
Quantitative analysis of communication handling for
centralized multi-agent robot systems using ROS2

Lukas Johannes Dust
Mälardalen University

Västerås, Sweden
lukas.dust@mdu.se

Emil Persson
Mälardalen University

Västerås, Sweden
emil.persson@mdu.se

Mikael Ekström1

Mälardalen University
Västerås, Sweden

mikael.ekström@mdu.se

Saad Mubeen1
Mälardalen University

Västerås, Sweden
saad.mubeen@mdu.se

Emmanuel Dean
Chalmers University of Technology

Göteborg, Sweden
deane@chalmers.se

Abstract—Multi-agent robot systems, specifically mobile robots
in dynamic environments interacting with humans, e.g., assisting
in production environments, have seen an increased interest over
the past years. To better understand the ROS2 communication in
a network with a high load of nodes, this paper investigates the
communication handling of multiple robots to a single tracking
node for centralized multi-agent robot systems using ROS2.
Thereore, a quantitative analysis of two publisher-subscriber
communication architectures and a comparative study between
DDS vendors (CycloneDDS, FastDDS and GurumDDS) using
ROS2 Galactic is performed. The architectures of consideration
are a many-to-one approach, where multiple robots commu-
nicate to a central node over one topic, and the one-to-one
communication approach, where multiple robots communicate
over particular topics to a central node. Throughout this work,
the increase in the number of robots at different publishing
rates is simulated on a single computer for the different DDS
vendors. A further simulation is done using a distributed setup
with CycloneDDS. The simulations show that with an increase
in the number of nodes, the average data age and the data miss
ratio in the one-to-one approach were significantly lower than in
the many-to-one approach. CycloneDDS was shown as the most
robust regarding crashes and response time under system launch,
while FastDDS showed better results regarding the data ageing.

Index Terms—Multi-agent robot system, ROS2, Scalability,
Autonomous Transport Robots

I. INTRODUCTION

The number of robots acting in environments populated by
humans has increased significantly in recent years and is
expected to grow in the foreseeable future. This increase is
enhanced by the transition from the overall goal of creating
robots with highly specialised tasks operating in a controlled
and defined environment to the goal of building robots able
to execute a variety of tasks while operating in a dynamic
environment or even collaborating with humans [1]. Original
Equipment Manufacturers (OEMs) like Volvo GTO have fol-
lowed the trend of developing and researching the creation of
a multi-agent robot system to assist in transporting material in
manufacturing plants using robot operating system 2 (ROS2)
[2]. A centralized system has been created, where the robots
are controlled and tracked using central computers, keeping
each robot’s computing power and intelligence limited to a
minimum. ROS2 provides a framework for the distribution and
communication between the different algorithms. However,
the chosen centralized processing also relies on each robot’s
information, which contains the robot state data, e.g., battery

1IEEE senior member

state, odometry data, and load status. A sequence for robots pe-
riodically sending status information to a centralized track unit
which forwards the collected information to further processing
can be found in Figure 1. In data processing, the data age

Fig. 1: Periodic communication of state information of robots
towards a centralized tracking unit and further processing

[3] also plays a central role. For the communication interface
between the robots and the tracking unit, different architectures
can be built using ROS2. In order to allow dynamic scalability
and investigate the capabilities of ROS2, this paper aims to
study the two mentioned communication architectures and the
use of different available DDS vendors.

A. Paper contributions

In the context of the communication handling of multiple
robots to a single tracking node for centralized multi-agent
robot systems, the one-to-one and multi-to-one communication
architectures are presented and investigated in simulation. The
performance in terms of data age and update misses of the two
communication architectures are evaluated by simulation on a
single computer as well as a distributed setup. Furthermore, the
performance of the Data Distribution Service (DDS) vendors
CycloneDDS, FastDDS and GurumDDS is evaluated on a
single computer. The industrial use case, considered in this
paper, is based on a legacy system built with a centralized
architecture. In the simulation, we propose a dynamic con-
nection handling approach utilizing ROS2 publisher-subscriber
and service-client communication. The main contributions in
the paper are summarized as follows:
• we evaluate, in simulation, the performance of a multi-to-

one, and one-to-one communication architecture in terms of



data age and update misses for an increase in the number
of connected robots and different data publishing rates;

• we compare ROS2 Galactic using the DDS vendors Cy-
cloneDDS, FastDDS and GurumDDS in the context of data
age, update misses and CPU utilization.

