Malardalen University Licentiate Thesis
No.38

ARCHITECTING SOFTWARE FOR COMPLEX EMBEDDED SYSTEMS
- QUALITY ATTRIBUTE BASED APPROACH TO OPENNESS

Goran Mustapié
2004

y 4
| V' 4
MALARDALEN UNIVERSITY

Department of Computer Science and Engineering

Maélardalen University

Copyright © Goran Mustapi¢, 2004

ISSN number: 1651-9256

ISBN number: 91-88834-74-3

Printed by Arkitektkopia, Véasteras, Sweden

Distribution: Méalardalen University Press

ABSTRACT

There has been such an increase in the complexity of systems embedded in modern industrial
robots, construction equipment, cars, trains, systems in telecommunication networks etc. that
the engineering of such systems requires the coordinated efforts of tens or hundreds of
engineers. These engineering efforts are multidisciplinary, requiring software engineers, control
engineers, hardware engineers etc. to work together in the design and implementation of the
systems concerned. Many have a lifetime of 10-20 years which means that their maintenance
must be carefully planned. Furthermore, most of the systems can be classified as safety-critical
or dependable systems. The importance of software in complex embedded systems is increasing
and software quality issues are becoming first level concerns. One of the keys to success in
industry in the future will be the ability to develop high-quality embedded systems and their
software on time in order to remain competitive. The complexity and size of these systems
requires a systematic approach to software architecture analysis and design. To advance
research in this area, we need to improve our understanding of software architecting for these
systems. Among the disadvantages of current methods of software architecture design are that
they target “pure’ software systems and that they make simplifying assumptions that software
architecture design of embedded systems begins from a well-defined, fixed list of requirements
for a software subsystem.

This thesis is divided into two parts and has two main objectives. In the first part, we
describe the state of practice of software architecting of complex embedded systems. The
objective here is to get a better understanding of the factors that influence the software
architecture design of complex embedded systems. In the second part of the thesis, we study
industrial robots, as open, complex embedded systems that can be extended and programmed by
third party. The objective is to determine how software quality concerns and in particular
dependability concerns can be systematically approached when system openness is increased.

The main contributions of the thesis are the following. Several important common factors
which influence the architectural design of complex embedded systems software are identified,
the state of the practice is described and some areas that require further research are identified.
In considering the design of open robotics system, the thesis shows which dependability means
need to be applied in the architecture design phase, to support system openness. The
dependability means are systematically applied within the context of software architecture
approach based on quality attributes.

The results presented in this thesis are based on industrial experience from the author’'s
work as an engineer-researcher and from systematically performed interviews with several
industry experts having positions as senior architects or similar in companies that develop
complex and long-lived embedded systems.

ACKNOWLEDGMENTS

| want to thank to my academic supervisors Ivica Crnkovi¢, Christer Norstrém and my
industrial supervisor Peter Eriksson very much. They were always available for countless
number of discussions on the journey towards this thesis.

Thanks to al of my colleagues at M@ ardalen University, Department of Computer Science
and Engineering and ABB Automation Technologies AB, Robotics and especially to those who
co-authored and reviewed the papers that were the basis for this thesis. In particular, | want to
mention Anders Wall and thank him for his detailed reviewing. Thanks to the managers at ABB
Automation Technologies, who supported my work, especially to Lennart Sundstedt and Kent
Vasherg. Additionaly, | want to thank Johan Schubert for the discussions about the terminol ogy
and methodology used in this thesis.

Thanks to my parents, my brother and sister for their support and encouragement. And, to
save the best for the last, thank you Carina, Filip and Klara for being with me every day.

Goran Mustapi¢, Vasteras, November 2004

TABLE OF CONTENTS

INTRODUCTION ..ottt se e sssasasesesssesasesesans 1
1.1 Background and Mativation —the Industrial COntextcccuevveveriiniinienienienieneninns 1
1.2 ReSEACh QUESLIONScciiticiecieete ettt ettt sae et e e e te e be e e ebeeaeeaeesreenresaeas 3
1.3 Outline of the Thesis CoNtribDULIONS.........cccooeirieereiereree e 4
1.4 Research MethOdOlOgYccceivriririiirinirieeeee e 5

141 Theory and Research HYpOtheSES..........cceviiiiiininiiiceeeee s 7
142 Research Srategy, Methods and Results Validation.............cccceevvveninencnnnnnn. 9
1.5 List Of PUDICALONS.........coiiueerieierieeeie e 10
1.6 THESIS OULHNE ...ttt 11

PART | - UNDERSTANDING IMPORTANT FACTORSTHAT DETERMINE
SOFTWARE ARCHITECTURE OF COMPLEX EMBEDDED SYSTEMS.................... 13

REAL WORLD INFLUENCESON SOFTWARE ARCHITECTURE -

INTERVIEWSWITH INDUSTRIAL SYSTEMSEXPERTS.....cccoiiiiereeereseeeeneens 15
ADBSITACE ...ttt b et 15
2.1 INEFOTUCTION ..viieeieeteest ettt ettt eb e ene e 15
2.2 The Case StUAY SELUD.......eiiierieiisiesiese ettt sttt sa s e e s e s e aeneens 17
2.3 SYSLEMS OVEIVIEWS ...c.eeieieieiesie ettt ettt s et e e e e e e e e e eneesannenns 19

231 ABB Automation Technologies/ RODOLICS.........ccocvvvriniiinisiniceccseseseen 19
232 Ericsson AB (R&D System Management)..........ccevveruereereereeieeneeseeseeseeseesenes 21
233 TietoEnator THECOM & MeEdI@........ccorieerieeiiciree s 21
234 Ericsson AB (Core Network DevElOpmENL)ccccvverenienenesenenesesesennens 23
235 Volvo Construction EQUIPMENT........cccueireririerieniesesesesesesesesessesessessenns 23
236 VOIVO Car COrPOration.......cccererereresiresesesesesessessesesessessessessessessessesses 24
237 Bombardier Transportation.......c.cceceeeeeeenisiesiesiesesesesesesesesesesessessesses 25
24 ComparativVe iNtErVIEW aNalYSIS......ccuecueiriereririnesenesesesesesesessessessessessessessens 26
24.1 Relationship of system, computer hardware and software ar chitecture......... 26
24.2 Reuseand legacy in architectural design.......ccceeeverereniinienienineseseseseees 27
24.3 Business and application domain factors.........cccvvvevenenieneseneneseseeseeens 28
244 Choice of teChNOIOGIES......ccveiveiiieieiesiee e 29
245 Organizational factors and arChiteCture...........cceeevverierienienienienienieneseseseens 30

246 Processreated faClorS......cociciiiiiiiii et s 31

24.7 Resources used for architectural design........ccocveevereninieniesienesese e 31
2.5 CONCIUSION. ...ttt ettt e e n e 32
2.6 Feedback from the conference attendeescocvevrereenieierieiene e 34
2.7 ACKNOWIEAGMENTS......eiiviiiieiesieieste ettt naeneens 34

PART Il —=SYSTEM QUALITY AND OPENNESSIN SOFTWARE ARCHITECTURE

STUDY ettt ettt ettt e et e b £ e 4 b e £ e b e b e e e e b e b e Rt e A e b e b et b e b e be e e et e b e et et ebe e e 37
ABSITACE ...t b bbb 37

3L INEFOAUCTION ..v ettt ettt se et sb e sbe e 37

3.2 SYSLEM OVENVIEW ..ottt st b e bt bt aesnenae e 39

3.3 Defining the Open FPatform for the Robot Controller Software System................. 40
331 The Software Development ArchiteCture.........ccoovveviereeriesieniesieeeseesee e 42

332 Extensionsand Software Operational ArchiteCture.........cc.cvvvvevereriesernennns 43

3.4 Describing the Design APProaCh.........cocieieieiiieieiesese e 44
3.4.1 Different Approaches with Focus on Quality Attributes...........ccoevvvvrivrivrinnne. 45

3.4.2 The Approach Used in This Case SIUY........ccvevererienienienesiesiesieseesee e 47

3.5 Moddling Design Constraints for the Robot Controller Software—the First Stepin

YN (o 1= o (0 =] D= o | o TSP 47
351 Operational CONSIrAINES......ccccvvererieriiririsiresesesese s sse e ssessesns 48

352 Software Development Architecture and Constraints in the Development
Domain 51

3.5.3 Other Important Requirements and CONStraintS...........cooeverereereereesveseeneenns 52
3.6 Robot Controller Software System Architecture Transformations............ccocevenee 52
3.6.1 ArchiteCtural DESINcceveviiiiiiiieie e 55
3.6.2 Fault Tolerance Design Techniques to Support New Tasks........cceeveeeereene. 57
3.6.3 Software Architecture Tools for Evaluation of Real-Time Properties............ 58
3.7 CONCIUSIONS. ...ttt ettt sttt se bbb enas 59
4 PROPAGATION OF QUALITY ATTRIBUTESIN LAYERED ARCHITECTURE
—A CASE STUDY IN INDUSTRIAL ROBOTICS.......cotit ittt 61
ADBSITACE ...ttt 61
A1 INEFOOUCTION ...cutiiitieitiseeie ettt sne s 61

vi

4.2 Quality Modelling and Layered ArchiteCture........ccocvvvveveneneseseseseesesee e 62

421 Software Product Quality MOdelling.......ccooevevievienieieeeeeceeeeee s 62

422 System Quality Attributes vs. Component-Quality Attributes...........c.cocvevnee. 63

423 Propagation of Qualitiesin Layered Architecture..........cccoeeveveincincencennnne, 63

4.3 Case Study - FlexPendant Device for ABB Industrial RODOLS.........ccccvvriiiininnns 65

431 Quality Attributes of the OSPlatfor mLayer.........ccoceveveveeceeieeieieneseseseens 66

432 Qualitiesinthe Extensible APpliCation........ccccovvveveniereeieeieciseeesese s 67

433 Qualities of Application EXIENSIONS.......ccccuverierierierieeeeseeesesesesesessessesns 68

434 Qualities of the ResUItiNg SYStEM........coiiiiiriereieceee s 69

A4 CONCIUSION. ...ttt sttt bttt b e be st be sttt e e b e e e b ssebe st ene b e e sbe e enas 70
PART 1l —CONCLUSIONSAND FUTURE WORKcccctrtrieitininieerereeiee e 73
5 CONCLUSIONS ...ttt ettt et se ettt be e se st be e st b et e st ebe e e 75
5.1 QUESHON L.ttt ettt en e 75

511 ConClUSION DELAIIS.ccoiueiriiirieiereseeeee e 75

512 Validity of the CONCIUSIONS........cccvviriririnininiseseses s 79

513 LeSSONSLEAIMNEd. ..ottt 79

5.2 QUESHION 2 ..ttt ettt bbb 80

521 ConClUSION DELAIIS.ccoiuiiriiirieineseee e 81

522 Validity of the CONCIUSIONS........cccecuriririinininireseseseses s 83

523 LeSSONSIAINEd.coiieiiieeieieee e 84

B FUTURE WORK ..ottt ettt sttt st st ene e 85

APPENDIX A - TERMINOLOGIESAND OVERVIEWS OF THE RESEARCH AREAS

RELEVANT IN THE CONTEXT OF THE THESIS...ccooiiieeeeeerereiee e 87
A.1 Software Quality, Quality Models and Quality AtHDULESc.ccccvevevecveieiciccie, 89
A2. DEPENUEDITITY ..o 93
A3. SOftWare ArChIECIUNE.........couieieeeeeiere et e e 96
A3.1 BOSCH S @PPIOACK......cuveiieiiiiieieieie et se e e e e eseeneens 96
A3.2 SEI Architecture-Centric MEthOOSc.cceiieerieierieeresese e 97
A3.ZNFR FFAMBWOTK ...ttt 100
A3.4 Other apPrOBCHES.ccviieieicie e ns 101
A3.5 Certain common principles of the quality attribute centric software architecture
AESION MELNOGS....cve ettt sbesbestesreseenrens 102
REFERENGCES.......coiititiiirieieeenisie ettt ettt ettt s bbb bbb 103

vii

viii

1 Introduction

“My third piece of advice (to researchers) is probably the hardest to
take. It is to forgive yourself for wasting time. ... As you will never be sure
which are the right problems to work on, most of the time that you spend in
the laboratory or at your desk will be wasted. If you want to be creative, then
you will have to get used to spending most of your time not being creative, to
being becalmed on the ocean of scientific knowledge.”

Seven Weinberg

1.1 Background and Motivation —the Industrial Context

The work on which this thesis is based was performed in conjunction with real world industrial
projects at ABB Automation Technologies AB, Roboatics division.

Industrial Robots, like many other industrial systems, are complex business-critical systems
demanding exceptional operational qualities such as reliability, availability and safety. For
instance, industrial robots are required to have a MTBF (Mean Time Between Failures) of
50000 hours. Some robot models are powerful machines that can handle loads up to 500 kg and
can possibly cause substantial damage to their operating environment in the event of
malfunction.

Advances in computer hardware contribute to the increasing power of embedded systems.
They place new design and implementation demands on software and more and more advanced
features are now being realised in software. For example, robots can pick up an object, move it
in different directions and determine many of its physical properties; robots can detect the
collision of a robot arm with an object in its environment; vehicles have advanced controls that
reduce the need to over-dimension physical parts, vehicles have safety features such as ABS
brakes and diagnostic interfaces for external tools. These are just some examples of software
taking increasingly important roles in systems. The software required is becoming increasingly
complex and there is an increasing need for systematically dealing with software as the valuable
asset. Software quality issues are becoming first level concerns in these systems as a key to
success in the future will be the ability to develop high-quality systems and their software on
time[20].

The presence of external equipment and their long lifetimes make realistic experimenting
with these systems difficult. We must instead rely on a good understanding of the systems and
on methods for predicting their properties. The nature of these systems is such that
multidisciplinary approaches are often required to the development of a system. Control
experts, process experts and software engineering experts are often required to work together on

system design and implementation. Software architecture design is the first step in the process
of developing software, a high-level solution being designed to satisfy many different and often
contradictory requirements. For this thesis, our goal was to get a good understanding of the
most important factors that influence software architects when they make design decisions.
Thereis alack of such studies in general and especialy for complex embedded systems, where
software is embedded in a system which is the primary concern, not the software itself. The
first goal of thisthesisisto obtain a clear picture of the context and current practices of software
architecting in a complex embedded system environment.

Industrial Robots are by their nature generic systems which can be used in many different
industrial environments and perform many different tasks. There is a wide variety of
mechanical units that perform these different tasks. The heart of the robotics system is its
control system hardware and its software. The ABB robotics software system is built on the key
principles of product line architecture and is the key enabler for making the robotics systems
highly customizable, extensible and programmable by third parties. For example, the systems
have a clearly recognizable platform, which is one of the key assets of product line architecture.
We characterize these systems as “ open systems’ and within the scope of this thesis the terms
open and openness are defined more precisely in the following way:

An open system is a system that has extensibility mechanisms that make it
possible to independently, across organizational and company boundaries,
develop and choose components of the system, resulting in new system
functionality. Opennessis a property of open systems. *

As distinct from an open system, a closed system is a system with no public extensibility and
programmability mechanisms for use by third parties. Why is this kind of openness interesting
in the first place? One of the main reasons is that it is a key enabler for innovation and for
building solutions that are close to end-customer needs, by reusing key core common assets.
ABB have the improvement of the functional and non-functional properties of ther
Robotics system as a permanent objective. One goal is to make the system more open. When its
openness is increased, more possibilities are given to third parties to program, customize, and
extend the system. At the same time, the quality of the system and company responsibility to
end customers remains an important concern. Enabling different levels of system openness
requires different means and techniques for providing support. For example, Microsoft
Windows as an open platform has very different techniques for supporting new device drivers
as opposed to supporting scripting languages that run in Internet Explorer. Previous research on

1 In other contexts, the term open system is often used to refer to systems that support “open” standards and that are open in the
sense of interoperability, standards compliance and the possibility of integration with other systems. Integration is often
performed with the purpose of creating a larger system. This interoperability based definition of open systems should not be
confused with that used in this thesis.

non-functional requirements and software quality teaches us that proper support for quality
must come when achange is introduced, not as an afterthought.

During a system lifetime, the system and its environment must evolve to reflect changing
conditions and new requirements. Introducing openness and changing the level of openness of a
system is one type of change that is of interest in this thesis. It is possible to transform system
architectures on the basis of previous experience of architects or one of the systematic
approaches available can be selected and used in the process. However, finding an appropriate
method to guide systematically the design process is difficult as many different approaches exist
and the experience of using the methods in different domains is still relatively limited. Many
available software development techniques do not take into account the specific needs of
embedded-systems development [20]. The main goal of the thesis is to investigate which
dependability means® need to be applied to support system quality when openness in the
robotics system is increased and if these dependability techniques can be systematically applied
using a software architecture approach based on quality attributes.

1.2 Research Questions

The purpose of the research in this thesis is to contribute to the solving of the real-world
problem, not to solve the real-world problem; there is a clear distinction between the goals of
the research project and the goals of a real-world industrial project. There are many different
aspects of the real world problem, many questions to be answered, many of which are not
research questions. On the contrary, the solution of a practical problem can be important input
to the validation of the research project’s products and idess.

A good understanding of the industrial context is needed in order to avoid
oversimplification of the problem, neglecting certain important factors and being unaware of
important influences and relationships. Therefore, the first main research question addressed in
the thesis is directed towards characterization and generalization of software architecting
context in complex embedded systems:

Q1: What factors are considered important by software architects of complex
embedded systems and have significant impact on software architecture design?

Factors are any facts that are likely to constrain or otherwise influence the architecture [52].
Anayzing the wider context of complex embedded systems, rather than analyzing industrial
robotics systems only, gives us an opportunity to study similar systems. We may thereby
recognize important factors otherwise neglected, missing, or discounted when analyzing a

2 Means for dependability are “the methods and techniques giving the system the ability to deliver a service conforming to the
accomplishment of its function and to place a trust in this ability [30].” (for an overview of Dependability and its terminology
see Appendix A2)

single system or type of systems. Analyzing the role of a software architect in these systems is
related to this question and is dso a subject of investigation.

The second main research question is targeted towards investigating the applicability of
methods or means of development in providing assistance in the context of the industrial project
at ABB. The question is stated in the following way:

Q2: Which dependability means should be applied on software architecture level
to support system quality in an open system and what is a suitable approach to
systematically applying those dependability means?

A suitable method should provide assistance in understanding and dealing with tradeoffs
between increasing openness in a system and other important factors and in particular product
quality. Furthermore, the approach should include a systematic process that guides the
transformation of architectural design.

1.3 Outline of the Thesis Contributions

The thesis and its contributions to the store of software engineering knowledge are structured in
two parts. This reflects the fact that there are two main research questions. Only the main
contributions of the thesis are listed in this section. A more detailed discussion together with
answers to the research questions are included in the conclusions of the thesis (Chapter 5).

The main contributions of the first part of the thesis are related to software architecture
design for complex embedded systems:

e Systematic capture of the state-of-practice of software architecture design for complex
embedded systems. In complex embedded systems, components of the system
architecture are likely to be subsystems consisting of hardware and software. The
hardware may be custom made and hardware costs are likely to put constraints on the
resources available for software. Hardware-software version compatibility should be
carefully planned as both hardware and software are subject to version changes, etc.
The work we have done is based on data provided by the architects of several different
systems in the following domains: telecommunication, robotics, and transportation and
construction equipment.

e Severa heuristics of good and bad practices in architectural design are identified, such
as the importance of the core architecture team, its deliveries of and relationships with
architectural work and individual projects.

e Certain areas in which industry still has no generally accepted systematic approaches
and could benefit from future research are identified. One such issueis communication
of architectural decisions and principles both during initial design and evolution.

The second part of the thesis looks into various aspects of openness and the applicability of
quality attribute based software architecture design methods in the context of complex
embedded systems. The contributions are summarized as follows:

e The thesis contributes to a general understanding and definition of non-functional
system property designated openness.

e There is no generally accepted and unique way of modeling quality concerns in
system analysis and design. Separation of system qualities to design-time and
operational qudities is often suggested in literature [12,49]. It is shown in the thesis,
how this separation is used in the design of an open system.

e The thesis provides an example of how quality attributes based software architecture
evaluation in combination with dependability means is used in the design of an open
system that fulfils quality concerns. We identify a potential for improvement of the
methods in better integration between system and software level.

14 Research Methodology

The overall research design, upon which this thesis is based follows the conceptual research
design framework described by Robson in [51] and guidelines by Shaw [53] [54]. The most
important eements of the research design are depicted in Figure 1.

|
|
|
. |
Industrial Context/ I Research Context/
Project | Project

|
|
|
|
|
| .
| setting/purpose
|
|
|

Problem N }

N . .
- characterize questions theory
.
. \ apply to
| motivation —
| T
| el Research ,
| Questions motivates
! tentative
! answers
| to questions
|
y | A hypotheses
|
|
| .
| Research -« input to
development } strategy

process !
|
} decide on
|
|

. -
improvements
P Research determines technique
\ methods/
| approaches

Research product/

result - validate— validation

Solution
\\
input to
validation ™%
|

Figure 1 Elements of design of a“real world” research project (based on
[51])

I "

The starting element of the research context is research questions that are motivated by the
real-world problem. Questions settings determine the type of the questions. The most common
settings are: feasibility, characterization, method/means, generalization and selection [53]. In
this context, the theory isabasis for predicting or choosing a particular answer — the hypothesis.
Whether a hypothesis is formulated at al and whether it is expressed more or less
strictly/formally, depends on the type of questions and the theory. Strategy is the overall
strategy of the research project. Determining the strategy involves: choosing between fixed
(quantitative) and flexible (qualitative) research strategies (such as case studies or grounded
theory), deciding on the type of research method to be used, how results will be validated etc. In
a fixed research strategy, most of the details of the research method are determined in advance.
However, in certain cases, especialy when the research goals are related to a project whose

goals are evaluation and change, it is difficult to make all the detailed decisions regarding the
research strategy in advance. Flexible research strategies are more suitable for those kinds of
situations. In aflexible research design, al of the dementsin Figure 1 are revisited and refined
during the enquiry. The detailed design framework emerges during the enquiry. Methods are
particular tactics for collecting the data (e.g. interviews), data analysis and analysis of the
trustworthiness of the results.

