multiple PN controllers on different zones. Note that the thin
lines are the multiple planned paths and the thick ones are the actual moving
trajectories.

Table 8.4: Comparisons of the proposed PN-based control with other path plan-
ning methods.

DWA VO-based PN
Baseline DWA Control

Success rate 82% 92% 97%
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Robots and humans sharing working space

In this experiment, two humans acting in the simulated working space, which
contains three robots, are added. The human actor plugin of Gazebo simulator
is customised to allow control the moving trajectory of a human subject by re-
peated patterns (Figure 8.22). The blob-based detection using the laser scanner
developed by the SPENCER project [25] is applied to track the trajectories and
velocities of moving human subjects and obstacles in the working space. The
same size of the map as earlier experiments of 20x20m is used. The experi-
ments were repeated 5 times. For each trial, the static obstacles, start and goal
positions of both robots and humans are randomised. The minimum distances
between human and robot are recorded for evaluation purposes. The overall
result is summarised in Table 8.5. With the combination with the dipole field
on top of PN path planning, there are no collisions between robots and humans
recorded.

Table 8.5: Minimum distance (in meters) between each human and robot in
every trials. H1: Human 1, H2: Human 2, R1: Robot 1, R2: Robot 2, and R3:
Robot 3. The bold numbers mark the distance between a robot and a human
less than one meter. Without dipole field, there is one collision present in Trial
3 (marked with a bold and underlined number). Mean/STD are calculated on
the distances less than 5 meters.

T1 T2 T3 T4 T5 Mean/STD
without H1-R1 3.38 3.52 0.63 0.86 3.48

2.01/1.28

Dipole H1-R2 0.74 3.42 0.88 1.41 0.81
Field H1-R3 1.43 0.90 3.94 4.25 0.87

H2-R1 3.46 5.28 0.69 1.99 2.76
H2-R2 6.64 2.84 0.33 1.43 1.31
H2-R3 7.40 5.00 5.47 3.16 3.77

with H1-R1 1.02 3.53 0.89 1.03 3.84

2.26/1.12

Dipole H1-R2 2.46 3.13 1.68 1.33 1.64
Field H1-R3 1.80 1.25 3.98 3.19 1.13

H2-R1 1.47 5.29 1.43 1.70 1.77
H2-R2 4.09 1.89 1.03 1.68 2.55
H2-R3 5.81 4.69 5.50 2.90 3.90
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Figure 8.22: The working space with two humans and three robots simulated
in Gazebo.
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8.4 Conclusions and Discussion

This paper has introduced a novel path planning algorithm for multiple robots
using PN in combination with obstacle avoidance with dipole field. To avoid
the congestion of routing several robots into an intersection area, PN is utilised
for path optimisation and then movement control of robots. Particularly, the
path planning system establishes alternative routes to the goal for each robot.
Due to the effectiveness PN demonstrates in analysing the travelling time from
the starting position to the goal point, the optimal paths are assigned to the
robots to increase the chances of a robot to reach its goal without facing dead-
lock situations inside narrow areas. In the second stage when the global paths
are configured with optimal selection, the PN model is applied to control the
movement of robots to ensure that a robot is allowed to pass through a cross
one by one. The experimental results with Gazebo simulator have revealed that
the PN control is able to synchronise the movements of multiple robots passing
through the intersection, which helps to both avoid dead-lock and shorten the
travelling paths of the robots. Meanwhile, the dipole field implemented with
DWA is able to advance the local path planning with an ability to avoid mov-
ing humans and other robots as well as uncontrolled obstacles in the shared
workspace, as is also shown in simulations. Thus, these results show that the
presented algorithm can improve the dependability aspect of a navigation sys-
tem, based on path planning, for multiple robots system.

Some limitations of the proposed method are listed to be addressed in the
future. Firstly, in the current configuration one token is assigned at the control
PN place of a narrow area, which allows only a single robot to pass through.
This is to minimise the possibility of a deadlock happening inside the area. If
the control area is big enough, it is more optimal to allow several robots to enter
it at the same time. Therefore, the correlation between the size of the region and
the number of a token at the control place should also be considered as a factor
to be optimised with the modelled PN. Secondly, the proposed system is mainly
implemented in a centralised manner. Thus, a shift into a distributed algorithm
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is considered so that the system is not so dependent on a single central server to
operate. Lastly, the evaluation of the proposed approach is currently performed
only as a Gazebo simulator. It is plausible to assume that an implementation in
real robots will help to evaluate the proposed algorithm.
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[28] L. E. Kavraki, P. Švestka, J. C. Latombe, and M. H, Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566-580 1996.

[29] J. P. van den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-
Body collision avoidance,” International Journal of Robotics Research,
vol. 70, pp. 3-19, 2011.

[30] B. Daman and J. P. van den Berg, “Generalized Reciprocal Collision
Avoidance”, International Journal of Robotics Research, vol. 34, no.
12, pp. 1501-1514, 2015.

[31] J. Snape, J: P. van den Berg, S. J. Guy, and D. Manocha, “The hybrid
reciprocal velocity obstacles,” IEEE Transactions on Robotics, vol. 27,
pp. 696-706, 2011.

[32] J. Alonso-Mora, A. Breitenmoser, M. Rufli, P. A. Beardsley, and R.
Siegwart, “Optimal Reciprocal Collision Avoidance for Multiple Non-
Holonomic Robots,” Distributed Autonomous Robotic Systems. Springer

Tracts in Advanced Robotics, vol. 83, pp. 203-216, 2010.



[33] P. Long, W. Liu, and J. Pan, “Deep-Learned Collision Avoidance Policy
for Distributed Multiagent Navigation,” IEEE Robotics and Automation

Letters, vol. 2, pp. 656-663, 2016.

[34] M. Soulignac, “Feasible and Optimal Path Planning inn Strong Current
Fields,” IEEE Transactions on Robotics, vol. 27, no. 1, pp. 89-98, 2011.

[35] B. Paden, M Cap, S. Z. Yong, D. Yershov, and E. Frazzoli, “A Survey of
Motion Planning and Control Techniques for Self-Driving Urban Vehi-
cles,” IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1, pp. 33-55,
2016.

[36] E. Galceran and M. Carreras, “A survey on coverage path planning for
robotics,” Journal of Robotics and Autonomous Systems, Elsevier, vol.
61, no. 12, pp. 1258-1276, 2013.

[37] A. Martelli, “On the complexity of admissible search algorithms,” Artifi-

cial Intelligence, Elsevier, vol. 8, no. 1, pp. 1-13, 1977.

[38] D. Claes and K. Tuyls, “Multi robot collision avoidance in a shared
workspace,” Autonomous Robots, vol. 42, no 8, pp. 1749-1770, 2018.

[39] H. Kagermann, W. D. Lukas, and W. Wahlster, “Industrie 4.0: Mitdem
internet der dinge auf dem weg zur 4. industriellen revolution”, VDI

Nachrichten, vol. 13, no. 11, 2011.





Chapter 9

Paper C: Multi-Path
Planning for Autonomous
Navigation of Multiple
Robots in a Shared
Workspace with Humans

Lan Anh Trinh, Mikael Ekström, and Baran Cürüklü
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Abstract

Path finding for multiple robots is one of most important problems in robotics
when to find a way to move robots from their starting positions to reach their
respective goals without collisions. However, in the case of a complex envi-
ronment with the presence of humans and other unpredictable moving objects,
fixing a single path to the goal may lead to a situation where there are a lot of
obstacles on the planned path and the robots may fail to realise the moving plan.
To address this issue, a new approach of using multiple path planning where
each robot has different options to choose its path to the goal is introduced in
this paper. The information about planned moving paths are shared among the
robots in the working domain, combined with obstacle avoidance constraints
in local ranges, and formulated as an optimisation problem. Solution of the
problem leads to the optimal moving plans of robots. The effectiveness of the
proposed approach is demonstrated by experimental results.
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9.1 Introduction

Path planning and obstacle avoidance are important components of robotic nav-
igation. Advances in key technologies, in combination with public acceptance,
have opened the way towards allowing several autonomous robots coexist with
humans in unstructured environments. This assumes autonomous navigation.
One of the challenges in this regard is handling navigation failures of multiple-
robots when they are operating together in a shared working space, which is
also complex and cluttered. To avoid complete failures, the robots should have
recovering mechanisms so that they are able to come back to their normal ac-
tivities. In this context, the complete failures happen when the robots stop
working and cannot finish their moving tasks. The common procedure as-
sumes that the global path planning searches for a path, from a start to a goal,
through an empty space within a map of static obstacles. The local obstacle
avoidance drives the robot to follow the planned global path while taking into
account possible collisions with other robots and dynamic obstacles.