B. Organization of the paper
The remainder of the paper is organized as follows. Section II
provides a review of the related works. Section III introduces
the two investigated communication architectures. Section
IV presents the system under investigation as well as the
experiment results, evaluation and analysis. Finally, Section
V concludes the paper with final remarks.

II. RELATED WORK

The usage of ROS2 in multi-agent robot systems is relatively
new, and there have only been a few actual physical implemen-
tations of holistic systems. However, the use and performance
of ROS2 in this context have seen a rising interest.

A. Multi-agent robot systems and ROS2 framework
First, there were first works conducted on the definition of
multi-agent robot systems. Dudek et al. [4] defined primary
taxonomy and classification of design choices and communi-
cation approaches for such systems. In the context of ROS2,
there have been created frameworks and toolboxes with archi-
tectures for the development and deployment of multi-agent
systems by Dehnavi et al. [5], Testa et al. [6] as well as
McCord et al. [7]. Different system architectures for multi-
agent systems using ROS are proposed by Vorapojpisut et
al. [8] for the augmented environment as well as by Conte
et al. [9] in the context of autonomous surface vehicles and
Noh, and Park [10] in a manufacturing system. Barcis et al.
[11] are delivering a proof of concept for robot collaboration
and interaction in ROS2. Erös et al. [12] are investigating
architectures for communication in ROS2 networks for control
in automation systems. They are proposing different meth-
ods for many-to-one connection, but neither a performance
evaluation nor the context of multi-agent robot systems is
given. Our conducted research is based on a designed system
with a given model, where a centralized system architecture is
chosen. Furthermore, none of the found papers addresses the
issue of dynamic connection handling in the context of ROS2
systems

B. ROS2 execution and real-time
Since the release of ROS2, there has been quite extensive
interest and research towards the analysis of ROS2 execu-
tion and performance, which is significant for evaluating the
two proposed communication architectures. Response time
analysis for system architectures using a ROS network is
proposed by Blaß, and Casini [13] as well as Tang et al. [14].
Li, Hasegawa, and Azumi [15] are proposing a performance
analysis framework for ROS2 measuring callback execution
time. Casini et al. [16] are describing the execution model
for ROS2 nodes. By analyzing the ROS2 source code, the
behaviour of the execution of nodes is defined and described.
It is stated, that a node takes the latest available data from the
DDS from all different subscribers at once and executes all
relating callback before new data is taken. The execution of the
callbacks is prioritized, while timer callbacks have the highest
priority and service callbacks the lowest priority leading

subscriber callbacks having the mean priority. Furthermore,
a theoretical analysis of the task execution and processing
of information for ROS2 processing chains has been pro-
posed. Theoretical analysis for investigating and improving
existing systems is desirable. However, no holistic method is
proposed to analyze a distributed multi-agent robotic system.
Towards execution of task under real-time constraints in a
ROS network, research in exploring the capabilities of ROS2
has been conducted by Yang and Azumi [17] as well as
Maruyama et al. [18]. Park, Delgado, and Choi [19] and
Blass [20] are continuing those investigation in the real-time
capabilities of ROS and performing studies in the context
of multi-agent robot systems. Furthermore, Puck et al. [21]
are proposing ROS2 real-time control architecture in time-
synchronized networks and investigating real-time capabilities.
Distribution and synchronization in computation for multi-
agent robot systems towards real-time control of robots are
addressed by the work of Puck and Keller [22]. Real-time
communication inside ROS2 networks offers further potential
in improving the end-to-end delay of the system. Gutiéerrez
[23] has researched communication for real-time robotics.
These capabilities for real-time underline the goal of fast and
reliable working systems. Our research aims not to implement
real-time features. However, those approaches might be used
for future work to consider improvements for the execution of
the communication and the connection handling.

