
Hierarchical Resource Orchestration Framework for
Real-Time Containers
VÁCLAV STRUHÁR,Mälardalen University, Sweden
SILVIU S. CRACIUNAS, TTTech Computertechnik AG, Austria
MOHAMMAD ASHJAEI,Mälardalen University, Sweden
MORIS BEHNAM,Mälardalen University, Sweden
ALESSANDRO V. PAPADOPOULOS,Mälardalen University, Sweden

Container-based virtualization is a promising deployment model in fog and edge computing applications
because it allows a seamless co-existence of virtualized applications in a heterogeneous environment without
introducing significant overhead. Certain application domains (e.g., industrial automation, automotive, or
aerospace) mandate that applications exhibit a certain degree of temporal predictability. Container-based
virtualization cannot be easily used for such applications since the technology is not designed to support
real-time properties and handle temporal disturbances. This paper proposes a framework consisting of a static
offline and a dynamic online phase for resource allocation and adaptive re-dimensioning of real-time containers.
In the offline phase, the optimal initial deployment and dimensioning of containers are decided based on
ideal system models. Additionally, in order to adapt to dynamic variations caused by changing workloads or
interferences, the online phase adapts the CPU usage and limits of real-time containers at runtime in order to
improve the real-time behavior of the real-time containerized applications while optimizing resource usage.
We implement the framework in a real Linux-based system and show through a series of experiments that the
proposed framework is able to adjust and re-distribute computing resources between containers in order to
improve the real-time behavior of containerized applications in the presence of temporal disturbances while
optimizing resource usage.

CCS Concepts: • Computer systems organization→ Real-time system architecture.

Additional Key Words and Phrases: real-time container-based virtualization, real-time, real-time docker

ACM Reference Format:
Václav Struhár, Silviu S. Craciunas, Mohammad Ashjaei, Moris Behnam, and Alessandro V. Papadopoulos.
2023. Hierarchical Resource Orchestration Framework for Real-Time Containers. ACM Trans. Embedd. Comput.
Syst. , (April 2023), 24 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Container-based virtualization and container orchestration became de facto standards to package
and deploy applications in cloud environments [45]. Virtualization provides functional isolation
enabling the co-location of applications on a shared physical machine, while orchestration provides
management of containerized applications, automation of deployment, and maintaining scalability
in a cluster of physical machines. Such technologies are paving the way for recent trends such as

Authors’ addresses: Václav Struhár, vaclav.struhar@mdu.se, Mälardalen University, , Västerås, Sweden; Silviu S. Craciunas,
silviu.craciunas@tttech.com, TTTech Computertechnik AG, Vienna, Austria; Mohammad Ashjaei, mohammad.ashjaei@mdu.
se, Mälardalen University, , Västerås, Sweden; Moris Behnam, moris.behnam@mdu.se, Mälardalen University, , Västerås,
Sweden; Alessandro V. Papadopoulos, alessandro.papadopoulos@mdu.se, Mälardalen University, , Västerås, Sweden.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
1539-9087/2023/4-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM Trans. Embedd. Comput. Syst., Vol. , No. , Article . Publication date: April 2023.

HTTPS://ORCID.ORG/0000-0002-0705-6766
HTTPS://ORCID.ORG/0000-0003-3469-1834
HTTPS://ORCID.ORG/0000-0002-1364-8127
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0002-0705-6766
https://orcid.org/0000-0003-3469-1834
https://orcid.org/0000-0002-1364-8127
https://doi.org/XXXXXXX.XXXXXXX

2 Struhár et al.

fog and edge computing, where an application is spanned across multiple computing layers. In fog
computing, the edge layers host low latency functions, while the cloud layers host computationally
demanding functions. Currently, industrial domains, e.g., robot control, automotive, aviation,
and mixed-criticality-systems in general [16] seek to adopt container-based virtualization and
orchestration in their ecosystems in order to fulfill Industry 4.0 needs [25, 28, 37, 39]. That is the
flexibility of the manufacturing process, decentralization of functions, increasing automation, and
resource efficiency.
However, industrial domains have elevated requirements for applications, especially in real-

time areas [16, 42]. Industrial applications require both functional correctness and timeliness to
produce computation results [3, 39]. In the presence of timing violations, the usefulness of computed
results decreases (i.e., soft real-time), or it may even result in catastrophic consequences (i.e., hard
real-time). Unfortunately, real-time behavior is challenging to achieve in systems using container-
based virtualization and orchestration since timing predictability is not a major concern of these
technologies. As noted in [24], remotely-hosted virtual environments suffer from variances in
processing times that are changing with the executed workloads [2, 24].
Due to container-based virtualization’s limited performance isolation, co-located applications

may affect each other’s performance in unpredictable ways [32]. For instance, co-located containers
may share the Last Level Cache (LLC), i.e., a cache that is accessed by the cores prior to fetching from
memory. Intensive simultaneous use of the cache by multiple containers may increase the response
time of the containerized applications, and time predictability (i.e., real-time behavior) may be
negatively impacted. The effect of performance interference is depicted in the experiment (Figure 1),
which shows a performance loss due to the simultaneous use of a shared LLC cache. Figure 1a
shows how the response time of a container is impacted by a co-located container running on
another core. The co-located container periodically changes its workload between a cache-intensive
and a non-cache-intensive one. As a result, the response times increase during the cache-intensive
periods. Similarly, Figure 1b shows the change in response time when an increasing number of
containers are co-located with the measured containerized application.

The problem of timing interference between containers is further complicated by the fact that it
varies widely across platforms. This fact is crucial in fog and edge computing, where hardware-
heterogeneous physical machines are present, and for which the effect of interference may not be
known beforehand. An additional factor that hinders the real-time behavior of container-based
computing (and computing in general) is the unpredictable changing workload. Containers may
be performing updates or serving increased user-generated workloads that may influence the
performance of other co-located containers, which may also be unknown in advance.

Taking into account the aforementioned factors influencing the real-time behavior of containers,
this paper proposes a joint hierarchical container virtualization and orchestration framework that
aims to improve the real-time behavior of real-time containers in a multi-container environment.
The proposed framework consists of two phases, an offline phase, and an online phase. The offline
phase is in charge of solving the deployment problem, i.e., it decides where to place containers and
how to dimension their real-time interfaces on the basis of design-time models. This phase is related
to the server design problem in hierarchical scheduling [29, 41]. On the other hand, the online
phase attempts to bridge the gap between the assumptions that are needed for the deployment,
in which idealized models are used, and the actual dynamic behavior of the containers that may
negatively impact the runtime performance of real-time containers, as described above. The online
phase hence adjusts and distributes the CPU resources among real-time and non-real-time best-
effort (BE) containers based on a continuous runtime evaluation of the real-time performance of
containers. In this work, we emphasize the problem of resource interference and performance
loss due to changing workload of co-located containers, a problem that is especially significant in

ACM Trans. Embedd. Comput. Syst., Vol. , No. , Article . Publication date: April 2023.

Hierarchical Resource Orchestration Framework for Real-Time Containers 3

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 20 40 60 80 100 120 140 160

R
e
sp

o
n
se

 T
im

e
 [

s]

job nr.

Response Time

Interference between containers

(a) The response time of a co-located container may vary over time due to changes in the
workload of the interfering container. In this example the co-located container changes its
workload periodically.

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

0 20 40 60 80 100 120 140 160

R
e
sp

o
n
se

 T
im

e
 [

s]

job nr.

Interference between containers

No
interfering container

1
interfering containers

2
interfering containers

3
interfering containers

(b) An example of changing response times of a container caused by the interfering containers.
We successively deploy 1 to 3 interfering containers on different CPU cores. The response time
is negatively affected by the amount of co-located containers.

Fig. 1. Two examples of interference between containers utilizing LLC caches. The examples show extended
response times of a containerized application caused by the extensive LLC cache usage by co-located
containers.

heterogeneous platforms (e.g., fog computing). We focus on the computational part of mitigating the
resource interference (i.e., adjusting computational resources) and keep other parts (e.g., location
awareness, networking) inherent to fog computing for future work.

In this paper, we define and solve both the offline and the online phases of the real-time container
orchestration problem. For the offline phase, we use well-known approaches for the server design
problem and extend them to the problem at hand, formulating the allocation and dimensioning of
containers as an optimization problem that can be solved via, e.g., integer linear programming (ILP)
and satisfiability modulo theories (SMT) solvers or using well-known heuristics if the problem
size exceeds the scalability of optimal solutions. In the online phase, the Hierarchical Framework
dynamically compensates for the real-time performance variability in a multi-node container-
based environment using a three-level control hierarchy. The first- and second-level controllers
compensate for the performance losses in a computing node by continuously measuring and re-
adjusting the CPU bandwidth reservation for containers. The third-level controller is in charge of
the migration of containers amongst computing nodes in case the required real-time performance

ACM Trans. Embedd. Comput. Syst., Vol. , No. , Article . Publication date: April 2023.

4 Struhár et al.

cannot be achieved within the scope of the individual node. Finally, we describe the implementation
in Linux of our Hierarchical Framework and a series of experiments that shows the viability of our
solution.
Contributions of this paper are as follows:

• We propose a framework that combines offline placement and online redimensioning of
resources for real-time containers. In the offline phase, we formulate the initial deployment
of containers as the optimization problem. In the online phase, we enable the self-adaptation
of resources for real-time containers based on their timing requirements.

• We present an architectural design and a detailed explanation of the three-level hierarchy of
controllers utilized for adapting resources and migrating real-time containers.

• We implement the online adaptation of real-time containers in Linux and provide an evalua-
tion that shows the feasibility of the solution. We utilize and enhance the HCBS (Hierarchical
Constant Bandwidth Server) patch [1] with the ability to adjust resources at runtime.

The paper is organized as follows: Section 2 presents the background and surveys the related
work, followed by the system architecture and system model in Section 3. We present the details
of our orchestration framework, including the offline and online adaptation phases in Section 4.
Section 5 shows experimental results, and finally, Section 7 concludes this work.