Relying on a single and a fixed global plan could lead to a deadlock, or
livelock, situation where a robot take a very long time to reach its goal, or will
not even be able to do so. This could happen in the case of multiple robots
moving in a narrow area, with respect to the the size of the robots e.g., 2x2 of
a robots diameter. Since the local navigation to avoid obstacles only takes into
account the collision with other robots within a close range, a robot must turn
back to the configured path to be able to reach its goal. However, if two robots
are routed through a very narrow area, like a corridor, and enter it through
two opposite sites, the robots may face a situation where they repeat the same
moving trajectories within that area again and again without ever finding the
path to the goal.

Factory workshops, and other industrial spaces (also outdoor), have emerged
as important cases for navigation of multiple robots. In this case the robots
transport objects between different stations, thus shared the same space with
humans. In the most common setup, automated guided vehicles (AGVs) are
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deployed. They are configured with a predefined moving path. Due to safety
reasons, the operation of an AGV is terminated when a human enters the work-
ing zones or crosses the moving trajectories of a vehicle. Yet, replacing these
systems with robots that do not follow a predefined path, and have autonomous
path planning, have the potential of allowing more flexible solutions, in pres-
ence of humans and other moving objects also in unfamiliar environments.
During the process of controlling the paths of multiple robots, by sharing lo-
cation information to each other, robots are able to avoid collisions by moving
toward any open area without interfering with trajectories of others. However,
the presence of humans introduces uncertainty, since robots are not able to
know the intended movement of the humans. To deal with such uncertainty,
the footprint i.e., the representation of human obstacles are enlarged with re-
spect to the probability of uncertainty, or to the safety level, to prevent the
collision of human with robot. A big footprint combined with a unpredictable
trajectory of a human could increase the chances of blocking all feasible moves
of the robot to realise the defined global moving plan.

From the described scenarios above, it is evident that, relying on a single
path planning could lead to a navigation failure when there is no feasible way to
implement the path due to the obstacle avoidance function. Therefore it is im-
portant for a robot to have alternative paths to reach its goal and the robot must
be able to proactively switch among solutions whenever necessary to prevent
deadlock situations.

In this paper, a new navigation system with multi-path planning is intro-
duced. Each robot is able to frequently establish multiple paths from its cur-
rent position to reach the defined goal. All robots in the working domain share
their sets of possible planned paths to each other via a communication channel.
Consequently, an optimisation problem is formulated to find the next move of
the robots with respect to the constraints, which are to ensure no interference
between the planned paths among different robots and no collisions between
robots and other moving obstacles. In overall, the proposed multi-path plan-
ning algorithm presents an effective mechanism for fault tolerance to recover
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the robot activities to handle up to some levels of failures of the navigation
system.

The rest of the paper is organised as follows. Section 2 presents related
works. Section 3 describes the methodology of the proposed approaches. Sec-
tion 4 provides experimental results for evaluation. Finally, Section 5 con-
cludes the paper with discussion.

9.2 Related Works

9.2.1 Multiple path planning

The multi-agent path finding (MAPF) problem has been introduced to find
collision-free paths for multiple robotic agents from starting positions to their
goals. A MAPF algorithm considers multiple paths for each agent and searches
for a path to optimise a criteria function like a minimum total travelling dis-
tance. However, a MAPF algorithm is mainly suitable for well-defined envi-
ronment without unpredictable obstacles.

For the graph-based solutions, the robots move on a connected graph from
a vertex to its neighbors in one search iteration to reach their goals. A con-
flict happens when two robots are to occupy a single vertex at the same time.
Thus, the main aim of solving the MAPF problem is to find a set of paths pass-
ing through non-conflict vertices on the defined graph. To limit unnecessary
search, an extra cost function, namely sum-of-cost, like the total maximum
time for all robots to reach their goals (or the cost of the paths) is introduced
as an optimal condition for the search. Since the problem is non-deterministic
polynomial-time (NP) hard [1], numerous approaches have chosen to seek for
a close optimal solution to reduce processing time. The A*-based search uses
a heuristic function to find an optimal solution among all combinations of as-
signing k-agent into the graph. To deal with the exponential growth of the state-
space with respect to the number of robotic agents, different methods have been
applied. For instance, independence detection (ID) method by Standley [6] fo-
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cused on single robots and only considered a group of multiple robots jointly
when necessary.

Alternative to A*, the increasing cost tree search (ICTS) [3] proposed two-
layers including high-level and low-level searching where the lower is used
as a goal test of the higher. Another solution different from A*, conflict based
search (CBS) is introduced by Sharon et al. [4]. In CBS, agents are constrained
by a triple of parameters including the agent, occupying vertex, and time step.
It means that the agent at the particular time step is refused to occupy an occu-
pied vertex. The path is found only if all agent’s constraints are satisfied. The
searching is completed when the paths for every agents are resolved.

Beside the above solutions, there have been suboptimal solutions for the
MAPF problem. For instance, hierarchical cooperative A* (HCA*) [5] intro-
duced a reservation table which is used to store the path assigned into an agent.
The other agents will, according to their priority, search for paths not registered
in the reservation table and, after the paths are found, update the table accord-
ingly. In an improved version of HCA* like Windowed-HCA* (WHCA*) [5],
the reservation table is only applied for a limited time slot, i.e. window, when
the other agents are rejected to reserve to the table. Later, in the work of Bnaya
and Felner [2], a dynamic window focused around conflicts and agents likely
to be involved to a conflict are prioritised to be processed next. In overall, the
heuristic search A* and its variants are still costly computational solutions.

There have been researches developed to reduce the running time of the
search-based algorithms with rule-based algorithms. Specific rules are defined
for the movement of the agents to reduce searching time. Yet, the resulted
paths from the rule-based algorithms are not always optimal. Alternatively, in
the work of Yu and Lavalle [7], the path planning problem for multiple agents
is modelled as a network flow and the collision-free paths are found by the
integer linear programming (ILP) solver.

Most of the presented solutions for the MAPF problem are based on an
assumption of a working environment without the presence of humans. It is
due to that the mathematics model of those works are not defined to cover both
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obstacle avoidance and multiple-path planning into one combined framework.
As a result, the operation of robot will be terminated as a human enters the
safety regions of robots, making the solution limited to specific applications
like robotics warehouse system. In the presented work, a new method of mul-
tiple path planning is proposed to consider both the human as well as other
uncontrolled moving objects as factors into the path planning problem. This
helps to enhance autonomous functions of robot navigation by allowing more
flexibility of robots to continue working even with the presence of other robots
in unfamiliar environment.

9.2.2 Collision avoidance

A field-based approach is one way to perform obstacle avoidance. In general,
the field consists of a repulsive field to push the agent away from the obstacles,
and an attractive field to pull the agent towards the goal. For instance, Ok et al.
[8] proposed a method with an uncertainty field which is build from Voronoi
diagram from the start to the goal to create the attractive field to drive the robot
to the goal and the repulsive field from the robot to the obstacles.

The main issue with using this method is that the repulsive field may push
the agent to reach other obstacles or statures with the attractive field. Due to
this problem, the robot may be trapped into a local optimum or loose its way
toward the goal.