C. DDS and communication in ROS2
Another vital part of investigating ROS2 is the communication
and the DDS of ROS2 systems. Kronauer et al. [24] are
researching end to end latency for distributed ROS2 systems
using standard QoS settings and different DDS. Guidelines
are proposed for distributed ROS2 architectures to reduce
the latency overhead. Maruyama, Kato, and Azumi [25] are
exploring the potential and constraints of DDS and ROS2.
Limitations regarded are the overhead of transforming data
to DDS messages. Chen [26] is investigating network perfor-
mance of ROS2 systems and investigates QoS and security
constraints. Investigations are provided until a network of up
to five nodes. Several theoretical approaches for analyzing
the behaviour of execution and processing chains in ROS2
are provided in the conducted research. Those approaches are
significantly restricted in their applicability, as simplifications
and requirements are made for creating those theoretical anal-
ysis approaches. Our work aims to expand the evaluations on
publisher-subscriber communication, and setting the context to
multi-agent-robot systems. The related work can be used as a
good framework, guiding to the research in this paper. To the
best of our knowledge, an experimental evaluation regarding
a high number of connected nodes under the aspect of data
age and update misses has not been conducted and is therefore
missing for an evaluation of ROS2 in the stated context.

III. COMMUNICATION ARCHITECTURES

In ROS2 a subscriber-publisher communication between nodes
(a process that performs computation) can be used, that is
channeled through topics. One-to-one communication, where
each robot publishes its data on a separate topic, and a many-
to-one architecture, where all robots publish their data on the
same topic, are the most common architectures and evaluated
in this paper. A many-to-one, see Figure 2a, and a one-to-
one topic configuration, see Figure 2b. The ROS2 nodes are



marked as ellipses in the figures and the specific topics as
boxes. Throughout this paper, the many-to-one (M2O) and
one-to-one architectures (O2O) are defined as follows. In
M2O, several nodes communicate to a single node by utilizing
only one topic, where all are publishing their messages. In
contrast, if each publisher has its topic, it is considered O2O.
In M2O, one subscriber reads from one topic, in which
several nodes publish. In contrast, in O2O, the subscriber
reads from several topics published by each individual node.
Many different types of hybrid configurations could be used,
for example, grouping publishers to specific topics, but this
configuration is out of the scope of this paper. A significant
concern with the M2O configuration is that the subscriber
cannot discriminate the information between publishers. A
case of high network utilization leads to message losses
as other nodes overwrite messages before they are read. A
one-to-one architecture may improve the separation between
subscribers. In the case of overwriting of data, updated data
of a robot is still available. However, this architecture could
produce undesired side effects, such as architecture complexity
and processing overhead.

/publisher_1

/publisher_2

/publisher_N

/topic /subscriber

/publisher_...

(a) Communication architec-
ture Many-To-One (M2O)

/publisher_1

/publisher_2

/publisher_N

/topic_1

/subscriber

/topic_2

/topic...

/topic_N

/publisher_...

(b) Communication architec-
ture One-To-One (O2O)

Fig. 2: Architectures under consideration.

IV. EXPERIMENTS AND EVALUATION

An abstracted version of a multi-agent robot system is simu-
lated, focusing on the central problem under investigation to
test the performance of the two communication architectures.
The experimental settings and the results are presented in this
section.