2 BACKGROUND AND RELATEDWORK
Providing real-time performance for container-based computation is outgoing research, the main
research directions are summarized in [43]. The major research directions focus on the mitigation
of scheduling latencies and scheduling jitters for containers by using PREEMPT_RT patch [26, 31],
applying real-time co-kernels for container-based virtualization [7, 8, 15, 17], and employing
the hierarchical scheduling framework for real-time containers to enable temporal isolation of
containerized applications [1]. However, none of the studies addresses performance interference
between containers nor mitigating performance interference.
Abeni et al. [1] present the Linux Kernel enhanced with hierarchical scheduling that utilizes

the Hierarchical Scheduling Framework. The authors hierarchically connect two existing Linux
scheduling policies (SCHED_DEADLINE and SCHED_RT). The former policy implements the EDF
(Earliest Deadline First) algorithm combined with CBS (Constant Bandwidth Server) [4], serving as
a selector of the container with the earliest deadline. The latter local policy schedules the highest-
priority runnable task from the particular container. Thus, a user can reserve a CPU quota over
a given period. We base our resource adaptation framework on this approach which allows us
to continuously adapt container resources by changing the CPU quota and the period. Our work
utilizes the proposed Kernel patch and adds a mechanism for resource reservation adjustments at
runtime.

Container orchestrators are tools that manage containerized applications, automate deployment,
and enable scalability in a cluster of physical machines. However, the development of real-time con-
tainer orchestration is in the early stage. Several studies attempt to enhance existing orchestrators
(i.e, Kubernetes1, OpenStack2) with awareness of real-time requirements. For instance, Struhar et
al. [44] and Fiori et al. [24] leverage Kubernetes for the deployment of real-time containers. Similarly,
Cucinotta et al. [21] use OpenStack, which is able to deploy real-time containers. The solutions
conduct a utilization-based admission test upon a container deployment request. Barletta et al. [9]
introduce an orchestration approach for mixed-criticality systems with real-time requirements.
The before-mentioned papers extend the orchestrators with the ability to perform schedulability

1Available at https://kubernetes.io/
2Available at https://openstack.org/

ACM Trans. Embedd. Comput. Syst., Vol. , No. , Article . Publication date: April 2023.

https://kubernetes.io/
https://openstack.org/

Hierarchical Resource Orchestration Framework for Real-Time Containers 5

tests and place containers in suitable nodes. However, our work adds additional dimensions for the
orchestration: real-time migration (when there are not enough resources) and online adjustment of
resources to maintain soft real-time performance.
Containerized applications can be scaled either horizontally or vertically. Horizontal scaling

(also known as replication) involves adding computational resources linked with the application [5].
Vertical scaling implies changing functional or non-functional resources such as CPU time, memory,
etc. In the study by Al-Dhuraibi et al. [5], the authors provide a system for elastic scaling of
containers that adjusts memory, vCPU cores, and CPU fractions according to the workload. The
resource adjustment strategy is based on static thresholds of response times. The study provides
a simple strategy to vertically control resources. In our work, we focus on real-time containers
containing periodic tasks. We monitor and take control actions continuously, and thus, eliminate
long breath-down/break-up periods needed to reach a stable system state. Additionally, we consider
the offline phase for computing the parameters of containers and computing the initial placement
of the containers.

The study by Rossi et al. [36] proposes reinforcement learning techniques for adapting at runtime
the deployment of container-based applications by means of horizontal and vertical elasticity.
The system adapts without the need to tune the system manually. Furthermore, both vertical and
horizontal scaling (that can introduce performance penalties) is explored. The paper [40] presents a
data-driven, machine-learning technique based on Gaussian Processes to build a predictive runtime
model of the system’s performance, which can adapt itself to the variability in workload changes.

3 SYSTEM ARCHITECTURE AND SYSTEMMODEL
In this section, we present the architecture and system model of the proposed framework. The
architecture of the system is depicted in Figure 2. The framework consists of the offline phase and a
three-level control architecture for the online phase encompassing container-level, node-level, and
cluster-level controllers. The offline phase is (a) responsible for the computation of ideal real-time
interfaces (an initial value of the resource reservation) for a given set of containers and their
real-time requirements and (b) responsible for selecting a node for an incoming container. The
three-level controller hierarchy mitigates temporal disturbances by a continuous redistribution of
system resources and migration of containers in case of a shortage of resources in a computing
node.

Computing node

Orchestrating node

Node-level
Controller

Cluster-level
Controller

Real-time
Container

Container-level
Controller

Resource
Reservation

RT
Monitor

Real-time
Container

Container-level
Controller

Resource
Reservation

RT
Monitor

Best-effort
Containers

Fig. 2. Architecture of the system.

ACM Trans. Embedd. Comput. Syst., Vol. , No. , Article . Publication date: April 2023.

6 Struhár et al.

Table 1. System model notations.

Model Notation Definition

Node

𝑛 total number of nodes
Π𝑏𝑒
𝑗

Set of BE containers on node 𝑗

Πrt
𝑗

Set of RT containers on node 𝑗

𝑓𝑀
𝑗

Memory capacity
𝑓 𝑆
𝑗

Storage capacity

Task

𝜏𝑖 ∈ T 𝜏𝑖 = (𝑇𝑖 , {𝐶1
𝑖
, . . . ,𝐶𝑛

𝑖
}, 𝐷𝑖 , 𝑝𝑖)

𝑇𝑖 Period
𝐶1
𝑖
, . . . ,𝐶𝑛

𝑖
Node-dependent Worst-Case Execution Times

𝐷𝑖 Deadline
𝑝𝑖 Task priority

Container

𝜋 𝜋 = (T𝑘 , 𝑃𝑘 ,𝑄𝑘 ,𝐶𝐿𝑀𝑘 , 𝜋
𝑀
𝑘
, 𝜋𝑆

𝑘
)

𝑚 total number of containers
𝑄𝑘 CPU quota
𝑃𝑘 Replenishment period
𝐶𝐿𝑀𝑘 Container Level Metrics
𝜋𝑀
𝑘

Memory demand
𝜋𝑆
𝑘

Storage demand

The system model is based on the React Orchestrator presented in [44] that consists of the
following elements: the Task model, the Container model, the computer Node model, the Cluster
model, and the Hierarchical scheduler. The notation of the model is summarized in Table 1 and
described as follows.
For the computing node model, we assume that there are 𝑛 nodes in the system, where each

node 𝑓𝑗 , 𝑗 = 1, . . . , 𝑛 has a certain amount of memory and storage resources, denoted with 𝑓 𝑀𝑗 and
𝑓 𝑆𝑗 , respectively. We assume that each node has a single-core CPU with a given CPU frequency
which will affect the WCET of a task assigned to it (see below). Multi-core CPUs can be modeled as
separate single-core nodes that are part of the cluster. Each computing node 𝑓𝑗 is capable of running
both RT containers and best effort (BE) containers. We define the set of RT and BE containers on
node 𝑓𝑗 with Π𝑟𝑡

𝑗 and Π𝑏𝑒
𝑗 , respectively. The cluster 𝐶 consists of several nodes, 𝑓1, . . . , 𝑓𝑛 , that are

connected with the orchestrator.
For the task model, we assume a periodic task model [30] that describes a periodically executed

stream of jobs. A task (𝜏𝑖 ∈ T) consists of a stream of jobs. Each job of a task 𝜏𝑖 is periodically
activated at the beginning of each period (𝑇𝑖) and has a prescribed relative deadline𝐷𝑖 . The execution
time of each job is specified by Worst-Case Execution Time (WCET), denoted as 𝐶𝑖 . Additionally,
each task has a relative priority 𝑝𝑖 that is used to determine the processing sequence within the
container. For heterogeneous systems with a significant difference in hardware capabilities the
execution time of tasks will have a high variance depending on where the container is placed.
Hence, the execution time𝐶𝑖 of tasks will depend on the CPU frequency of the respective node. For
capturing tasks and containers that are allocated on heterogeneous systems, we introduce instead
of 𝐶𝑖 an array 𝐶1

𝑖 , . . . ,𝐶
𝑛
𝑖 , representing the worst-case execution time of the task 𝜏𝑖 on every node.

For the container model, we assume that there are𝑚 containers in the system, each container 𝜋𝑘 ,
𝑘 = 1, . . . ,𝑚 having a memory (𝜋𝑀

𝑘
) and storage (𝜋𝑆

𝑘
) demand resulting from the individual memory

and storage demands of the tasks running in the respective container that has to be satisfied by the
node’s resources, similar to [44]. A real-time RT container 𝜋𝑘 ∈ Πrt

𝑗 has an RT interface expressed
as (𝑃𝑘 , 𝑄𝑘) where 𝑄𝑘 is a CPU quota that is required to be provided over a period 𝑃𝑘 . We introduce

ACM Trans. Embedd. Comput. Syst., Vol. , No. , Article . Publication date: April 2023.

Hierarchical Resource Orchestration Framework for Real-Time Containers 7

the metric of a container 𝜋𝑘 , denoted by 𝐶𝐿𝑀𝑘 , to capture the performance of RT containers. Each
container is running a pre-defined subset of the tasks T 𝑘 ∈ T .
In each node, there may be multiple sources of non-determinism that may affect the real-time

behavior of containerized tasks, e.g., kernel latencies, interrupts, context switches, caches, etc.
However, we argue that it is difficult to accurately model and capture all these sources of non-
determinism in a real system. Hence, we keep our node model simple and do not attempt to include
different overhead and interference sources. Our online phase is tailored to address this very
problem and not to mandate that all sources of non-determinism in the system are known since
these latencies will be compensated for in the online adaptation mechanism if they negatively
affect the real-time behavior of the tasks within containers (see below).
For the scheduler/dispatcher model, we assume that the system uses a two-level hierarchical

scheduler. The global scheduler uses the EDF algorithm to select the container with the earliest
deadline (the deadline of the container is aligned with its period). The EDF scheduler is combined
with the Constant Bandwidth Server with hard allocation. The local scheduler is a fixed priority
scheduler that chooses the highest priority runnable task inside of the selected container. This
model can be achieved with the modified Linux distribution (e.g., Abeni’s HCBS implementation [1])
where a CBS scheduler (SCHED_DEADLINE) has a higher priority than the fixed-priority scheduler
(SCHED_RT) in the kernel scheduling hierarchy. We assume that other tasks (i.e., BE container tasks)
are scheduled by the Completely Fair Scheduler (CFS), having the lowest priority.