1.4.1 Theory and Research Hypotheses

There is an enormous number of possible answers to our research questions (Section 1.2). The
search for possible answers and solutions must be limited in some way so that a meaningful
enquiry can be performed. Choosing the theory (a part of the existing knowledge in the area of
software engineering), which is used to formulate the hypothesis (predicted answers) to the
guestionsis one of the crucial points in the design of the research project. Possible risks are e.g.
not searching enough for a suitable existing theory or choosing an inadequate theory. Parnas
says that one of the problems with research in software engineering and computer scienceis that
“principles may be harder for people to apply than expected” and that “there is no glory in
confirming other peopl€'s results; you have to invent your own” [44]. In the case of this thesis,
the unigueness of the industrial context makes it very hard to find an exact match of a theory
that is proven to fit the problem description and the given context.

The nature of the problem and the research questions asked, are primarily from the research
area of software architecture and dependability. In the scope of this thesis, dependability means
and quality attribute based software architecture design methods are used as “theories’. There
is aso a strong relationship between the research questions and the areas of: software quality,
requirements analysis and modelling, and of course to the general context of systems and
software engineering. Figure 2 shows the most important research areas related to the research
guestions. Even though it is not illustrated in this figure, there are certain overlaps between the
individual research areas.

/Systems
and SW
Engineering

Requirements
Engineerir -

Software
nature of the Quality
problem and
research
questions

Softwau <
Architecture

Dependability

primary|
areas
%

-

Figure 2 Resear ch areas of concern for the problem?

In general terms, using a research hypothesis is most applicable in fixed design research. In
a fixed design we are in a good position to predict answers before the actual data are gathered,
while in flexible research we are more likely to be able to make these predictions afterwards.
Therefore, a simple definition of hypothesis as a predicted answer to the stated questions is
suggested in [51]. As it will be described in the next section, we have chosen the flexible

research strategy.
Having this discussion in mind, we formul ate the following hypotheses:

H1: In addition to the general factors that are considered in the
architectural design of software systems, the factors that originate from
relations between software, hardware and entire system must be taken into
consideration.

H2: Quality attribute-oriented software architecture design methods can
be used as a systematic approach in applying dependability means in the
context of open business-critical complex embedded systems.

Note that we have chosen to formulate a hypothesis for the Q1 and a hypothesis for the second
part of Q2 question (i.e. “ ...what is a suitable method ...”). No hypothesis is formulated for the

3 Overviews and the most important terminology and concepts from these research areas which are relevant for questions
discussed in this thesis, can befound in Appendix A.

first part of Q2 (i.e. “Which dependability means...”), but we have rather chosen to provide an
answer to this question directly based on the research results.

1.4.2 Research Strategy, M ethods and Results Validation

The main research strategy we have chosen is a flexible or qualitative research. There are two
main reasons for choosing the flexible research design — the nature of the questions and the
author’s position as engineer-researcher. The nature of the questions is such that they belong to
the domain of software architecture and software engineering in which people are necessarily
involved in the context of investigation. There are many parameters that cannot be influenced or
controlled during the enquiry. The hypotheses must be evaluated with respect to a realistic
problemin areal world context. Action research is very well suited, particularly for Q2 and H2,
for case studies in which the purpose of enquiry and evaluation may result in a change of
existing practices. The author’s position as engineer-researcher fits wel in this context.
Working part time in industry and part time as researcher, provides an ideal background for
participative case studies or action research.

Research method for question Q1 and hypothesis H1: A case study was performed to
collect sufficient information to be able to support hypothesis H1 and give a more detailed
answer to the question Q1. Data collection in the case study was based on: interviews, mail-
exchanges and a workshop with embedded system experts. In order to give a structure to the
discussions, we proposed several discussion topics, such as the influences of the following
factors on software architecture design: relationships between system, computer hardware and
software architecture design, reuse/inheritance/legacy influences, business/application domain,
etc.

The research result is a qualitative or a descriptive model that is based on the factors that
influence software architecture design. The validity of the research results and conclusions is
addressed in the following way. First, mail exchanges were performed to clarify uncertainties
from the interviews. Second, the interview results were critically reviewed and analyzed by the
research group and third, the interview results were discussed in a workshop with the
interviewees. Finally, the results were presented at a major software architecture conference and
reviewed by a group of international experts.

Research method for question Q2 and hypothesis H2: Quality attribute based methods
from softwar e architecture and dependability means were applied in realistic projects, in which
openness was an important consideration. This part of the research project is based on active
participation as an engineer-researcher in two industrial projects at ABB Raobotics. The research
method used is participative case study and the data is collected through discussions with team
members and observation of practices.

The research results in this case are well-organized observations and an analysis of the
applicability of quality attributes-based architecture design principles to software architecture
design in a complex embedded system. The validity of the results for Q2 is less certain than that
of the results for Q1. Being too close to development projects, in the role of an engineer-

researcher, may result in the drawing of incorrect conclusions and biased results. A strategy for
producing valid results includes: real-world experience from discussions with industrial project
colleagues (informal interviews), parallel discussions with academic supervisors and reviewing
and publishing results in the international research community. Critical thinking is essential for
producing valid results.

15 Lis of Publications

A list of publications that form the basis for this thesis is presented below. As the publications
are results of the team work of researchers, my main individual contributions are highlighted.
Articlesin collection
1.) A Dependable Open Platformfor Industrial Robotics - A Case Study
Authors. Goran M ustapié, Johan Andersson, Christer Norstrom, Anders Wall,
published in the book:
Architecting Dependable Systems 1
Editors Rogerio de Lemos, Alexander Romanovsky and Cristina Gacek, published by
Springer-Verlag, Oct 2004.
Individual contribution: the main author. The case study is based on the industrial
project Open Controller in which | and partly Johan participated as engineers-
researchers.

Conferences and workshops

2.) Real World Influences on Software Architecture - Interviews with Industrial Experts
|EEE Working Conferance on Software Architectures Oslo, June 2004. |EEE
Authors. Goran Mustapié, Anders Wall, Christer Norstrém, lvica Crnkovi¢, Kristian
Sandstrém, Joakim Fréberg, Johan Andersson
Individual contribution: the main author. The paper presents an analysis of the data from
the technical report 5) below.

3.) A Dependable Real-Time Platform for Industrial Robotics
In ICSE 2003, WADS, Portland, OR USA , May 2003.
Authors. Goran M ustapié, Johan Andersson, Christer Norstrom
Individual contribution: the main author. A position paper which | presented &t the
WADS workshop to get research peer feedback regarding the problem statement.
4.) Propagation of quality attributesin a layered design
SERPS 03 Third Conference on Software Engineering Research and Practicein
Sweden, Lund, October 2003
Authors. Goran Mustapié, lvica Crnkovié
Individual contribution: the main author. A case study based on an industrial project
(Teach Pendant device for industrial robots).

-10-

MRTC reports

5.) Influences between Software Architecture and its Environment in Industrial Systems—a
Case Study
MRTC Report ISSN 1404-3041 1SRN MDH-MRTC-164/2004-1-SE , Mélardalen Real-
Time Research Centre, Méardalen University, February 2004
Authors. Goran Mustapié, Anders Wall, Christer Norstrém, lvica Crnkovi¢, Kristian
Sandstrém, Joakim Fréberg, Johan Andersson
Individual contribution: main author and editor, participated in all interviews but but
one, mail-dialogs with interviewed architects to clarify uncertain issues, presentation of
interview analysis results at workshop.

6.) Component Based Software Engineering for Embedded Systems - A literature survey
MRTC Report ISSN 1404-3041 ISRN MDH-MRTC-102/2003-1-SE, M & ardalen Real-
Time Research Centre, Méardalen University, June 2003
Author(s): Mikagl Nolin, Johan Fredriksson, Jerker Hammarberg, Joel G Husdlius, John
Hakansson, Annika Karlsson, Ola Larses, Markus Lindgren, Gor an M ustapié, Anders
Méller, Thomas Nolte, Jonas Norberg, Dag Nystrém, Aleksandra Tesanovic, Mikael
Akerholm
Individual contribution: survey of three papers.

7.) Modern technologies for modelling and devel opment of process information systems
MRTC Report ISSN 1404-3041 ISRN MDH-MRTC-100/2003-1-SE, M & ardalen Real-
Time Research Centre, Maardalen University, May 2003
Author(s): Ivica Crnkovic, Goran M ustapié, Mikael Akerholm
Individual contribution: minor contribution.

The thesis includes publications 1) and 2) with changes of style type (numbering, references
etc). Thethesis also includes a modified version of publication 4).

1.6 Thedsoutline

The outline of this thesis follows the flow of the research method described in Section 1.4.2. In
addition to this Introduction and Appendix A) containing a description of the research areas and
the terminology used, the thesis is divided into three main parts. In Part | we consider the red
life context of software architecting in complex embedded systems. Part | is based on
publication 2) [39]. In Part |1, research results based on involvement in industria projects are
presented. Publication 1) [38] isincluded in Chapter 3. Publication 4) [37] is basis of Chapter 4
and it has been modified based on the feedback at the conference and experiences gained after
the conference. The thesis completes by Part [11 that contains conclusions, discussions of results
validity, and aproposal for future work.

-11-

-12 -

PART | - UNDERSTANDING IMPORTANT FACTORS
THAT DETERMINE SOFTWARE ARCHITECTURE OF
COMPLEX EMBEDDED SYSTEMS

Not everything that can be counted counts and not everything that counts can
be counted.

Albert Einstein

The main goal of this part of the thesis is to present the research results that are used to
answer and support question Q1 and hypothesis H1. Chapter 2 is based on the published article
[39]. The published article has been extended to include the questionnaire table used at
interviews (Section 2.2), previously found in the technical report ([40]). Comments from other
architects we have met at the conference are included in Section 2.6.

In the published paper we use terminology “industrial systems”, but in this thesis we have
decided to use more generally accepted terminology “complex embedded systems.” The
terminology that is used in the paper that is included in Chapter 2 is preserved in the original
published form.

-13-

-14-

2 Real World Influences on Softwar e Architecture

— Interviewswith Industrial Systems Experts

Abstract

Industrial systems are examples of complex and often long-lived systems in which software is
playing an increasingly important role. Their architectures play a crucial role in maintaining the
properties of such systems during their entire life cycle. In this paper, we present the results of a
case study based on a series of interviews and aworkshop with key personnel from research and
devel opment groups of successful international companies in their Swedish locations. The main
goal of the investigation was to find the significant factors which influence system and software
architectures and to find similarities and differences between the architecture-determining
decisions and the architectures of these systems. The role of the architect was an important
subject of the investigation. Our findings result in recommendations relating to the design and
evolution of system architectures and suggestions regarding areas in which future research
would be beneficial.

2.1 Introduction

There are many large and complex software-intensive systems which have been successful, not
only in commercial terms, but in providing reliable bases for several products over many years.
One of the key factors in successfully managing a system, i.e. maintaining the system,
introducing new features etc. is its architecture. There are several factors that distinguish the
management of large and complex industria systems from the management of smaller systems.
The requirements of smaller systems can often originate with and be understood by a single
person, while the requirements of large systems have many dimensions and involve many
stakehol ders, which makes them much more complicated and difficult to grasp and manage.

It is not feasible to study the important architectura factors affecting large systems by
constructing and reasoning about small “toy-systems’. The architectural work in real systems
has so many different aspects, that it is unrealistic to experiment on system models and expect
to draw conclusions of value. Large and complex systems can have a lifetime of 20-30 years,
which makes experimenting with these systems even more difficult. A realistic study of factors
important for successful system management requires that we can study a system over a long
period of time, or at least have access to a reliable source of information regarding the history of
the system.

We have studied seven large and complex industrial systems in which software has an
important and expanding role. We looked at several aspects of these systems related to their
architecture at different points in their lifecycles, i.e. requirements, design and implementation

-15-

of the system, system evolution and retirement. Among many others, the following issues are
analyzed in their relationship to architectura decisions: reuse, legacy, the effects of the choice
of technology, standards, organization and development process.

Even though we have primarily focused on software architecture, it is important to have in
mind that a typical industrial system incorporates computer hardware, other hardware and
software. One of our goals was to find out how much importance is given to software
architecture in the design of these systems. In [7], the authors “persist in speaking about
software architecture primarily, not system architecture, ..., because most of the freedom isin
software choices, not hardware choices.” However for the systems we have studied, the
following statement by Maier and Rechtin [32] may be more appropriate: “Even if 90% of the
system-specific engineering effort is put into software, ... it is the system, not the software
inside that the client wishes to acquire.”

The systems we have studied are: the eectronic control systems of cars and construction
equipment provided by Volvo Car Cooperation and Volvo Construction Equipment
respectively, a robot control system provided by ABB Automation Technol ogies AB/Robotics,
a train control system provided by Bombardier Transportation, the software system of radio
base stations for 3G provided by TietoEnator Telecom & Media, and the Ericsson telecom
system and platforms of some of its nodes. The study is based on interviews with specidlistsin
the system and software architectures of the companies’ system and software development
organizations. The results from the interviews were summarized and further discussed during a
workshop in which the interviewed architects participated.

Most software architecture-related research is focused on architectural analysis,
architectural descriptions, and tools. Consequently, most of the documented case studies are
focused on these issues [55] [13]. Other reports present the utilization of related architectura
activities in the software development process in terms of descriptions and anaysis[57]. A case
study similar to ours but of rlatively limited scopeis presented in [20]. We have found no other
relevant work that addresses important factors related to the software architecture in successful
software intensive industrial companies to the same extent as this paper.

The contribution of this paper is a description of the state-of-practice in industry with
respect to software architecture and a set of observations and findings from an analysis of
interviews and a workshop with the chief architects from these companies. The findings include
architecture-related differences between and similarities of the systems studied. Moreover, we
provide speculative findings and trends that were not explicitly found in the case study, but
were rather the results of the intuitive reasoning of the interviewers.

The outline of the paper is the following: in Section 2.2 we present a detailed description of
the method used in performing the interviews. In Section 2.3 we give a brief overview of the
systems studied. Section 2.4 presents a comparative andysis of the data collected in our case
study. Section 2.5 contains our conclusions and some suggestions for our future work in this
field. Some feedback to the published results is included in Section 2.6. We express our
gratitude to the individual s who participated in the project and their companiesin Section 2.7.

-16 -

2.2 Thecase study setup

The case study performed was an investigation of the architecture of software. According to
[45] the following steps are involved in a case study: conception, hypothesis setting
(particularly important as it describes what we measure and how the results are analyzed),
design, preparation, execution, analysis, dissemination and decision-making. Also, because a
case study usualy compares one situation with another, some measures must be taken to avoid
bias and to make sure that hypothetical relationships are tested. Possible techniques are: sister
project, comparison with a general baseline and random selection. We have performed these
genera geps in the following way. In the preparation phase of the case study we held severa
brai nstorming sessions. The outcome of these meetings was a plan with the following agenda:

Formulate alist of question to guide the interview.

Request and arrange interviews with people who have an architect, chief designer or
similar important role and know the history of the system. The interview was estimated
to take at least two hours, and was conducted by one or preferably severa of the
authors of this report. We decided to use the following criteria in the selection of
companies to participate in the case study:

o Successful products on the market

o Complex, established industrial products in which software is an important part
of the entire system

o Availability of specialist architects

o Availability of data from several system generations
After the interviews, write summaries to send to the architects concerned for review.
Assemble the results of the interviews in atechnical report.

Make a preliminary analysis of the interviews and determine the similarities of and the
differences between the cases.

Organize a workshop with the interviewees and perform a further analysis of the
results.

Publish the results of the case study as a scientific article.

The purpose of submitting a questionnaire was to give a common structure to all the
interviews and to form a basis for comparison and analysis of the results. The layout of the
guestionnaire was the following:

-17 -

Table 1Questionnairefor architectureinterviews

1. Relationship of software and system architecture and propagation of requirements
between them;
a. How would you order influences between:
i. Software
ii. System
ii. Hardware
architectures (e.g. which one is determined first, second and third)?
b. How are influences between SW and system architecture communicated
(e.g. through requirements, what notation is used etc)?

2. Reuse/inheritance/legacy issues;

a. Code

b. Subsystems

c. Experiences
3. Business/application domain factors:

a. Standards
Requirements
Type of customer
Volumes
Length of life

f. Non-functional requirements (NFR)
4. Choice of technologies:

a. Who influences who and how (architecture and technologies)?

b. Inwhat extent?

c. How to handle a mix of technologies?

d. How do possible future technology changes influence architecture?
5. Organizational issues and architecture;

a. Who influences who and how?
Work distribution and allocation.
Distributed development.
Are there third party contractors? If so, how does it influence the architecture?
How to balance project and competence organization?
Size (5 or 5000 developers needed to implement the system)?
Dynamic (how often does the organization change).
Maturity of the development organization and people competence
6. Process issues;

a. What type of development process do you use and why?

b. Does process influence architecture and how?

© 20T

T@ "o oo0 0T

-18-

7. Resources in architectural activities

a. Calendar time for architectural activity

b. People involved in architecture related activity
8. Other

The interviews were not restricted to the questions in the questionnaire. Wherever possible,
we advanced counter arguments to provoke discussion, well aware that some of the statements
were a summary of the interviewee's experience with multiple systems over a period longer
than 10-15 years. In some cases, we have conducted several interview sessions to penetrate
different subjects and e.mail exchanges to clarify some uncertainties.

2.3 Systemsoverviews

In this section, we present a brief overview of the systems covered by the case study. The
systems have been categorized in the following groups in accordance with their engineering
domains. industrial automation-robotics, telecommunications, construction and transportation.
The way we present the system overviews reflects the views and responsibilities of the
interviewees.

2.3.1 ABB Automation Technologies/ Robotics

ABB Automation Technologies Products — Robotics is a manufacturer of industrial robotic
systems. The interviewee has been the chief system architect for the two most recent system
generations. Industrial robots are systems consisting of one or more mechanical units (robot
arms that can carry different tools), electrical motors, robot controller (computer hardware and
software) and clients (used for on-line and off-line programming of the robot controller).
Industrial robots can be characterized as generic tools that can be configured and programmed
for a specific purpose such as painting, welding, palletizing etc.

-19-

'“g Robot Studio
3l | Web Access (offline
(optional) \% programming)

TCP/IP

L 10 units or PLC
Main)
computer — fieldbusses

Axis
computer

Robot
Controller
with

Teach
Pendant Unit

Drive

1
Manipulator Module

Figure 3 System hardwar e view of an industrial robot system from ABB
Robatics

A hardware view of a robotics system is shown in Figure 3. The clients of the robot
controller are optional, while the main computer and axis computer are tightly coupled, with
real-time constraints on their communication. The main computer executes user programs and
generates the path to be followed (the coordinates) and then sends these to the axis computer,
which controls the axes of the manipulator.

The system has evolved through four generations, and the fifth generation of the system is
currently being developed. Compared with the first generation (S1), which used the first
microcomputer-based electrical robot control system, and whose software design required about
three man months of work, the effort required to develop the software for the fifth generation
(SH) is estimated to be about 100 man years. In the most recent system-generation shift, even
though the computer hardware of the robot controller was completely changed, the software
architecture in the system is considered to be the same, since the basic software infrastructure
and patterns have not changed, even though much new functionality has been added.

One of the initial requirements was that the same controller should be used for all the
different types of robots, and thus the architecture can be characterized as product line
architecture. More than 60K $4 generation controllers are currently in use.

In essence, the controller has layered architecture and within layers, an object-oriented
design. The implementation consists of approximately 2500 KLOC of C language source code
divided into 400-500 “classes” and organized in 8 technical domains. The software platform of
the robot controller defines the infrastructure that provides basic services such as. a broker for
message-based inter-task communication, configuration support, persistent storage handling,
system startup and shutdown, etc. These basic services constraint the implementation of the
software system, as defined by the architecture.

-20-

2.3.2 Ericsson AB (R&D System M anagement)

The interviewee is a member of the R&D System Management group, the task of which is to
maintain an overall technical view of how the Ericsson product portfolio and platform
technology is evolving. The subject of our discussion was the Ericsson telecom system as a
system of systems. Telecom systems have a long history and have been standardized to permit a
global communication system. Standards are the dominating factor for system functionality in
this domain - a sign of the maturity of the telecom industry. Packet switching networks are
more recent and these systems are still subject to more dynamics and changes in their
requirements. A telecom system is a complex system and an example of only a part of atelecom
network is shown in Figure 4. The figure shows a radio access network, the radio base station
acting as the radio modem, converting digital information to analog radio signals and vice versa.
This particular part of a telecom network was illustrated because the software architecture of
one of its nodesiis discussed in the following section.

&/—;\i;;}) iual:‘r;t;tg% rfk

WCDMA RAN

lu E ’ Mur /\7 \

| Radio Access
Network
“ :

: %
-
Radio] %
Base Station

Network
Management
Environment

i

User Equipment Radio Base Station

Figure 4 Radio Access Network

A telecom system requires exceptional reliability and availability. For example, a switch is
started only once, and after that it should be possible to perform almast all maintenance during
operations. Interoperability is another key property of atelecom system.

2.3.3 TietoEnator Telecom & Media

TietoEnator Telecom & Media, in partnership with Ericsson, devel ops 3G-base stations for the
new mobile telecommunication system UMTS. We interviewed a senior software specialist
who acts as one of the software architects of the Radio Base Station (see Figure 4). One of the
most significant characteristics of 3G base stations is that they are sold in very large numbers

-21-

(for example, each 3G provider in Sweden requires about 12,000 base stations). They must
have very high degrees of availability and ease of maintenance.

The system currently being devel oped is the first version of the new 3G-base stations. The
development of the base station system was preceded by an initial prototype and experimental
implementation, gathering experience and evaluating architectural solutions. In the actual
product development, experience from the prototype development was very useful, but no
software from the prototype was reused. The radio base station controller software consists of
approximately 2000 KLOC of code organised in about 5000 UML-RT modd eements, i.e.
capsules, protocols and classes. About 80% of the code is generated automatically from Real-
time UML. The base stations are built on a platform delivered by Ericsson (CPP, Connectivity
Packet Platform). The platform is based on the OSE-Delta real -time operating system.