Controlling the speed and directions of a robot is also another way to pro-
vide the robot a collision free path. Owen and Montano [10, 11] defined ve-
locity obstacle (VO) to estimate the arrival time of moving objects to a region
of collision. The acceptable velocity is the one that helps the robot to avoid
collision regions. Damas and Santos-Victor [12] developed a map of forbidden
velocity zones which is constructed as a limit on the velocity of the robot to
avoid collision with obstacles. When the robot enters into the forbidden zones,
it may adjust its speed to avoid the obstacles. In the work of Berg et al. [9],
the reciprocal velocity obstacle (RVO) is introduced. In this method, the inter-
action of robots is modelled in both distributed and an optimal pairwise while
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the other agents are assumed to continue moving with the current speed in a
straight line trajectory and a function of relative velocity may be used to predict
further collision. The extensions of this method are developed by Wilkie et al.
[14] which is generalised for nonholonomic robots, and are improved by Berg
et al. [16] by introducing the optimal reciprocal collision-avoidance (OCRA)
to prevent the problem of reciprocal dances and casts. Additionally, Berg et al.
[13] integrated the acceleration while Lee et al. [15] defined the footprint of
the robot as an ellipse for obstacle avoidance.

Usually, to follow the global path, the preferred velocity is defined. Yet, the
presence of multiple obstacles, especially non-static obstacles, usually leads to
the case where no optimal velocity is found for the next moving steps, which
may lead to a deadlock situation.

9.3 Multi-path Planning with Obstacle Avoidance

9.3.1 Preliminaries

In this paper, a vector is presented in bold x, matrix in capital and bold X, and
a set in mathcal N . All robotic agents and dynamic obstacles move on a free
space on a 2D-plane. Assume that there are n robotic agents in the working
space, denoted by A = {i|i ∈ 1, 2, ..., n}. The position of each robotic agent
i at time t is presented by a function ai(t) ∈ R2 with the correspondent ve-
locity vi(t) = ȧi(t). Correspondingly, let Oi = {j|j ∈ 1, 2, ..., ni} be a set
of moving obstacles detected by the agent i with position oji (t) and velocity
voji (t) = ȯji (t). The footprint of a robot i is modelled by a closed disk with
the radius ri. For simplicity, every function x(t) by time t has an equivalent
representation of x in short. To check for the collisions among robots and mov-
ing obstacles in a local range, the concept of velocity obstacle is utilised. The
velocity of a moving robot is considered to be a straight-line constant velocity
within short time, leading to the position is updated by the equation

a(t) = a(t0) + (t− t0)v, t ≥ t0, (9.1)
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where t0 and a(t0) are the current time and position of the robot at that time
respectively. Given two robots with position aA and aB , a set of relative refer-
ence velocities vAB = vA − vB leading to the collision within time τ is given
by,

VOτAB = {vAB |∀t ∈ [0, τ ], ‖aA − aB + tvAB‖ ≤ rA + rB}. (9.2)

This velocity obstacle VOτAB is visualised by a truncated cone and ap-
proximated by the non-convex space formulated by three half planes (Fig.
9.1). Once the velocities and positions of moving obstacles are detected by a
robot, the pairwise collisions between a robot and an obstacle is modelled and
checked by the similar way. Yet, the moving obstacles may be seen by one one
robot but not others, therefore, the collision checking between robot-moving
obstacle is only available within local regions.

Meanwhile, the global map of a set of static obstaclesM is presented by
a binary image. To take into account the size of robot to avoid collisions with
obstacles, the global map image is usually dilated by the radius of the robots’
footprint. LetM(r) be a map with dilated obstacles of the radius r. The radius
is usually set by the maximum radius rmax among different robots’ footprint.

Figure 9.1: Formulation of velocity obstacles. (a) The workspace configuration
of the two robots RA and RB with their velocities vB and vB respectively. (b)
The translation into velocity space and the resulting VO for robot RA. (c) The
VO of an obstacle is truncated at τ = 2. (d) The approximating of truncated
VO.
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9.3.2 Problem formulation

From the current position ai(t) of the robot i, there are available pi paths to its
goal. Those paths can be established by running a random-related algorithm,
e.g. rapidly exploring random tree (RRT), several (multiple) trials or by using
different path finding algorithms, or even by using manual inputs from users. In
this work, the any-angle searching with Theta* [19] is utilised to generate paths
by using sequential inserting a set of found paths (the thickness of the path is
dilated by the radius of the robot) into an obstacle map. By this way, the next
found path will not overlap with the previous one. The any-angle searching
Theta* is chosen instead of using A* or Djikstra’s algorithms because Theta*
is able to provide the optimal path with few turns and in the form of a set of line
segments that reduces the changes in orientations to save energy by maintaining
a constant moving speed and orientation. Also, by this way, it is convenient to
find the intersections of two paths and define constraints for potential collision
areas.

There is a preferred velocity of a robot defined on each path in such a way
that the velocity remains constant along the path and smoothly decreases when
the robot approaches to its goal. Let Vi = {k|k ∈ 1, 2, ..., pi} be a set of the
available paths for robot i, pi be the number of paths, Pi = {v̄1

i , v̄2i , ..., v̄
pi
i } be

a set of preferred velocities on each path. The control velocity vi to determine
the next move of the robot is set to be close to one of the preferred velocities
as only one path is chosen among Vi. Let zi = [z1i , z

2
i , ..., z

pi
i ]T be the binary

vector to select the path, zki ∈ {0, 1}. The optimisation cost function Ci(vi, zi)
is defined as follows:

Ci(vi, zi) = ‖vi −
pi∑
k=1

w̄ki z
k
i v̄ki ‖2 +

pi∑
k=1

zki s̄
k
i

s. t.
pi∑
k=1

zki = 1

(9.3)

where w̄ki and s̄ki are the weight and the travelled lengths of the path. Without
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further constraints, minimising Ci(vi, zi) leads to the selection of the shortest
path among candidates.

The joint optimisation function for all robots to find their optimal paths and
velocities is expressed by,

C(v1, v2, ..., vn, z1, z2, ..., zn) =

n∑
i=1

Ci(vi, zi)

s. t.
pi∑
k=1

zki = 1,∀i ∈ [1, n].

(9.4)

Along with the cost function, a set of constraints are defined to find collision-
free paths for robots considering that they have different options to chose their
paths and also they need to avoid any dynamic obstacles on their moving ways.

Multi-path conflict-free constraints

Assume that two robots A and B are configured with multiple paths to goals
(Fig. 9.2). However, some specific combinations of the path for the two robots
could lead to a potential collision or deadlock. For instance, if robot A and B
selects the path p 2A and p 2B for their moving plans, there exists an overlap-
ping segment of the paths where the two robots may meet with each other. In
the case the overlapping segment is bounded by a narrow area surrounding with
static obstacles, there is a high possibility that the two robots are getting stuck
inside the region. A set of constraints are used to penalise such combinations,

CF = {zki + zlj ≤ 1|∀i, j ∈ A, k ∈ Vi, l ∈ Vj ,

if there is a potential conflict when robot i

chooses the path k, and j chooses l}.

(9.5)
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Figure 9.2: An example of creating multiple paths for two moving robots with
a possible collision zone.

Moving obstacle avoidance constraints

According to the definition of VO (Section 9.3.1), the collision between robot
A and another robot or a moving obstacle B is avoided if vA − vB /∈ VOτAB .
This non-convex constraint R2 \ V OτAB is approximated by three linear con-
straints nlAB .vAB ≤ blAB , with l ∈ 1, 2, 3[

cos (α+ β)

sin (α+ β)

]
vAB ≤ 0,[

cos (α− β)

sin (α− β)

]
vAB ≤ 0,

−pAB
pAB

.vAB ≤
pAB − r̄A+B

τ
,

(9.6)

in which pAB = aA − aB , r̄A+B = rA + rB , pAB = ‖pAB‖, α =

arctan 2(−pAB), and β = arccos (r̄A+B/pAB). The first and second con-
straints are to realise the right and left side of avoidance. The last constraint
makes sure that there are no collision up to up to t̃ = τ .