4 HIERARCHICAL RESOURCE ORCHESTRATION FRAMEWORK
We present the Hierarchical Resource Orchestration Framework, which is a general orchestration
framework for static and dynamic allocation and dimensioning of real-time containers. The frame-
work leverages real-time containers, i.e., containers that provide both spatial and temporal isolation
of containerized applications. Adding real-time properties to containers has been addressed in [1]
by introducing a hierarchical scheduling patch for Linux-based systems. The patch ensures that
the container would not violate the CPU resource reservation of other containers (however, it
does not solve the possible interference between containers due to sharing of resources other
than CPU). Our framework manages the deployment and adaptation of real-time containers in
distributed applications featuring heterogeneous computing nodes so that individual real-time
task requirements are met. These requirements are not only related to real-time behavior but also
resource usages such as memory, I/O, and storage requirements and non-functional requirements
such as fault-tolerance, power consumption, or resource efficiency.

The input to the Hierarchical Resource Orchestration Framework is a set of real-time tasks and
containers. The containers include either real-time tasks with constrained deadlines assigned to
real-time (RT) containers or non-real-time tasks which are assigned to best-effort (BE) containers.
Real-time tasks are additionally defined using a worst-case execution time (WCET) and a period
specifying an upper bound on the computation of the task in each period and the rate at which the
task is activated. Both RT and BE containers can coexist on the same core, but they are spatially
and temporally isolated. The real-time tasks are pre-allocated to containers, but the containers are
not pre-allocated to computing nodes (and cores), although they can have a certain affinity set,
constraining the set of nodes to which they can be allocated. As defined in [44], each RT container
𝜋𝑘 has additionally an RT interface consisting of (𝑃𝑘 , 𝑄𝑘) where 𝑄𝑘 is the CPU quota within an
interval (period) 𝑃𝑘 , defining that the container 𝜋𝑘 cannot use more than 𝑄𝑘 time units over an
interval of 𝑃𝑘 time units.

The system, proposed in this paper, consists of two phases: offline and online phase. The former
ensures the computation of the initial real-time interfaces, and the latter phase deals with the online
adaptation of resources to the containers. Both phases are described in the following sections.

ACM Trans. Embedd. Comput. Syst., Vol. , No. , Article . Publication date: April 2023.

8 Struhár et al.

4.1 Offline Phase
For the offline phase, the tasks are pre-assigned to containers, but containers (scheduled using the
CBS SCHED_DEADLINE scheduler class of Linux) are not assigned to nodes, although they may have
a certain affinity to a subset of nodes based on, e.g., ASIL level or node capabilities. The tasks inside
the containers are scheduled via a fixed-priority scheduling class (usually the SCHED_RT scheduler
class in Linux). We assume that the task priorities are given (usually via a deadline-monotonic
assignment). In line with the model from [44], a RT container 𝜋𝑘 has an RT interface expressed as
(𝑃𝑘 , 𝑄𝑘) where 𝑃𝑘 is a period and 𝑄𝑘 is a CPU quota.
The main objective of the offline phase is to assign to each container an ideal RT interface by

selecting (𝑃𝑘 , 𝑄𝑘) such that the fixed-priority tasks are schedulable. This problem is generally
referred to as the server design problem in hierarchical scheduling [29, 41]. We use the lower linear
approximation for the supply bound function of the periodic resource defined in [6, 29]. From [29]
we have ∀𝜋𝑘 ∈ Πrt

𝑗 , using 𝛼𝑘 = 𝑄𝑘/𝑃𝑘 and Δ𝑘 = 2 · (𝑃𝑘 − 𝑄𝑘), the linear supply lower bound
function lslbf(𝑡)𝑘 is defined as

lslbf𝑘 (𝑡) = max{0, (𝑡 − Δ𝑘) · 𝛼𝑘 }. (1)

With the fixed-priority scheduler within the container, we can use the analysis from [29] to relate
the (𝑃𝑘 , 𝑄𝑘) values to the schedulability of the tasks within the respective container 𝜋𝑘 . Theorem 3
of [29] states that the task set T 𝑘 is schedulable under the resource abstraction (𝑃𝑘 , 𝑄𝑘) using the
linear supply lower bound function lslbf𝑘 (𝑡) if

Δ𝑘 ≤ min
𝜏𝑖 ∈T𝑘

max
𝑡 ∈P𝑖−1 (𝐷𝑖)

𝑡 − 1
𝛼𝑘

(
𝐶𝑖 +

∑︁
𝜏 𝑗 ∈T𝑘

𝑝 𝑗 ≥𝑝𝑖

⌈
𝑡

𝑇𝑗

⌉
·𝐶 𝑗

)
, (2)

where:
P0 (𝑡) = {𝑡}

P𝑖 (𝑡) = P𝑖−1

(⌊
𝑡

𝑇𝑖

⌋
𝑇𝑖

)
∪ P𝑖−1 (𝑡).

Any values 𝑃𝑘 =
Δ𝑘

2(1−𝛼𝑘) and 𝑄𝑘 = 𝛼𝑘𝑃𝑘 , for which 𝛼𝑘 and Δ𝑘 conform to Eq. (2) are valid.
However, as described in [29], there is a trade-off between the wasted bandwidth and the context
switch cost, as bigger periods result in fewer context switches, but the allocated container utilization
has to be kept low to avoid wasting CPU bandwidth. Therefore, a cost function is proposed in [29]
that leverages the two objectives via a weighted sum tuned by two design-time constants. The cost
function proposed in [29] contains two design-time constants, 𝑐1 and 𝑐2, which enable the system
designer to parameterize the trade-off depending on the design goals of the system. We adapt the
cost function 𝐽 for a container from [29] as follows:

𝐽 = 𝑐1
𝛿 𝑗

𝑃𝑘
+ 𝑐2𝛼𝑘 (3)

where 𝛿 𝑗 is the context switch overhead of the node 𝑓𝑗 where the container is placed. As can be
seen, the cost function assumes that the container has already been assigned and the context switch
overhead is known, which is not the case here since the containers have not been allocated yet.

In homogeneous systems or in heterogeneous systems where there is not a significant variance
in the hardware capabilities, we can solve the server design problem immediately by choosing the
lowest CPU speed as a reference. Therefore, the second stage allocation of containers to nodes
becomes a bin-packing problem (with complexity NP-hard) that can be solved using exact methods
or, for larger problem sizes, by heuristic approximations [18].

ACM Trans. Embedd. Comput. Syst., Vol. , No. , Article . Publication date: April 2023.

Hierarchical Resource Orchestration Framework for Real-Time Containers 9

For heterogeneous systems with a significant difference in hardware capabilities, not only the
system overhead, but also the execution time of tasks will have a high variance depending on where
the container is placed. Hence, both the execution time 𝐶𝑖 of tasks, as well as the context switch
overhead 𝛿 𝑗 , become variables that depend on the allocation. Moreover, both Eq. (2) and the cost
function from Eq. (3) have to be considered as part of the allocation problem. For the purposes of
the optimization problem, we remind the reader that instead of𝐶𝑖 representing the single WCET in
the standard model (c.f. [29]), we use an array 𝐶1

𝑖 , . . . ,𝐶
𝑛
𝑖 , representing the worst-case execution

time of the task 𝜏𝑖 on every node.
We define for each container 𝜋𝑘 , 𝑘 = 1, . . . ,𝑚 the following variables:
• a set of Boolean variables 𝑣𝑘1 , . . . , 𝑣

𝑘
𝑛 specifying whether the container is allocated to the

respective node or not,
• the container period 𝑃𝑘 and budget 𝑄𝑘 .

The optimization problem can therefore be expressed as:

minimize
{𝑄𝑘 ,𝑃𝑘 ,𝑣

𝑘
1 ,...,𝑣

𝑘
𝑛 |𝑘=1,...,𝑚}

𝑐1 ·
𝑚∑︁
𝑘=1

∑𝑛
𝑗=1 𝑣

𝑘
𝑗 · 𝛿 𝑗

𝑃𝑘
+ 𝑐2 ·

𝑚∑︁
𝑘=1

𝑄𝑘

𝑃𝑘
(4)

subject to:

∀𝑗 = 1, . . . , 𝑛 :
𝑚∑︁
𝑘=1

𝑣𝑘𝑗 · 𝜋𝑀𝑘 ≤ 𝑓 𝑀𝑗 , (5)

∀𝑗 = 1, . . . , 𝑛 :
𝑚∑︁
𝑘=1

𝑣𝑘𝑗 · 𝜋𝑆𝑘 ≤ 𝑓 𝑆𝑗 , (6)

∀𝑗 = 1, . . . , 𝑛 :
𝑚∑︁
𝑘=1

𝑣𝑘𝑗 ·𝑄𝑘

𝑃𝑘
≤ 1, (7)

∀𝑘 = 1, . . . ,𝑚,∀𝑗 = 1, . . . , 𝑛 : 𝑣𝑘𝑗 = {0, 1}, (8)

∀𝑘 = 1, . . . ,𝑚 :
𝑛∑︁
𝑗=1

𝑣𝑘𝑗 = 1, (9)

∀𝑘 = 1, . . . ,𝑚 :
𝑄𝑘

𝑃𝑘
≥

∑︁
𝜏𝑖 ∈T𝑘

∑𝑛
𝑗=1 𝑣

𝑗

𝑘
·𝐶 𝑗

𝑖

𝑇𝑖
, (10)

∀𝑘 = 1, . . . ,𝑚 :
∧

𝜏𝑖 ∈T𝑘

∨
𝑡 ∈P𝑖−1 (𝐷𝑖)

𝑡 − 2 · (𝑃𝑘 −𝑄𝑘) −
𝑃𝑘

𝑄𝑘

(
𝑛∑︁
𝑗=1

𝑣
𝑗

𝑘
·𝐶 𝑗

𝑖
+

∑︁
𝜏𝑙 ∈T𝑘

𝑝𝑙 ≥𝑝𝑖

𝑛∑︁
𝑗=1

⌈
𝑡

𝑇𝑙

⌉
· 𝑣 𝑗

𝑘
·𝐶 𝑗

𝑙

)
≥ 0.