A. Simulated system
A ROS2 node system is created based on a legacy system.
An overview of the ROS2 system is given in Figure 3,
where the ellipsis represents the participating nodes, and the
boxes represent the topics and service connections between
the nodes. The system consists of robot nodes, one central
tracking node, one visualisation node, and one for conducting
measurements. In the legacy system, this tracker node is
responsible for receiving the state information sent periodically
from the robots and creating a list containing the status of all
the robots. To allow dynamic connection handling a process
that allows new robots to signal the required participation
or disconnection in the network needs to be defined. ROS2
service-client communication as synchronous and directed
communication for the request is a good base for implementing
such a procedure. A service can be created inside the tracker,
which can be called by the robots individually, sending their
base information with the request. As the communication is
synchronous and directed, addressing the acknowledgement to
the right robot is guaranteed. That ensures that a robot firstly

participates when the tracker has processed the request. The
implemented approach follows three main steps:
1. The robot is launched and requires to connect to the net-

work. The client inside the robot is calling the connection
service in the tracker.

2. The service inside the tracker creates the required pub-
lishers and executes the required id handling. After the
creation, an acknowledgement is sent back to the robots.

3. The robot receives the acknowledgement and creates the
publisher and timer for publishing the state information
periodically.

In the system, the selection between the two communication
architectures can be made with parameters at system startup.
The architectures are marked in the figure with dotted boxes
representing the state topic in the O2O and the solid box
for the O2M architecture. The execution of the nodes in the
network is as follows. The robot nodes are executed period-
ically, creating and sending their state information received
and collected by the tracker node. The tracker node is then
periodically publishing a state list, which is used for visual-
ization in RVIZ and received in a node, which in the legacy
system would do further processing, for example, fleet control
using the robots’ state. In our case, the node is used to take
measurements. Throughout the execution of the nodes, each
state information will get four different timestamps, marked
T1-T4 in Figure 3. T1 is taken when the state information is
created for each robot. T2 is taken once the state information
is received from the tracker. T3 is taken when the state list is
created and transmitted, while T4 is taken when the state list
is received in the Measurement Receiver node. A sequence
diagram for periodic information update of connected robots
can be foun in Figure 1.

Robot 1

Robot 2

Robot n

Connection Service
Connect
Disconnect

Robot Tracker

Measurement
Receiver

Measurement Service
Start Measurement

Visualisation

Robot
State List

T1 T2 T3 T4

Robot
State

Robot
State n

Robot
State 1

Robot state
transmission Tracking State list

tansmission

Fig. 3: Designed experiment system. The ROS2 nodes are
marked as ellipses and the specific topics and services as
boxes. The dashed and solid boxes for the robot state topic
are representing M2O and O2O communication. T1-T4 are
presenting timestamps taken in the system.

B. Experiment design
The created system is used to perform experiments to test and
evaluate a ROS2 system using the connection handling and the
two different architectures and DDS vendors. The performance
of the two communication architectures is evaluated using
the ROS2 distribution Galactic and the DDS vendors Cy-
cloneDDS, FastDDS and GurumDDS. The publishing periods
for the robot and tracker nodes are set to be 1 ms and 2
ms, which are desired values in a legacy system. At the same
time, the system consists of 10, 30, 50, 70 and 90 robots. The



system will be launched on a single computer with the two
architectures for each possible parameter combination using
the PC1 from Table I. Each measurement is configured to
take 500 samples of the state list, storing all the timestamps
of 500 state list updates at the end of the processing chain.
Furthermore, the CPU utilization is measured as well. The
timestamps are used to calculate the average data age and the
amount of update misses of data, meaning that a robot was
not updating its state data from one period to another.
In the second step of the evaluation, the default configuration
of ROS2 Galactic and CycloneDDS is used in a distributed
setup. The computers PC2 and PC3 are used to execute the
robots. The tracker is executed on PC1, while the measurement
node is executed on PC4. The clocks of the computers are syn-
chronized using chrony with the tracker computer configured
as the NTP server and the other three computers as the NTP
clients. The measurements will be taken for 1 ms update rate
and 10 to 150 robots in steps of 20 robots. The evaluation
and data processing results are presented in the following
subsection.