In the work of Mora et. al [18], this non-convex constraint is added into
the optimisation problem by introducing extra binary variables to select one
of these linear constraints to apply. However, the number of binary variables
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increases rapidly with respect to the number of agents. To avoid doing so,
one of the approaches used in this work is to add only one of the three linear
constraints where the constraint l is selected based on the current velocity of
robots at the current time tcurr,

l∗ =l nlAB .(vA(tcurr)− vB(tcurr))− blAB . (9.7)

Static obstacle avoidance

Since the static obstacles can be treated as moving obstacles with zero veloc-
ities, the static obstacle avoidance can be addressed using VO as presented in
Section 9.3.2. However, as the combined VO areas are proportional to the size
and the number of obstacles in the global map, adding many static obstacle
avoidance constraints may lead to deadlock situations where the optimisation
of the problem will not be able to find a feasible velocity. Therefore, in this
work, the static obstacle avoidance is handled with dynamic window approach
(DWA), that is described further in Section 9.4.1.

Finally, the overall optimisation problem is formulated, in which the opti-
mal control velocities and selected global paths [v∗1:n, z∗1:n] =

[v∗1, v∗2, ..., v∗n, z∗1, z∗2, ..., z∗n] are estimated in a joint manner,

[v∗1:n, z
∗
1:n] = argmin

[v1:n,z1:n]
C(v1, v2, ..., vn, z1, z2, ..., zn)

s. t.
pi∑
k=1

zki = 1,∀i ∈ [1, n]

CF (Constraint 1)

vi, vj /∈ VOτij ,∀i, j ∈ A (Constraint 2)

vi /∈ VOτioj ,∀i ∈ A, j ∈ Oi.

(9.8)
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9.4 Experiments

9.4.1 ROS-based implementation

The overall system presented in this work is implemented with a well known
platform for robots, robot operating system (ROS), with the specific version
of Kinetic Kame installed on Ubuntu 16.04. The evaluation is performed with
the comprehensive Gazebo simulator and robotic mowers developed based on
Husqvarna research platform (HRP). Those simulated robots are mounted with
an extra RGB camera, a depth sensor, and a LIDAR laser scanner. As the sys-
tem is operated in a centralised manner, a ROS node is designed as a server
to collect information about planned paths, position updates, and velocities of
all robots as well as moving obstacles detected by the robots in the working
domains. The optimal velocities are computed at the ROS centre node and are
sent back to the robots to control their movements. Human objects are mod-
elled as actors in Gazebo simulator with either a repeated predefined trajectory
or a random trajectory. The overall optimisation formulation for the whole
system is a mixed quadratic integer programming (MQIP) problem, and the
solution for the problem is calculated by IBM CPLEX solver.

To apply the estimated optimal velocities to control the movements of
robots, the DWA method is used. The DWA is a commonly sampling-based ap-
proach that allows to generate a set of possible trajectories of a robot in a short
time slot based on feasible velocities and limited accelerations. The trajecto-
ries are scored with regards to the distance between the robot and obstacles, the
distance to reach the goal, or the deviation from the global path. The trajec-
tories leading to collisions with static obstacles on the map are removed from
consideration. In this work, to utilise DWA to realise the estimated controlled
velocities for the robots, the mean velocity on each trajectory is approximated
by dividing the distance between the start and end of the trajectory with the
travelling time. The DWA scoring function therefore aims to find the trajec-
tory that minimises the differences between the trajectory’s velocity with the
targeted velocity. In this way, both static as well as dynamic objects are con-
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sidered when optimising the possible path for each robot.

9.4.2 Two robots crossing narrow corridor scenario

A typical scenario of two robots crossing a narrow corridor is evaluated in this
section to demonstrate how multi-path planning is used to address the conges-
tion problem. Two HRP robots are located at two different sides of the corridor.
By applying multiple path planning, each robot has found a set of two possible
paths from its starting position to its goal (Fig. 9.3). The two red paths are
the paths found by the robot 1, and the green ones are for the other. The yel-
low paths are the actual trajectories of the two robots after they have received
optimal velocity control from the centre ROS node.

If the first robot chooses to navigate through the corridor, the other one will
choose the other path in order to avoid congestion in the corridor although this
path is longer than its optimal route.

Figure 9.3: Multiple planned paths of two moving robots to reduce the risks of
collisions.
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9.4.3 Scenario with robots/humans together

A simulated working space with several narrow corridors as depicted in Fig.
9.4 is used to further evaluate the system on congestion and obstacle avoidance.
Three HRP robots are fixed with starting points but randomly assigned goals.
In a half of experiments, two robots are arranged on the two sides (top and
bottom) of the map (Fig. 9.4) and move from one side to the other. Two
human actors are added with predefined moving trajectories. The experiments
has been repeated 10 times and the proposed algorithm is compared with DWA
and DWA+VOs [17]. A collision happens if the distance between robot/robot
or robot/human is less than 0.5 meters regarding the size of robots. The results
(Table 9.1) show that the proposed algorithm is superior to previous works with
respect to ability to avoid collisions/dead-locks. Outside the narrow corridors,
the optimal control helps them to avoid collisions with humans (The minimum
distance between robots and humans in all experiments is 0.51 meters when
robots are controlled by the proposed navigation algorithm). This is shown by
the changing directions on the moving trajectories of different robots (Fig. 9.5).
It is noted that the human actors are only visualised on the Gazebo simulator.

Table 9.1: Minimum distance among robots (in meters), number of collisions,
and number of dead-locks over 10 trials.

Distance Collisions Dead-locks
Multi-path planning 0.56 0 0

DWA 0.21 3 5
DWA + VOs [17] 0.57 0 3

9.5 Conclusions

This paper presents a novel multiple path planning approach, which can deal
with an uncertain and dynamic environment containing non-static objects such
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Figure 9.4: The simulated working space with three robots and humans.

Figure 9.5: Moving trajectories of robots. The thin trajectories are the two
planned path while the bold ones are the actual moving trajectories of robots.
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as humans and robots. The presented method introduces effective means of
a global planner for avoiding deadlock situations as well as to overcome the
risk of congestion when multiple robots are navigated through, relative to the
robots, a narrow area. The combination of VO-based method and common
DWA planner allows to extract the velocities of both robots and moving obsta-
cles. Moreover, the velocities of the robots are transferred into an optimisation
problem to improve the performance of controlling the robots’ movements. In
addition, the ROS based communication channel allows the robots to negoti-
ate between the different possibilities to have collision-free path solutions, and
also to allow continuous updates of the positions of each obstacle in the envi-
ronment used in calculating new possible paths. The evaluations in the Gazebo
simulator has proved that the proposed approach with multiple path planning
is effective, safe and promising for an autonomous robot team. In the future,
the decentralised movement control unit will be investigated to reduce the de-
pendence of the planning algorithms on communication infrastructure. Also
the method can be improved by applying a delay to be lower the energy con-
sumption of robots. The robot may, instead of choosing the longer path, wait
for others to follow the shortest path to reach its goal. Finally, an extensive
evaluation with real robots will be planned.
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Abstract

The tremendous development in robotics, especially with autonomous controls,
has brought advantages in industrial production and daily life applications.
This paper presents a framework to tackle the path planning, one of the core
component of the robotic system, for multiple robots. The proposed approach
is modelled by an optimisation problem with a quadratic utilisation to min-
imise the travelling path length and to generate smoothly moving trajectories
with regularisation. Two additional constraints are introduced. The conges-
tion constraint aims to reduce the number of crosses on a specific path. By
avoiding the path with heavy traffic jams, the robots proactively avoid the pos-
sibility of congestion, which could lead to a collision or a deadlock to prevent
them reaching their goals. The other constraint deals with obstacle avoidance
when several robots meet each other at an instance of time. As the selection
of multiple paths is allowed, the whole problem is formed as a mixed integer
quadratic programming with integer variables to select suitable moving paths
for each robot. To deal with the high complexity of the problem with respect to
the number of robots, robots in the working space shares their computational
resources in a decentralised manner to search for the solution of the problem.
This is also to enhance the reliability of the system to reduce all dependency
on one central node. Extensive experiments have been performed to evaluate
the efficiency of the proposed solution.
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10.1 Introduction