(11)

The first two constraints (Eqs. (5) and (6)) check the memory availability on each node and the
constraint defined in Eq. (7) enforces that each node is not overutilized. The next two conditions
(Eqs. (8) and (9)) constrain the Boolean assignment variables to be correct, i.e., one container can
only be assigned to one node. The condition in Eq. (10) ensures that the bandwidth of the container
is sufficient to execute all tasks within the container. Please note that we need the sum over the list
of possible WCETs for each task multiplied by the binary assignment variable for the container
to node assignment in order to select the correctly scaled WCET for each task. The last condition
(Eq. (11)) is the schedulability test from [29], reformulated and extended in the context of the
RT container offline allocation problem. We have extended the test from [29] by including the

ACM Trans. Embedd. Comput. Syst., Vol. , No. , Article . Publication date: April 2023.

10 Struhár et al.

allocation problem via the binary variables 𝑣𝑘1 , . . . , 𝑣
𝑘
𝑛 , which select the correct WCET for the given

node allocation. If a container 𝑘 is allocated to a specific node 𝑗 , all the Boolean allocation variables
𝑣𝑘1 , . . . , 𝑣

𝑘
𝑛 will have a value of 0 except for the Boolean variable 𝑣𝑘𝑗 which will have a value of 1.

Hence, equation Eq. (11) reduces to the schedulability test from [29] but additionally selects the
correct WCET (𝐶 𝑗

𝑖
) for the respective node allocation. We also note that the condition in Eq. (10)

is not necessary for the schedulability test since it is implied by Eq. (11). However, since Eq. (11)
is quite complex and results in a large number of assertions, we add the necessary condition in
Eq. (10) to prune our invalid parameter values for the containers and therefore speed up the search
when a solver is used (see below).

Constrained satisfiability or optimization problems such as the one defined above can be solved
efficiently using Satisfiability Modulo Theory (SMT) solvers or Optimization Modulo Theory (OMT)
solvers [12]. SMT solvers address more generalized instances of Boolean SAT problems which
benefit from being formulated in more expressive languages such as first-order logic that include
non-Boolean variables and constants, quantifiers, functions, and predicate symbols [11]. In order
to be more efficient and make the satisfiability problem decidable, SMT solvers can restrict the
interpretations of specific symbols a specific background theory like linear integer arithmetic
over natural numbers, arrays, real-numbers, or bit-vectors [11]. OMT solvers add optimization
objectives on top of the underlying first-order logic [12]. There are many efficient state-of-the-art
SMT and OMT solvers (e.g., CVC4 [10], MathSAT5 [14], openSMT [13], Z3 [22], Yices [19, 23]) that
compete each year against each other in the SMT-COMP (c.f. [46]) and have been used successfully
in application areas ranging from model checking [27], static analysis [38], automated test case
generation [35], scheduling [20], and optimization [11]. Hence, the optimization problem defined
above is a suitable candidate to be solved using, e.g., OptimizationModulo Theory (OMT) solvers [12]
like Z3 [22] under the quantifier-free fragment of non-linear integer arithmetic (QF_NIA).
Tuning the weights 𝑐1 and 𝑐2 can be done based on the overhead impact when running RT

containers. For example, in [44], we see that the system overhead is not highly impacted by the
container period or the number of RT containers; hence we can aim to optimize the bandwidth
usage to a higher degree.
We note that it may not always be necessary to obtain the best solution with respect to the

optimization objective from [29] (Eq. 3), since the online phase will compensate for the system
overhead and dynamic behavior, and also free up CPU bandwidth that is not used by a container (see
below). In this case, we can simplify and speed up the offline phase by retrieving any feasible solution
for the RT interfaces. We can thus simply encode the offline dimensioning problem into first-order
logic, leaving out the optimization objective, and solve it using high-performance Satisfiability
Modulo Theory (SMT) solvers like Yices [23] or Z3 [22].
The offline phase only guarantees the schedulability and correct temporal behavior of tasks in

an ideal scenario. At runtime, there may be any number of interference sources that affect the
temporal behavior. For example, it is impossible to include a complete model of the underlying
system (including the runtime interactions between tasks and containers) in the timing analysis.
Additionally, certain runtime artifacts (e.g., cache misses, SW/HW interrupts, the overhead of the
underlying operating system), as well as unforeseen changes in task workloads (that have not been
considered in the WCET calculation), also influence the runtime temporal behavior. Hence, both
the dimensioning and the allocation of the containers from the offline stage may not guarantee
that task deadlines are always maintained at runtime. Moreover, new containers may be added
during runtime, requiring a dynamic adaptation and allocation of the new container entities to
nodes. Hence, we next describe the online orchestration phase that is tailored to adapt to these
runtime changes and interferences.

ACM Trans. Embedd. Comput. Syst., Vol. , No. , Article . Publication date: April 2023.

Hierarchical Resource Orchestration Framework for Real-Time Containers 11

4.2 Online Phase
The online phase complements the initial deployment of the containers aiming to mitigate possible
performance disturbances by continuously re-adjusting the system resources of the containers.
The online phase takes action on three levels: on the container level, on the node level, and on the
cluster level. We envision two components (online monitoring component and online resources
adjusting component) interacting with each other to be able to respond to unforeseen changes
in the temporal behavior of runtime tasks. The online monitoring component is in charge of
monitoring the real-time and health aspects of applications. This aspect is described along with
the general framework for deploying and implementing an online container orchestrator module
in [44]. The authors introduce Container Level Metrics (CLM) to capture and continuously evaluate:
(i) the number of deadline misses, (ii) the lateness, and (iii) the response-time of real-time tasks.
Additionally, they also monitor Operating System-Level Metrics (OSLM) that convey a picture of
the health of the underlying system and the containers. In [44], special attention is given to the
system overhead, which can affect the temporal isolation property and system utilization. These
aspects can be used to optimize the response time of tasks as well as to detect overload scenarios
or starvation in BE containers.

4.2.1 Runtime Actions. At runtime, there are several actions that we can take based on the CLM and
OSLM measurements. The most straightforward parameter to change is the container budget. For
example, when detecting a deadline miss of a task, one can increase the budget of the corresponding
container, thus giving the tasks more CPU bandwidth to resume their correct behavior. The decision
of when and how much to increase the budget is non-trivial as it depends on multiple aspects like
the overall system utilization, the effects on other RT and non-RT containers, and the implications
on the system overhead. One can also change the period of a container, e.g., to let it run more
frequently. This also has complex implications on the overall system behavior and may also affect
other tasks running in the same container. Additionally, the implications of changing the period at
runtime on preempted but not finished tasks need to be considered.

A third dimension where one can enact changes is container allocation. If we detect at runtime
that the system is becoming over-utilized or that it cannot be guaranteed the temporal correctness
of all RT tasks and containers, the system may move one or multiple containers onto another
(less congested) node. Here, the complexity comes from identifying which containers to move and
to which node(s) to move them to [33]. Additionally, while the container budget and period are
more continuous in nature since we have a whole range of possible values to choose from, the
reallocation decision is inherently a binary one. Thus, at runtime, we need to be very careful when
switching from slightly adjusting container parameters to deciding that one or multiple containers
need to be moved.

The node-level view is depicted in Figure 2 where RT- and BE-containers coexist in a node, and,
additionally, there is one container-level controller per RT container. The container-level controller
is responsible for adapting local container-level parameters. While the controllers here are local to
the container-level containers (and hence apply changes to local container values), they need to
synchronize and orchestrate to node-level and cluster-level controllers. By having this controller
hierarchy, we can ensure that the holistic view of the distributed system is maintained and the
correct overall decisions are made. We envision simple but fast controllers that interact locally
with the budget of a container (within some predefined bounds) and can react quickly to runtime
violations. Moreover, a node-level controller orchestrates between the container-level controllers,
e.g., to modify the allowed bounds for local budget changes and compute correct dimensioning of,
e.g., container periods depending on the overall node-level system state. On the next hierarchical
level, a centralized controller orchestrates the migration of containers to other nodes.

ACM Trans. Embedd. Comput. Syst., Vol. , No. , Article . Publication date: April 2023.

12 Struhár et al.

Another aspect of online redimensioning or migration is resource and task optimization. Even
when no real-time requirements are violated, the controllers may decide that there are enough free
resources in a node to redimension a particular container (e.g., increasing its budget) to reduce the
task response times. Alternatively, a controller may detect that tasks within an RT-Container finish
well before their deadlines and decide to reduce the budget in order to, e.g., optimize non-functional
properties such as power consumption or give more bandwidth to BE containers.

4.2.2 Control Hierarchy. The overall control is divided into three levels of hierarchy. Thus, this
control structure allows to maintain the separation of concerns and allows for the implementation
of different policies for each of the control levels. For instance, cluster-level control can only
focus on defining the strategies for migrating containers without a need for reasoning about
resource allocation for the containers (that is, the controllers on other levels). Additionally, such an
architecture enables the co-existence of various policies, e.g., there can be various per-container
container-level controllers. In the following section, we describe the individual controllers.

4.2.3 Container-level Controller. A primary goal of the container-level controller is to free up
resources whenever possible by lowering the budget. In this way, the utilization of the given
container is reduced, releasing computing resources to be used by the node-level controller for
other co-located containers. The container-level controller implements a free-up resource policy
that decides the time instant of the free-up action and the number of resources to be released. The
decision to reduce the budget is taken based on the measured response time of the tasks within
the container (𝐶𝐿𝑀.𝑟𝑡Measured). If the container-level controller notices that the tasks finish with
enough laxity to meet their deadlines (in a certain span of time), then the tasks must finish with
enough laxity. In that case, it can decide that the tasks do not need as many computing resources as
they currently have. Consequently, it may decrease their resource usage by reducing their budget.
For real-time tasks, the target is to let tasks response times to be as close as possible to their
deadlines to decrease the required budget and hence the deadline can be used as the target CML
(𝐶𝐿𝑀.𝑟𝑡Target).