TABLE I: Hardware setup for experiments part 1

PC1 PC2, PC3, PC4
OS Ubuntu 20.04.4 LTS x86 64 Ubuntu 20.04.4 LTS x86 64
Kernel 5.13.0-40-generic Linux 5.17.5-76051705-generic
CPU Intel Xeon E5-1660 Intel(R) Core(TM) i5-9500

v2 (12) @ 4.000GHz CPU @ 3.00GHz
GPU NVIDIA Quadro K2000 UHD Graphics 630
RAM 32GiB 16GiB

C. Results
The results from the timing measurements regarding the aver-
age data age can be found in Table II for 1 ms and in Table III
for 2 ms. The Figure 4, Figure 5 and Figure 6 are showing
the composition of the data age for the different architectures
using the different DDS vendors for the 1 ms update period.
While performing the measurements for the FastDDS, it was
seen that the system was crashing randomly with the exit code
-6 (client will not receive response) after a number higher than
50 robots in the system. Connections and measurements were
possible after several systems relaunches, but connecting 90
robots to the system was impossible during the experiment.
For GurumDDS, at the setup with 90 robots at a 1 ms update
period, the connection service was not responding for the last
robots, and the measurements could not be taken.

TABLE II: Average data age with 1ms update period

DDS CycloneDDS FastDDS GurumDDS
Robots M2O O2O M2O O2O M2O O2O

10 0.930 0.990 0.580 0.790 0.900 0.910
30 15.520 1.870 0.870 0.690 2.800 2.080
50 70.120 11.400 4.810 1.470 24.470 13.740
70 173.140 16.860 58.370 20.730 355.120 98.540
90 811.260 62.460 - - - -

For all measured configurations, it can be seen that the average
data age increases considerably at a specific number of robots,
but much more for M2O than for O2O, except for GurumDDS
with 50 and 70 robots for 2 ms date period. Furthermore, it
can be seen that in O2O, the most significant part of the data
ageing occurs between timestamp T2 and T3. In comparison,

TABLE III: Average data age with 2ms update period

DDS CycloneDDS FastDDS GurumDDS
Robots M2O O2O M2O O2O M2O O2O

10 1.334 1.590 1.259 1.122 1.181 1.837
30 2.502 1.788 1.340 1.354 1.671 1.707
50 241.665 2.310 1.710 1.566 405.730 467.093
70 295.255 13.753 4.697 2.865 83.183 1852.359
90 228.581 22.758 - - 705.112 469.506

0 50 100

Number of robots

0

100

200

300

400

500

600

700

800

900

D
at

a 
ag

e 
in

 m
s

Average data age M2O

T3T4

T2T3

T1T2

0 50 100

Number of robots

0

10

20

30

40

50

60

70

D
at

a 
ag

e 
in

 m
s

Average Data age O2O

T3T4

T2T3

T1T2

Fig. 4: Average data age in M2O and O2O using CycloneDDS
for 1 ms update period with different magnitudes. The colours
are representing the different parts of the network.

0 20 40 60 80

Number of robots

0

10

20

30

40

50

60

D
at

a 
ag

e 
in

 m
s

Average data age M2O

T3T4

T2T3

T1T2

0 20 40 60 80

Number of robots

0

5

10

15

20

25

D
at

a 
ag

e 
in

 m
s

Average Data age O2O

T3T4

T2T3

T1T2

Fig. 5: Average data age in M2O and O2O using FastDDS for
1 ms update period with different magnitudes. The colours are
representing the different parts of the network.

in M2O, the most significant part of the ageing occurs between
timestamps T1 and T2 and T3 and T4, indicating the time it
takes to transfer the state and state list messages. The ageing
between T2 and T3 in O2O is related to the data staying longer
inside the tracker. That can occur when updates are missed,
and data is used several times for creating the state list. That
occurs significantly more for M2O and explains the difference
in the magnitude of the data age (see Figure 7). From the
analysis, it can be seen that for up to 70 robots, FastDDS is
showing the minor data ageing, followed by CycloneDDS. In
contrast, the ageing with GurumDDS is significantly higher,
especially for 70 robots which shows a peak at 2 ms. The
update miss ratio is shown for the 1 ms update rate in Figure 7.
This value describes the percentage of missed robot updates.
For O2O, the update misses are around the same percentage
for the different numbers of connected robots. For M20, for