Navigation whose the main aim is to find a clear path from a starting point to a
goal without inference with any static or moving obstacles has been identified
as one of the top grand challenges to create an autonomous control for a robot
system [1]. The complexity of the problem is high due to the vast combinations
of environments and situations which the robot is facing while moving on its
way. A solution for this problem using machine learning requires enormous
data to cover every cases, so that even effective learning techniques like deep
learning are still having limitations of handling untrained scenarios. A basic
form of artificial intelligence with a human-designed algorithm therefore plays
an important role to help an autonomous robot system to overcome the bound-
ary of the data used to train the system. Another advantage is that such an
algorithm provides a transparent solution to explain the decision-making pro-
cess, which is useful for the analysis, evaluation, and checking of the system’s
dependability.

The earliest human-designed approaches for the navigation problem started
with searching algorithm. A family of A* algorithms [2] uses a heuristic func-
tion to seek for a suboptimal solution and is still the best solutions to address
the path finding in many situations [3]. With regards to the changes of envi-
ronment, D* (Dynamic A*) [4] and its light version [5] only updates the path
based on the differences from the map. The input into A* and its variant is
in the form of a graph of a dense grid or a visibility graph to mark available
spaces to move and regions occupied by obstacles. In most of cases, the graph
is fully constructed before the searching started. In another approach, explor-
ing the environment is performed in parallel while seeking for the destination.
Rapidly-exploring random trees (RRTs) [6] generates samples of the path un-
til reaching the goal. In overall, the way to construct a complete path from a
staring point to a goal works effectively for static obstacles. To handle mov-
ing obstacles, the temporal dimension as well as dynamics of the obstacles
like velocity or acceleration need to be taken into account. This increases the
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searching space and the problem is even harder considering some uncertainty
to estimate the exact location of the object.

As yet, the obstacle avoidance is handled separately after the global path
is established. The most common way to handle local obstacles is sampling
forward trajectories of a robot based on its current locations and dynamics
information [7]. The trajectories are weighted based on the closeness to the
preferred global path and the interference with any objects in an obstacle map.
However, this method aims to prevent collisions in a passive manner, meaning
that the velocity of moving obstacles are not taken into account. Another pro-
posed solution with velocity-obstacle (VO) [8] defines prohibited regions in a
velocity space where a velocity of a robot should be outside to avoid collisions
with any moving obstacles. A light computational solution with linear pro-
gramming optimisation was developed with the optimal reciprocal collision-
avoidance (ORCA) [9] to estimate optimal velocity with respect to a set of
VOs. To deal with the return of velocity back to its previous value before escap-
ing collisions, the hybrid reciprocal velocity obstacle (HRVO) [10] estimates
the velocity on one side of the half plane of all VOs. A generalised velocity
obstacle (GVO) [11] extends VO to cover different types or robots. However,
to handle static obstacles, they need to be presented in velocity space, corre-
spondingly increasing the complexity of the navigation algorithm to deal with
a highly clustered map, especially when the shape of the objects must be taken
into account. Executing VO-based navigation algorithm on a real map could
lead to a deadlock where a robot get stuck into a place or a live-lock where a
robot just goes around and takes very long time to finish its path. This problem
happens because of the focuses of the obstacle avoidance algorithm on local
information to handle collisions. After the global paths are assigned for each
robot, all robots only follows their single path without recognising that the path
can lead to a congestion in a narrow area. Therefore, a search for global path
should include all robots so that each robot is able to choose a less crowded
way to go.

The approaches with multi-agent path finding (MAPF) [12] include multi-
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ple robots in the searches for their paths to goals without conflicts and optimise
a utility function such as the total travelling lengths of robots. As the path find-
ing is performed on a graph, a conflict happens whenever two robots occupy a
same vertex or link at an instance of time. The complexity of a MAPF problem
is NP-hard in general, meaning that none algorithm is proven to return solu-
tions in polynomial time. A suboptimal solution has been found by a family
of A*-based MAPF algorithms. For instance, conflict-based search (CBS) [13]
generates a tree search starting with a root node with all shortest paths of robots
to their goals. The tree search is expanded with child nodes to avoid collisions
with constraints and then refine global paths accordingly. Improved CBS like
cooperative A* [14] or priority-based search [15] prioritise the order of robots
based on the crossing number of the shortest paths of a robot with those of oth-
ers. Another way to tackle MAPF is to relax it into integer linear programming
with the time-expanded network [16], which models the transitions of robots
in graph from one vertex to the next with respect to time. However, MAPF
solvers cope with fixed trajectories of robots where their arrival time to reach
a vertex or a link is well predefined. Most of those solvers skip the dynam-
ics of robots, which constrain the movements of robots so that they may slip
from their trajectories due to inertia and the time reaching a target is not always
predictable.

In overall, the limitations of aforementioned works are described in one of
either two cases: (i) The lacking of multiple path selection leads to a dead-lock
when two or more robots enter a small area which does not fit them; or (ii) Mul-
tiple ways for robots are taken into account but do not handle unpredictable or
unexpected moving robots and obstacles. In order to address such problems,
this paper proposes a multi-path planning for multi-robots with obstacle avoid-
ance and congestion control constraints together. The collisions with obstacles
are avoided by defining a set of constraints in a VO space. Meanwhile, the
congestion control constrains the number of robots allowed to going through a
place. The whole framework is formulated as a mixed-integer quadratic pro-
gramming (MIQP) problem, which is solved by the operator splitting quadratic
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program (OSQP) [17] in a decentralised manner. The contributions of the pa-
per are three folds: (i) the allowance of multiple path selection helps to mitigate
deadlocks, (ii) the integration of obstacle avoidance into multi-agent path plan-
ning, and (iii) the implementation of the solution in decentralised manner to
make it applicable to multiple mobile robots.

The rest of this paper is presented as follows. The mathematical model
of the proposed framework is formulated in Section 10.2. Continuously, the
decentralised optimisation with OSQP to find an optimal moving path and ve-
locity for each robot is described in Section 10.3 with evaluations on extensive
experiments given in Section 10.4. The paper is concluded with discussions in
Section 10.5.

10.2 Problems

10.2.1 Problem statement

The navigation problem to be addressed in this paper is to find the way to drive
multiple robots to their goals while minimising an objective function such as
the total travelling path or travelling time of all robots. Besides, robots need to
avoid collisions with static obstacles from environments and mutual collisions
with each other.

Preliminaries. It is assumed that robots are moving on 2D-plane where
the location of a moving object is presented by a vector x(t) ∈ R2 (or x in
short) which shows the changes of 2D-coordinate of the object over time t.
The matrix is capital and bold X, while a set is shown by a calligraphic letter
X .

Robots. A set of N robotic agents A = {a1, a2, ..., aN} are coped in this
work. All robots are considered identical with a unit-circle model (a circle with
the radius ra). The position and the velocity of a robot i are expressed by ai(t)
and ȧi(t) respectively.

Footprints. The footprint of each robot is denoted by a circle Fi(xi(t)) ⊂
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R2 and, which is a close disk at position xi(t) and radius r.

Map and static obstacles. A binary grid mapM in 2D is used to describe
the working environment. The black pixels are the empty areas, while a set of
white pixels S are static obstacles. Taking into account the size of a robot, S is
dilated by the radius r to have Sr to allow a robot to move freely inM\ Sr.