The container-level controller that we use in this work frees up resources proportionally to
the deviation between the required response time and the measured response (denoted as Y). The
more the budget is overshot (resulting in lower measured response time), the more it releases the
overshot budget. The controller follows an Integral Controller strategy, similar to the one presented
in [34], to adjust the budget 𝑄 (𝑡) allocated to the container at a point in time 𝑡 :

Y (𝑡) = 𝐶𝐿𝑀.𝑟𝑡Target (𝑡) −𝐶𝐿𝑀.𝑟𝑡Measured (𝑡) (12)

𝑄new (𝑡) = 𝑄 (𝑡 − 1) − 𝐾clc ·max(Y (𝑡), 0) (13)
𝑄 (𝑡) = max(𝑄new (𝑡), 𝑄min) (14)

where, the variable Y (𝑡) denotes the disturbances between the target and measured performance
of a given container, the variable 𝑄new (𝑡) is an intermediate value of the budget calculated by the
integral controller, and 𝑄 (𝑡) denotes the new value of the budget after release from the container
Πrt. The parameter 𝐾clc ∈ (0, 1] is the container-level controller gain, and it is a design parameter
for the controller that defines how aggressively the budget should be decreased. Notice that the
allocated budget is saturated to a minimum value to guarantee a minimal allocation of time. This
strategy is computationally extremely simple (thus, low overhead), and it is implemented for every
RT container running in a given node.

4.2.4 Node-level Controller. The node-level container has complete information about the state of
the node 𝑗 ∈ {1, . . . , 𝑛} (e.g., overall RT-container utilization, Operating System-Level Metrics), the
state of the containers 𝑖 ∈ Πrt

𝑗 (e.g., their budgets and periods, Container Level Metrics, etc.), and

ACM Trans. Embedd. Comput. Syst., Vol. , No. , Article . Publication date: April 2023.

Hierarchical Resource Orchestration Framework for Real-Time Containers 13

CPU resources

Unreserved Budget

Reserved for Non-RT tasks

Node-level
Controller Container-level

Controller

Container-level
Controller

Container-level
Controller

RT_Containern CPU Reservation

RT_Container1 CPU Reservation

RT_Container2 CPU Reservation

...

Fig. 3. CPU resources distribution.

the history of the state changes. While the container-level controller has the main aim of freeing up
resources whenever possible, the node-level container attempts to maintain the real-time properties
of tasks by using unused computing resources and distributing them to containers that need them.
This is done by increasing the budget. Both decisions need to include system-level aspects like
overall utilization, effect on other RT and non-RT containers, system overhead, etc.

The node-level control aims to distribute the system resources in order to keep the total utiliza-
tion of real-time containers under a predefined threshold, so even applications outside real-time
containers get access to system resources. However, the controller can temporarily exceed the
predefined threshold and oversubscribe resources for real-time containers, e.g., in cases of excep-
tional disturbances or when a migration of a container to another node is initialized. Node-level
controllers keep track of the available resources in the system and define resource re-distribution
policies that allocate a part of the resources to containers. The controller can also utilize predictive
or probabilistic methods to adjust resources for a particular container before the container suffers
from interference or a changing workload.
The node-level controller keeps track of the available CPU resources that can be distributed

between RT containers as shown in Figure 3. By default, the controller allocates 80% of the CPU
bandwidth that can be used by the RT containers. An unused part of it, which is at least 20% of
CPU bandwidth, is used by non-real-time BE containers and other (system) tasks. The node-level
controller, computes, for every single container 𝑖 ∈ Πrt

𝑗 , an Integral Control strategy:

𝜖𝑖 (𝑡) = 𝐶𝐿𝑀.𝑟𝑡Target𝑖
(𝑡) −𝐶𝐿𝑀.𝑟𝑡Measured

𝑖 (𝑡) (15)

𝑄new
𝑖 (𝑡) = 𝑄𝑖 (𝑡 − 1) + 𝐾nlc

𝑖 ·min(𝜖𝑖 (𝑡), 0) (16)
𝑄𝑖 (𝑡) = min(𝑄new

𝑖 (𝑡), 𝑄av
𝑖 (𝑡)) (17)

where 𝐾nlc
𝑖 ∈ (0, 1] is the node-level controller gain, and it defines how aggressively the budget

should be increased while the response time of the container does not meet the target response time.
Moreover, 𝑄av

𝑖 (𝑡) is the currently available budget in the node, as seen by the container 𝑖 ∈ Πrt
𝑗 ,

and it is computed as

𝑄av
𝑖 (𝑡) = 𝑄 tot

𝑗 −
∑︁

𝑘∈Πrt\𝑖
𝑄𝑘 (𝑡)

where 𝑄 tot
𝑗 is the 80% total budget on the computing node.

The controller continuously monitors the disturbances between the target and measured per-
formance (𝜖 (𝑡)) and attempts to increase the resources. The control mechanism is similar to the
container-level controller, however, this controller can only increase resources for the controller
based on the disturbance and available budget. If a container has multiple tasks then the control

ACM Trans. Embedd. Comput. Syst., Vol. , No. , Article . Publication date: April 2023.

14 Struhár et al.

action calculation will be based on the worst-behaving tasks with respect to their response times
and deadlines, i.e., the task that generates the longest deadline miss.
In case tasks inside a container miss 𝑁 subsequent deadlines (𝜖𝑖 < 0) and the budget has not

increased compared with the previous instances of the controller then the cluster-level controller
will be triggered to migrate this container to another node.

4.2.5 Cluster-level Controller. The cluster-level controller monitors individual nodes in the cluster
and initializes the migration of containers that are not able to meet demanded real-time performance.
The cluster-level controller has a holistic view of the system and can decide to migrate containers to
less congested nodes. The node-level controller signals to the cluster-level controller that it cannot
meet the real-time requirements of tasks by local changes only. Therefore, the decision to move
one or more containers needs to be made. Additionally, the cluster-level container may decide on
its own to move certain containers based on, e.g., optimization objectives. However, the controller
needs to be very careful not to transform a functioning system into a non-functioning one.
The node-level container selects which container(s) to move, and the cluster-level container

decides where to transfer them to. In this case, the cluster-level controller does not need to have
some of the local information about the health of the containers since it does not decide which
container to move.

The decision of where to move containers can be made based on more high-level information (e.g.,
node utilization) and not on more specific data like individual container health, so the container-
level controller does not need to have a detailed view of which containers are where and their
history (or, e.g., the deadline miss history of a node). As a result, the container-level controller
relies on the node-level controller to dimension the container in the right way once it is assigned
depending on local information. An alternative is to decide where to move/place a container based
on more detailed information and dimension it with a knowledge of the parameters/health/ history
of other containers on that node. The downside is that the cluster-level controller will need to be
updated more frequently and have a more detailed view of each node.

4.3 Implementation
To show the feasibility and the behavior of the system, we implement the proposed Hierarchical
Framework in Debian GNU/Linux 10 (buster) patched with the HCBS (Hierarchical Constant
Bandwidth Server) patch3 introduced in [1]. This patch allows controlling containers’ resources
at runtime without any need to modify the container runtime. The resources can be controlled
by setting the values in cgroups or by setting the values directly in Linux Kernel (e.g., in the task
scheduler or in syscall handlers). We enhance the Linux Kernel to adapt CPU resources for RT
containers dynamically. While the HCBS patch allows us to statically set the CPU budget and CPU
period for the containers, our additional modifications allow us to dynamically adapt the CPU
resources for the RT containers at runtime. We implemented container- and node-controller within
the Linux Kernel (specifically, a task scheduler to compute CLM metrics and custom syscalls to
trigger control actions). The controllers directly access the container, tasks, and resource reservation
entities without causing additional overhead. The cluster-level controller is implemented as a user-
space application that periodically observes the states of RT containers and performs migration of
a deficient container(s) to another node. The migration process is described in Section 4.3.1.
The workflow and implementation overview is as follows:

• A container is executed with the initial parameters computed in the offline phase (e.g., docker
run –cpu-rt-runtime=40000 –cpu-rt-period=50000 rt_container). The initial values are stored

3Available at https://github.com/lucabe72/LinuxPatches/tree/HCBS

ACM Trans. Embedd. Comput. Syst., Vol. , No. , Article . Publication date: April 2023.

https://github.com/lucabe72/LinuxPatches/tree/HCBS

Hierarchical Resource Orchestration Framework for Real-Time Containers 15

in cgroups as cpu.rt_quota and cpu.rt_period. The values can be changed at runtime from the
kernel space.

• The scheduler selects the highest priority container with available CPU quota, i.e., containers
with the earliest deadline following the SCHED_DEADLINE policy. After that, the highest
priority runnable tasks are selected from each of the scheduled containers and granted a
CPU.

• Each task, implemented in struct task_struct, is annotated with a task period and activation
start. The values are used to compute the performance metrics.

• On each job activation, the Linux Kernel is notified that the job has started via a custom
syscall.

• After each job is completed, the Kernel is notified about the job competition via a custom
syscall, and the task is suspended until the time of the next job activation.

• Upon the finish-job syscall, the CLM metrics are updated. The CLM metrics are computed
based on the activation time, finishing time, and period of the job. We compute response
time, and lateness, and update the deadline miss counter. The CLM metrics are saved in /proc
filesystem and are accessible to all controllers.

• Additionally, upon the finish-job syscall, the custom syscall executes the control hierarchy as
follows (as described in Section 4.2):
– Container-level controller attempts to free up reserved resources if possible.
– Node-level controller increases resources to the containers with unsatisfactory performance.
If there are not enough free resources, the containers are marked as to-be-migrated (in
/proc filesystem).

• Cluster-level controller periodically check for to-be-migrated containers and performs the
migration process.

4.3.1 Migration of containers. The migration of containers is performed by a custom python-based
Cluster-level controller application based on a client-server architecture. The server-side application
keeps track of connected computed nodes, deployed containers, and performance metrics of the
nodes and individual containers. The client side periodically reports performance metrics to the
server and performs the migration of containers as depicted in Figure 4.

2

Server

Computing node Computing node

Migration Request
1

4

3

Create Container

Container Ready
Notification

Start Container
Stop the old container

Fig. 4. Migration process of containers.

ACM Trans. Embedd. Comput. Syst., Vol. , No. , Article . Publication date: April 2023.

16 Struhár et al.

Once a container fails to obtain the necessary resources to meet the desired performance, the
Node-level controller records it in /proc filesystem. This triggers the Cluster-level controller on the
client side to inform the server of the container that needs to be relocated. The server then finds a
host that meets the requirements mentioned in Section 4.1 and requests the new host to create the
container. When the container is ready, the new host notifies the old host, prompting it to stop the
container.