0 20 40 60 80

Number of robots

0

50

100

150

200

250

300

350

400

D
at

a 
ag

e 
in

 m
s

Average data age M2O

T3T4

T2T3

T1T2

0 20 40 60 80

Number of robots

0

10

20

30

40

50

60

70

80

90

100

D
at

a 
ag

e 
in

 m
s

Average Data age O2O

T3T4

T2T3

T1T2

Fig. 6: Average data age in M2O and O2O using GurumDDS
for 1 ms update period with different magnitudes. The colours
are representing the different parts of the network.

a higher number of robots, the ratio is increasing in all DDS
vendors up to 98 %. The processor utilization was measured

10 20 30 40 50 60 70

Amount of robots

0

10

20

30

40

50

60

70

80

90

100

A
ve

ra
ge

 ra
te

 o
f u

pd
at

e 
m

is
se

s

GurumDDS M2O

GurumDDS O2O

FastDDS M2O

FastDDS O2O

CycloneDDS M2O

CycloneDDS O2O

Fig. 7: Update miss ration for the different architectures and
DDS vendors for 1 ms update period.

during the measurements and presented in Table IV. During
the measurements, there was no difference in the chosen
communication architecture recognized. It can be seen that the
increase of the nodes causes a significantly higher utilization of
the processor than CycloneDDS and FastDDS. The results for

TABLE IV: CPU utilization, no differences for the architec-
tures were seen.

DDS CycloneDDS FastDDS GurumDDS
Robots 1 ms 2 ms 1 ms 2 ms 1 ms 2 ms

10 30 15 25 20 25 20
30 40 20 45 40 65 35
50 65 30 65 50 90 65
70 85 45 95 60 100 90
90 100 70 - - - 100

the distributed setup using four computers and ROS2 Galactic
with CycloneDDS can be seen in Figure 8 and Table V. It
can be seen that, like in the first part, the average data age is
significantly higher for M2O than for O2O. Furthermore, the
most significant impact on the data ageing is for M2O between
T2T3 and for O2O between T1T2 and T3T4. The update miss
ratio shows an increase close to 100 % for M20, while O2O
is showing zero to 3 % update misses.

0 50 100 150

Number of robots

0

50

100

150

200

250

300

350

400

D
at

a 
ag

e 
in

 m
s

Average data age M2O

T3T4

T2T3

T1T2

0 50 100 150

Number of robots

0

2

4

6

8

10

12

14

16

18

D
at

a 
ag

e 
in

 m
s

Average Data age O2O

T3T4

T2T3

T1T2

Fig. 8: Average data age in M2O and O2O using distributed
setup and CycloneDDS for 1 ms update period with different
magnitudes. The colours are representing the different parts of
the network.

TABLE V: Measurement results for distributed setup with 1
ms update period using CycloneDDS

Data age in ms Update miss ratio CPU Utilization
Robots M2O O2O M2O O2O Tr R1 R2 Meas

10 2.021 1.976 0.140 3.146 10 5 5 5
30 33.426 2.284 41.757 2.558 10 30 30 5
50 286.904 11.995 75.856 0.000 20 30 30 20
70 90.199 12.641 98.571 0.000 20 40 40 20
90 259.049 13.470 98.889 0.000 20 60 60 20

110 222.391 14.237 99.091 0.000 20 70 70 20
130 272.596 15.296 99.231 0.000 20 85 85 20
150 379.953 17.743 99.333 0.003 20 100 100 20