Figure 5 shows the functional architecture and the major functional components of a Radio
Base Station. The functional components can be realized both in software and hardware, the
Traffic Control and Operation & Maintenance being the most SW-centric components.

lub/NBAP Mu% GUI

Traffic Control [« Operation & Maintenance

lub/AALG Infrastructure and Platform

lub

Antenna | Uu
Transport Baseband Radio Near
Parts

< User Plane >

Figure 5 Radio Base Station Functional Architecture

The main characterigtic of the software architecture is that the functional architecture has
been arranged in a layered structure. The layering can be seen in three distinct dimensions:
From the Traffic Control point of view, from the Operation & Maintenance point of view and
from the Platform point of view. The main focus in the layered structure from the Traffic
Control point of view is on the hardware abstraction layer, which decouples the higher layers
from the actual HW realization in the Transport, Baseband, Radio and Antenna-near parts. The
decoupling is achieved by means of reusable components that provide the User Plane
functionality in the same way, irrespective of how the HW is being realized, i.e. irrespective of
which kind of radio base station is being built.

-22-

234 Ericsson AB (Core Network Development)

In this interview, we met two software technology specialists at the Ericsson Core unit, Core
Network Development. This group develops platforms which provide the basic hardware and
software in different types of telecommunication systems. Examples of platforms are CPP,
AXE switch platform and WPP platform (for GSN nodes). Platforms include both hardware and
software. Examples of systems built on these platforms are nodes in telecom networks: Digital
switching systems (e.g. AXE108), Mobile Base Stations (e.g. RBS discussed in Section 2.3.3
above), SGSN (GPRS Support Node).

Many architecture patterns can be recognized in each of those platforms, e.g. “client server",
"blackboard" and especially “ pipes and filters’. The system has a layered structure both on the
system and subsystem levels. Special attention was devoted in the architectural design of these
systems to concurrency and availability.

2.3.5 Volvo Construction Equipment

Volvo Construction Equipment (Volvo CE) develops and manufactures a wide variety of
construction equipment vehicles such as articulated haulers, excavators, graders, backhoe
loaders, and wheel |oaders. We interviewed a technical specidist in el ectronic systems, who has
been involved in the architectural design of several generations of the Volvo CE system.

Compared with passenger cars, most construction eguipment vehicles are equipped with
less complex eectronic systems and networks. The focus in product development is somewhat
different. The products are to be used at construction sites, and the most important requirement
of the vehicleis to be areliable machine to increase production.

Electronic control systems are important parts of the construction egquipment product and
are crucial for providing end-user functionality, such as automatic gearbox, engine and
differential lock controal, in addition to providing diagnostic and service functions.

Using a distributed eectronic system reduces the cost of the product by permitting the use
of sensors and displays for several purposes and enabling the use of control solutions which
permit the use of |es expensive mechanical components.

Figure 6 shows the basic architecture of the eectronic system consisting of several ECUs
(Electronic Control Units) connected by busses. A unified hardware is currently used for all
nodes except for the display ECUs that differ due to space and appearance reguirements. A
unified hardware means, in this case, a common design with configurable I/0.

Together with the common hardware platform, Volvo CE uses acommon software platform
for the on-board ECUSs. All of the nodes have a layered structure as shown in Figure 6. Software
implementation that is reused between nodes includes: boot code, drivers, communication
software, service software, error handling etc. Tools such as compiler, code generators, and
scheduler can be used more easily due to the fixed hardware platform. Methods for
parameterization of software are also reused.

-23-

Application Layer

Communic. | Rubus | 10

Hardware layer

ECU 1 ECU n

‘ SE J1 939/CAN ‘

SAE JI 857/J1870

Figure 6 Componentsin electr onic system of Volvo CE equipment.

To permit the reuse of software components and methodology in different products, Volvo
CE has incorporated the Rubus component model for the real time gpplication domain. The
component mode is an important part of the Volvo CE dectronic platform since it enables
reuse and commonality in terms of tools and methods. The Rubus component model is similar
to the pipes and filters model.

2.3.6 VolvoCar Corporation

Volvo Car Corporation (Volvo CC) isasubsidiary of the Ford Motor Company, manufacturing
a premium product aimed at the upper end of the car market. In this interview we met with the
Program Manager, Research & Advanced Engineering. Volvo CC manufactures nearly half a
million cars per year. To achieve these volumes, and still offer the customer a wide range of
choices, the products are built on platforms containing common technology that has the
flexibility to be adaptabl e to different models. As an example, the Volvo XC90, which appeared
in 2002, is based on the same platform as four previous Volvo models launched since 1998.
This reduces the development cost and makes it possible to reuse the same manufacturing
facilities and strengthens the brand image through an increased similarity between the models.

A typical configuration of a Volvo CC car includes ECUs from more than 10 suppliers. A
Volvo CC car contains a maximum of about 40 ECUs , connected via 4 different networks. In
order to increase control in integrating supplier software and hardware components, Volvo CC
uses methods and tools to assist in this effort.

The component technology is to a large extent provided by external suppliers, who work
with a number of different car companies (or OEMSs, original equipment manufacturers),
providing them with similar parts. The role of the OEM is to provide external suppliers with
specifications so that the component supplied will be suitable for a particular car model.
Currently, external suppliers offer components in the form of ECUs with associated software,
but as the computational power of the ECUs increase, it will be more common to include
software from several suppliers in the same nodes, this increasing the complexity of the
integration. The suppliers develop the ECU software using their tools and structure, but Volvo
CC, as an OEM specifies: communication, power consumption, diagnostics, and software
download procedure.

-24-

Application

Diagnostic Kernel Network Communication

RTOS 10

Hardware

Figure 7 ECU node ar chitecture.

The Volvo CC node architecture is a layered architecture (Figure 7) that must include a
diagnostic kernel and a network interface provided by Volvo CC. All these components are
integrated by Volvo CC, which is responsible for guaranteeing each node's resource
requirements with respect to communication bandwidth.

2.3.7 Bombardier Transportation

Bombardier Transportation is the global leader in the rail equipment, manufacturing and
servicing industry. We interviewed persons with two different roles — a system architect and a
technology specialist. Examples of Bombardier products are: passenger rail vehicles and total
transit systems, locomotives, freight cars, propulson & controls, signaling equipment and
systems. The group, representatives of which we met, develops components of the control
system, propulsion and control systems. The control system components are delivered to the
system groups that develop complete solutions for the end customers, and in particular, sub-
domains (e.g. InterCity trains, Metro, Railway Control System).

A simple mode of atrain with the most important elements of its control system is shown
in Figure 8. A standard designated TCN (Train Communication Network), defines the network
interconnections between vehicles (WTB — Wire Train Bus) and within vehicles (MVB -
Multifunction Vehicle Bus). A common time-triggered protocol is used on both WTB and
MVB bus.

Tramn bus

ek ek bk b s

Velicle bus Veluele bus Vehicle bus

Figure 8 Train communication network

-25-

The layers pattern is dominant on the architectural level. Other design patterns such as
publisher-subscriber and cyclic execution are also used in addition to own internal patterns to
develop applications in a distributed deterministic real-time environment. For application
programming, within nodes of the control system, Bombardier uses the IEC 61131-3 standard
programming languages. The standard defines five languages, and of these function blocks
(FCB) is that used mostly.

In addition to the traditional control system-related functionality, comfort-related
functionality is becoming more important. Each of the computer-based eectronic equipment
units developed by the organization can be classified in one of the three domains of criticality:
comfort (e.g. connection system, passenger information, entertainment, etc), safety (control
system that is a part of the safety control) and control.

24 Comparativeinterview analysis

In this section, we present a comparative analysis of the interview data grouped according to the
guestions used in the interviews and listed in the Table 1.

24.1 Relationship of system, computer hardwar e and softwar e ar chitecture

From the brief overviews of system and software architectures presented in Section 2.3, we can
conclude that they have many similarities. All of the systems have complex distributed system
architectures with distributed and relatively autonomous units. In some cases we can treat them
as systems of systems. The software architectures of system nodes are also similar (e.g. layering
approach).

In [32] Maier and Rechtin discuss a shift in architectural design methods from “hardware
first” to “software first”. One of the goals of our investigation was to determine the current state
of practice regarding the relationship of software and system architectures in industrial systems.
That the “ software first” approach is becoming increasingly common is demonstrated by severa
of the systems we have studied; recent system generation has changed from “hardware first” to
“software first” at both ABB Robotics and Volvo CE. Increasingly more intelligence is
encapsulated in the software of these systems. In the ABB Robotics example, the computer
hardware was completely redesigned in the most recent system generation shift, the software
platform remaining the same. In the Ericsson cases, hardware still dominates the design of the
software system. In the Volvo CC case, the hardware architecture remains dominant as it is the
basis for integration of external functionality but the importance of software and software
architectureis increasing.

The following are views regarding software vs. system knowledge expressed by
interviewees. One stated that a “good enough knowledge, or at least understanding of the
system and the HW... with respect to managing, supervising and controlling al the different
HW is needed. However, | find that my experience in SW engineering and good general

-26-

knowledge of SW is much more valuable in getting a good SW architecture.” Another
commented “1 have seen ‘strange’ software solutions built by application/domain specidists
who did not have sufficiently good general software architecture design knowledge” This
indicates that system expertise is necessary, but not sufficient.

2.4.2 Reuseand legacy in architectural design

As described in Section 2.3, several of the systems described have passed through clearly
defined generations and within the systems, there have been corresponding generations of the
(control) system hardware and software. We analyzed the relative importance of the following
three factors: experience, subsystems and code, in the design of a major new generation of a
system.

All of the interviewees stated that experience in developing similar systems, or previous
generations of the system, was of the greatest importance. This is because the design of a new
system generation seldom, if ever, begins with a blank sheet.

The reuse of subsystems in a new system design was considered to be an important
economy and therefore can have more impact on the architectural design than might be
expected. There are examples (ABB, Ericsson), in which complete subsystems were either
reused from a previous system generation or acquired from athird party, when anew generation
was designed. In the case of ABB, the design of the S4 system generation would have never
been approved, because of the unacceptably high cost, if the new architecture required all
subsystems to be changed or replaced. It is hard to disregard the legacy in long-lived systems.
In the case of Bombardier, we have seen an example in which new hardware was designed with
the explicit requirement that it should run old system software without change. In safety critical
systems, eg. train safety contral, it is highly desirable to reuse a critical code that has been
proven to work well in practice.

As the amount of software in a system increases it becomes increasingly important to reuse
software components to minimize the investment in a new system or generation. It is therefore
important to package software components in such a way that they can be used in a variety of
architectures. A stable base platform infrastructure and easily reconfigurable connections
between components on higher-levels is economically advantageous as seen in the ABB
Robotics example. The software architecture in the system is considered to be the same in the
most recent system generations, because although some new, very different features have been
added, the basic patterns, message-based communication and similar have not changed. From a
structural point of view, as connectors and components, this architecture would be considered to
be a new architecture because a number of components and the way they are connected have
changed. Of course different system properties, such as timing properties or reliability can be
changed, due to changes in the structure, and must therefore be re-verified.

-27 -

2.4.3 Business and application domain factors

In this section, we analyze the impact of business and domain related factors on system and
software architecture. More specifically, we have investigated the influence of the following
factors: standards, type of customers, production volumes, product lifetime, and non-functional
requirements.

The influence of Standards varies on the basis of the domains in which the systems are
used. Standards completely dominate the telecom domain, leaving space for competition based
on optional features in standards and other non-functional requirements. Standards are not only
used for interoperation between different systems, but also for interoperation between the nodes
within a system. This is the case not only in telecommunication but also in the automotive
industry in which e.g. the standardization of bus protocols is used as the integration point. The
importance of standards and interoperability go hand-in-hand in the telecom domain. It is very
important, to remain competitive in the market, to participate in standardization activities, to be
at the leading edge and deliver solutions as soon as standards are finalized. For other systems
and domains, we were told that standards have the greatest impact on subsystem level (eg. a
safety subsystem). This says basically that system partitioning was applied in the solution space,
in order to comply with standards more easily (i.e. to certify a subsystem rather than the whole
system). It is common to use software to implement more advanced safety features and have
software independent core safety function as a backup (e.g. robotics system safety, ABS
systems for car brakes, trains safety). Industry standards have a considerable impact on system
architecture, e.g. for robotic systems - support for different kinds of field busses, for train
control systems - TCN standard for train networks, other industry standards for network
communication. These systems often have architectural level variability points to be able to
support, for example, multiple industry standard protocols.

The type of customers has an appreciable impact on the process of architectural design. In
some cases (Volvo CC) there are many small customers. In this case, the devel opment partners
arethoseinvolved in the architectural design. In other cases (ABB Robotics, Ericsson) there are
both very large customers and many small. We were told that: “large customers have their
opinions not only about what a system should do but aso how a system should be built”. In the
case of special customers, architectural issues may be a matter for discussion between the
customer and the architects.

Product volumes also have an important effect on the architectural design. If a product is to
be manufactured in large numbers, it is easier to justify the expenditure of more time in
optimizing the product with respect to certain properties if this will lower the unit cost. The
properties which need to be further optimized depend on the product. Ease of maintenance and
fault tracing by non-experts is definitely one important property (Volvo CC, Volvo CE).

Product lifetime is another factor that is important in the architectural design of the systems
we have studied. Most of the systems studied use a layered approach to decouple hardware and
software, but also to decouple platform software and operating system. When the product

-28-

lifetime is 20-30 years, any unavailability of the OS used to build the original system is as much
a problem as the unavailability of the hardware used in the original system design. We were
shown examples of projects in which it was decided to use the Linux OS platform instead of
MS Windows, because it was believed to be preferable to own the source code. We are not
aware of any systematic approach to dealing with this issue.

We have seen that non-functional requirements (NFR) have a significant explicit impact on
the architectural design of systems investigated. Each of the systems has particular non-
functional requirements that are dominating and explicitly taken into account. Operational NFR
are always analyzed from the system level. For some systems (e.g. trains) there is more focus on
hardware NFR because of the nature of the operational environment (e.g. temperature variations
—40C to +50C, humidity, vibrations, etc), while for other systems (e.g. telephone switches)
software and hardware play an equally important role in providing support for
performance/concurrency. The implementation of software concurrency mechanisms and fault-
tolerance (especially fault isolation) is given much attention during the architectural design in
tedlecom networks. Understandability of the system architecture was stressed by all of the
interviewees as being very important.

2.4.4 Choice of technologies

A number of questions were asked during the interviews to determine how technologies and
architecture have influenced each other in the creation process and the evolution of systems. In
particular, we wanted to know if any explicit architectural activities or measures taken were
related to choice of technology. We used the term technology in a broad sense - something that
includes particular principles, methods and tools - e.g. database-technology, .NET or Java
technology or similar.

From the architectura point of view, a common opinion was that technology does not play a
crucial role. An ambition is to keep architecture separated from implementation, and in many
cases, the use of a particular technology is seen as a matter of particular implementation. New
technology is introduced carefully, very often in a part of a system (ABB Robotics, Ericsson).
The introduction of new technology is sometimes forced by cost reduction requirements, e.g.
the introduction of new cheaper hardware (Bombardier), or because of a possihility of utilizing
more efficient tools (Bombardier, ABB Robotics).

However we have seen that the choice of technology may have important impacts on the
architectural documentation, design and evaluation. If a particular technology brings some
important advantages in analysis and settings of quality attributes (such as timing properties), its
use becomes the central paradigm of the devel opment process. One characteristic exampleis the
use of a component-based technology used by V olvo CE in which the software and, to a degree,
the system architecture are expressed consequently in terms of components with a standardized
specification. Another example isthe Model Based approach which is used at TietoEnator in the
design of RBS software (Section 2.3.3). UML-RT specifications are strictly used and the codeis

-29-

generated from the specification. In these cases technology plays an important role, achieving
not only greater efficiency but also a better understanding of the system architecture.

A somewhat surprising finding related to technology was that technology choices are
sometimes even made to motivate the developers of the system and create enthusiasm in the
team.

245 Organizational factorsand architecture

We analyzed the following issues in this section: influence of distributed development on
architecture, outsourcing, size, maturity, dynamics, etc., of the organization which was to
implement the system.

It is widely accepted that the organization influences the architecture; for example,
Conway's Law says that the structure of the organization that builds some software matches the
structure of the software [15]. The allocation of resources and people working on the project
will have a direct impact on the architecture of the system. The mgjority of the interviewees
stressed that the company’s organization often mirrors the system architecture and vice versa
Proper handling of this relationship is important in order to minimize the dependencies in the
software that make integration and validation more difficult and also to achieve distinct
interfaces between different organizational units.

Several interviewees emphasized the importance of taking into account in architectural
design, the fact that implementation will take place in geographically different places. We have
also seen examples of distributed development not being taken into account, this resulting in
less than optimal architectural support for the distributed development process. However,
partitioning that is appropriate in a distributed organization may impair other system properties.

Severa interviewees mentioned that changes in the organization are more frequent than
changes in the architecture. Some of the reasons for organizational changes are company
mergers and changes in the market. Moreover, some employees leave and others join the
development organization and it is important that the newly employed people can become
productive quickly. That is why NFR mentioned in 4.3 - understandability is of the utmost
importance.

Some of the interviewees had fundamentally different opinions concerning
understandability. An Ericsson architect opinion is that it is impossible to achieve quality if the
devel opers do not “ have the big-picture’, i.e. understand how a sub-system is used and operates
with other units. On the contrary, at ABB Robotics, opinion is that it is more important that
many devel opers can be good development contributors, without knowing and understanding
the entire system. This is because the ABB Robotics system is relatively multi-disciplinary;
control engineers, mechanical engineers, and software engineers must be able to contribute to
the same system without necessarily having any deeper knowledge in the other’s fields. Other
possible factors that have an impact on this issue are, for instance, related to the turnover of
engineers, and the magnitude of the system.

-30-

One organizational and process issue related to system evolution which is particularly
interesting is how to balance long-term strategic goals and short-term project goals. The conflict
begins as early as in the architectural phase (experiences from Ericsson) — should more time be
spent in establishing a good solid base for a long-term product evolution, or in getting a single
product to the market as soon as possible?

2.46 Processrelated factors

There was surprisingly little interest among the architects (with a few exceptions) in life cycle
and development processes. While it is obvious that architecture is a main means of preserving
system properties in an evolution process, it seems that the process itself is not a direct concern
of the architects. This implies that the mutual relations and influences are not under direct
control but happen more or less ad-hoc. Examples in which a process view of the architecture
would be beneficial are the designing of a testable architecture or, for managing future changes
in, eg. technologies, by having a life-cycle process associated with the architecture. We believe
that the absence of a process view in these architectures may be one of their weaknesses and
also that the indirect impact of the processes is appreciable. An example in which a more
defined process could be advantageous was given by the architect at TietoEnator. Integrating
software and hardware for the very first time is usually a source of friction. One potential
remedy of this problem could be software/hardware co-design.

Standards, e.g. safety standard such as |[EC 61508 and 1SO 15998, specify the development
and maintenance processes. These standards will affect Volvo CE and have aready been
considered at Bombardier Transportation in different domains of criticality (comfort, control,
and safety). Processes for devel opment in the safety domain are much more strict and regulated,
than e.g. those for the comfort domain.

2.4.7 Resources used for architectural design

Factors that were discussed included the time and effort invested in architectura activities and
the number of peopleinvolved in architectural design.

The companies that participated in this investigation spend several years in developing a
new architecture. Typically, architectural evaluation is based on prototypes and pilot systems.
All the architects who participated in this investigation agreed upon the importance of small
core-teams that decide the architecture, i.e. single-mind-consistency. Typically, architects
should be people with knowledge of the domain, the technology, and the architecture. One
interviewee described an architect as “a person who could implement the complete system by
himsdf/hersdf, if only time (to market) permitted.”

The fundamental principles of the system i.e. its basic infrastructure are a result of the
architectural design. Examples of fundamental principles in this context are the infrastructures
for communication and concurrency. The fundamental principles should be developed and
stable before too many developers are involved. We were given a contra-example of an

-31-

unsuccessful project (Ericsson), one of the main reasons identified being that too many people
wereinvolved before the basic principles were stabilized.

2.5 Conclusion

In this paper we have presented the results of a case study of several complex industrial
systems. We will conclude the paper by providing a synthesis of our interviews with respect to
thelife cycle of a system. For each phase of the life cycle we will present our main findings.

functionality

—_
time

Figure 9 A system life cycle plotted as functionality over time

A system’ s life cycle can be divided roughly into four different phases as depicted in Figure
9: (1) inception, (I1) initial development, (111) maintenance and evolution, and (1V) end of life
time. The curve in Figure 9 plots the functionality in the system over time. Hence, for a
successful system it is desirable to stay in the phase |11 as long as possible with a curve that has
an inclination as steep as possible, because this implies a high degree of productivity. The
architecture is themeans that should ensure along life cycle.

It is the initial phase that lays the foundation for a long life cycle. A core team of
experienced designers should be responsible for deciding the important architectural principles
and the infrastructure. The architectural principles typically manifest themselves as guidelines,
handbooks and an infrastructure as a platform. It is the architectural principles that ensure that
the most important non-functional regquirements are fulfilled. The most common mistake
reported is to involve too many peoplein the initial phase. Several of the interviewees reported
experiences in which too many people were involved without having a clear understanding of
how to implement what. At best, the development is hesitant and in the worst case, many
creative engineers design diverging system components which are incompatible because there
are too few constraints on their work. This problem often occurs because higher management
requires too much result in too short atime and believes that increasing the number of engineers
employed in the project will solve the problem.

It is important that the architecturd principles are properly communicated through the
development organization in order to preserve them. However, no or limited strategies for
communicating the important architectura principles were found in the case studies. One

-32-

strategy that was reported as successful was to appoint members of the core architecture team as
technical leadersin the development projects. In this way technical |eaders become the medium
that carries and transfers information of importance to the development organization.

The architects or technical leaders also have a very important role in bridging the gap
between architecture and technology, acting as mentors or guides [19]. It is crucid that the
architect is a technically very competent person, able to handle both detailed technical issuesin
the implementation view as well as the coarse-grained big picture represented by the
architecture and the domain. Only this kind of architect will be trustworthy in the eyes of the
devel opers who implement the system. Architects should aso be able to rise above the small-
detail problems and find a better solution on a higher level, when appropriate.

Communicating the important architectural principles is a continuous process that must be
considered throughout the life cycle of the system. It is important to define processes and
strategies, not only for communicating architectural principles, but also for managing for
example, the satisfaction of new requirements. A possible reason for finding process issues
rather insignificant could be that engineers who develop systems and those responsible for
process related issues tend to have a different focus — product and process quality.

The mgjority of the systems we have studied are continuously exposed to new requirements
from the customers. If these are not properly handled, the system evolution may result in
architectural deterioration. As a system is maintained and new functions are added the technical
complexity will increase. This is especialy true if the architecture does not completely adopt
and support the new functions.