5 EVALUATION OF THE FRAMEWORK
In this section, we evaluate the proposed Hierarchical Resource Orchestration Framework. We
perform the experiments on two COTS platforms: Intel Core i5, 4 GB RAM, Debian Linux 5.2.8
patched with HCBS patch [1] and Intel Core i7, 16 GB RAM, Debian Linux 5.2.8 patched with HCBS
patch. Moreover, we run some scalability experiments for the offline phase using the z3 solver in
version 4.11.2.

5.1 Demonstration of performance interference between containers
We illustrate the interference caused by the use of shared resources between co-located containers
executed on a single computing node as shown in Figure 1. We perform two experiments that
run a single RT container collocated with a) one non-real-time container and b) multiple non-
real-time containers. In the first case (depicted in 1a), the co-located non-real-time container is
periodically changing its workload between cache-intensive workload (matrix multiplication) and
simple workload (simple busy loop). As seen in the subfigure, the response time of an RT container
is aligned with the period of cache-intensive (e.g., between 0s and 20s, 40s and 62s, etc.) workload
in the co-located non-real-time container. The response time ranges between 2.7s and 3.7s. In the
second case (depicted in 1b), in addition to the RT container, we gradually execute non-real-time
containers performing a cache-intensive workload. We can see that with the increased number of
non-real-time containers, the response time of the RT container exhibits increasing response time.
The results of the experiment show the performance interference of the container.

In the following sections, we first evaluate the offline phase, and then we show the dynamic
adaptation of the CPU resources that can deal with performance disturbances of the executed
containers by the proposed hierarchical framework.

5.2 Evaluation of the offline phase
In the offline phase, we study the scalability of solving the constrained optimization problem as
defined in Section 4.1. Generally, the allocation problem in hierarchical scheduling reduces to the
bin-packing problem [47] and is thus contained in the NP-hard complexity class. We implemented
the constrained optimization problem using the z3 solver in version 4.11.2 4.
We generate 5 different problem sizes in terms of the number of nodes, the number of contain-

ers, and the number of tasks, and for each problem size, we generate 10 test cases. Each node
has a memory and storage availability chosen randomly between 10𝑀𝐵 and 20𝑀𝐵 and between
1𝐺𝐵 and 2𝐺𝐵, respectively. The tasks are defined by a period chosen randomly from the set
{200, 300, 400, 500, 600, 700, 800, 900, 1000}𝑚𝑠 , a WCET selected randomly between 1 and 10 ms,
a storage usage randomly chosen between 2 and 8 MB, and a memory usage chosen randomly
between 16 and 64 KB.

In Figure 5, we show the scalability of the offline assignment and dimensioning with the following
system configurations (x-axis) in terms of (nodes, containers, tasks): (2, 6, 24), (3, 9, 36), (4, 12, 48),
(5, 15, 60), (6, 18, 72). On the logarithmic y-axis, we show the average runtime when solving the

4Available at https://github.com/Z3Prover/z3

ACM Trans. Embedd. Comput. Syst., Vol. , No. , Article . Publication date: April 2023.

https://github.com/Z3Prover/z3

Hierarchical Resource Orchestration Framework for Real-Time Containers 17

100 ms

1 sec

10 sec

1 min

10 min

2 h

(2, 6, 24) (3, 9, 36) (4, 12, 48) (5, 15, 60) (6, 18, 72)

ti
m

e-
o

u
t

A
v
g
.
ru

n
ti

m
e

Use-case size (nodes, containers, tasks)

non-optimized
optimized

Fig. 5. Scalability results for the offline dimensioning and allocation step with and without optimization.

offline phase with and without optimization constraints and for each size configuration defined
above. We set the timeout to 2 hours, after which we deem the test case to be infeasible.

As can be seen, the average runtime increases exponentially, both with and without optimization,
as the size of the problem increases. Without optimization criteria, we see that also relatively large
use cases can be solved in a reasonable amount of time with a system consisting of 5 nodes, 15
containers, and 60 tasks needing, on average, 34 seconds. For a system consisting of 6 nodes, 18
containers, and 72 tasks, 5 out of the 10 test cases reached the timeout, while the average runtime
for the other 5 “solvable” test cases was around 1.6 minutes. As expected, when the optimization
criteria of minimizing the utilization of the containers (𝑐1 = 0 and 𝑐2 = 1) were enabled, the average
runtime grew more quickly, leading to worse scalability. We can see that small to medium system
configurations can be solved in a reasonable time, especially when optimization is not enabled,
which is usually the preferred approach since the online phase will take care of freeing up unused
resources and adapting to fluctuations due to system and context switch overheads. For larger
systems, using SMT or OMT solvers that deliver optimal solutions will not scale anymore, making
it necessary to use heuristics that sacrifice optimality and completeness for faster runtimes.

5.3 Evaluation of container-level and node-level controllers
This section discusses two types of experiments, depicted in Figure 6 and Figure 7, respectively. Both
experiments focus on the online CPU budget adaptation using the joint container-level and node-
level controllers that decrease/increase the container CPU budget to reach the target performance
level. The first experiment (Figure 6) shows the response time and budget of a single container, in
the case of a fixed budget (Figure 6a), and of a variable budget allocation (Figure 6b). The workload
is varied within the container.
In Figure 6a, we statically set the replenishment quota to 21ms over the period of 25ms. This

scenario does not employ any adaptation mechanism. The response time changes periodically
between 170ms and 285ms, while the target response time is set to 300ms. We can see the changing
response time of the container at times 45s, 116s. The allocated budget remains constant. This
leads to the over-allocation of computing resources, part of the unused reserved budget could be
reserved for another RT container (that may have insufficient resources). Figure 6b shows the
same scenario with the enabled online CPU budget adaptation. In this case, the allocated budget is

ACM Trans. Embedd. Comput. Syst., Vol. , No. , Article . Publication date: April 2023.

18 Struhár et al.

0 20 40 60 80 100 120 140 160
0

100

200

300

Time [s]

Re
sp
on

se
tim

e
[m

s]

rt1 rttarget1

0 20 40 60 80 100 120 140 160
10

15

20

Time [s]

Bu
dg

et
[m

s]

𝑄1

(a) A baseline scenario without the budget adaptation.

0 20 40 60 80 100 120 140 160
0

200

400

Time [s]

Re
sp
on

se
tim

e
[m

s]

rt1 rttarget1

0 20 40 60 80 100 120 140 160
10

15

20

Time [s]

Bu
dg

et
[m

s]

𝑄1

(b) A scenario with online budget adaptation.

Fig. 6. An experiment showing an effect of budget adaptation.

automatically adjusted to match the target response time. As there is no control nor measurement of
the time-varying workload, the control mechanism dynamically reacts to its variation without any
information on how long such a variation can last. The controller, therefore, serves as an iterative
learning mechanism to identify the right allocation of the budget over time. In this scenario, we
used two different𝐾 parameters in the container- (𝐾clc = 0.3) and node-level (𝐾nlc = 0.6) controllers
to have a more aggressive strategy to increase the budget and a more relaxed strategy to release
the budget. When increasing the budget of a container it is better to do it as fast as possible to
reduce the quality degradation in terms of deadline misses. In contrast, it is better to release the
budget gradually to avoid sudden increases in response times.
The second experiment (Figure 7) shows two RT containers deployed on a single computing

node. The figure shows a) the measured response time and target response time, b) per-container
budget allocation and c) the percentage of the entire CPU budget allocation.

The containers are experiencing performance disturbances. For instance, RT container 1 experi-
ences an increased workload between 21s and 63s, and between 108s and 148s. The RT container
2 experiences an increased workload between 39s and 95s, and between 152s and 210s. The per-
container budget allocation shows that the budget is increased by the node-level controller and
decreased by the container-level controller in line with the change in workload that is experienced.
The figure shows how the two controllers are able to dynamically adjust the allocated budgets

to match the desired target responses of the respective containers. The bottom graph in Figure 7
shows how the overall budget is partitioned over the two containers. In this specific example, we
do not consider the case in which the overall allocated budget exceeds the maximum share allowed
for the real-time containers (indicated as a dashed red line in the graph). The case in which such a
threshold is exceeded would trigger a container migration, and it is analyzed in the next section.

ACM Trans. Embedd. Comput. Syst., Vol. , No. , Article . Publication date: April 2023.

Hierarchical Resource Orchestration Framework for Real-Time Containers 19

0 20 40 60 80 100 120 140 160 180 200 220
0

500

1,000

1,500

2,000

Time [s]

Re
sp
on

se
tim

e
[m

s]

rt1 rttarget1
rt2 rttarget2

0 20 40 60 80 100 120 140 160 180 200 220

4

6

8

10

Time [s]

Bu
dg

et
[m

s]

𝑄1 𝑄2

0 20 40 60 80 100 120 140 160 180 200 220
0

50

100

Time [s]

Bu
dg

et
al
lo
ca
tio

n
[%
]

𝑄1 𝑄2 𝑄 tot 𝑄rt tot

Fig. 7. Distribution of budget amongst containers. Response times and budget allocation per container.

5.4 Evaluation of cluster-level controller
The experiment depicted in Figure 8 shows the collaboration between the 3-level control hierarchy
proposed in this paper. On the x-axis, we depict the timeline of the system and its trace. Container-
and node-level controllers are designed to balance CPU resources amongst two RT containers, while
the cluster-level controller is designed to monitor the performance of each of the RT containers,
and if the performance is not as desired for a period of time, then one of the containers will be
stopped and redeployed to another computing (less loaded) node.

The experiment shows two RT containers (Initial 𝑄1 = 8𝑚𝑠 and 𝑄2 = 7.5𝑚𝑠 with periods 25𝑚𝑠)
that are unable to reach the target response times (800𝑚𝑠 and 600𝑚𝑠) due to insufficient CPU
budget (top figure). On the y-axis, we depict the response time in milliseconds, showing both the
desired and measured response times of the two containerized tasks with dotted and solid lines,
respectively. In the middle part of the figure, we see the budget allocation for both containers (the

ACM Trans. Embedd. Comput. Syst., Vol. , No. , Article . Publication date: April 2023.