D. Discussion
Even though the first part of the evaluation is conducted
on only a single computer, whereas a legacy system would
have the different parts of the network operating on different
computers, some results can be taken from the experiments.
FastDDS is showing better results regarding the data age and
update misses but is showing crash behaviour throughout the
launch. The lowest data ageing might be explained by the
zero-copy functionality of FastDDS, which could not be used
in a distributed setup. CycloneDDS is more stable throughout
the launch, and the data ageing is not as significant as for
GurumDDS, which even more causes the highest processor
utilization. Therefore, CycloneDDS might be the better choice
for a robot system until the crashing problem in FastDDS is
found and solved. Then another evaluation would be needed
in a more realistic distributed setup for both. For the higher
amount of robots, the O2O architecture is significantly better
than the M2O architecture regarding the data age. Further-
more, O2O stays robust against update misses, as only the
data age increases, but not as much as in M2O. This behaviour
matches the expectations that in M2O, the data of robots might
get overwritten by other nodes without the tracker noticing,
which causes the data to age inside the tracker node. In O2O,
the sending and reception of the data are the most significant
problems at high utilization. Furthermore, the seen behaviour
is validated in a distributed setup closer to reality.

V. CONCLUSION

A sample system of a centralized multi-agent robot system
was designed and simulated successfully using a dynamic



connection handling approach. The system was used to eval-
uate the use of CycloneDDS, FastDDS and GurumDDS in
the distribution of ROS2 Galactic. FastDDS showed the best
results regarding update misses and data-ageing on a single
computer. However, it was the most unstable regarding the
system launch and execution, where random crash behaviour
was seen. Therefore, CycloneDDS is a preferred choice in
the proposed setup. No crash behaviour was seen and showed
better results regarding data age, update miss ratio and CPU
utilization than GurumDDS. The simulations and measure-
ments regarding the communication architectures have shown
that the data age is generally increasing over the number of
connected robots for both architectures. The chosen commu-
nication approach furthermore influences the data age. In a
many-to-one approach, where multiple nodes communicate
through the same topic, the data ageing is more significant than
in the one-to-one approach. The update miss ratio increased
significantly for the many-to-one communication approach
over the number of connected robots.

ACKNOWLEDGMENT

The work in this paper is supported by the Swedish Knowledge
Foundation (KKS) via the project DPAC & HERO. We thank
all our industrial partners, especially Volvo GTO.

REFERENCES

[1] M. Ford, “Rise of the robots : Technology and the threat
of a jobless future,” 2015.

[2] A. Khalif and L. Jutvik, “Path following for atrs using
embedded nonlinear model predictive control,” 2021.

[3] S. Mubeen, T. Nolte, M. Sjödin, J. Lundbäck, and K.-L.
Lundbäck, “Supporting timing analysis of vehicular
embedded systems through the refinement of timing
constraints,” Softw. Syst. Model., vol. 18, no. 1, 2019.

[4] G. Dudek, M. R. Jenkin, E. Milios, and D. Wilkes,
“A taxonomy for multi-agent robotics,” Autonomous
Robots, vol. 3, no. 4, pp. 375–397, 1996.

[5] S. Dehnavi, M. Koedam, A. Nelson, D. Goswami, and
K. Goossens, “Compros: A composable ros2 based
architecture for real-time embedded robotic develop-
ment,” in IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 2021, pp. 6449–6455.

[6] A. Testa, A. Camisa, and G. Notarstefano, “Choirbot: A
ros 2 toolbox for cooperative robotics,” IEEE Robotics
and Automation Letters, vol. 6, no. 2, 2021.

[7] C. McCord, J. P. Queralta, T. N. Gia, and T. West-
erlund, “Distributed progressive formation control for
multi-agent systems: 2d and 3d deployment of uavs
in ros/gazebo with rotors,” in European Conference on
Mobile Robots (ECMR), 2019, pp. 1–6.

[8] S. Vorapojpisut, M. Lhongpol, R. Amornlikitsin, and T.
Phuapaiboon, “A robot augmented environment based
on ros multi-agent structure,” in 4th International Con-
ference on Control, Robotics and Cybernetics, 2019.