The main problem to be addressed in this work is to seek for the optimal
paths for every robots to reach their goals while avoiding any collisions with
static and moving obstacles on their moving way. Let t0i and t1i be the start-
ing and ending time for a robot i to travel along its path. The reaching goal
statement is expressed by

Fi(ai(t1i )) ∩ Gi 6= ∅, (10.1)

where Gi is the close disk at the goal with radius rg . The constraints to prevent
mutual collisions among robots and between robots and static obstacles are
given by,

Fi(ai(t)) ∩

 ⋃
j∈{1,2,...,N},j 6=i

Fj(aj(t)) ∪ Sr

 = ∅, ∀t ∈ [t0i , t
1
i ].

(10.2)

10.2.2 Obstacle avoidance constraint

The constraint to prevent collisions of robots with obstacles is defined with
VO [8]. Assume that within a short duration of time, a robot is moving on a
straight line with a constant velocity vA = ȧi(t0). The position of robot is
simply calculated by

a(t) = a(t0) + (t− t0)vA, t ≥ t0, (10.3)

where t0 is the initial time and a(t) is the position of robot at the current time
t respectively. With respect to an approaching obstacle O, a set of relative ve-



178 Paper D

locities vAO = vA− vO, possible to cause the collision within a short duration
τ , are defined as a velocity obstacle,

VCτAO = {vAO|∀t ∈ [0, τ ], ‖aA − aO + tvAO‖ ≤ rA + rO}. (10.4)

Beside moving objects, an obstacle also includes other robots in local range
to avoid mutual collisions among them. The velocity obstacle VOτAO is pre-
sented by a non-convex space within a truncated cone, limited by three straight
lines. The collision is avoided if the velocity of robot lies outside the veloc-
ity obstacle vA − vO /∈ VOτAO. This is expressed by three linear constraints,
nlAO.vAO ≤ blAO, with l ∈ 1, 2, 3[

cos (α+ β)

sin (α+ β)

]
vAO ≤ 0,[

cos (α− β)

sin (α− β)

]
vAO ≤ 0,

−pAO
pAO

.vAO ≤
pAO − r̄A+O

τ
,

(10.5)

where pAO = aA−aO, r̄A+O = rA+rO, pAO = ‖pAO‖, α = arctan 2(−pAO),
and β = arccos (r̄A+O/pAO). The two first constraints are the two left and
right half planes outside of the cone while the last one is to prevent the colli-
sion up to t̃ = τ . At least one of constraints has to be satisfied, therefore extra
binary variables are introduced to choose the constraint to be applied,

ξlnlAO.vAO ≤ blAO∑
l

ξl ≥ 1, ξl ∈ {0, 1}, l ∈ 1, 2, 3.
(10.6)

10.2.3 Congestion control constraint

The obstacle avoidance constraint helps to push robots far away from the mov-
ing directions of obstacles in a local range. However, if there are many robots
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routed into one place, a robot as trying to avoid each other may need a very
long time to escape from the crowd. This may lead to a deadlock situation
where a robot is not able to approach to its goal. A proposed solution to mit-
igate this issue is control congestion in such as way that a limited number of
robots are allowed to enter a narrow crowded area and a robot should avoid a
path with many intersections. To do so, each robot needs to be planned with
several paths to the goal and to be able to choose the best among them to avoid
congestion. The robots in the same working space should communicate and
work together to find an optimal configuration which satisfies all.

As multiple paths are planned for each robot, the intersections of the paths
construct a graph where the vertices represent the cross of path and the links
connects two vertices on the moving paths of robots. A robot should avoid
a node or a link which is potentially occupied by several robots at the same
time. To establish alternative global paths, a random generation of paths like
rapidly exploring random tree (RRT) [6] is one of the options. The path can
also be found by a manual configurations from users. However, in this paper,
in order to prioritise the travelling path with an optimal minimal distance, a
conventional global path planning is executed multiple times. The paths found
from the previous search are dilated and inserted into the binary map as static
obstacles so that the next path is separately found. The alternative path plays
an important role if the robot needs to pass through a narrow area with the pos-
sibility of facing another robot. On an empty space, the multiple paths created
by this approach can be close to each other. Therefore, the separation is defined
as the terminal condition to decide to keep searching the next path or not. Let a
path be presented by a sequence of points in 2-D (dimensional) space. With two
paths denoted as S1 = {s11, s12, ..., s1l1} and S2 = {s21, s22, ..., s2l2} where l1, l2
are the number of points of the two paths respectively. Let d11, d

1
2, ..., d

1
l1

be a
set of minimum Euclidean distance of each point ∀i, s1i to S2 and d21, d

2
2, ..., d

2
l2

a set of minimum Euclidean distance of each point ∀i, s2i to S1. The separation
of two paths is measured by d(S1, S2) = max{d11, d12, ..., d1l1 , d

2
1, d

2
2, ..., d

2
l2
}.

Also, at most N paths are allowed for each robot to reduce the complexity of
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the whole system.

After multiple ways to the goal are established, the congestion control is re-
alised by a constraint to limit the number of robots passing through a particular
area and a utilisation term to penalise the paths with many crossings as shown
in Figure 10.1. Obviously, there is a risk that two or more robots get stuck in-
side a narrow and long region, e.g., a corridor, when they approach each other
in opposite directions. Therefore, the former term decides the bound on how
many paths get access to the same link. In general, the congestion constraints
for n-paths going through a narrow area ζ is given by

CCζ = {
n∑
i=1

z
k(i)
i ≤ cζ |i ∈ A, k ∈ Vi} (10.7)

when robot i chooses the path k(i) and cζ is the maximum number of robots
allowed go through the conflict area ζ.

Figure 10.1: An example of possible congestion with multiple paths. The fist
path p1 goes through a narrow corridor with high changes of blocking another
robot entering the corridor from two opposite sides. Meanwhile, the other path
p2 also faces some risks of collisions with three crossings.
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10.2.4 Static obstacle avoidance constraint and motion con-
straint

The requirement of no collisions with static obstacles on the environment is
stated by the static obstacle avoidance constraint as defined above in equation
(10.2) as

SC[t
0
i ,t

1
i ] = {ai(t)|Fi(ai(t)) ∩ Sr = ∅, ∀t ∈ [t0i , t

1
i ]}. (10.8)

For each robotic platforms, there are certain limits on the acceleration,
steering angles, etc. dependent on the dynamic model of robots. Those limits
are transformed into a set of motion constraints. The motion constraints accept
only a set of valid velocities of forward trajectories u(s0, v, t) respecting to all
dynamic constraints from the initial state of robot s0 = [ai(t0), ȧi(t0), äi(t0), ...]

MCτ = {v|t ∈ [0, τ ], u(s0, v, t) satisfies to all

dynamic and kinematic constraints}.
(10.9)

Instead of including SC[t
0
i ,t

1
i ] and MCτ constraints in velocity space, a sam-

pling method is applied to generate a set of valid trajectories within a window
time in a configuration space, i.e. the space of feasible locations where a robot
is able to reach. This mechanism of trajectory rollouts has been well developed
in DWA-planner [18] in ROS.

10.2.5 Completed problem

The main objection function of the problem includes two components. The first
quadratic term is to minimise the robot velocity close to the selected path and to
make the moving trajectories smooth. Let Vi = {k|k ∈ 1, 2, ..., pi} be a set of
the available paths for robot i, pi be the number of paths, Pi = {v̄1i , v̄2

i , ..., v̄
pi
i }

be a set of preferred velocities on each path. The control velocity vi to deter-
mine the next move of the robot is forced to be close to one of the preferred
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velocities as only one path is chosen among Vi. Let zi = [z1i , z
2
i , ..., z

pi
i ]T be

the binary vector to select the path, zki ∈ {0, 1}. The quadratic term Qi(vi, zi)
is defined as follows,

Qi(vi, zi) = ‖vi −
pi∑
k=1

w̄ki z
k
i v̄ki ‖2 + (vi − vt−1i )TL(vi − vt−1i )

s. t.
pi∑
k=1

zki = 1

(10.10)

where w̄ki is the weight of each path, L is a semi-positive matrix to penalise the
rapid changes in speeds and orientations [9]. The other non-quadratic term of
the optimisation problem is given by

Ri(zi) =

pi∑
k=1

zki

(
wss̄(z

k
i ) + wcs̄(z

k
i

)
s. t.

pi∑
k=1

zki = 1

(10.11)

where ws and wc are the weights of two terms, s̄(zki ) =
∫ t1i
t0i
ai(t) dt is the total

length of travelling path from time t0i to t0i , and ai(t) is the position of robot i
at time t. The second term related to the number of crossing on the path and is
computed by c̄(zki ) =

∑
l Sl where robot i chooses the path k and there is an

intersection of the path k with the intersection l. Here {Sl|l = 1, ..., L} is a set
of the weight of intersections, Sl is computed by the number of paths passing
intersection l, and L is the total number of intersections.