20 Struhár et al.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
0

500

1,000

Time [s]

Re
sp
on

se
tim

e
[m

s]

rt1 rttarget1
rt2 rttarget2

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

6

8

10

12

Time [s]

Bu
dg

et
[m

s]

𝑄1 𝑄2

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
0

50

100

Time [s]

Bu
dg

et
al
lo
ca
tio

n
[%
]

𝑄1 𝑄2 𝑄 tot 𝑄rt tot

Fig. 8. A demonstration of a cluster-level controller that migrates Container 2 on a less congested computing
node.

budget being depicted on the y-axis in milliseconds). Moreover, in the bottom part of the figure,
we see that the overall budget allocation is saturating at the maximum set value of 80% of total
CPU bandwidth. Hence, since the node- and container-level controllers cannot change the budget
allocation in such a way that both containers meet their respective response times, the cluster-level
controller performs migration of one of the containers in order to relieve the computing node.
At the time 35 seconds, the cluster-level controller detects that the system can not satisfy the

response-times requirements of the deployed containers (neither of the containers can reach the
target response time). Thus, the controller chooses container 2 to be redeployed on another node.
The container is stopped, and the allocated budget (𝑄2) is fully released. Then, container 1 can
instantly use the newly allocated budget, thus being able to fulfill its response time requirement.
We can see in the top part of the figure that the response time of the remaining containerized
application reaches the desired level a short time after the migration has been finished. Moreover,

ACM Trans. Embedd. Comput. Syst., Vol. , No. , Article . Publication date: April 2023.

Hierarchical Resource Orchestration Framework for Real-Time Containers 21

at time 54 seconds, we can see that there is some interference on the remaining container, causing
a spike in the response time and the node-level controller being able to allocate even more of the
freed-up budget to the remaining container.

6 DISCUSSION
The experiments, that we conducted, show that the proposed online adaptation mechanism can
adapt the CPU bandwidth of real-time containers and match the required performance. On the
other hand, the control mechanism can also decrease the resource for containers with over-reserved
resources and these resources can be used by containers with poor performance.

The implementation in the Linux Kernel enables a more rapid control loop as well as the ability
for runtime adaptation of resources without the need for so-called breath-duration periods, which
are break intervals that allow a system to reach a steady state after scaling [5].
The system takes control decisions at the end of each job. However, it is possible to adjust

resources during the execution of the job, not only at the end of the job. For example, if a system
detects that a job may not finish before the deadline, the system may allocate more resources at the
time instant of the detection of a possible delay. However, we keep this topic for future work.
The limitation of the experiment is the use of synthetic tasks; we are seeking a use-case to

demonstrate our control mechanism for real-world application (e.g., autonomous driving, robot
control). Also, previously we defined CLM and OSLM metrics that contain a multitude of values
that describe the real-time performance of containers and the system; however, in our experiments,
we use only the basic response time metric.

7 CONCLUSION
In this paper, we propose a Hierarchical Resource Orchestration Framework for Real-Time Contain-
ers that aims to mitigate the timing disturbances present in container-based virtualization due to,
e.g., the effects of the use of shared resources, which can affect the temporal behavior of real-time
containers. The proposed framework contains two phases: an offline phase that decides the initial
deployment and dimensioning of the real-time containers and an online phase that complements
the initial deployment to re-adjust the resources when unexpected changes occur.
We implement the framework on a real Linux-based system patched with the HCBS patch to

show the feasibility of the proposed framework. In our experiments, we demonstrate a) the effect
of performance interference between containers, b) the control of resources for the containers, c)
the re-distribution of resources between the containers, and d) a migration of containers when the
overall resources are not sufficient to meet the real-time needs of the containerized applications.
Moreover, we also perform a scalability evaluation of an SMT-based implementation of the offline
phase. Our experiments show that the proposed framework can mitigate timing disturbances of
containerized applications in Linux-based systems and is able to adjust and re-distribute computing
resources between containers when needed.

There are several interesting directions for future work. First, the proposed framework utilizes a
simple control mechanism to reserve and distribute CPU resources for the RT containers. However,
more complex control, decision, and predictive algorithms are needed to capture more complex
scenarios. We aim to extend the cluster-level controller with the ability to identify the optimal
set of containers to migrate since it may be more beneficial to migrate the containers that are
causing performance interference instead of those with poor real-time performance. Additionally,
the offline phase utilizes SMT (or OMT) solvers that deliver optimal solutions but does not scale for
large systems. Hence, we aim to investigate efficient heuristics that can scale for large systems, like
those found in some industrial automation applications.

ACM Trans. Embedd. Comput. Syst., Vol. , No. , Article . Publication date: April 2023.

22 Struhár et al.

ACKNOWLEDGMENTS
This work was supported by the Swedish Research Council (VR) with the project “Pervasive Self-
Optimizing Computing Infrastructures (PSI)” (No. 2020-05094), by the Knowledge Foundation
(KKS) with the project “Safe and Secure Adaptive Collaborative Systems (SACSys)” project (No.
20190021) and by the projects "Federated Choreography of an Integrated Embedded Systems
Software Architecture (FIESTA)" and "Excellence in Production Research (XPRES)".

REFERENCES
[1] Luca Abeni, Alessio Balsini, and Tommaso Cucinotta. 2019. Container-based real-time scheduling in the Linux kernel.

ACM SIGBED Review 16, 3 (nov 2019), 33–38. https://doi.org/10.1145/3373400.3373405
[2] Luca Abeni, Alessandro Biondi, and Enrico Bini. 2022. Partitioning real-time workloads on multi-core virtual machines.

Journal of Systems Architecture 131 (2022), 102733.
[3] Luca Abeni and Giorgio Buttazzo. 2004. Resource reservation in dynamic real-time systems. Real-Time Systems 27, 2

(jul 2004), 123–167. https://doi.org/10.1023/b:time.0000027934.77900.22
[4] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant bandwidth server revisited. ACM SIGBED Review 11, 4 (jan

2015), 19–24. https://doi.org/10.1145/2724942.2724945
[5] Yahya Al-Dhuraibi, Fawaz Paraiso, Nabil Djarallah, and Philippe Merle. 2017. Autonomic vertical elasticity of

docker containers with elasticdocker. In 2017 IEEE 10th international conference on cloud computing (CLOUD). https:
//doi.org/10.1109/cloud.2017.67

[6] Luis Almeida and Paulo Pedreiras. 2004. Scheduling within Temporal Partitions: Response-Time Analysis and
Server Design. In Proceedings of the fourth ACM international conference on Embedded software - EMSOFT’04. https:
//doi.org/10.1145/1017753.1017772

[7] Marco Barletta, Marcello Cinque, and Raffaele Della Corte. 2021. Hierarchical Scheduling for Real-Time Containers
in Mixed-Criticality Systems. In 2021 IEEE International Symposium on Software Reliability Engineering Workshops
(ISSREW).

[8] Marco Barletta, Marcello Cinque, Luigi De Simone, and Raffaele Della Corte. 2022. Achieving isolation in mixed-
criticality industrial edge systems with real-time containers. In 34th Euromicro Conference on Real-Time Systems (ECRTS
2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[9] Marco Barletta, Marcello Cinque, Luigi De Simone, and Raffaele Della Corte. 2022. Introducing k4.0s: a Model for
Mixed-Criticality Container Orchestration in Industry 4.0. https://doi.org/10.48550/ARXIV.2205.14188

[10] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović, Tim King, Andrew Reynolds,
and Cesare Tinelli. 2011. CVC4. In Computer Aided Verification, Ganesh Gopalakrishnan and Shaz Qadeer (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 171–177.

[11] Clark Barrett and Cesare Tinelli. 2018. Satisfiability Modulo Theories. Springer International Publishing, Cham, 305–343.
https://doi.org/10.1007/978-3-319-10575-8_11

[12] Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. 2015. aZ - An Optimizing SMT Solver. In Tools and Algorithms
for the Construction and Analysis of Systems, Christel Baier and Cesare Tinelli (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 194–199. https://doi.org/10.1007/978-3-662-46681-0_14

[13] Roberto Bruttomesso, Edgar Pek, Natasha Sharygina, and Aliaksei Tsitovich. 2010. The OpenSMT Solver. In Tools and
Algorithms for the Construction and Analysis of Systems, Javier Esparza and Rupak Majumdar (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 150–153.

[14] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and Roberto Sebastiani. 2013. The MathSAT5 SMT
Solver. In Tools and Algorithms for the Construction and Analysis of Systems, Nir Piterman and Scott A. Smolka (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 93–107.

[15] Marcello Cinque and Domenico Cotroneo. 2018. Towards lightweight temporal and fault isolation in mixed-criticality
systems with real-time containers. In 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks Workshops (DSN-W).

[16] Marcello Cinque, Domenico Cotroneo, Luigi De Simone, and Stefano Rosiello. 2022. Virtualizing mixed-criticality
systems: A survey on industrial trends and issues. Future Generation Computer Systems 129 (2022), 315–330. https:
//doi.org/10.1016/j.future.2021.12.002

[17] Marcello Cinque, Raffaele Della Corte, Antonio Eliso, and Antonio Pecchia. 2019. RT-CASEs: Container-Based
Virtualization for Temporally Separated Mixed-Criticality Task Sets. In 31st Euromicro Conference on Real-Time Systems
(ECRTS 2019). https://doi.org/10.4230/LIPIcs.ECRTS.2019.5

[18] E. G. Coffman, M. R. Garey, and D. S. Johnson. 1996. Approximation Algorithms for Bin Packing: A Survey.

ACM Trans. Embedd. Comput. Syst., Vol. , No. , Article . Publication date: April 2023.

https://doi.org/10.1145/3373400.3373405
https://doi.org/10.1023/b:time.0000027934.77900.22
https://doi.org/10.1145/2724942.2724945
https://doi.org/10.1109/cloud.2017.67
https://doi.org/10.1109/cloud.2017.67
https://doi.org/10.1145/1017753.1017772
https://doi.org/10.1145/1017753.1017772
https://doi.org/10.48550/ARXIV.2205.14188
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-662-46681-0_14
https://doi.org/10.1016/j.future.2021.12.002
https://doi.org/10.1016/j.future.2021.12.002
https://doi.org/10.4230/LIPIcs.ECRTS.2019.5

Hierarchical Resource Orchestration Framework for Real-Time Containers 23

[19] Computer Science Laboratory – SRI International. [n. d.]. The Yices SMT Solver. http://yices.csl.sri.com/. retrieved
4-Jan-2023.