[9] G. Conte, D. Scaradozzi, L. Sorbi, L. Panebianco,
and D. Mannocchi, “Ros multi-agent structure for au-
tonomous surface vehicles,” in OCEANS Genova, 2015.

[10] S. Noh and J. Park, “System design for automation
in multi-agent-based manufacturing systems,” in 2020
20th International Conference on Control, Automation
and Systems (ICCAS), 2020, pp. 986–990.

[11] A. Barciś, M. Barciś, and C. Bettstetter, “Robots that
sync and swarm: A proof of concept in ros 2,” in 2019
International Symposium on Multi-Robot and Multi-
Agent Systems (MRS), 2019, pp. 98–104.

[12] E. Erős, M. Dahl, K. Bengtsson, A. Hanna, and P.
Falkman, “A ros2 based communication architecture
for control in collaborative and intelligent automation
systems,” Procedia Manufacturing, vol. 38, 2019.

[13] T. Blaß, D. Casini, S. Bozhko, and B. B. Brandenburg,
“A ros 2 response-time analysis exploiting starvation
freedom and execution-time variance,” in IEEE Real-
Time Systems Symposium (RTSS), 2021, pp. 41–53.

[14] Y. Tang, Z. Feng, N. Guan, et al., “Response time
analysis and priority assignment of processing chains
on ros2 executors,” in 2020 IEEE Real-Time Systems
Symposium (RTSS), 2020, pp. 231–243.

[15] Z. Li, A. Hasegawa, T. Azumi, “Autoware-perf: A
tracing and performance analysis framework for ros 2
applications,” Journal of Systems Arch., vol. 123, 2022.

[16] D. Casini, T. Blaß, I. Lütkebohle, and B. Brandenburg,
“Response-time analysis of ros 2 processing chains
under reservation-based scheduling,” in 31st Euromicro
Conference on Real-Time Systems, 2019, pp. 1–23.

[17] Y. Yang and T. Azumi, “Exploring real-time executor on
ros 2,” in IEEE International Conference on Embedded
Software and Systems (ICESS), 2020, pp. 1–8.

[18] Y. Maruyama, S. Kato, and T. Azumi, “Exploring the
performance of ros2,” in 2016 International Conference
on Embedded Software (EMSOFT), 2016, pp. 1–10.

[19] J. Park, R. Delgado, and B. W. Choi, “Real-time char-
acteristics of ros 2.0 in multiagent robot systems: An
empirical study,” IEEE Access, vol. 8, 2020.

[20] T. Blass, “Real-time execution management in the ros
2 framework,” Ph.D. dissertation, 2022.

[21] L. Puck, P. Keller, T. Schnell, et al., “Performance
evaluation of real-time ros2 robotic control in a time-
synchronized distributed network,” in 17th International
Conference on Automation Science and Engg., 2021.

[22] L. Puck, P. Keller, T. Schnell, et al., “Distributed and
synchronized setup towards real-time robotic control
using ros2 on linux,” Oct. 2020.

[23] C. S. V. Gutiéerrez, “Towards a distributed and real-time
framework for robots: Evaluation of ros 2.0 communi-
cations for real-time robotic applications,” Tech. Rep,
2018.

[24] T. Kronauer, J. Pohlmann, M. Matthé, T. Smejkal, and
G. Fettweis, “Latency analysis of ros2 multi-node sys-
tems,” in IEEE International Conference on Multisensor
Fusion and Integration for Intelligent Systems, 2021.

[25] Y. Maruyama, S. Kato, and T. Azumi, “Exploring
the performance of ros2,” in Proceedings of the 13th
International Conference on Embedded Software, 2016.

[26] Z. Chen, “Performance analysis of ros 2 networks
using variable quality of service and security constraints
for autonomous systems,” Naval Postgraduate School
Monterey United States, Tech. Rep., 2019.