Moreover, the cognitive complexity also becomes a problem if there is a large turnover in
personnel. Conseguently, it is important to have continuity in the people working with the
system since they are carriers of undocumented and important knowledge. In the mgjority of the
cases in our study, tools or processes for handling new requirements were not used. As a
consequence, the focus during system evolution is on the new requirements only. This creates a
risk that old requirements are violated while new requirements are being implemented. |dedlly,
old requirements should always be verified when new requirements are being implemented. We
found no systematic approach to solving this problem.

Finally, the system reaches a point (phase IV in Figure 9) where the current architecture
cannot support the new requirements or they become too difficult i.e. too expensive, to
implement within the frame provided by the architecture. As the inclination of the functionality
curve in Figure 9 decreases, the effort of adding new functions becomes excessive.
Paradoxically, this is likely the time at which the company makes the most profit from the
system, and will probably continue doing so for quite a while. It is important to set aside funds
from that profit for investment in a new architecture. Such an activity should begin towards the
end of the phase I11.

We believe that the results presented in this paper are applicable in general to complex
industrial systems in which software has an important and growing role.

-33-

In this paper, we have identified several areas that deserve more attention and each can be
the profitable subject of a new study. Additionally, in our future work, we plan to perform
additional interviews with smaler organizations and study their systems and compare the
results with our current observations and conclusions. We have performed one such interview,
which is not discussed in this paper. Before we can publish any results we need to perform
additional investigation.

2.6 Feedback from the conference attendees

Comments from a software architect at Nokia, Finland: “This work reflects quite well our
experiences at Nokia. However, in the case of mobile phone products, the HW still tends to
come first. One reason behind this is that these affordable consumer products are produced in
vast quantities and that the manufacturing costs need to be minimized (in large production
numbers the cost of HW dominates the manufacturing cost). On the other hand, as many
features are increasingly implemented by SW, the SW is coming more and more important.
Another differenceis that process issues are important in our case, where for Symbian OS based
phones, we have three different product platforms that each supply SW for different families of
mobile phone products. The development work is highly distributed (and parallelized) and
under heavy time-to-market pressure demanding a high degree of reuse. Without commonly
agreed ways of working, SW development would be quite impossible.”

2.7 Acknowledgments

We are very grateful to the following people who participated in this case study and their
companies. Peter Ericsson (ABB Automation Technologies AB/Robatics); Ulf Olsson, Hans
Brolin and Mike Williams (Ericsson AB); Nils-Erik Bankestad (Volvo Construction
Equipment), Jakob Axelsson (Volvo Car Corporation); Peter Cigéhn (TietoEnator Telecom &
Media); Erik Gyllensvard and Peter Sandberg (Bombardier Transportation).

PART Il — SYSTEM QUALITY AND OPENNESS IN
SOFTWARE ARCHITECTURE DESIGN

“In most software applications, investments in software dependability
compete with investments in such alternate capabilities as functionality,
response time, adaptability, and speed of development. Investigating the
tradeoffs among these sources of investment raises a number of significant
guestions about the nature of software dependability and its interactions with
other desired software capabilities.”

Barry Boehm

This part of the thesis presents the research results that are used to answer and support
guestion Q2 and hypothesis H2.

Chapter 3 contains publication [38] in unchanged form and is more recent and significant
contribution than Chapter 4. Figures, tables and reference numbering have been adjusted to
follow the numbering of the thesis.

Chapter 4 is based on the published paper [37]. Because that paper was published relatively
early in the research project, certain updates were done to make the paper suitable for the thesis.
The updates have been done based on reviewer’s feedback and feedback at the conference, and
to align the terminology with the terminology used in the thesis. However, the main layout,
observations and conclusions are the same.

-35-

-36-

3 A Dependable Open Platform for Industrial Robotics
—a Case Study

Abstract

Industrial robots are complex systems with strict real time, reliability, availability, and safety
requirements. Robot controllers are the basic components of the product-line architecture of
these systems. They are complex real time computers which control the mechanica arms of a
robot. By their nature, robot controllers are generic and open computer systems, because to be
useful, they must be programmable by end-users. This is typically done by using software
configuration parameters and a domain and vendor-specific programming language. For some
purposes, this may not be sufficient. A means of adding low-level software extensions to the
robot controller, basically extending its base software platform is needed when, for example, a
third party wants to add a completely new sensor type that is not supported by the platform.
Any software platform evolution in this direction introduces a new set of broad quality issues
and other concerns. Dependability concerns, especially safety, reliability and availability, are
among the most important for robot systems. In this paper, we use the ABB robot controller to
show how an architecture transformation approach based on quality attributes can be used in the
design process for increasing the platform openness.

3.1 Introduction

The demands of industry for safety at work and 50.000 hours of mean time between failures
(MTBF) require the hardware and software of industrial robot systems to be of very high
quality. Industrial robot systems consist of one or more mechanical units, e.g. robot arms that
can carry different tools, electrical motors, arobot controller (computer hardware and software),
and clients (see Figure 10). Clients are used for on-line and off-line programming of the robot
controller.

The software of the ABB robot controller discussed in this paper can be divided into:
platform software, application and configuration software. The variations between different
products within the product line are currently accomplished through the configuration and
application software while the platform software is fixed. The focus of this article is on
increasing the number of variation points in the software system through the design of an open
software platform architecture for the robot controller. Unless explicitly stated otherwise,
system in this context is the software system of the robot controller, and platform, the software
platform of the robot controller. The software platform is the basis for the product-line
architecture and its role is similar to that of a domain-specific operating system. One of the

-37-

differences between the two is that the platform is less flexible with respect to extension and its
share in the responsibility for the final system properties is greater than that of an OS.

According to [24], components in open systems do not depend on a single administrative
domain and are not known at design time. As a measure of openness, we use the diversity of the
platform extensions and the layer-level in the layered software architecture, in which extensions
can be included in the platform. Increasing openness in the platform means, at the same time,
that it is possible to increase the number of variations within the product line. An example
would be to introduce functionality not available from the base system manufacturer, e.g. new
type of sensor in the system. With a closed platform, it is only the development organization
responsible for the platform that can add low-level extensions to the system.

When designing the platform for a product line, there are many, varied architectural level
aspects that must be considered. Some are of a technical nature, e.g. defining what type of new
functionality should be supported and defining the open platform architecture. In addition,
many other related non-technical aspects, organizational, business and processes issues are
involved. Even though, in this paper, we focus on the technical aspects, each of those different
aspects is important. One of the main technical challenges in designing an open platform isin
increasing its openness without jeopardizing the quality of the final system. Consequently, all
precautions must be taken to maximize the positive contribution of extensions to the platform,
and to minimize any negative side effect on the behavior of the final system. As Bosch says
[12], “the qualities of the product-line architecture are not relevant in themselves, but rather the
way these qualities tranglate to the software architecture of the products that are a part of the
product ling’. More specifically, we focus on the following technical aspects of the problem we
have described:

e systematic analysis and modeling of the open platform quality constraints, the first step
in architectural design, and

e we show how a combination of the fault prevention means and architectural
transformations can be used when designing the open platform. The results from the
previous step are used for evaluation of the design decisions.

The paper is divided into seven sections. Section 3.2 begins with a short description of the
ABB Robotic System and robot controller, the subject of this case study. In Section 3.3, we
define platform openness. The design approach that we use in this case study is motivated and
described in Section 3.4. In Section 3.5 we analyze and mode the constraints, quality
expectations and the software devel opment architecture, which are the basis for the architecture
transformation process described in Section 3.6. Finally, we present certain conclusions in
Section 3.7.

-38-

3.2 System Overview

The ABB roboat controller was initialy designed in the beginning of the 1990's. It was required
that the controller should be capable of use in different types of ABB robots, and thus the
architecture is a product line architecture. In essence, the controller has a layered, and within
layers an object-oriented, architecture. The implementation consists of approximately 2500
KLOC of C language source code divided into 400-500 classes, organized in 15 subsystems,
which makes it a complex embedded system. The system consists of three computers that are
tightly connected: the main computer that basically generates the path to follow, the axis
computer, which controls each axis of the manipulator, and finally the I/O computer, which
interacts with external sensors and actuators.

Figure 10 System overview of an industrial robot system from ABB
Robatics

Only the main computer of the three computer nodes in the original system provides
system-users with limited openness. This openness enables end-users to write their robot
programming logic in the form of RAPID, an imperative language. A typical RAPID program
contains commands to move the manipulator arm to different positions, making decisions based
on input signals and setting output signals. This can be done through off-line programming tools
on a PC, or on-line programming on a hand-held device designated a Teach Pendant Unit.

The system was originally designed to support easy porting to new HW-architectures and
new operating systems. A level of openness beyond that possible with the RAPID language was
not initially required. Furthermore, the system was not initially designed to support tempora
analysis. Opening up the system for certain low-level extensions, e.g. adding new tasks, would
require the introduction of such analyzability.

-39-

3.3 Defining the Open Platform for the Robot Controller Software System

In this section we define the platform openness from several different points of view. In order to
prepare a successful architectural design, it is necessary to understand these different points of
view, because all have an impact on architectural decisions.

As shown in Figure 11, we can consider the complete functionality of the system as a
combination of functions or services provided by the system in different system modes of
operation. Some of the modes are associated with normal performance of the system’s task,
while others represent degraded operation modes as responses to errors in the system. Defining
the system modes is one of the steps in defining the operational profiles as described by Musa
in [36]. According to Musa, system modes are a set of functions or operations that are grouped
for convenience when analyzing execution behavior. Specifying degraded operation modes and
modes available in different phases of the system’s mission is important when system failure
assumptions are considered in a system design [25]. The main system modes for the robot
controller are the following (illustrated in Figure 11):

e |nitialization mode — the mode in which the system operates during system startup.
This mode is characterized by rapid dynamic changes of the system configuration
between stopped mode and normal operation mode.

o Safe-init mode - the mode in which the system operates, if the system for some reason,
is unable to start in the normal manner.

e System update and configuration mode - the mode in which new software may be
added to or existing software replaced in the system.

e Normal operation mode — the mode in which the system’s performs its primary
functionality.

o Fail-safe mode — if an unrecoverable error is detected during normal operation, the
system transitions into this mode. In this mode, the system is optimized for fault-
tracing in the system by a maintenance engineer.

The functionality available in these modes, the number of system components and the way
the components are connected to each other, are different in the different modes. On the top
level, the system can only be in one of these modes at a time. This does not imply that some
maintenance functions are not found in, e.g. normal operation mode, but rather that the majority
of the functions present in each mode are still related to the primary purpose of that mode in the
system.

-40-

system
update and
config.

normal
operation

Figure 11 Functions of the system are experienced by the user as multiple
system modes

The functions, also referred to as services, that we have described, are implemented either
by the platform of the open system, or by components added to the platform. Further, added
components should only be able to modify the behavior of a selected number of the platform
services asillustrated in Figure 12.

functions/services functions/services

in the closed |::> in the open

Robot Controller Robot Controller

SW system SW system
existing Srdlparlly platform aSrdIi (F;J:tritgn
platform application services e
services services services
existing 3rd party
platform new platform
services services
non services
modifiable modifiable by
3rd party
core (critical) non critical
platform platform
services services

Figure 12 In a system with an open platform, functions can be a part of
the existing platform or extensionsto the platform.

We use the designation platform extensions for system components that implement third
party platform services or that implement modifications of the existing platform services. We
will discuss extensions in two different contexts — the software development architecture and
the softwar e operational architecture of the system.

-41-

3.3.1 The Software Development Architecture

In this section, we will introduce the terminology used throughout the rest of the paper when we
refer to the different components of the final system and illustrate the phases of the system
devel opment in which these components are added to the system.

The devel opment artifacts, their relationships and dependencies can also be described as a
system architecture as such. We refer to such an architecture as software development
architecture. As discussed in [6] this architecture could be treated as an architecture on its own,
not just as a different view of the single system architecture. In Figure 13, we show components
in the software development architecture that can be devel oped independently:

e Open Base Platform — implements existing platform services, which can be modifiable
or non-modifiable.

e Extensions — implement new platform services or modifications to the existing
modifiable Open Base Platform services.

e Extended Open Platform — an instance of a platform, which is a composition of the
Open Base Platform and all the installed extensions for that particular instance of the
platform.

e Application Programs and Configuration — application logic written in the RAPID
language and application configuration data.

| | | | | | | |
| Platform A
i-i EExlenswons
3
Platform v W‘ '

Figure 13 The number of independently developed packages incr eases
from the closed platform (left) to the open platform (right)

The left-hand part of Figure 13 shows the robot controller platform without the possibility
of adding platform extensions. The right-hand part of the figure shows the open robot controller
to which platform extensions can be added. Packages represent components that can be
developed independently and within different organizational boundaries. A package may
contain the implementation of several extension components. The arrows between the packages
show their dependencies. When a system in the product line is implemented, the same Open

-42-

Base Platform component is always used, while there are many possible choices of extension
packages, applications and configurations.

3.3.2 Extensionsand Software Operational Architecture

While, in the previous section, we showed how different components are related in the
devel opment architecture of the product-line system, in this section we describe how platform
components fit into the system’s operational architecture. Because the system has a layered
architecture, we use a high-level layered view to describe it. We say that a system is more open
if components can be added to lower layers in its architecture. To make the description more
illustrative, we compare the robot controller to an open desktop platform.

3.3.21 Open Platformsin the Desktop Applications Domain

Examples of open platforms are Microsoft Windows© and Linux operating system
platforms. Microsoft Windows® is more relevant to our case because we do not discuss open
source openness, but rather openness in terms of the possibility of increasing the system
capabilities. In the case of Windows®© it is possible to extend the base platform on three
different basic levels. device driver level, win32 programs and .NET applications. This is
illustrated in Figure 14 a.

e - RAPI

-Ne| -Net Rob RAPID
Applica

AWIIIWGO\(NS Applicq e Application Rob{ Applic§ Robot
pplication : Applicg Application

I — |

T
.Net Framework s ety

—
RARID
exl‘énszions

Motion Program Server
Subsystem Subsystem

[Win32 API |
,,,,,,,,,,,,,,,,,,,,, L

[OS Isolation Layer]
Device Windows Kernel
Driver ’ OS Kernel ‘

a) b)

Figure 14 Different ways to extend Windows® platform a) and ABB
robot controller software b)

The architecture of the system is such that each of the different extensibility mechanisms
can only harm the system to a limited degree, device drivers causing the most harm and .NET
application the least. Apart from basic or native ways to extend the platform, many of the
applications define their own extensibility mechanisms, e.g. Internet Explorer and SQL Server.
The differences between these applications are apparent in the process that accompanies the
procedure of incorporating the extension functionality in the base system. Scripts are routinely
downloaded and run on computers while browsing the Internet, whether requested by users or

-43-

not. Application programs are mostly explicitly installed in the system but it is very unlikely
that they will cause instability of the system as a whole. In the case of device drivers, a special
organization designated Windows Hardware Quality Labs (WHQL), is responsible for
certifying such drivers [34]. During the installation of device drivers, users of the platform are
clearly notified if the driver has been verified by WHQL or not. The criticality of the device
driversis the driving force for adoption of the latest results from research communities into the
device driver verification. An example of this is a recent adoption of the tool Static Driver
Verifier, which is based on the model checking research [35]. This tool has a set of rules that
can be automatically applied to device drivers, to check if they satisfy theserules.

3.3.2.2 Opennessin the Robot Controller

The current way of adding functionality to the ABB robot controller, by adding RAPID
programs, corresponds to adding .NET applications to Windows®. This is shown in Figure 14
b. Two examples of low-level extensions to the robot controller platform that are currently
restricted are extensions to the robot programming language RAPID and the addition of new
subsystems/tasks. Let us consider an example.

Basic commands in the programming of a robot are motion commands which instruct the
robot to move its arms to different positions. Some of the basic motion commands are
implemented as RAPID extensions and perform their tasks by communicating with the motion
subsystem. The basic part of the Program Server contains the execution engine for RAPID
programs, and has features such as single stepping and executing the program backwards, i.e.
running the robot backwards. The robot programming language consists of a predefined set of
commands. It is desirable that new instructions can be added to permit easier programming, e.g.
to permit the easier use of special tools by the robot. Such extensions may require adding new
tasks or subsystems which would need an open access to the lower level services in the system.
Such extensions may have a significant impact on the system behavior, e.g. the tempora
behavior. Traditionally, this has been restricted by the base platform development organization
because of the prohibitive costs of verifying that they cause no harm to the system.

3.4 Describing the Design Approach

Understanding which types of extensions can be implemented and where they fit in the
architecture is not sufficient when reasoning about, evaluating and motivating architectural
decisions regarding the open robot controller platform. It is at least equally important to
understand the constraints of the environment. Even though this part of the development
process is usualy considered as requirements engineering, the requirements engineering is
closely related to architectural design and the line between the two cannot easily be drawn. As
pointed out in [29], the idea that requirements should always state what a system should do
rather than how it should do it, is an attractive idea but too simplistic in practice. The goals to be

accomplished and the constraints on the solution must be modeled and described in such away
that it is easy to evaluate the design decision in relation to them.
A naive approach to transforming the robot controller platform into an open platform could
be the following:
e Turninternal interfaces into public interfaces.

e Use the public interfaces to develop extensions with off-the-shelf development
environments, compilers etc.

o Define how extensions become a part of the platform.

In such an approach, the existing operational architectureisleft unchanged. This approach is
not acceptable if quality concerns are to be taken into account. In order to come to a satisfactory
design solution, we need a design method that explicitly takes quality attributes into account. In
the remainder of this section, we will describe several design approaches which focus on quality
attributes and the approach we have used in this case study.

3.4.1 Different Approacheswith Focus on Quality Attributes

In software quality research, different quality models exist, e.g. the ISO 9126 model and the
model proposed by Dromey [17]. A qudity mode of a system can be described as a framework
to capture the quality expectations of a system. Dromey emphasizes the importance of creating
a quality model that is specific to a product [17]. This quality model is designated a product
quality model and contains a quality model, a software product model and a link between them,
asillustrated in Figure 15. The quality model should reflect the expectations that origin from the
specific domain. A refinement of this model is necessary so that it can be linked with the
product model. The software product modd is the solution side of the model and describes the
design or implementation. In the construction of the product quality model, a combination of
the top-down and bottom-up approach is used. The quality modd is constructed top-down
starting from the most general quality attributes of the domain and then refining them to more
specific quality attributes. The software product model is more likely to be constructed bottom-
up because of, e.g., the use of COTS and legacy components. The quality of the individual
components and the ways the components are combined in the product, have a dominant impact
on the system quality.

The quality model consists of high-level quality attributes that are system non-tangible
properties. Quality attributes can be classified to the following two groups:

e Operational quality attributes. Examples of operational quality attributes are: usability,
rediability, availability, safety, security, confidentiality, integrity, performance and
maintainability.

o Non-operational quality attributes. Examples of non-operational qualities are:
maintainability, evolvability (reuse over time and across products in a product line),
portability, verifiability, integrate-ability and deploy-ability.

-45-

Software Product Quality Model
component .
e hlgh—lt_evel
quality-carrying quality
properties - w| attributes
Link " |
Software Quality
Product Model Model

Figure 15 Dromey’s softwar e product quality model

Since high-level quality attributes are non-tangible and can only be measured through other
tangible properties, Dromey suggests that they should be refined to more specific qualities and
characteristics [18] , in order to create a finer grained quality model. Characteristics are
tangible properties of a system that contribute to operational and-non operational qualities.
Examples of characteristics aree machine independent, modular, static. Usability can, for
instance, be further refined as learnability (easy to learn how to use), transparency (easy to
remember how to use), customizability (can adjust to specific needs), operability (easy to access
the functionality).

By analyzing the software product quality model, we have come to the conclusion that
design tradeoffs between quality attributes are actually tradeoffs in choices of components and
different ways of composing the components.

The software architecture community has been very active in trying to find a way to take
quality attributes into account during architectural design. Good examples are two recent books
on Software Architecture [7,12]. Even though the work described in these books relates to
software systems, much of the reasoning can be applied more broadly to computer-based
systems. In the architectural analysis, tradeoffs are made between all relevant quality attributes,
not only between dependability attributes.

NFR (Non-Functional Requirements) is another approach to dealing with quality attributes
which is used within the requirements engineering community. An exampleis NFR Framework
described by Chang et a in [14]. NFR Framework uses a process- oriented approach and a
qualitative approach to dealing with NFR, because quantitative measurement of an incomplete
software system (its design) is considered to be even more difficult than measurement of the
final product. NFR Framework defines soft-goals interdependency graphs for representing and
analyzing NFR as well as dealing with tradeoffs.

A generic framework named dependability-explicit development model is described by
Kaaniche, Laprie and Blanquart in [25]. This framework allows dependability-related activities
to be structured and incorporated into the different phases of the system creation process. The
activities are grouped in four processes: fault prevention, fault tolerance, fault removal, and
fault forecasting. Because the dependability-explicit development model is a generic
framework, customization is probably required for a given system. It is recognized that factors

-46-

such as the complexity of the system, the priority of the dependability attributes and the
confidence level to be achieved, cost limitations and standards, all influence the selection of
optimal solutions.

3.4.2 TheApproach Used in This Case Study

As explained in the previous sections, the Open Base Platform is the basic building block in the
software product-line architecture of the robot controller. The software system and its
components are designed and implemented in several stages, and within different organizational
boundaries. This needs to be taken into account during the design of the Open Base Platform. In
our opinion, the approaches presented in Section 3.4.1 are too general to be directly applicable
to our case. For instance, the dependability-explicit development model takes only a subset of
the relevant quality attributes (the dependability attributes) into account and gives no support to
the devel opment of flexible product-line architecture, which isimportant in the case of the robot
controller. The approach in our case study contains elements of the architecture transformation
method and the product-line design method described by Bosch [12], and also € ements from
the dependability-explicit development mode [25]. The approach can be described in the
following way:

e We describe the quality goals for the system in terms of constraints and quality
attributes organized in two models or views. the operationa constraints and quality
attributes that capture the dependability objectives, and the non-operational constraints
and qudlity attributes, i.e. qudlities related to the development architecture. Quality
attributes are organized in such a way that makes evaluation of different design
decisions easier. We a so describe some important constraints that determine allocation
of dependability objectives among the system components. Thisis further described in
Section 3.5.

e We describe and use an architectural transformation-based design method when
designing the open platform architecture. In this method, we use the previously defined
objectives to evaluate and guide our decisions. The method and its application to the
robot controller system are described in Section 3.6.