The joint optimisation function for all robots to find their optimal paths and
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velocities is expressed by,

F (v1, v2, ..., vn, z1, z2, ..., zn) =

n∑
i=1

Qi(vi, zi) +Ri(zi)

s. t.
pi∑
k=1

zki = 1,∀i ∈ [1, n].

(10.12)

Along with the cost function, a set of constraints are defined to find collision-
free paths for robots considering that they have different options to chose their
paths and also need to avoid any dynamic obstacles on their moving ways.

Finally, the overall optimisation problem is formulated, in which the opti-
mal control velocities and selected global paths [v∗1:n, z∗1:n] are estimated in a
joint manner,

[v∗1:n, z
∗
1:n] = argmin

[v1:n,z1:n]
F (v1, v2, ..., vn, z1, z2, ..., zn)

s. t.
pi∑
k=1

zki = 1,∀i ∈ [1, n]

CC (Constraint 1)

vi, vj /∈ VOτij ,∀i, j ∈ A (Constraint 2)

SCi ∀i ∈ A (Constraint 3)

MCτi ∀i ∈ A (Constraint 4)

(10.13)

10.3 Decentralised Optimisation with OSQP

Basically, it requires highly computational resources to solve equation (10.13)
in a central manner with respect to the number of discrete variables propor-
tional to the number of robots in the working space. Another drawback is
that all robots have to depend on a single node to receive their assigned path
before they start moving. Therefore, this paper focuses on a decentralised im-
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plementation to tackle the optimisation where each robot estimates its optimal
solution separately. The joined optimisation problem is divided into two parts:
global path selection (Section 10.3.1) and local movement planning (Section
10.3.2). The global path planning focuses on finding a set of optimal paths
z∗1:n among multiple choices with the objective G(z1:n) =

∑n
k=1Qi(vci , zi) +

Ri(zi) and Constraint (1), where vc1:n is the current velocity vector of each
robot i. Once the global path is chosen, the optimal velocity is found by opti-
mising

∑n
k=1Qi(vi, z∗i ) with fixed term z∗1:n. Instead of solving

∑n
k=1Qi(vi, z∗i )

in a centralised manner to find the optimal set v∗1:n, the utility Qi(vi, z∗i ) with
Constraint (2) is optimised locally on each robot to find v∗i . The rest of vari-
able vj ,∀j 6= i inQi(vi, z∗i ) is fixed from the last known velocity vc1:n. Finally,
to satisfy Constraint (3) and Constraint (4), the optimised path and velocity is
mapped from a velocity space into a configuration space in Section 10.3.3 to
address the collisions with static obstacles and to bound the motions of robots
within their dynamics limits.

10.3.1 Optimal global path search

Once a robot receives the multiple planned paths from the others, it performs
the search of the optimal global path to start moving. However, the complexity
of solving G(z1:n) with congestion constraints increases rapidly with respect
to the number of robots. Let m be the maximum number of paths assigned
for each robot, a worst-case complexity of the problem is O(mn), which is
exponential to the number of involved robots n. When n is small, a flat search
with implicit enumeration is deployed. All combinations of binary variables
are generated. Infeasible variables are pruned and the remaining is examined
to find the best solution. As the proposed solution aims at a light and fast
algorithm for mobile robot, the approximate search is applied when n is large.
Similar to the approaches presented in [19] and [20], not all but only a sub-
group of robots should be included in the search. The paths of other robots
are fixed with the last-known information. Maximum κ searching iterations is
performed with the limits of n′ robots. Therefore, the complexity is reduced



10.3 Decentralised Optimisation with OSQP 185

to O(κmn′). Once a robot finish a single search, it broadcasts its optimal
selection, which is utilised by other robots to formulate the next search. The
search stops when the maximum number of iterations is reached or the optimal
paths broadcasted by other robots remain unchanged in consecutive updates.
The overall algorithm to find an optimal path for each robot is summarised in
Table 6.

Algorithm 6 Global optimal path search.
Collect multiple paths assigned for each robot Vi,∀i = 1, ..., n
k ← 0
Ωi ← a set of n′ robots to be included in the optimal search for robot i
while k < κ do

Collect optimised path selection from all robots
Generate the all combinations of zk(j)j ,∀j ∈ Ωi, k(j) is the number of

paths of robot j
Prune infeasible combinations to generate a pool for the search
Find the optimal path of robot i with optimised G(z1:n) from the pool
Broadcast the optimised path found for robot i

end while

10.3.2 Mixed integer quadratic optimisation with OSQP

The optimisation of the utility Qi(vi, z∗i ) with Constraint (2) for a robot i is
described in Section 10.2.2 in the form of the MIQP with binary variables to
select linear constraints. In general, an MIQP is defined as

minimise f(x) =
1

2
xTLx+ cTx

subject to l ≤ Ax ≤ u

xi ∈ Z,∀i ∈ I,

(10.14)

where x ∈ Rn is a variable vector, L a n × n symmetric positive semidefinite
matrix, and a vector c ∈ Rn. The linear constraints are given by the m × n
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matrix A with the lower bound l ∈ Rm and upper bound u ∈ Rm. Here, m is
the number of linear constraints and n is the number of variables respectively.
Integer variables belong to the set I with the total number |I|. The MIQP is
NP-hard in general where the computation grow exponentially if the simple
approach of exhaustive search is used to iterate all integer combinations. Nu-
merous approaches to find optimal solution for MIQP are described in [21].
Among them, branch-and-bound is one the most efficient approach when con-
sidering about practical and commercial aspect. In this method, the search is
performed over a tree to explore feasible regions of integer variables and solv-
ing the quadratic problem (QP) in the form,

minimise
1

2
xTLx+ cTx

subject to l ≤ Ax ≤ u

xi ≤ xi ≤ x̄i ∈ Z,∀i ∈ I.

(10.15)

The algorithm starts with the root node, QP(−∞,∞), to find the first ini-
tial solution x̄. Once the problem QP(x, x̄) is solved with the fractional so-
lution, the branch creates two left (L) and right (R) nodes, QP(xL, x̄L) and
QP(xR, x̄R), with the parent bound (x, x̄) from one of non-integer elements
x̃i, (xL, x̄L) = (xi, bx̃ic) and (xR, x̄R) = (dx̃ie, x̄i). The heap H is used
to store the leaves in buffer before exploration. The important property of
the branch-and-bound allows sub-branches to be pruned to reduce searching
space. The algorithm is described in Algorithm 7 as follows.

To solve the sub-problem QP(x, x̄) efficiently, the alternating direction
method of multipliers (ADMM) [22] with OSQP solver is used (Algorithm 8).
The OSQP solver is well developed for embedded optimisation as it utilises the
heuristics with ADMM to be able to find solutions with good timing results.
Algorithm 2 describes OSQP in details where ρ, σ > 0 are the step size param-
eters, α is the relaxation parameter, and Π is the Euclidean protection operator.