[20] Silviu S. Craciunas and Ramon Serna Oliver. 2016. Combined Task- and Network-level Scheduling for Distributed
Time-Triggered Systems. Journal of Real-Time Systems 52, 2 (2016), 161–200.

[21] Tommaso Cucinotta, Luca Abeni, Mauro Marinoni, Riccardo Mancini, and Carlo Vitucci. 2021. Strong Temporal
Isolation among Containers in OpenStack for NFV Services. IEEE Transactions on Cloud Computing (2021). https:
//doi.org/10.1109/tcc.2021.3116183

[22] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Proc. TACAS, C. R. Ramakrishnan and
Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 337–340. https://doi.org/10.1007/978-3-540-78800-
3_24

[23] Bruno Dutertre. 2014. Yices 2.2. In Computer-Aided Verification (CAV’2014) (Lecture Notes in Computer Science), Armin
Biere and Roderick Bloem (Eds.). Springer, 737–744. https://doi.org/10.1007/978-3-319-08867-9_49

[24] Stefano Fiori, Luca Abeni, and Tommaso Cucinotta. 2022. RT-kubernetes: containerized real-time cloud computing. In
Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing. ACM. https://doi.org/10.1145/3477314.3507216

[25] Theodosios Gkamas, Vasileios Karaiskos, and Sotirios Kontogiannis. 2022. Performance Evaluation of Distributed
Database Strategies Using Docker as a Service for Industrial IoT Data: Application to Industry 4.0. Information 13, 4
(2022), 190.

[26] Thomas Goldschmidt, Stefan Hauck-Stattelmann, Somayeh Malakuti, and Sten Grüner. 2018. Container-based
Architecture for Flexible Industrial Control Applications. Journal of Systems Architecture 84 (mar 2018), 28–36.
https://doi.org/10.1016/j.sysarc.2018.03.002

[27] Anvesh Komuravelli, Arie Gurfinkel, and Sagar Chaki. 2014. SMT-Based Model Checking for Recursive Programs. In
Computer Aided Verification, Armin Biere and Roderick Bloem (Eds.). Springer International Publishing, Cham, 17–34.

[28] Heiner Lasi, Peter Fettke, Hans-Georg Kemper, Thomas Feld, and Michael Hoffmann. 2014. Industry 4.0. Business &
information systems engineering 6, 4 (jun 2014), 239–242. https://doi.org/10.1007/s12599-014-0334-4

[29] Giuseppe Lipari and Enrico Bini. 2003. Resource partitioning among real-time applications. In 15th Euromicro Conference
on Real-Time Systems, 2003. Proceedings. https://doi.org/10.1109/EMRTS.2003.1212738

[30] Chung Laung Liu and James W Layland. 1973. Scheduling Algorithms for Multiprogramming in a Hard-Real-Time
Environment. Journal of the ACM (JACM) 1 (1973). https://doi.org/10.1016/b978-155860702-6/50016-8

[31] Alexandru Moga, s Thanikesavan Sivanthi, and Carsten Franke. 2016. OS-level virtualization for industrial automation
systems: are we there yet?. In Proceedings of the 31st Annual ACM Symposium on Applied Computing. https://doi.org/
10.1145/2851613.2851737

[32] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. 2010. Q-clouds: managing performance interference effects for
qos-aware clouds. In Proceedings of the 5th European conference on Computer systems - EuroSys’10. https://doi.org/10.
1145/1755913.1755938

[33] Alessandro Vittorio Papadopoulos and Martina Maggio. 2015. Virtual Machine Migration in Cloud Infrastructures:
Problem Formalization and Policies Proposal. In IEEE 54th Annual Conference on Decision and Control (CDC). IEEE,
New York, NY, USA. https://doi.org/10.1109/CDC.2015.7403274

[34] Alessandro Vittorio Papadopoulos, Martina Maggio, Alberto Leva, and Enrico Bini. 2015. Hard Real-Time Guarantees
in Feedback-based Resource Reservations. Real-Time Systems 51, 3 (Jun. 2015), 221–246. https://doi.org/10.1007/s11241-
015-9224-1

[35] Jan Peleska, Elena Vorobev, and Florian Lapschies. 2011. Automated Test Case Generation with SMT-Solving and
Abstract Interpretation. In NASA Formal Methods, Mihaela Bobaru, Klaus Havelund, Gerard J. Holzmann, and Rajeev
Joshi (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 298–312.

[36] Fabiana Rossi, Matteo Nardelli, and Valeria Cardellini. 2019. Horizontal and vertical scaling of container-based
applications using reinforcement learning. In 2019 IEEE 12th International Conference on Cloud Computing (CLOUD).
https://doi.org/10.1109/cloud.2019.00061

[37] Shaik Mohammed Salman, Václav Struhár, Alessandro Vittorio Papadopoulos, Moris Behnam, and Thomas Nolte. 2019.
Fogification of Industrial Robotic Systems: Research Challenges. In Proceedings of the Workshop on Fog Computing and
the IoT (Fog-IoT). https://doi.org/10.1145/3313150.3313225

[38] Sanjit A. Seshia and Jonathan Kotker. 2011. GameTime: A Toolkit for Timing Analysis of Software. In Tools and
Algorithms for the Construction and Analysis of Systems, Parosh Aziz Abdulla and K. Rustan M. Leino (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 388–392.

[39] Mohammed Salman Shaik, Vaclav Struhar, Zeinab Bakhshi, Van-Lan Dao, Nitin Desai, Alessandro V. Papadopoulos,
Thomas Nolte, Vasileios Karagiannis, Stefan Schulte, Alexandre Venito, and Gerhard Fohler. 2020. Enabling Fog-
based Industrial Robotics Systems. In 25th IEEE Conference on Emerging Technologies and Factory Automation (ETFA).
https://doi.org/10.1109/etfa46521.2020.9211887

ACM Trans. Embedd. Comput. Syst., Vol. , No. , Article . Publication date: April 2023.

http://yices.csl.sri.com/
https://doi.org/10.1109/tcc.2021.3116183
https://doi.org/10.1109/tcc.2021.3116183
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1145/3477314.3507216
https://doi.org/10.1016/j.sysarc.2018.03.002
https://doi.org/10.1007/s12599-014-0334-4
https://doi.org/10.1109/EMRTS.2003.1212738
https://doi.org/10.1016/b978-155860702-6/50016-8
https://doi.org/10.1145/2851613.2851737
https://doi.org/10.1145/2851613.2851737
https://doi.org/10.1145/1755913.1755938
https://doi.org/10.1145/1755913.1755938
https://doi.org/10.1109/CDC.2015.7403274
https://doi.org/10.1007/s11241-015-9224-1
https://doi.org/10.1007/s11241-015-9224-1
https://doi.org/10.1109/cloud.2019.00061
https://doi.org/10.1145/3313150.3313225
https://doi.org/10.1109/etfa46521.2020.9211887

24 Struhár et al.

[40] Shashank Shekhar, Hamzah Abdel-Aziz, Anirban Bhattacharjee, Aniruddha Gokhale, and Xenofon Koutsoukos. 2018.
Performance interference-aware vertical elasticity for cloud-hosted latency-sensitive applications. In 2018 IEEE 11th
International Conference on Cloud Computing (CLOUD). https://doi.org/10.1109/cloud.2018.00018

[41] Insik Shin and Insup Lee. 2003. Periodic Resource Model for Compositional Real-Time Guarantees. In Proceedings.
2003 International Symposium on System-on-Chip (IEEE Cat. No.03EX748). IEEE Comput. Soc. https://doi.org/10.1109/
REAL.2003.1253249

[42] Michael Sollfrank, Frieder Loch, Steef Denteneer, and Birgit Vogel-Heuser. 2020. Evaluating docker for lightweight
virtualization of distributed and time-sensitive applications in industrial automation. IEEE Transactions on Industrial
Informatics 17, 5 (2020), 3566–3576.

[43] Václav Struhár, Moris Behnam, Mohammad Ashjaei, and Alessandro V Papadopoulos. 2020. Real-time containers: A
survey. In 2nd Workshop on Fog Computing and the IoT (Fog-IoT 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/OASIcs.Fog-IoT.2020.7

[44] Václav Struhár, Silviu S. Craciunas, Mohammad Ashjaei, Moris Behnam, and Alessandro V Papadopoulos. 2021. REACT:
Enabling Real-Time Container Orchestration. In 2021 26th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA). https://doi.org/10.1109/etfa45728.2021.9613685

[45] Sébastien Vaucher, Rafael Pires, Pascal Felber, Marcelo Pasin, Valerio Schiavoni, and Christof Fetzer. 2018. SGX-aware
container orchestration for heterogeneous clusters. In 2018 IEEE 38th International Conference on Distributed Computing
Systems (ICDCS). https://doi.org/10.1109/icdcs.2018.00076

[46] Tjark Weber, Sylvain Conchon, David Déharbe, Matthias Heizmann, Aina Niemetz, and Giles Reger. 2019. The SMT
Competition 2015-2018. J. Satisf. Boolean Model. Comput. 11, 1 (2019), 221–259.

[47] Brandon Woolley, Susan Mengel, and Atila Ertas. 2020. An Evolutionary Approach for the Hierarchical Scheduling of
Safety- and Security-Critical Multicore Architectures. Computers 9, 3 (2020). https://doi.org/10.3390/computers9030071

ACM Trans. Embedd. Comput. Syst., Vol. , No. , Article . Publication date: April 2023.

https://doi.org/10.1109/cloud.2018.00018
https://doi.org/10.1109/REAL.2003.1253249
https://doi.org/10.1109/REAL.2003.1253249
https://doi.org/10.4230/OASIcs.Fog-IoT.2020.7
https://doi.org/10.1109/etfa45728.2021.9613685
https://doi.org/10.1109/icdcs.2018.00076
https://doi.org/10.3390/computers9030071

	Abstract
	1 Introduction
	2 Background and Related Work
	3 System architecture and System model
	4 Hierarchical Resource Orchestration Framework
	4.1 Offline Phase
	4.2 Online Phase
	4.3 Implementation

	5 Evaluation of the framework
	5.1 Demonstration of performance interference between containers
	5.2 Evaluation of the offline phase
	5.3 Evaluation of container-level and node-level controllers
	5.4 Evaluation of cluster-level controller

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