3.5 Moddling Design Congraintsfor the Robot Controller Software—the
First Sep in Architecture Desgn

In this section we present a quality view of the robot controller software that includes two
dimensions. The first dimension assigns the operational quality attributes of the industrial robot
system to the robot controller software system’s operational modes. The second dimension is a
development architecture dimension that contains non-operational quality attributes. The
purpose of these two dimensions is to permit the organization of quality attributes in a
structured way that is suitable for quditative reasoning in architectural design. Such

-47 -

organization makes the relations between quality attributes more clear, than e.g. having only a
flat prioritized list of quality attributes. In a product-line-based approach, it is important to
understand how the quality attributes of the platform, which constitute the base-component of
the product line, are related to the quality of the products.

3.5.1 Operational Constraints

In many software system examples and studies, the andysis begins with software as the top
system level. However, when software is embedded in a larger system, a systems approach is
necessary when reasoning about quality attributes. In this section, we begin from the quality
attributes implied by the industrial robotics domain and derive quality attributes down to the
robot controller software system modes.

3.5.1.1 System Level Operational Quality Attributes for I ndustrial Robotics Domain

The most important operational quality attributes for industrial robots are the following:
dependability attributes, usability (e.g. ease of reconfiguration and operation), and performance
(e.g. speed of manipulation, movement precision, and handling weight). For the dependability
attributes we adopt the terminology presented in [5]. Dependability is described by the
following attributes: Reliability, Availability, Safety, Integrity, Confidentiality, and
Maintainability.

Security related attributes, i.e. confidentiality and integrity, are usualy of less importance
for industrial robots as robots tend to be physically isolated, or only connected to a control
network together with other industrial devices. However, integrity of data which is not security-
related is very important. For instance, it is not acceptable that, e.g. a task in the system should
cause a hazard situation by damaging the logic of the safety subsystem. In some cases, integrity
of the system is required in the sense that an unauthorized person may not change operational
parameters for arobot. All other dependability attributes are highly relevant.

Even though the contact between humans and robots in an industrial environment is
restricted (robots work in cells, which are physically isolated by a fence), safety can never be
underestimated since an unsafe system can cause considerable physical damage to the
expensive robot equipment and its environment. For example, larger types of robots are
powerful machines currently capable of manipulating a weight of over 500 kg. Industria robots
are included in the category of safety-critical systems which can be implemented as “fail-safe’,
i.e. they have afail-safe mode.

The industria/business environment in which robots are used is such that it is crucial to
have a very high degree of availability and réiability. Unrdiability leads to non-availability,
which means unscheduled production stops associated with what can be huge costs. Because of
the complexity of, for example, a car production line, the non-availability of a single robot will
result in the stopping of the entire production line. The failure of a single robot with awelding
tool caught inside a car body could cause the loss of up to one-day’s production from the
production line.

-48-

Maintainability is important in the sense that it is related to availability. The shorter the
unscheduled maintenance time, the higher the availability of the system. Regularly scheduled
preventive maintenance cannot be avoided since the robot system contains mechanical parts.

When it comes to the dependability threats, i.e. fault, error and failures, both hardware and
software faults must be considered. The robot controller software has both the roles of sending
control sequences to the hardware and predicting preventive hardware maintenance.

There are many different fault-tolerance methods that can be applied to industrial robots.
However, error recovery with temporary graceful degradation of performance is not acceptable.
A robot either works or it does not work; an individual robot cannot perform its tasks by
working more slowly - it being only one link in a production chain, or because of the nature,
such as arc welding, of the process concerned.

3.5.1.2 Robot Controller Software System Operational Qualities
In Figure 10 a typical robotics system and its subsystems is shown. The system architecture is
such that the domain dependability quality attributes discussed in Section 3.5.1.1 do not affect
all of the subsystems in the same way. How domain requirements are propagated to subsystems
may differ between different robotics systems depending on their design and implementation.
When propagated from the system level, quality attributes required of the robot controller
software subsystem can be described as following:

o Safety — The robot controller has software logic responsible for the collision detection

safety feature.

¢ Reliability and availability — The robot controller is responsible for generating correct
coordinates (values), and with predefined time intervals so that signals can be
constantly sent to the manipulator while it is moving. If incorrect values are sent, the
manipulator will move in the wrong direction and if no values are sent, the manipulator
will not know in which direction to continue its movements and it will stop in the fail-
safe mode.

e Integrity — Configuration data integrity during maintenance and integrity of data
structures in normal operation is very important because of its large impact on
reliability and availability.

e Performance — Examples of important performance values for a robot are speed of
manipulation, and repetitive and absolute accuracy. In software these issues relate to
computational efficiency and data transfer efficiency.

e Maintainability — In the case of failures, it must be easy to identify and recognize the
faulty component in the system and replace it. The manipulator, which is an eectro-
mechanical device, must be maintained on aregular basis as it is subject to degradation
faults. Because of this, any preventive, corrective or perfective updates to the robot
controller software and hardware can be done a the same time without affecting the
complete robot system availability.

-49-

For the purpose of a detailed design, these quality attribute descriptions must be defined
more precisely but they are sufficient for the purposes of this paper.

3.5.1.3 Operational Qualitiesfor the Robot Controller Software System Modes

Different robot controller software system modes, discussed in Section 3.3, are likely to have
different or differently prioritized operational quality attributes. The goal of this sectionis not to
go into the detailed design of each of the modes, but to model quality attributes expectations on
the functionality in the modes. In Figure 16 we visualize how quality attribute requirements
described in Section 3.5.1.2 are propagated to the individua system modes, resulting in the lists
of dependability goals to be satisfied in the different modes.

1 safety
—————————————————————————————— 2 maintainability
1 safety 3 reliability & availab
2 integrity

4 integrity

3 reliability & availab] 5 performance

4 performance

1 safety

system 2 reliability & availab
update and 3 performance
onfiguratiol 4 integrity

1 safety
2 maintainability

3 reliability & availab.

4 integrity H L R

5 performance i initialization
i T

1 safety H
2 reliability & availab. }

e
3 integrity

normal
operation
4 performance

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,] - safety

- reliability & availab.
i - integrity
,,,,,,,,,,,,,,,, .1 - performance

.~ i - maintainability
Distribute to system modes
:

| i Rob.Cont. SW Subsystem operational requirements

Distribute between
subsystems of the system
T

{ operational requirements |

Stakeholders of the

operational domain

operator service
tech

admin

Figure 16 Operational system modes with quality attributes assigned to
them. As development stakeholders are not present here, the model is not
dependent on their concer ns.

As mentioned in Section 3.3, these modes have significantly different numbers of
components and their interconnections. Because the norma mode of operation is the mode of
the system’s primary purpose, it is easy to neglect the other modes. From the software system
quality perspective, it is absolutely crucial that the transitions between the modes are predictable
and reliable. If the software system is corrupted on this leve, it may not be able to start again.

-50-

Thisimplies that reliability and integrity are very important attributes at the top software system
level.

3.5.1.4 New Operational Constraints for the Open Platform
For the open platform, new operational constraints also exist which are not necessarily of
quality attribute type. An example is constraints on the alocation of dependability objectives
that specify allowed effects of third party extensions to the core non-modifiable open platform
functionality. Examples of such constraints are:
o The safety feature “collison detection” is a core non-modifiable feature allocated to
the Open Base Platform components only, and can not be affected by platform
extensions.

e Theintegrity of the top level software system mode transition sequence is allocated to
Open Base Platform components only and it must not be affected by extensions in such
away that for example, the system is unable to start.

3.5.2 Software Development Architecture and Constraintsin the Development Domain

In this section we discuss the non-operational quality attributes that are important in the design
and implementation of a system in the product line. In general, a system must be designed to
fulfil both the operational requirements and the development requirements. Unlike
dependability attributes, generally accepted definitions of which exist within the research
community, there is a lack of generally accepted terminology and definitions for other quality
attributes. For the quality attributes we refer to, we use intuitive names to refer to their meaning.

To identify the non-operational quality attributes, we first identify the development
stakeholders and then bind their concerns to the packages in the devel opment architecture that
we introduced in the Section 3.3.1. It is generally recognized that quality concerns are
dependent on the stakeholders and their views. The way that stakeholders are identified is till,
to alarge extent, an ad hoc procedure. A recent attempt by Preiss to systematize the stakehol der
identification is described in [49]. Stakeholders are divided into goal stakeholders and means
stakeholders and also according to the product lifecycle phases (development stakeholders and
operation stakeholder). In this paper, we discuss only the means stakeholders, those who are
responsible for designing and building the system. The concerns of the system operation
stakeholders were described through the domain and system analysis of the robotic system in
Section 3.5.1.

The important development stakeholders for industrial robotics and their concerns are
presented in Figure 17. Using the terminology from Section 3.4, some of the concerns would be
expressed as characterigtics, e.g. standard compliance, and some as non-operational qualities,
e.g. reuse. In Figure 17, we show only direct concerns of the stakeholders, but concerns of all
other stakeholders are indirectly propagated to the Open Base Platform developer. The more
effort invested in the design of the base platform level to address these concerns, the greater is

-51-

the probability that the quality of al the components of the system will be improved. Thisis one
of the very important goals of our design work.

« ease of extension
ease of development
system System s level of platform

e

configuration extensibil
for special App. Prog. ‘ Config ‘ « evolution ;ynd
. p“’.p"s.esah_l_ System ‘ ‘ compatibility of
maintainability Integrator/ platforr_n anzi -
Developer i extensions (stability
H of platform
v easeof | interfaces)
e:[se o d Extended Open / e« richness of platform
extension an N Platform ¥ > functionality
platform S Extension
integration @ Developer — -
« predictability Extended H="" N @ ———
of the Open « reuse of existing
assembly Platform L architecture

verifiability of Developer Open Base H * reuse of platform
assembly Platform v ﬁg:ross a product

* interoperability

,,,,,,,,,,,,, « evolvability of
platform and its
environment (e.g.

HW) in time
Open * portability
Base * verifiability
Platform |« maintainability
Developer

Figure 17 Softwar e development ar chitectur e of the robot controller
softwar e system with means stakeholders and their direct (first-level)
concer ns.

3.5.3 Other Important Requirements and Constraints

Operational and devel opment qualities do not give us a complete model of the constraints on the
software system design. There are other important constraints that can have a significant impact
on the system design. The major tradeoffs in large and complex systems are usually associated
with economics and business goals [7]. While we describe none of these constraints, they
should definitely be defined and taken into account in the design phase. In the terms of means
and goals stakeholders, mentioned in Section 3.5.2, these constraints are related to the goal
stakeholders.

3.6 Robot Controller Software System Architecture Transfor mations

In this section we describe the design process for a more open software product line, which
includes the architectural transformation process for the Open Base Platform. Referring to
Figure 17, we arein the position of the developer of Open Base Platform. Our design goals are
the following:
1. Direct goals from the Figure 17, such as reusing as much as possible of the existing
assets, including the architecture.

-52-

2.

5.

Indirect development goals from the Figure 17, which are to help other development
stakeholders to meet their goals. If extensions are difficult to develop and integrate into
the Open Base Platform, it decreases the likelihood that many new extensions will be
devel oped.

To meet dependability objectives allocated to the Open Base Platform operational
architecture components. These objectives were described in Section 3.5.1 through the
domain analysis and the assignment of dependability goals to system operational modes.
To provide fault prevention means in the form of software tools, to other development
stakeholders, in order to help meet the system dependability goals. This goal is closely
related to item 2 in this list. If the complexity of the system integration and extension
development is high, it increases the likelihood that the reliability of the system will be
lower.

To meet other constraints, e.g. business goals discussed in Section 3.5.3.

These goals are independent of whether thereis or not an existing robot controller software
system. As we have an existing system from which to begin, we can describe our design goas
in adightly different way — we need to transform the system to address the changed and new
requirements while still fulfilling the requirements that have not changed. From the discussions
in the previous sections, we obtain the list of changes in the system and its environment, which
can be attributed to the increased openness. Thislist is presented in Table 1.

Table 2 Changesin the robot contrdller softwar e system and its
environment, which can be attributed to the increased opennessin the
platform.

Some of the system characteristics have changed:

e The amount of non-critical code in the system is very
likely to increase. This increases the overall system
complexity and the likelihood of faults being present in
the system.

e Adding extensions to the system increases resource
utilization in the system which increases the risk of the
system running out of critical resources during operation.

The system development environment has changed
significantly, as shown in Figure 13 and Figure 17. Concerns of
the new stakeholders, i.e. developers of the Extended Open
Platform and devel opers of extensions, need to be addressed
by our design.

-53-

New operational constraints on allocation of dependability
objectives between the system’s components have emerged
(described in Section 3.5.1.4).

Other new objectives exist, e.g. business objectives, which
are not discussed in this paper.

To design a system, which is perceived as a high qudity system from several different
perspectives, al of these new goals must be addressed. Dependability of the system during
operations can be categorized as a subset of these goals. System operational qualities as
described in Section 3.5.1.3 are independent of the level of openness in the system. From the
operational perspective, who has designed and implemented a component is irrelevant.
However, this does not mean that thereis no link between the devel opment process/architecture
and the operational architecture. The relationships between the different artifacts of the

architectural design are visuaized in Figure 18.

System

Current Platform
Operational
Architecture

transform

System

y

Open Base Platform
Operational Architecture

— Quality Req.
o New
~.design Deve!opmem
/ Architecture
A const[aiﬁed by —

[

\\

System Operational

Prevention |~
Means

/

supponY

.| System Operational

Quality Req.

e
“

~-.. prevention means
are constrained by
dev. architecture
because they are
used in its context

new constraints exist on
allocation of objectives
between the system
components

Figur e 18 Relationships between the softwar e ar chitectural design

The current operational architecture of the platform is transformed into an Open Base
Platform operational architecture. The platforms are the basis for systems that have the same
operational quality attributes. However, for the more open system, new constraints exist on the
allocation of dependability objectives between the system components. Fault prevention means,

artifacts

such as evaluation of the properties of the composition of the base platform and extensions,
enforcements of restrictions on programming language features, are used to achieve the quality
goals of the final system. The development architecture is changed and it dictates how and
when fault prevention means can be applied.

3.6.1 Architectural Design

It is known that it is hard to define what software architecture is [6]. Furthermore, there are
differences between what is considered an architecture in industry and in the research [20].
Fowler argues that all important system level design decisions that are hard to change are
architectural decisions [19]. What is considered to be important is subjective and dependent on
the opinion of the system expert.

One of the findings from our recent case study involving architects from seven large
industrial companies was that an architects awareness of the process that is used to develop a
product should be increased and process issues should be taken into account in architectural
design [40]. Since the Base Open Platform is the basis for all products in the product line, it
must provide a set of tools that can be used to support the process of completing the design and
implementation of the system. An example of such atool isatool that checks that extensions to
the platform are designed in such a way that they conform to the architectural principles of the
base platform as described in Section 3.6.3. This is the design level support for operational
quality goals of the system. We strongly believe that it is the software architects who should
decide: which tools are suitable, what design properties of the system should they check and
what are their limitations. In that sense, these tools become a part of the software architecture on
the system level.

When designing a software architecture, Bosch [12] suggests preparing a functional design
first and then performing architectural transformations to take quality attributes into account.
Transformations that may be required could be as simple as adding a new functional component
to the system, or may require changes such as the use of different architectural styles or
patterns. This depends on the nature of a quality attribute. In our case, the functional design is
aready available because we began from an existing system. Furthermore, the existing system
supports operational quality attributes as described in Section 3.5.1. The list of changes in the
system environment was presented in Table 1. Design transformations must be performed to
meet the new constraints within the context of the new devel opment architecture.

The outline of the software architecture design method for the transformation of the system
with the closed platform into a system with the open platform is shown in Figure 19. Initialy,
the open platform architecture is the same as the existing platform architecture. A number of
architectural patterns in the existing platform architecture already provide a good basis for
openness, such as:. broker pattern, publish-subscribe and the layered-architecture. Then we
estimate if the quality attributes and the constraints are satisfied or not. If not, we consider if
prevention measures can be successfully applied to satisfy our concerns. If such is the case, we
need to add the appropriate support, in the development environment, e.g. tools, language

-55-

restrictions. If prevention measures are not sufficient, then we need to apply transformation of
the platform operational architecture, e.g. to apply additional fault tolerance measures. Using
prevention measures as much as possible hel ps to reuse the existing operationa architecture, i.e.
minimize its modifications, one of the goals mentioned in Figure 8. The resulting architectureis
designated Open Base Platform operational architecture.

The platform transformations are performed now, but there is no complete system at this
point. Many different systems can be designed using this platform as a basis. The platform
design is completed when extensions are added to the platform, resulting in an Extended Open
Platform. In the design of the Open Base Platform architecture, the effects of adding extensions
to the platform are evaluated quditatively, but the final configuration is not known. Evaluating
the effects of adding extensions, e.g. new tasks, requires a tool support that can be used in a
simple way outside the organization that designed the platform.

Current Open Base
Platform - Platform

Operational Operational

Architecture Architecture
Design Designing a
evaluation e_md system in the
transformation product-line
of Open Base same as add extensions
Platform Y A

Initial Open Extended

Base Platform Open Platform
Operational Operational
Architecture Architecture
add app.logic
estimate constraints and config
and operational
quality attributes | done :
de3|g_n using
evaluation base
platform

prevention
(add tools
to dev. arch.)

transformation

Tolerance

tools
OK

An evaluated
System
Architecture

Transformed
Open Base
Platform
Operational

Architecture

Figure 19 Architectural transformation of the closed robot contr oller
platform to an open platform. The open platform architectureisthe basisfor
many different systemsin the software product line.

-56 -

The following list summarizes the dependability means techniques that are applied in the
platform architecture transformation phase, to address threats raised by theitemsin Table 1.

e Fault Tolerance techniques

o Because of the increased amount of non-critical code in the system (item 1), the
system must be partitioned in several fault-containment zones representing
multiple levels of criticality. The same technique addresses the concern
introduced by item 4, on allocation of dependability objectives between the
system components.

o Adding new components increases resource utilization and requires that watch-
dog techniques be used to monitor the usage of critical system resources. Since
the robot controller system may have fail-safe behavior, the watch-dog initiates
roll-forward-recovery to the failure system mode.

e Fault Prevention techniques

o When new components are added to the Open Base Platform, the architecture of
such a new system must be re-evaluated for important properties such as
timeliness. Qualitative reasoning about such properties is difficult. We have
therefore introduced a software tool for a quantitative evaluation of the system
design that checks for errors such as the violation of deadlines and queue
underflow or overflow. Normally, the queue containing coordinate references
must never be empty. If, however, it does become empty, the robot does not know
what to do and will transit into a fail-safe state.

e Fault Removal techniques

o When components of a system are developed by different organizations, fault
diagnosis that records the cause of errors in terms of both location and type is
important. Fault diagnosis is the first step in fault handling [5]. However, in our
case the goal is not to perform other steps in fault handling, eg. isolation,
reconfiguration, reinitiaization, but to give precise information to an external
agent. Monitoring and debugging in the distributed real time system is
challenging. In [59], Thane describes a method for software-based replay
debugging of distributed real-time systems. A case study of the use of this method
for the ABB robot controller is described in [60]. When this kind of diagnostic
component is introduced in the Open Base Platform, it works in the same way for
all componentsin the system.

3.6.2 Fault Tolerance Design Techniquesto Support New Tasks

In addition to the architecture level transformations to support extensions to the Open Base
Platform, lower level design transformations and techniques are needed to support different

-57-

types of extensions. There is a difference between providing support for the addition of a new
task to the system and adding a modul e that implements a new RAPID language command. The
impact of changes to the system to support these different types of extensions is local and we
therefore treat them as design level changes.
There are three important issues when transforming the architecture to support the addition
of tasks, in addition to basic middleware broker support for installing tasks. These are:
e Which interfaces should be provided?

e How istheadded task supervised during operation to detect erroneous behavior?
e Which type of exception handling should be used?

The basic system includes a set of interfaces for different required functionalities. The
interfaces provided can be classified as critical or non-critical. The critical interfaces provide
access to functionality that can impair the basic operational behavior of a robot, such as motion
control. A failure in a task that is classified as critical will lead to an emergency stop. A task
classified as non-critical is a task that only makes passive use of the information in the system
and in the event of afailure, will not require the immediate stopping of the robot. An example
of such anon-critical function is aweb-server that presents certain statistics from the operations.
Other fault handling measures can be taken instead, such as disabling the functionality provided
by the extension. An added task that uses interfaces of both classes is classified as critical.

Supervising the behavior of an added task is supported in two ways, (i) assertions provided
in each of the services and (ii) supervision of the assigned CPU bandwidth. The CPU-
bandwidth is supervised by extending the basic operating system with functionality for
monitoring execution time of each added task during each cycle of execution (from the time a
task becomes ready until it will be waiting for the next cycle of execution). The basic idea is,
thus, to prohibit the added task of delaying lower priority tasks longer than specified off-line. If
the task uses too much CPU-bandwidth, different measures will be taken depending on the
criticality of the task, as mentioned above.

In the case of a critical task, one can use an exception routine that is invoked before the
severe impact occurs and allow that exception routine to finalize the computation with less
accuracy. This concept is called imprecise computation or performance polymorphism as
suggested in [31] and [58]. However, this approach is not acceptable in our case, since
performance polymorphism can yield an application that delivers uneven quality. In the case of
anon critical task we can adopt such an approach. In the first version of the design, a controlled
shut down of the task is performed and an error message provided to the operator.

3.6.3 Software Architecture Toolsfor Evaluation of Real-Time Properties

As shown in Figure 19, the evaluation of the Extended Open Platform Architecture is
performed by other than the Open Base Platform developers. In [7], when the authors discuss
product-line architectures, they point out that the documentation needs to explain valid and
invalid variation bindings in a system based on the product-line architecture. We find this

-58-

necessary, but not sufficient in our case; a tool support must also be provided. It is difficult to
evaluate the impact of the combined extension on the temporal behaviour of the system,
because of the system size and the number of interdependencies. A robot control system is a
composition of Open Base Platform, extensions, configuration options (e.g. different field
busses, the robot model, different software options such as spot- or arc- welding) and the user-
programmed behaviour in the RAPID language. System compositions resulting from these
components have different timing behaviour but in some cases, the magnitude of these
differences might be insignificant. With extensions, the base system must not only be verified in
different configurations, but also in combination with extensions that are to be used. These
extensions can potentially have a large impact on the system timing and the devel opers of the
extended base platform should not be required to know the details of the internal structure of the
system in order to estimate the extension impact on the system. A way to address thisissueisto
describe system components using models and then analyze the system properties based on
these models, as shown in Figure 20.