With regards to the limitation of powers on embedded device, numerous
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Algorithm 7 Branch-and-bound algorithm for MIQP.
U ←∞,H ← QP (−∞,∞)
whileH 6= ∅ do

pop QP(x, x̄) fromH
solve QP(x, x̄) to get x̃, f(x̃)
if QP(x, x̄) is infeasible ∨ f(x̃) > U then

prune the current node
else if x̃ is integer feasible then

U ← f(x̃), x∗ ← x̃
prune nodes inH with their lower bound > U

else
choose a vector x̂ where its elements x̂i are integer
from the solution x̃, i ∈ I
if x̂ is infeasible ∧ f(x̂) < U then

U ← f(x̂), x∗ ← x̂
prune nodes inH with their lower bound > U

end if
branch node QP(x, x̄)

end if
end while

Algorithm 8 QSQP algorithm.
x0 ← ρ, y0 ← α, y0 ← σ
while termination condition does not meet do

solve [x̃k+1, tk+1]T from[
L+ σI AT

A − 1
ρI

] [
x̃k+1

tk+1

]
=

[
σxk − q
zk − 1

ρy
k

]
z̃k+1 ← zk + (1/ρ)(tk+1 − yk)
xk+1 ← αx̃k + (1− α)xk

zk+1 ← Π
(
αz̃k+1 + (1− α)zk + (1/ρ)yk

)
yk+1 ← yk +

(
αz̃k+1 + (1− α)zk − ρzk+1

)
end while
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heuristics and searching strategies have been developed to be able to return
sub-optimal solution within time constraints. There are three main directions
including tree exploration, selection of branching variables, and computation
of integer solution. The proper combination of those heuristics for embedding
environment has been explained in [21].

10.3.3 Movement planning in configuration space with mo-
tion constraints and static obstacle avoidance

In order to include static obstacles into the search in VO-space, each static ob-
stacle is by a VO with a polygon footprint and zero velocity. Consequently,
the number of both continues and discrete variables involved in the MIQP in-
creases proportionally to the number of static obstacles detected by the robot.
If the dynamics constraints of the robot are also considered, the complexity of
the MIQP becomes high to be handled effectively in the embedded hardware
of mobile robots. The solution for this issue is found by integrating the found
optimal global path z∗i and velocity v∗i into the DWA-planner available in ROS.
According to the motion constraints configured based on the robot’s model, the
forward trajectories of robots are sampled in configuration space. Trajectories
which possess collisions with static obstacles are discarded. The remained tra-
jectories are evaluated with DWA-cost functions to choose the best one moving
toward the goal and following the global path. Three additional implementa-
tions are introduced. First, DWA is configured with the optimal selection z∗i
among multiple global paths to the goal. Second, a trajectory is also removed
if the velocity of a robot on the trajectory (vωi where ω is the index of the tra-
jectory) violates Constraint (2), meaning that a robot has a risk to be collided
with others in a VO-space. The velocity vωi is calculated by dividing the differ-
ent vector between the end and start point of the trajectory with the travelling
duration of the robot on the trajectory ω. Third, the new cost function to min-
imise ‖vωi − v∗i ‖ is added into DWA. Apparently, all constraints are considered
at the final stage with DWA to find the best optimal movement for each robot,
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satisfied in both velocity space and configuration space.

10.4 Experimental Results

The proposed approach is implemented on the open source ROS [23] with the
Kinetic Kame version. The robot model Turtlebot 3 Burger [24] is used in all
experiments. This robot has a dimension of 0.14m×0.18m×0.19m (L×W×
H), maximum translational velocity 0.22m/s, and maximum rotational velocity
2.84rad/s. The robot is also equipped with 3600 laser distance sensor and 9-
DOF IMU for localisation and obstacle detection.

The simulations are executed on an Ubutu 16.04 Linux computer with a
quad-core 2.9Hz Intel i7 processor and 16GB memory. The comprehensive
Gazebo 9 simulator [25] is used. The dynamic motion and shape properties
of a simulated robot are configured with the same values from a real robot.
The navigation tasks are evaluated on a complex maze scenario [26] with a
square size 14m×14m. A total of 8 robots are used in this experiment where
their stating positions are roughly placed on a circle. The goals are uniformly
distributed on the map where the minimum distance between the start and goal
is 2m and the separation between two goals is also 2m. The visualisation of the
terrain configurations and robots placing on their starting locations in Gazebo
is give in Figure 10.2.

For congestion control, two restricted areas are defined to allows the max-
imum of 2 robots passing through. Also each robot is assigned maximum two
global paths to its goal. Global paths and those restricted area are visualised by
Rviz ROS [27] in Figure 10.3(A). Correspondingly, an example of an intersec-
tion map generated for congestion control is given in Figure 10.3(B).

The experiments are repeated 20 times, correspondent to 160 navigation
tasks assigned to 8 robots. The results of running conventional DWA are com-
pared with the proposed decentralised path planning (DPP) using only obstacle
avoidance (OA) constraint and using both OA and congestion control (CC).
With regards to CC constraints, the global optimal path search (Algorithm 6)
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Figure 10.2: The maze terrain with 8 Turblebot 3 Burger in Gazebo simulator.
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(A)

(B)

Figure 10.3: (A) Multiple global paths and (B) intersection map.
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needs to be performed at every robot. For a full search, the robot seeks for
the optimal global within the maximum 256 combinations of two paths for
each robot. For the limited search presented in this experiment, a robot con-
siders maximum 16 combinations within a group of 4 robots and the search is
repeated twice.

When only DWA is used, head-on collision happens if robots do not take
into account the moving directions to avoid each other. Once OA constraint is
applied, the head-on collision is mitigated but robots are facing more deadlocks
with traffic jams in narrow areas. The utilisation of CC helps route a part of
robots away from a heavy traffic area, correspondingly reducing dead-locks.
The overall results presented in Table 10.1 reveal that the proposed DPP with
OA+CC has reduced the deadlocks significantly even with a limited search and
that the OA constraint has played an important role to avoid head-on collisions.

Table 10.1: Comparisons between DWA with the proposed DPP.

DWA DPP w. OA DPP w. OA+CC DPP w. OA+CC
(limited search) (full search)

Head-on 37/160 2/160 4/160 0/160
collision
Deadlock 65/160 44/160 34/160 28/160

10.5 Conclusion

This paper has introduced a decentralised approach to tackle the navigation
tasks for multiple robots. The algorithm is divided into three stages. The first
stage deals with global path selection. Each robot has alternative paths to ap-
proach to its goal, therefore it needs to choose the path which has not only
a minimal travelling distance but also less interference with path from other
robots. Continuously, an approximate velocity amplitude and direction has to
be found for each robot to be aligned with the optimal path found from the
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(A)

(B)

(C)

Figure 10.4: (A) DWA, (B) DPP with OA, and (C) DPP with OA+CC.
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previous stage and to avoid the collisions with other moving robots. Finally,
the assigned moving velocity is verified in a configuration space to ensure that
the movement of robots satisfy the dynamic configuration of robots and no
collisions between the robot and static obstacles from the environment. The
optimisation is performed separately on each robot where the robots have to
broadcast their positions, moving velocities, multi-global paths, and optimal
path selection. The whole framework has been evaluated with experiments to
solve the effectiveness of combining congestion and obstacle avoidance into
path planning to reduce deadlocks and increase the successful rate of finish the
navigation tasks. In addition, the optimisation with MIQP problem is solved
with OSQP, which is an effective solver suitable with the limited computational
resource equipped on mobile robots.

In future works, a faster optimisation with machine learning can be de-
ployed to reduce the computational load on the mobile robots. To be applica-
ble in a large scale, proposed approach can be designed in a hierarchy manner
where robots close together in physical space are grouped into zone. The mov-
ing within a zone is performed as normal. In other cases, robots are routed
into a gateway at the boundary of the zone to transfer from one zone into an-
other. This approach actually adapts the divide-and-conquer mechanism into
the path planning problem. Finally, a large-scale evaluation will be planned
with hundreds of robots in experiments.
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