1
Models of Models of Open Base System
c_onfig. Extensions Platform prZ) erty
options a_nd to the base Model Re ui‘rjement
app. logic platform (ART-ML) qpPL
(ART-ML) (ART-ML) (PPL)

System

Analysis

(@)
o
gl
S
o
@,
3
S
7

Figure 20 The ART framework when used for real-time property
validation in the design phase.

We propose a set of tools and methods for analyzing the impact on timing properties when
changing the system. We call this framework ART [62]. It provides means for creating,
analyzing and validating moddls of real-time systems. As illustrated in Figure 20, the genera
idea of this framework is to create a modd of the system components using the modelling
language ART-ML and, by using a suitable analysis method, to determine how the timing is
affected by a change in the system. The analysis tool takes a system model containing the base
system and extensions as input. It also needs a set of system-timing properties to analyze,
formulated in the probabilistic query language PPL. In the current version of the framework,
simulation based analysisis used. The tool evaluates the specified properties against the moddl.

3.7 Conclusions

Making changes to existing complex systems is never an easy task. These systems are created
and finetuned using years of experience and maintenance, to satisfy the demanding

-59-

functionality and quality requirements of the domains in which they are used. When changes are
considered, it is vital to understand the impact of those changes, and then to find or develop
adequate techniques to address the new or changed concerns and expectations.

In this paper, we use ABB robot controller, a complex rea-time system, to analyze the
impact on the system when the openness of the system is increased. As pointed out in [49],
many devel opment projects primarily take into account the operational domain stakeholders and
their concerns. From the broader quality point of view when anayzing the impact of increasing
system openness, we come to the conclusion that the impact on the system is primarily on the
development side. Further, we recognize changes in some operational characteristics of the
system that may affect system operational qualities and dependability. The amount of non-
critical code in the system increases as well as resource usage. Because system réiability is a
vital property of the system, and because the use of fault-tolerance means supporting fail-
operational semantics is limited (because of cost or complexity), the importance of fault-
prevention is emphasized, and tools supporting evaluation of the design decisions are proposed.
The separation of system components into critical and non-critical components and their
isolation in fault-containment regions is used to support fail-safe operational semantics.

We believe that most of the reasoning in this paper is applicable in general to the robotics
domain, but also partly to other systems in the embedded domain, which require opennessin the
sense described in this paper.

-60-

4 Propagation of Quality Attributesin Layered

Architecture—a Case Study in Industrial Robotics

Abstract

Many software systems are open in the sense that their basic functionality can be extended or
modified by adding software components from third parties. An end-user always experiences
functionality and quality that is the result of the assembly of all parts integrated into the
application, regardless of the source of their development. In the case of functionality, it is often
much easier to pinpoint the contributing components, than in the case of quality.

In the case of business critical applications, the quality is one of the primary concerns. In
this article, we anayze the relation of system qualities and architectural decisions for an open
application, in which dependability quality attributes are very important. The andysis is done
from viewpoint of the devel opers of the open application. Some of the important architectural
decisions that affect all components in the system are choices of underlying technologies. Based
on the layered architectural style, we apply a quality attribute based model to help us do
reasoning in a systematic way. The mode! is validated through real world experiences from the
devel opment of open graphical user-interface application on adevice used in industrial robotics.

4.1 Introduction

If an Internet browser does not support certain type of content you may be asked to install an
extension that handles this type of content. While viewing this new type of content, the browser
may suddenly stop responding. Who is to blame? Because quality is such an elusive target [46],
the answer to this question will vary a lot depending on the user’s background and experience.
Many users will certainly blame the browser, because it is the one who stopped responding. The
browser manufacturer was faced with a difficult tradeoff. Opening possibilities for
programmability, extensibility and innovation by third party increases likelihood of a product
being designed for a specific use and therefore more useable. Limiting openness or disabling
extensibility mechanisms, makes it easier to improve the dependability quality attributes of the
closed system. Level of extensibility for third parties can also be viewed as a measure of system
openness.

In this paper, we analyze the role of devel opers of an open business critical application that
is similar to the role of the developer of the Internet browser application, but the consequences
of the quality problems are much higher. In the initid design phase, an architect of an open
application needs to make choices of underlying platform, technologies, etc and give estimates
on the cost of solution and the quality that can be achieved. The open application, in our view,
may be a complete application, which alows inclusion of new components, or it can be a

-61-

platform that provides a basic functionality and enables inclusion of other applications, or
similar. The main point is that a third party can update the gpplication independently of the
organization that developed the core application.

The problem of predictable openness is, in a nutshell, the problem of trusted components
and their assembly [21]. Voas suggests [61] that certain techniques, methodologies, tools and
processes need to be employed to achieve particular level of quality attributes in a product. We
recognize the importance of all of these measures, but within the scope of this paper we focus
only on the architectural and design techniques. The developer of the extensible application is
responsible for setting and enforcing the quality goals by means of these aspects of application
devel opment.

We show how quality modelling can be used to reason about quality in a systematic way
and also be used in a simple and intuitive eval uation process of the design against quality goals.
In our case study, we consider development of an extensible application that runs on a display-
based device that is used to program and control an industrial robot. The application fully
controls the device display, but it aso makes it possible for third party developers to customize
this user interface with new elements. The reason for this is to make the device more suitable to
the specific process that robot performs, e.g. a certain type of laser welding. A smple layered
architecture is used in this application.

The rest of the paper is structured as follows. In Section 4.2, we discuss a quality model
based on the layered architectural style. In Section 4.3 we illustrate the application of the model
on the handheld device for programming industrial robots. We present conclusion and summary
in Section 4.4.

4.2 Quality Modelling and Layered Architecture

4.2.1 Software Product Quality M odelling

Software Quality has been a subject of research for the last few decades, and in last decade, lots
of work has been done related to quality attributes and their influence on the overal quality.
Some recent approaches suggest that the top-level quality attributes should be observed and
analyzed through more tangible properties that contribute to the overal quality. Dromey
describes this approach in a series of [16,18]publications [17] [16,18]emphasizing the
importance of building a quality model that relates high-level abstract qudity attributes with
concrete, tangible quality-carrying properties on the component levels (see Figure 21).

-62-

Software Product Quality Model

component .
tangible hlghl_evel

quality-carrying qudlity
properties w| dtributes

T Link

Software
Product Model

Figure 21 Dromey’s Softwar e Product Quality M odel

Quality Model

There are many challengesin creating such a model. Creating aquality model itself isnot an
easy task, and creating alink to the software product model is even harder. V oas points out that
there is not enough validated data available to be able to tie the cost of using a particular
technology to the level of aparticular “ility” that was achieved [61].

4.2.2 System Quality Attributes vs. Component-Quality Attributes

Quiality attributes are usually analyzed and determined on the system level. However, when we
build open or extensible systems, or in general component-based systems, we must relate the
required system quality attributes to the qudlity attributes of a basic platform or in general of
involved components. This relation is not trivial; it depends on many factors and is different for
different attributes. One common strategy in analyzing system properties is to use a top-down
approach. For open systems, we must combine this approach with a bottom-up approach, when
we start with attributes of existing (sub)systems, and propagate them to a (not yet existing)
system level. Depending on the types of attributes, and the constraints related to openness, we
would be able to reason about the system attributes and achieve a certain level of predictability
of the system behavior.

4.2.3 Propagation of Qualitiesin Layered Architecture

Relations between system quality attributes and components attributes are determined by the
selected architecture. Different architectural styles enable openness. In our case the layered
architecture has been used. In such a case, we must identify quality attributes on different
layers and find relations between them. A generic model that shows the propagation of quality
attributes through the layersisillustrated in Figure 22.

The lowest layer is the operating system (OS). The OS has certain functionality that
applications can be built on. Often, it also includes a support for building new functions with a
set of tools and technologies. Quality attributes QA1 are associated with the OS functionality,
but also with the tools and technol ogies.

The design of the application is probably more influenced by the technol ogies and tools than
the functionality of the OS. The choi ce of tools and technologies will have significant impact on
the quality attributes of the application. Efficient and well-designed tools can have very

-63-

significant impact on the quality of applications. This is one of very significant elements to be
considered in the choice of platform, where platform refers to a bundle of the OS, tools,
techniques, documentation, etc. This does not imply that all element of the platform come from
the same manufacturer. In some cases, the set of tools and technologies is not OS specific,
which is helpful in the development of portable applications.

dsaved
byenduss
Sgam fudtiorelity Sﬂ eﬂ
PQA
{osd
Amication P QA3
Exedas : :
— Apication wrg
Apdicaion QA2
Cpacting std!

Figure 22 Model of quality propagation in a layered ar chitecture

Extensible applications have their own functionality and set of related quality attributes
QAZ2. This functionality may be such to restrict some of the OS functionality, or to enhance it.
Quiality attributes are supported by the underlying OS qualities, but may be weighted differently
than in the OS layer.

In the case of awidely used underlying platform, like Microsoft Windows, the devel opers of
application extensions are often familiar with the platform, its tools and technologies. If these
tools and technologies are to be used, al restrictions imposed by the extensible application
architecture need to be enforced by additional tools, rather than descriptions and guidelines.
Quiality attributes QA3 are associated with different components.

Emphasis on the individual quality attributes in the set QA of the system is most likely very
similar to the QA2. Developers of the extensible application need to design and implement
enough support to ensure the system QA.

4.3 Case Sudy - FlexPendant Devicefor ABB Industrial Robots

The case study in which we build a product quality modd is an analysis of the design of an
extensible user interface application on a display-based device. This device is called GTPU
(Graphical Teach Pendant Unit) and is used for robot programming and control. Figure 23
shows a system overview and place of GTPU device within the system.

“D Robot Studio
Web Access ‘ (optional - offline
(optional) I programming)

TCP/IP ‘

FlexPendant

Robot

¥ i Controller

Figure 23 System view is necessary for under standing the high-level
quality attributes of the FlexPendant device and its software

We start the analysis top-down, by identifying high-level quality attributes of FlexPendant
device. To do this we first need to identify the most important stakeholders and also propagate
alocated qudity requirements from the larger system, which is the complete robotics system
shown in Figure 23. In this paper, we identify the most important and most obvious
stakeholders. the end-user, the developer of extensions, and the developer of the extensible
application. A more detailed discussion on a systematic stakeholder discovery and classification
can be found in [49]. From the system end-user perspective, the following high-level quality
attributes are the most relevant for the FlexPendant device software:

o Rdiability (continuity of services);

e Availability (readiness for usage);
o Usability (easy to use);
o Performance (response time).

The developers of extensions for open FlexPendant device want to ensure that overall
reliability, performance and availability in the system cannot be jeopardized by mistakes in the
third party extensions. On the other hand, the devel opers of extensions will be very concerned
with extensibility, maintainability of their components, and the amount of effort to create their

-65-

extensions. Indirectly, the system that is extended and customized for specific industrial process
will most likely be experienced as more usable by the end user.

431 Quality Attributes of the OS/Platform Layer

In the case of FlexPendant, Windows CE was selected as the operating system. The following
list of Windows CE QoS quality attributes and their sub-attributes is adopted from [33]:

e Modularity — does not refer to the design time modularity, but runtime modularity in
the terms of process isolation and memory protection. We can add that the system is
also modular in the design time, so that OS components can be included, or excluded
from the OS image. This will not necessarily reflect in the change of
runtime/operational modularity.

e Scalahility — refers to the good support for managing large number of processes and
threads.

o Predictability —refers to OS red-time capabilities, interrupt latency handling etc.

o Adaptability — ability of OS to be extended and enhanced. Adaptability is supported by
the design time modularity.

o Stability — refers to the OS stability in long-term usage and stress scenarios.
e Security — refers to protecti on against malicious and unauthorized access.

o Accessibility — openness of OS functionality and services through various
programming interfaces.

o Testability — does not really discuss testability (properties of the design and
implementation, which make it testable), but rather describes testing procedures used
in the product development.

o Performance — refers to the tuneable and configurable design and implementation that
can be optimized according to the specific system needs. However, no details are
provided to support this statement.

e Survivability — refers to the sophisticated power management and support to handle
power failures.

Note that these are the QoS quality attributes, or also called attributes discernable at
runtime. We can notice, that namesin this list are not always intuitive and present in the quality
model standards. Also, it is questionable that that e.g. accessibility and testability are QoS
properties, as in the form they are defined above.

Now let us consider examples of tools and technologies that will have significant impact on
the application quality. Windows CE platform provides devel opers with two different APIs
(application programming interfaces) - .NET Compact Framework APl (.NET version for

- 66 -

devices; further in text .NET CF) and win32 API. According to [63] the following is list of
properties of the named two APIs that will reflect on the application quality.
Advantages of the NET API:
e Managed code cannot have bad pointers.

e Managed code cannot create memory leaks.
e Managed code supports strong type-safety.

Advantages of thewin32 API:
o Fastest executables

o Better real-time support than .NET

e Source code (inter-platform) portability

o Ability to wrap COM for access by .NET CF applications

o Ability to create device drivers

o Ability to create control panel applets

e Support for custom user-interface skins

e Support for security extensions

o Ability to build Simple Object Access Protocol (SOAP) Web Servers
e Support for Pocket PC shell extensions

o Ability to use existing Win32 code

Let us see how some of these quality-carrying properties can help us in the design of our
extensible application. However, some of them will not really hold for our case, and there are
many more additiond quality issues that are not mentioned above.

4.3.2 Qualitiesin the Extensible Application

Having in mind the top-level qualities of the system, we need to select the platform API that our
extensible application will be based on. The selection will be made based on the contribution to
the qualities on the current and the next layer. In this case, reliability, ease of development of
extensions, and maintainability will guide us to choose .NET API. Besides the quality carrying
properties mentioned in the previous section, we need to add the following properties:
e Superior tool support. The developers of the extensible application and the devel opers
of extensions can use the same toals.

e Codeisolation functionality in the form of application domains
e Good support for versioning

¢ In-line with the manufacturer’s strategic directions

-67-

There are some drawback issues related to the chosen technology that may not be obvious
and that should be taken into consideration:

e Missing features — .NET API does not support all features of the underlying platform
accessible through the win32 API. At the same time interoperability between the NET
and win32 code in the .NET CF is limited and complicates the design in the .NET
code. This will primarily have negative impact on maintainability, testing of our
application.

e Memory leaks — Memory leaks can happen in .NET applications that use
interoperability with win32. As stated above, this may be necessary to reach unexposed
functionality. Also, releasing unused resources even if they solely reside in the
managed code is recommended. Performance may suffer from inappropriate use of
object allocation.

e Application domains — This is a .NET functionality that can be used for isolation of
non-trusted code from trusted code. This dement of design will have significant
positive effect on the reliability of the system, as it prevents propagation of failures.
This feature has significant limitations in the current .NET CF implementation. There
is no support for the communication between application domains. This support is
needed to do any useful work.

e Exception handling — Exception handling is a powerful technique for implementation
of fault-tolerance and, in .NET, it can be used across programming languages.
However, we advise more discipline on usage of exception handling, because the .NET
CF allows too much freedom that can turn into a problem late in your implementation
phase.

The information presented aboveis just an example of very useful and essential information
that is necessary to establish links between a quality model and the software product. Good
sources of such information are often communities of the product users, but not the
manufacturers themsel ves.

A developer of an extensible application would like to impose some constraints to the
extension developers. An example of such a congtraint is that extension developers cannot
access win32 API through the interoperability mechanism. A tool can be created to inspect
.NET code for violation of such a constraint.

4.3.3 Qualities of Application Extensions

The developer of application extensions will have the same set of .NET tools as the base
application developer, plus those few additional tools that set more constraints. One significant
factor that will influence the quality of the developed extensions is aso a good and
unambiguous understanding of the underlying APIs and infrastructure. A description of these

-68-

semantic issues can be found in [8]. This can be combined with atool that will restrict the API.
Its usage will guarantee some system properties and increase the devel opment efficiency.

434 Qualities of the Resulting System

.NET CF has been used by ABB, in the GTPU project, since the earliest beta programs for
.NET CF development partners. Our experiences gathered so far have shown that choice of the
NET API has a positive impact on important high-level quality attributes reliability and
availability. This can be stated for both base application and extensions, as a number of
extensions have been developed internally in our organization. The .NET software
characterigtics: type and pointer safety, hard to make memory leaks are the main contributors to
the qudity. For non-expert C++ programmers, .NET languages (e.g. C#) appear to be a better
choice.

It is important to mention that the extensible application devel opers were not able to ensure
protection for faults like loops and locks, as well as memory leaks in the extension code, with
the help from .NET. This has been achieved through an external supervision by a watchdog.

Figure 24 below illustrates a part of the product quality model of the device we have
discussed. The left hand side of the figure shows a smplified product mode of the GTPU
device, with the design layers as discussed in Section 4.3. On the right hand side of the figure, a
part of the quality model is shown. Links between component quality-carrying properties on the
left hand side and some of the qualities are also shown. The modd is partial in the sense that
many properties are not mentioned both on the product model and the quality model side.

-69-

Product Quality
Moded
System
pec. e
functiondlity T

Extengble

B,
| Application

i\) echanding] N |
“Toolstechniques

architecture [~ L

Tools, techniques ‘\ T o
oS TSoztion throug 3 //
functionality . apdomeins |t
1|

Figure 24 Partial quality model of the FlexPendant device

4.4 Conclusion

The problem of constructing a quality system is often presented in component-based software
engineering (CBSE) as a problem of predictable assembly of components [21], where
components are often treated equally in the terms of qualities they bring into the system. In
systems that follow the layered architectural style, it makes sense to ook at this problem using a
layered approach, where OS is the most general and the lowest level component. Each of the
layers brings certain design time and runtime qualities to the end system and aso ensures that
some qualities are present on the next level.

Figure 25 summarizes our reasoning on the effect of architecture on system dependability
and openness. If we take a closed application with A1, and gradually publish internal interfaces
making it open and extensible (from E1 towards E3), this will most likely decrease overall
system dependability (from D1 to D3). However, it is possible to modify the system to
architecture A2 (keeping other parameters constant), so that opening the system (from E1 to E2)
keeps the desired level of dependability (D1) quality attributes.

-70-

Extensibility/ A

Openess
E3 \
E2 Transform the

T \ . architecture
£1 \Archltecture 2 4o keep the

desired Y) dependability
Architecture 1 -- qualities of
the system
|
D3 D2 D1

not desired Dependability

Figure 25 Visualized tradeoffs between extensibility and dependability for
two different system ar chitectures

In order to create a quality open architecture, we need to have in mind that there are two
important user groups for the extensible application — the devel opers of extensions and the end-
users. We need to have a clear picture of the relationship of the technologies we use and their
contributions to the desired levels of quality, which is often hard to find. It is accumulated in
experiences of the developers that use certain technologies. Because technologies today move
very fadt, it is hard to systematize such experiences and accumulate the knowledge that will be
up to date.

-71-

-72-

PART |l —CONCLUSIONSAND FUTURE WORK

“ Architecting is characterized by dealing with ill-structured* situations,
situations where neither goals nor means are known with much certainty.

An architect who needs complete and consistent requirements to begin
work, though perhaps a brilliant builder, is not an architect.”
Maier and Rechtin [32]

This part of the thesis provides answers to the research questions stated in chapter
Introduction, followed and by a critical discussion. The reasoning and conclusions in this part
are based on the literature survey (brief overviews are presented in Appendix A) and the results
of the case studies that are presented in Part | and Part 11. Finally, we discuss opportunities for
future work.

“1ll-structured problem: A problem where the statement of the problem depends on the statement of the solution. (Maier)

-73-

-74-

5 Conclusions

In this chapter we present answers to the research questions and hypotheses formulated in the
introduction. We will also discuss the validations of the results. The two main research
guestions and hypotheses Q1/H1 and Q2/H2 will be discussed separately in the two subsections
that follow. However, the research results presented in Part | and Part |l are used in both
subsections.

51 Quedion 1

Q1: What factors are considered important by software architects of complex
embedded systems and have significant impact on software architecture design?

H1: In addition to the general factorsthat are considered in architectural design
of software systems, the factors that originate from relations between software,
hardware and entire system must be taken into consider ation.

Conclusion: Based on the research results presented in Part | of the thesis, we
argue that the hypothesis presented holds. For complex embedded systems,
software architects work jointly with system and hardware architects in
designing a solution, the solution being always the architecture of the whole
system. Furthermore, the results and the conclusion from Q2 and H2 highlight
some shortcomings of the architecture design methods, which have been
developed for software systems, when they are applied in the context of complex
embedded systems.

5.1.1 Conclusion Details

In the conclusion of Part I, we have presented a list of findings that show certain common
factors of concern for software architects in complex embedded systems. Those factors were
presented within a product development life-cycle dimension, but many other alternative
dimensions are possible. To support the hypothesis H1, and emphasize the factors resulting
from the relationship of system, software and hardware to be considered, we now present the
findings using the system-software relationship. The relationship is shown in Figure 26. The
model is simplified because it does not show the fact that complex systems are hierarchicd in
their nature with subsystems containing both hardware and software. We have grouped the
factors into groups A-D: system level factors, relations between software, hardware and the
entire system, architect’s experience and development environment.

-75-

Involvement Tumover

External Type of

customers People
stakeholders Product Resources project
Product life-time Organization Goals Technology

X volumes
Business l

Expected
changes in Reuse Multidisciplinary

system env \ / nature of the system

Development
Environment

issues

Standards)
System/product Maintenance
(SW, HW and

other HW)

Product
Functionality

Understandability

/ eeds/and
Product Quality Business needs consfraints
and constraints
System
Architect
System —
Architect’s
experience]
SW
Architect

=4

- - / r
-‘ Other -‘ Computer Software
HW HW Architect's
Architect Architect experience

Figure 26 A model of propagation of factors of concernin a complex
embedded system. Thefact that a system is hierarchical and that it islikely to
have many subsystems which ar e har dwar e/softwar e subsystemsis not
shown.

A) System level factors that influence system architecture on the product level:

1 Types of customers - certain customers have much impact not only on what
functionality a system will have, but also how it should be designed and
implemented.

2. Product operational quality attributes - only the most important extra-functional
requirements that are dominating for the specific type of systems are explicitly
considered and taken into account in architectural design. Depending on the type
of system, extra-functional hardware requirements may get more attention than
software.

3. Sandards - if it is feasible, an implementation of a standard is assigned to a
subsystem. For systems with mature and standardized domains, more explicit
attention tends to be given to extra-functional requirements. Additional features
and distinguishing quality characteristics provide a basis for competition.

-76 -

Isolating the implementation of standards in clearly defined subsystems favours
system evolution as standards tend to change and evol ve slowly.

Other factors — such as: product volumes, product lifetime, expected changes in
the system environment are also of concern and were discussed in Section 2.4.

B) Relationship of entire system, hardware and software:

1

The system is the primary concern and system thinking dominates the
architecture design - systems are decomposed into subsystems, these often
including both hardware and software. The exact allocation of hardware and
software regquirements is performed on the subsystem level. The system
architecture and the hardware resources place restrictions on the software, and in
addition, the software architecture on subsystem level tends to be relatively
independent of the system architecture. There are systems in which the hardware
design is not complete when the software design and implementation is started.

Since software is inherently more flexible, certain late problems (in development

lifecycle terms) originating from hardware, are often solved by means of

appropriate software design.

Hardware or software dominance - the overall importance of software is

dependent on the type of systems that we have investigated:

o Because software is used in an incressing number of functions, the
importance of software is increasing and software architects are increasingly
engaged in top level system design decisions, not only in software system
design. As the efforts spent on software development increase, the
investment in software is becoming proportionally greater than that of the
hardware.

o The“hardwarefirst” approach isstill dominant in many systems, as reported
in our own and related studies [20]. A clear example is seen in
telecommunication systems. Written comments to the presented paper, from
a Nokiaarchitect, support this statement (see Section 2.6).

Allocation of requirements between subsystems is often complex and not easily

understood and for this reason must be explicitly addressed. This problem was

observed during the case studies presented in Part 1. Before the impact of
opening up the system could be analysed, it was necessary to construct an
analysis moddl.

C) Architect’ s experience in complex embedded systems:

1

An architect needs to have the skills of both a generalist and a specialist — an
architect is a technically very competent person, able to handle both the detailed
technical issuesin implementation as well as the coarse-grained big picture.

-77 -

Knowledge of hardware and general knowledge of software is needed by a
software architect - experience from the study revealed that architects have quite
a profound knowledge of hardware, even if software architects may not be
completely aware of it, or consider it important.

Architects need to have good knowledge of the system application domain.

D) Development environment factors that influence the architecture:

1

Reuse of subsystems is considered in architecture design - experience was found
to be more valuable than subsystems and code, but the reuse of subsystems
(hardware and software) is still considered an important economic factor. As
software is getting becoming more complex, reusing software components is
becoming increasingly important.

Making a choice of technology is an important architectural decision - this was
not at first obvious from the interviews, but crystallized after the analysis of
interview data.

A multidisciplinary nature of the system will require a multidisciplinary
approach to detailed design and implementation — this needs to be considered
and is likely to have an impact on the partitioning of the system into subsystems
and components.

Organizational (devel opment) perspective of architecture needs to be considered
— thisis in order to minimize the interdependencies in the software that make
integration and validation more difficult and also to achieve clear interfaces
between different organizational units. Packaging of software modules is
important and in some sense independent of the operational architecture, i.e. the
packaging structure defines an architecture of its own that is tailored to the
structure of the development organization/project. We have seen an example of
this for an open system in Section 3.5.2.

A balance needs to be found between long term strategic goals vs. short term
project goals - there is afrequent problem in balancing long-term strategic goals,
which are often associated with the system’ s architecture as a valuable long term
asset, and short term project goals. One way of avoiding this problem is to
convince project leaders and managers of the importance of a long term
investment in architecture. Alternatively, as suggested in [50], architects should
not be subordinate to project managers responsible for individual development
projects.

The process view of architecture should not be neglected — it is related to the
organizational perspective of the architecture and if neglected, the testability of
the product and intermediate product components may be impaired.
Architectural design takes time — it is not something which is performed in days
or weeks. In the case of large systems, it may take years.

-78 -

8. Architectural design is the responsbility of a core team that consists of
experienced designers - the core team devel ops architectural principles (typically
manifested as guidelines, handbooks) and the core infrastructure (platform). The
base principles and the infrastructure should be relatively stable before a large
scale devel opment is started.

5.1.2 Validity of the Conclusions

It is the architects’ experiences that are the main sources of the data on which our conclusions
are based. As pointed out in the previous section, a critical analysis of the collected data reveals
certain aspects of the discussed topics, which we believe are important but were not emphasi zed
during the interviews. There is a difference between the real problems and the problems that the
architects think are the real problems, and therefore, additional methods are necessary to find
the problems of which the architects may remain unaware.

In certain cases, a direct answer may differ from the answer revealed after a more detailed
analysis of the interview data. An example is the item “if a choice of technology is a part of
architectural design”. Others have reported similar experiences with contradictory survey data,
and a recent exampl e from reguirements engineering research area is mentioned in [41].

Another possible problem involving the results obtained is that they give an echo of the
problems that are hypothesized in literature. To avoid this problem and the problem of
architects misinterpreting our questions during interviews, we used the questions as an outline
of the topics to discuss and we tried to get as many examples as possible, which backup the
architect’s statements. We believe that the following factors give us solid backing for the
validity of our conclusions: our analysis of the interviews data, a workshop with the architects,
reviews of the published paper by four experts in the software architecture field and positive
feedback at the conference.

Given that all the interview data has been collected in Sweden, a generalization to a wider
context could be questioned. A similar study of embedded systems in Europe [20] has come to
similar conclusions with respect to those topics of investigation that overlap, so we believe that
the results of our study can be widened to relate to complex embedded systems in a European
context. Based on the conference and review feedback, we believe that the conclusions
regarding relationship of software, hardware and system are relevant for complex embedded
systems and less gpplicable outside that context, while other conclusions are applicable to
software architecting of complex systemsin general.

5.1.3 LessonsLearned

It is not easy to identify clearly what software architecture is. The most common definition used
in the literature is “ structure or structures of the system, which comprise software elements, the
externally visible properties of those elements, and the relationships among them.” [7]. If
components and connectors are easily reconfigurable, then the value of getting them right is of
less importance. A definition of what is architectural is then much more in favour of the

-79-

definition provided by Fowler® in [19]. Others also report that the difference between
architecture and design in practice is far from obvious [20]. One of the definitions of
architecture suggested by certain attendees at the WICSA’ 04 was “architecture as a structured
set of design decisions.” which we would like to extend to the following definition: “ Software
architecture is a specification of a structured set of design decisions that affect most of the
system components and are difficult and/or expensive to change.” It is recognized that the
qualities of a product depend not only on its architecture but aso on the implementation and
quality of the system components. However, it is possible at the level of the system
architecture, to foresee that choices of e.g. certain technologies, programming languages will
have a significant impact on the development environment, the number of faults introduced in
the development, the performance of the system as built etc. Realizing late in the development
life-cycle that incorrect decisions were made is very likely to have a significant negative impact
on the system; it may be necessary to change its structure, the project may significantly missits
time schedule etc.

Another observation is that there is a difference between architecture and architecting. The
Architecture of software is the result of the architecting process. This architecting process is
much broader in scope than the architecture itself. It requires that architects work with
requirements engineers and engineers who implement the system.

5.2 Question 2

Q2: Which dependability means should be applied® on the software architecture
level to support system quality in an open system and what is a suitable approach
to systematically applying those dependability means?

H2: Quality attribute oriented software architecture design methods can be used
as a systematic approach to applying dependability means in the context of open
business-critical complex embedded systems.

Conclusion: On the basis of our real-world experience from the development of
open systems in industrial robotics, which arereported in Part |1 of this thesis, we
argue that hypothesis H2 holds only partially. The principles of the state-of-art
quality attribute-oriented software architecture design methods should be
improved to permit better integration of software with system level architecturein
complex embedded systems. This will support the traceability of quality attributes
through system hierarchies and permit the performance of impact analysis on the
system level.

5« Architecture is the decisions that you wish you could get right early in aproject, but that you are not necessarily more likely to
get them right than any other” and architecture as “things that people perceive as hard to change’.[19]

5 As mentioned in the Introduction, we do not provide a hypothesis for the list of dependability means that need to be applied,
but answer the question directly.

-80-

The dependability means that need to be applied in software architecture design
in order to support system quality are not limited to the application of fault-
tolerance on the operational/runtime architecture of the system (such as
implementation of fault containment zones). The dependability means should be
implemented as a combination of fault-prevention, fault-tolerance and fault-
removal techniques (alist is provided in Section 5.2.1).

5.2.1 Conclusion Details

We first discuss the use of principles to systematically apply dependability means on the
software architecture level for open systems (hypotheses H2). After that, we present a list of
dependability means that were applied to support system quality of the open systems we have
studied.

Dependability techniques are not limited to architecture design but need to be applied from
requirements to verification and validation. In both case studies that are presented in Part 11, we
have shown that for an open system, development tool support should be decided during
architectural design process. Modifications to the system’s runtime architecture should be
coordinated with the development architecture and level of confidence in fault prevention
techniques that are supported by the tools. This leads us to the tradeoffs between dependability
and development quality attributes. An example of a tradeoff that should be considered by an
architect is usability vs. dependability; if we decide to use certain implementation technologies
and tools to raise the level of confidence in fault prevention, the tools should be easy to learn,
easy to use, not too expensive etc. Another example is the tradeoff between dependability and
the reuse of existing components and architecture; it is desirable to minimize changes to
preserve an investment in existing assets, but that is in conflict with the desired level of
dependability and therefore results in changes of both operational architecture and support in
the development environment. A method for systematically applying dependability means
should therefore provide support in dealing with such tradeoffs.

Dependability is not only a quality attribute; it is a concept for the devel opment of systems
that can deliver services that can justifiably be trusted and as such, it covers a much longer part
of the development lifecycle, compared with the methods for architectural design in general.
On the other hand, as compared with dependability, software architecture design methods cover
a wider range of factors that influence software architecture design by enabling systematic
analysis of different quality attributes that the system needs to exhibit. The current disadvantage
of software architecture methods based on quality attributes is that they lack good traceability
between the properties of the whole system and the properties of the software. The properties of
the entire system are of primary interest in complex embedded systems. In Chapter 3, we have
shown that we needed to propagate system requirements to the controller subsystem software,
and that was done on the basis of the top level system architectural decisions. The requirements
on individual subsystems are allocated after system design and after dependability techniques

-81-

are applied at the system level. System level decisions and allocation of functionality are
performed for both hardware and software subsystems. If we change a system property, such as
system openness, this does not mean that we only change the same property, the openness, of
the software subsystem. In fact we may not need to change this property for some of the
software subsystems at all. Only after an impact analysisis performed on the system leve, after
decisions are made with respect to the distribution of functional and non-functional properties
between system components, and decisions are made with respect to the distribution of
requirements between hardware and software, can we know what changes should be made in
the software of a subsystem. Efforts to establish a better link between the “system level” and
“software level” in quality attribute based software architecture methods are a subject of current
research, as mentioned in [43].

On the software subsystem level, the principles of quality attribute centric software
architecture methods provide assistance in systematic design based on quality attributes and in
dealing with tradeoffs. Dependability techniques cannot be applied in isolation from other
techniques that are used to support other important quality attributes, such as non-operational
quality attributes (e.g. reuse, business qualities) as discussed in Sections. 4.3, 3.5.2 and 3.5.3.
Reuse, which is a factor of great importance in system architecture (as discussed in Section
2.4.2), requires, in system design, that top down analysis from the system level be combined
with bottom up analysis, as seen in Chapter 4.

With respect to the inputs that are suggested by the quality attribute based software
architecture design methods (SEI — Appendix A3.2 , Bosch — Appendix A3.1), we have the
following comment: Based on our experience, we argue that developing one or more analysis
models that include quality attribute requirements (such as described in Section 3.5) can be
beneficial and used in addition to “alist of profiles” as suggested in [12] or utility tree suggested
in [7]. Furthermore, when we deal with reuse during the design process, we often need to
evaluate the impact of using one component vs. ancther, i.e. perform impact analysis on several
quality attributes in paralldl. In that case, our experience is that models such as utility tree or
NFR Framework (Appendix A3.3) provide more support for impact analysis than a list of
profiles[12].

Our second goal was to answer the question “which dependability means need to be applied
on the software architecture level to support the quality of open systems’. We group these
dependability means according to the generally accepted dependability taxonomy (Appendix
A.2) and present them below.

Fault prevention dependability means:
e Providing automated tools for open software system extension development and
system integration, which are easy to use, is one of the primary objectives. We support
this statement by means of case studies presented in Chapters 3 and 4.

-82-

e The choice of underlying technol ogies on which an open system is based has indirectly
a significant impact on a number of faults introduced in system implementation (e.g.
choosing between Win32 and .NET as seen in our case study, in Chapter 4).

o Interfaces of an open platform need to be clear, simple and unambiguously defined.
Interfaces which do not have these properties will result in an increased likelihood of
faults being present in the final system. Furthermore, there is aneed to decide on which
interfaces and variability points in the system are “public’, i.e. available to the third
parties. Interface qualities have a very significant impact on ease-of-use. It is highly
unlikely that small organizations with few resources will be capable or willing to spend
their resources on extending an open system that is difficult to use.

e |n an open system, there is more need for the use of special tools for reasoning about
properties such as timeliness. Quditative reasoning about such properties is difficult
and requires detailed knowledge of the system internals. As shown in our case-study
(Section 3.6.3), we have therefore introduced a software tool for a quantitative
evaluation of the system design that checks for timing related errors such as the
violation of deadlines and queue underflow or overflow.

Fault-tolerance dependability means:
e Fault containment zones should be used to isolate critical functionality from non-
critical functionality, as shown in the both case studies presented in Part 1.

o Watch-dog techniques should be applied for monitoring system resources.

Fault-removal dependability means:
e The need for tool support for verification and validation was discussed in Section 3.6.3
(ART Framework tool for regression testing).

e Fault diagnosis that records the cause of errors in terms of both location and type is
needed in order to be able to find the faulty component and correct the fault.
Monitoring and debugging in the distributed real time system is challenging and the
approach we have used to addressit is mentioned in Section 3.6.2.

5.2.2 Validity of the Conclusions

The conclusions about the applied dependability means are based on our two case studies which
are based on two devel opment projects of two different subsystems within the same system. We
believe that our general observations related to dependability means and software architecture
design are applicable to other systems, where openness is of interest. Our conclusions can be an
initial input for creating a catalogue of tactics (SEI terminology”) or operationalizations (NFR

7 See Appendix A3.2.

-83-

Framework terminology®) when analyzing and designing a system where openness is of
interest. However, in order to package our conclusions in a more systematic way, such as the
“tactics”, we would need to perform additional case studies based on other systems and further
systematize the knowledge gained.

The type of the system, into which openness should be introduced, may strongly influence
the choice of details of the applied dependability means. The system on which our case studies
are based is a business/safety critical industrial robotics system. There are other types of
systems to which our conclusions would be much less applicable, either because the required
level of dependability confidence may be much higher (e.g. mission critical systems) or the
priorities allocated to quality attributes to be achieved are different (e.g. a difference between a
telecom switch and a robot controller).

We have also made certain observations about the state of the art of quality attribute
software architecture methods. We state that they need further improvement and integration
with system architecting methods in order to be more useful for designing complex embedded
systems. We believe that these conclusions can be widened to the application of these methods
to the design of other types of complex embedded systems, as they are more general in their
nature.

5.2.3 Lessonslearned

In [12], Bosch discusses the following three uses of software architecture:
o software architecture for a single system,

e software architecture for product lines and
e software architecture for component framework.

Based on our case study of the open robot controller, we believe that, if a system based on
product line architecture is to become open, the product line infrastructure (the platform)
becomes more like the component framework. We see the following difference between the
open product line architecture and the component framework. In an open product line the
market for third party components (custom-made for the platform) need not be explicitly
addressed or it may not be of special interest (e.g. too small a market).

8 See Appendix A3.3.

6 FutureWork

The following areissues identified in Part | that we believe deserve further attention:

e Systems are constantly exposed to an incoming flow of new functional and non-
functional requirements, new constraints etc. How should a design rationale be
formulated and enforced in system evolution in general to prevent architectura
degradation? In the mgjority of the cases in our study, tools or processes for handling
new requirements were not used. As a consequence, the focus during system evolution
was on the new reguirements only. In such a situation, there is the risk that old
requirements may be violated while new requirements are being implemented.

o No or limited strategies for communicating the important architectural principles were
found in the case studies. Plain language is currently the predominant way of
documenting system and subsystem requirements, using the word processor for
specifications based on company standard templates. We found no clear strategies for
propagating requirements and design decisions, especialy for non-functional
requirements. This supports the statements previously made by others [20]. Because of
the complexity of the systems, our experience from industry is that even the most
experienced engineers may have an insufficient understanding of the allocation of
extra-functional requirements to subsystems, even for a mature system.

e When the product lifetime is 20-30 years, any unavailability of software components,
for example, the OS used to build the original system, is as much a problem as the
unavailability of the hardware used in the original system design. We have mentioned
an example of project in which it was decided to use the Linux OS platform instead of
M S Windows, because it was believed to be preferable to own the source code.

Based on our research results in Part 1l of this thesis and the current state of the art of
software architecture design methods, we believe that there are several issues that deserve
further consideration as a subject of future work. More work needs to be done to improve the
integrated modelling of system and software properties through the hierarchy of systems and
subsystems. SEI is currently investigating the applicability of their methods in software
intensive systems and scenarios, tailoring them to specific organization needs and investigating
integration with RUP and RUP SE (see Appendix 3.2). We believe that tailoring methods are
not only needed for different organizations, but also for different groups within organizations
(subsystems within a system). We believe therefore that more work could be done on
crystallizing the basic principles that are common to methods such as: NFR Framework,
ATAM, Bosch's method etc. These basic principles could then be adapted by devel opment
teams to their own requirements. This is an approach different from that of SEI, which
introduces SEI methods “organically” into the development processes used by other
organizations [28].

-85-

-86-

APPENDIX A - TERMINOLOGIES AND OVERVIEWS
OF THE RESEARCH AREASRELEVANT IN THE
CONTEXT OF THE THESIS

In Figure 2 in the Introduction, the following research areas were identified as relevant to the
research question of interest in this thesis:
o Software Quality

e Dependability
e Software Architecture

In this section, we provide a short overview of the terminology and the most important
concepts from these areas, which are specifically relevant in the context of thisthesis.

-87-

-88-

A.1 Software Quality, Quality Modelsand Quality Attributes

Many researchers have studied quality and one frequently seen and cited view of quality is the
one given by David Garvin's in 1984, which says that “quality is a complex and multifaceted
concept”, which he describes from five different perspectives. These perspectives were
discussed in the context of software engineering by Pfleeger and Kitchenham in [46]:
e Transcendental view - In this view, software quality is thought of as an ideal towards
which we gtrive, but it can never completely be reached; it can not be defined but you
know what it is.

o User view - In this view, software product quality is seen as fitness for purpose/use,
evaluated in atask context, and can thus be highly personalized.

e Manufacturing view - sees quality as conformance to a specification and focuses on the
product quality during production.

e Product view - Advocates of software metrics often use the product view approach,
which looks inside of a product as opposed to user and manufacturing views, which are
views from the outside. The advocates assume that measuring and controlling product
internal /inherent properties will result in better external product behaviour. Certain
models link the product view to the user view.

e Value-based view - In this view, quality is dependent on how much a customer is
willing to pay for it. In the real world, requirements on a product often change during
its development, and trade-offs between cost and desired quality have to be made. The
value based view can be helpful to resolve the issue. In this context, internal software
messures are irrelevant.

The perspective we take on the quality influences the way we define it but also the way we
measure it. The “users view” is often used in software engineering and users are often referred
to as stakeholders. Measuring quality in the user's view is problematic because desired
properties on the high-level (such as e.g. a need to have a safe, reliable, usable product) are
intangible. Generalizing Tom Gilb’s techniques, Kitchenham and Pfleeger state that “the quality
concept is broken down into component parts until each can be stated in terms of directly
measurable attributes’. Decomposing quality into various factors leads us to various quality
factor hierarchies, commonly referred to as quality models, such as: McCall's quality model,
Dromey’s [17] model, Bohem’s model [9] [10], 1SO 9126 [23], |IEEE 1061-1998 [1]. These
models use different terminology for the different nodes and levels of their hierarchies; quality
attributes being one of them. Furthermore, a difference can be made between fixed models and
flexible models.

|EEE 1061-1998 defines software quality as the degree to which software possesses a
desired combination of quality attributes. Quality attribute is defined as characteristic of

-89-

software, or a generic term applying to quality factors, quality subfactors or metric values (see
Figure 27).

software quality of
system X
-management-oriented
attributes of software that
contribute to its quality quality factor 1 quality factor 2 quality factor N
- have associated

direct metric(s) /N

- A decomposition of a quality /

factor or quality subfactor to . !

itshtechnical t_:omé)onents quality subfactor * quality subfactor N
- have associate

metrics quality subfactor 2

Figure 27 |IEEE Std 1061-1998 softwar e quality metrics framewor k

Metrics or software quality metric is defined as “a function whose inputs are software data
and whose output is a single numerical value that can be interpreted as the degree to which
software possesses a given attribute that affects its quality.” Direct metrics is the metric that
does not depend upon a measure of any other attribute.

While |EEE Std 1061-1998 does not provide a list of factors, earlier version of this
standard, |IEEE Std 1061-1992, lists the following factors and sub-factors as “samplée’ in annex
A part of the document: Efficiency (time economy, resource economy), Functionality
(completeness, correctness, security, compatibility, interoperability), Maintainability
(correctability, expandability, testability), Portability (hardware independence, software
independence, ingtalability, reusability), Reliability (non-deficiency, error tolerance,
availability), Usability (understandability, ease of learning, operability, communicativeness).

In1SO 9126-1, quality is defined as the totality of characteristics of an entity that bear on its
ability to satisfy stated and implied needs. A quality modd is defined as the set of
characterigtics and the relationships between them which provide the basis for specifying
quality requirements and evaluating quality. In the quality model, the following terminology is
used: software characteristic, subcharacteristic and quality attribute. Attribute is a measurable
physical or abstract property of an entity. 1SO 9126-1 quality mode framework is shown in
Figure 28.

-90-

process software product effect of software
product

influences influences influences

external

internal

quality qu%lity
'''''' i 3 1'""“ attributes Smmmmms .
depends on BUSENE epends or contexts
of use
process internal external quality in use
measures measures measures measures

Figure 28 1S0O 9216-1 model of quality in the softwar e development
lifecycle [23]

ISO 9126 defines the following attributes in the quality model for quality in use:
effectiveness, productivity, safety and satisfaction. The following quality attributes are common
for the external and internal quality model: functionality (suitability, accuracy, interoperability,
security, functionality, compliance), reliability (maturity, fault tolerance, recoverability,
rediability compliance), usability (understandability, learnability, operability, attractiveness,
usability, compliance), efficiency (time behaviour, resource utilization, efficiency compliance),
maintainability (anayzability, changeability, stability, testability, maintainability compliance),
portability (adaptability, installability, co-existence, replaceability, portability compliance).

In software engineering, properties related to software-intensive systems are usudly
classified into functional and non-functional ones [48]. Preiss points out in his PhD thesis [48]
that all the properties exceeding the system’s main input/behaviour (it's main services for the
direct users), areinconsistently called one of the following: Ilities, non-functional properties (in
most literature) , afunctional qualities, extra-functional properties or simply quality attributes.
Some authors distinguish between these terms and while many use them almost synonymously.
Based on theory of properties and systems that is described in the thesis and the current use of
the terms in software engineering, Preiss proposes the following core terminol ogy:

o Attribute/property — as defined by standard dictionaries

e A required attribute/property —aneed or desire on an entity by some stakeholder. Also
called requirement. Because there are different types of properties, there are different
types of requirements (e.g. functional, extra-functional).

e An exhibited attribute/property — a property ascribed to an entity as a result of
evaluating (either directly or indirectly) the entity.

e Quality — the totality of exhibited attributes/properties of an entity that bear on its
ability to satisfy stated or implied needs (i.e. have relationship to required properties).

e Quality Attribute/property — refers to an exhibited attribute/property that is a part of
Quality of an entity.

-01-

e Functional property — used to dencte the primary functions of a component/system
relative to its operational context and hierarchical level. They can be observed as a
response to stimuli in the system’s operational context.

¢ Non-functional properties—all but functional properties of a system.

e Afunctional (developmental) properties — the properties of a component/system seenin
its development context.

Furthemore, Preiss has defined a flexible quality moddl and a quality model construction
framework. Fixed quality model are found insufficient to describe all possible properties which
areinvented by humans and serve to explain phenomena of interest.

Preiss also discusses three different but related types of system property decompositions:
classification oriented (its primary use is structuring knowledge), analysis-oriented (its main
purpose is trade-off and impact analysis) and realization oriented (used to relate system-level
properties to the elements that realize the system).

-02-

A2. Dependability

Dependability of a computing system is the ability to deliver service that can justifiably be
trusted [5]. To clarify this definition, we need to define what a service is. Functionality of a
system is provided to users of the system as a service and through an interface called the service
interface. Users are considered as another system. System may fail because it does not comply
with the specification, but also because the specification does not adequately describe its
function. Dependability can be associated to a set of attributes, means and impairments
(AviZienis et a. [5]). The taxonomy is presented in Figure 29 below.

— AVAILABILITY

[~ RELIABILITY

[SAFETY

— COMFIDENTIALITY
- INTEGRITY

— MAINTAINABILITY

—ATTRIBUTES ——

~ FAULT PREVENTION
— FAULT TOLERANCE
[~ FAULT REMOVAL

— FAULT FORECASTING

FAULTS
— IMPAIRMENTS ~E ERRORS
FAILURES

DEPENDABILITY——MEANS

Figure 29. The dependability tree. “ Threats’ tothe “attributes’ are
achieved by the “means’ [5]

The definitions of dependability attributes are based on Dependability Handbook [30]:

Availability is readiness for usage

Reliability is service continuity

Safety is non occurrence of catastrophic consequences

Confidentiality is non-occurrence of inadeguate information disclosure
Integrity is non-occurrence of inadequate information alteration

Maintainability is an ability to perform corrective and evolutionary updates to
software.

Note that security is a composite attribute, which combines confidentiality and integrity.
Robustness is defined as a secondary attribute; it is dependability with respect to external faults

[5].

One of the strengths of the Dependability concept is the unified view of its threats — faults,
errors and failures.

Failure is the event of system transition from correct to incorrect service. The opposite
event iscalled “service restoration” and the timein between is called “ outage time”.

-03-

Error is the part of the system state that causes the failure. Not all errors become
failures. If the error propagates to the service interface boundary and alters the service,
it becomes a failure. Errors can be detected and reported by some means of error
log/message. Undetected but present errors are called latent errors.

Fault is the adjudged or hypothesized cause of the error. Faults can be active
(producing errors) or dormant (not producing errors). There are many fault classes and
the classification may vary depending on the view chosen.

After defining faults, error and failures, we can also define some terms related to the
behavior of systems in case of errors are detected, e.g. classify them according to the way they

can fail.

Fail-controlled are systems that are designed and implemented so that they, to an
acceptable extent, fail only in specific modes of failure described in the dependability
requirements.

Fail-safe systems are a type of fail-controlled systems that, to an acceptable extent, fail
in such away that can cause no harm to the environment.

Fail-halt (or fail-stop) are also a type of fail-controlled systems, which go to a
predefined state upon detection of an error. According to the output produced upon
transition to this predefined state, they can be divided to:

o Fail-silent — no output is produced
o Fail-passive —a predefined output is produced

A unified view of fault, error and failure opens a possibility to better structure different
means for fighting those threats. Means for dependability are “the methods and techniques
giving the system the ability to deliver a service conforming to the accomplishment of its
function and to place a trust in this ability [30].” There are four different means for
dependability:

Fault Prevention - Includes all activities like: programming methods, processes, formal
methods etc, which can help to avoid making errors.

Fault-Tolerance - Includes al techniques which are used to prevent runtime errors to
turn into faults, or in other words to prevent system service from failing. These
include: error detection, error and exception handling, fault handling (isolation of
detected faults in runtime).

Fault Removal - Includes al development time activities that remove faults in the
design and implementation (through: verification, diagnosis and correction) and the
specification (validation). The most common ways of verification are: testing, code
reviews and static analysis.

-94-

e Fault Forecasting - Includes all techniques used to predict the amount of remaining
undetected faults and also predict the future system behavior.

A detailed analysis and fine detailed classifications of the above means (except of the fault
prevention) can be found in the Dependability Handbook [30] and a shorter overview of the
measures can befound in [5].

To systematically apply dependability means, Kaaniche, Laprie et al propose dependability-
explicit development model [25]. This model includes three main processes, which are paralle
to each other in time:

e System creation process

o Dependability process (Fault Prevention, Forecasting, Tolerance and Removal)
o Caetification and QA process (quality assurance and certification process)

Requirement, design, realization and integration are usua steps in a development process
and the dependability-explicit model implies no temporal seguencing of these activities,
because it is not a classical life-cycle model, but can be viewed more as a meta-model. The
Dependability process includes four processes and each of the processes corresponds to one of
the means for dependability. More details can be found in Dependability Handbook [30] and the
paper [25].

The concept of Dependability is rather similar to the concepts of Trustworthiness and
Survivability. The summary of differences is presented in [5]. In some sources (eg.
Sommerville [56]) terms dependability and trustworthiness are treated synonymously.

To conclude, we can say that dependability is not just a quality attribute but an approach to
devel opment of critical systems in which dependability attributes are the primary concern.

-05-

A3. SoftwareArchitecture

In this section we describe several approaches to software architecture design and evaluation
based on quality attributes.

A3.1 Bosch’'s approach

In [12], Bosch discusses three ways to use software architectures: @) for an individual system, b)
as product line architecture and c) as a standard architecture used for a component market. He
presents a software architectural design method for the case a) individua systems, and
complements to this method to make it suitable for the case b) product line architectures. The
basic method is called quality attribute oriented software architecture design method (QASAR)
and consists of two iterative loops, which are depicted in Figure 30.

Requirement
Specification

:
Requirement
Selection

A
Functionality based F.R. Partial
architectural design Requirement

Specification
Application
architecture
Architecture not
transformation ok
QA optimizing
solutions

yes|

ok

More requirements?
T

Figure 30 Quality Attribute based transformations in Bosch’s method
[12]

This method is iterative, in the sense that the inner loop is started with the core subset of the
requirements. Based on them a first version of the architecture is developed. The focus of the
inner loop is assessment of and transformation of the architecture for quality attributes. As
opposite to the SEI methods, this methods starts from functionality-based architectural design,
followed by estimation of quality attributes and finally transformations of architecture in order
to fulfil quality attributes. An initial functional architecture will sill implicitly have certain
values for its quality attributes, but at this point they are not explicitly evaluated. This method
defines the design process and the key artefacts that are developed during the process.

-06 -

Requirements are divided into functional and quality requirements (the name quality attributes
is used as a synonym to quality requirements). Quality requirements are categorized as
operational or development reguirements and have associated profiles, such as: usage profile,
hazard scenarios and change scenarios. No specific recommendation is given for how to group
or organize the quality attributes in relationship to each other. Techniques that can be used for
quality attribute evaluations are: scenario-based evaluation, simulation, mathematical modeling
and experience-based assessment. The following types of transformations based on the quality
attributes are proposed:
e impose architectural style

e impose architectural pattern

o apply design pattern
e convert quality requirements to functionality
o digtribute requirements
As previously mentioned, the basic method can not be applied directly to product lines. This
is because it does not take required variability and differences between the products sufficiently
into account. An extended method that takes these issues is also presented in [12].

The main characteristics of this method as described in [12] are still unchanged, compared
to the more recent material presented by Bosch in tutorial on WICSA’04 conference [11].

A3.2 SEI Architecture-Centric Methods

The Software Engineering Institute (SEI) at Carnegie-Mellon University, Pittsburgh, PA USA
has developed a set of methods for software architecture-centric development. In the SEI
approach, a set of influences depicted in Figure 31 via architect determine the architecture. This
model of architectural influencesis called ABC (Architecture Business Cycle).

architect's influences

Stakeholders
requirements
(qualities)

Developing organization

Background and

) : —
experience of architect

technical environment ———

Figure 31 ABC - Architecture Business Cycle [7]

Architecture is shaped by some combination of: functional requirements, business
requirements and quality requirements. The most dominant of those requirements are called

-97 -

architectural drivers. Functionality is defined as the ability of the system to do the work for
which it wasintended and it is considered to be largely independent of the system’s structure. In
the SEI approach, no precise definition of quality attributes is given, but the term is used in such
away that it covers all but the functional properties of the system (i.e. it is used as a synonym to
non-functional requirements). The following three classes of quality attributes areusedin [7]:
e Qualities of the system, which apply directly to the system, such as. availability,
reliability, modifiability, performance, security, testability, usability.

e Business qualities, which apply to the business environment, such as. time to market,
cost and benefit, projected lifetime of the system and targeted market.

e Qualities about the architecture itself, which indirectly affect other qualities, such as
conceptual integrity, correctness and compl eteness and build-ability.

Essential concepts for recording quality attribute specific requirements are scenarios.
Scenarios include the following elements presented in Figure 32: the stimulus of the scenario,
the source of the stimulus, the response, the response measure, the artifact stimulated and the
environment.

| artifact
SRLIEE stimulus response

environment measure

Figure 32 Elements of a quality attribute scenario

Scenarios are elicited from stakeholders and each scenario may have impact on multiple
quality attributes. They are used in the design step and analysis step of architecture design
process. The following types of scenarios are used [26]: use cases, growth scenarios (cover
anticipated changes to the system) and exploratory scenarios (cover extreme changes that are
expected to stress the system).

The architecture-centric methods are devel oped to support the architect in the ABC process
and those methods complement each other in providing the support. The common set of

characterigtics for these architecture centric methods is [28]:
1. They are scenario driven (scenarios serve as an “engine’ for directing and focusing the
method’ s activities)

2. They aredirected by operationalized quality attribute models
3. The methods focus on documenting the rational e behind the decisions made

4. All of the methods involve stakeholders so that multiple views of quality can be
expressed.

5. Methods were designed as standalone and to be performed by an outsider, not as an
integrated part of a software devel opment cycle.

-08-

The following architecture-centric methods are devel oped:

QAW (Quality Attributes Workshop) - The am of QAW is dicitation and
documentation of quality attributes requirements, where requirements are elicited and
documented as six-part scenarios.

ADD (Architecture-Driven Design method) - It is a method for defining software
architecture by basing the design process on the system’ s quality requirements.

ATAM (Architecture Tradeoff Analysis Model) - ATAM s a successor of the method
called SAAM - Software Architecture Analysis Method). It is an evaluation method that
reveals how well an architecture satisfies a particular goals and it provides an insight
into how quality goals interact; how they tradeoff [7]. As a part of the evaluation, a
hierarchical model of quality attributesis created which is called utility tree. Leaves of
the utility tree are quality scenarios. Quality attribute names are used as an organizing
vehicle, but the structure of the modd is flexible and it allows for names that are the
most suitable to the participants of the evaluation process.

CBAM (Cost Benefit Analysis Model) - As an evaluation ATAM is missing important
considerations — those that have to do with economic. CBAM is amethod of economic
modeling of software systems, centered on an anaysis of their architecture [7].

ARID (Active Reviews for Intermediate Design) - ARID is a method that blends Active
Design Reviews [ref] with ATAM and helps to find issues and problems the successful
use of the design. It is intended for use with partially complete designs.

One of the common characteristics of the methods, that they were designed as standalone
and to be performed by an outsider is one of their drawbacks and it has recently been
recognized by the designers of the methods [28] [27]. Organizations that wish to include SEI
Architecture-Centric methods in their development life-cycle need to synchronize the activities
of the methods with other development activities. If multiple methods are used, activities
needed by the methods need to be synchronized to avoid duplication of effort. Addressing these
problems is subject is the subject of the most recent and current efforts at SEI. The following
technical reports provide more information on this subject:

Lifecycle view of Architecture Analysis and Design M ethods [28]
Integrating ATAM and CBAM [42]

Integrating Software-Architecture-Centric M ethods and RUP [27]
Integrating QAW and ADD [43]

Of special interest for this thesis is integration of QAW and ADD, where it is recognized
that many of the scenarios are system oriented and that they need to be transformed before they
can be used directly in the ADD method, which is applicable for software [43]. Integration to
RUP and RUP SE is also of interest in the context of complex embedded systems.

-99-

A3.3NFR Framework

NFR Framework is described by Chung and colleagues in [14]. It is a disciplined approach to
representing and analyzing non-functional requirements. In this approach, requirements are
divided to functional (what the system does) and others — non-functional requirements (NFRs).
Quiality attributes is considered as a synonym to non-functional requirements. The authors
clearly distinguish two different approaches for systematic treatment of non-functional
requirements — product oriented and process oriented and in an orthogonal dimension —
gualitative and quantitative. The product oriented approach is based on evaluation of software
for how well it meets its non-functional requirements. NFR Framework approach is process
oriented and provides techniques for justifying design decisions during the software
devel opment process. It is also qualitative in its nature because of the problem to quantitatively
measuring an incomplete software system. Authors state that NFRs are difficult to deal with
because they are: subjective (different people), relative (their interpretation depends on the
system) and interacting (achieving one NFR may hurt one or more other NFR-s).

NFR Framework organizes non-functional requirements in a hierarchical structure of
softgoals which can be satisficed rather than satisfied®. The structure is called SGs — softgoal
interdependency graphs and records developer’s consideration of softgoals, and shows
interdependencies among softgoals. The framework has well defined graphical notation for all
elements that are included in the SIGs graphs.

Another important part of the framework is the knowledge catalogues. There are three kinds
of catalogues. type catalogues (provide terminology and classification of NFR concepts),
method catalogues (development techniques for achieving NFRs) and correlation catalogues
(interdependencies between NFRS). The hierarchy of NFRs in the SIGs is not fixed. NFRs can
be decomposed either based on their type or topics. Intangible softgoals are linked to
operationalizing softgoals (the devel opment techniques) that can be implemented. An example
of a SIGs graph is shown in Figure 33.

9 Softgoal have no clear-cut definition and/or criteria as to whether it is satisfied or not. Therefore the authors use the
terminology satisficed rather than satisfied for the softgoals.

- 100-

Good Performance Secure
for accounts accounts

Availability

ntegrity
of accounts

of accounts

D Confidentiality
of accounts

Accurate
accounts

+

Autherize

access to

account

sl Authenticate
user access

Complete
accounts

Space for
accounts

C

Response
time for

accounts & ccurate
* accounts
Identify
e users
indexing
Use
Use uncompressed PILN
farmat o
Compare
5
N Signature Reguire
Validate access additional
against eligibility rules o

Figure 33 An example of Softgoal | nterdependency Graph in NFR
Framework [14]

NFR Framework can be applied to software architecture design to systematically guide a
software architect in selecting among architectural alternatives. An example is provided in
Chapter 12 in [14].

A3.4 Other approaches

There are many other methods of architecture design that are based on the quality attributes or
non-functional requirements. Several such methods are mentioned in this section.

A framework named NFD — Non-functional decomposition was devel oped by Poort [47]. In
this approach, requirements are divided as depicted in Figure 34.

Requirements

Suplementary Primary
Requirements Functional
Requirements
[functional | non-functional |
Secondary .
Functional QA Implementation

Requirements Requirements || Requirements

Figure 34 Requirements classification in NFD method [47]

-101-

Primary Functional Requirements are defined as demands that require functions which
directly contribute to the goal of the system, or yield direct value to its users. Secondary
Requirements are al other requirements imposed on the system. Secondary Functional
Requirements require functionality that is secondary to the goal of the system. Quality Attribute
Requirements are quantifiable requirements about the system’s (operational) quality attributes.
Implementation Requirements are those that can not be measured by system assessment. In this
approach, importance of linking system architecture and devel opment process is emphasi zed.

Many other examples of methods related to architecture and requirements can be found in
the proceedings of the workshops STRAW 01 [2], and STRAW'’ 03 [3] which were held in the
conjunction with ICSE conference. For example, Kazman and Olson present in [22] an
integrated decision-making framework from software requirements negotiation to architecture
evaluation based on WinWin [4] and CBAM [7].

A3.5 Certain common principles of the quality attribute centric softwar e ar chitecture
design methods

The classification of the requirements and the terminology used in the methods that we have
surveyed, supports Preiss statement that we have not yet reached consensus on terminology,
classification and organization of system requirements and properties. This makes it hard to find
the commonalities, i.e. the common principles used by different software architecture design
methods and to define what a quality attribute based software architecture design method is.
Still, based on the survey presented in this Appendix, we find that the current quality attribute
based software architecture design methods have the foll owing common characteristics:
e Theterm quality attributes is used as a synonym to non-functional reguirements.

e |tisrequired that quality attributes are explicitly dicited and recorded (e.g. through
quality scenarios).

e Quadlity attributes are recognized as the main drivers that shape the architecture of
software.

e Methods describe how to evaluate software architectures for fulfilment of quality
attributes and how to transform the architectures to fulfil the quality attributes.

e Guidanceis provided for dealing with tradeoffs between quality attributes.

- 102 -

REFERENCES

IEEE Sandard for a Software Quality Metrics Methodology, |IEEE The Institute of
Electrical and Electronics Engineers, Inc., 1998, ISBN 0-7381-1059-6.
http://www.cin.ufpebr/~straw01/, STRAW'O1L First International Sof Tware
Requirements to Architectures Workshop, 2001.

http://se.uwater| 00.cal~straw03/ProceedingsSTRAWO03.pdf, STRAW'03 Second
International Sof Tware Requirements to Architectures Workshop, 2003.

WinWin homepage at USC/CSE, http://sunset.usc.edu/research/WINWIN/, 2004.
Avizienis A., Laprie J.C., and Randell B., Fundamental Concepts of Dependability,
report 1145, LAAS, 2001.

Baragry J. and Reed K., "Why we need a different view of software architecture”,
Working IEEE/IFIP Conference on Software Architecture, 2001.

Bass L., Clements P., and Kazman R., Software Architecture in Practice, Addison-
Wesley, 2003.

Blom M., "Semantic Aspects in Software Development”, ISSN 1403-8099, Karlstad
University, Sweden, 2002

Boehm B., Characteristics of Software Quality, North-Holland Pub. Co., 1978.

Boehm B. and In H., Identifying quality-requirement conflicts, IEEE Software, volume
13, issue 2, 1996.

Bosch J., Architecture-centric Software Engineering, 4th Working |EEE/IFIP
Conference on Software Architecture, Tutorial TA1, Oslo, Norway, 2004.

Bosch J., Design & Use of Software Architectures, Addison-Wedey, 2000.

Bril RJ., Postma A., and Krikhaar R.L., "Embedding Architectural Support in
Industry”, International Conference on Software Maintenance, 2003.

Chung L., Nixon B., Yu E., and Mylopoulos J.,, Non-Functional Requirements in
Softwar e Engineering, Kluwer, 2000.

Conway M., How do committees Invent?, Datamation, 14 (4), 1968.

Dromey G., A Modd for Software Quality, I|EEE Transactions On Software
Engineering, volume 21, issue 2, 1995.

Dromey G., Cornering the Chimera, |EEE Software, volume 13, issue 1, 1996.

Dromey G., http://www.sgi.gu.edu.au/publications/SPQ-Theory.ps, Software Quality
Institute, Griffith University, Australia, 1998, Software Product Quality: Theory, Model
and Practice.

Fowler M., Who needs an architect?, |EEE Software, 2003.

Graaf B., Lormans M., and Toetenel H., Embedded Software Engineering: The State of
the Practice, |IEEE Software, 2003.

- 103 -

[38]

Hissam S, Stafford J., Walnau K., and Moreno G., "Packaging Predictable Assembly”,
Proceedings of the First IFIPPACM Working Conference on Component Deployment,
Berlin, Germany, 2002.

In H., Kazman R., and Olson D., "From Reguirements Negotiation to Software
Architectural Decisions’, STRAW'0l International SofTware Requirements to
Architecture Workshop, 2001, 2001.

ISO/IEC, International Standard 1SO 9126-1, ISO/IEC, 2001.

Issarny V., "Software Architectures of Dependable Systems. From Closed To Open
Systems", ICSE 2002 Workshop on Architecting Dependable Systems, 2002.

Kaaniche M., Laprie J.C., and Blanquart J.P., "Dependability Engineering of Complex
Computing Systems', |EEE, 2000.

Kazman R., http://www.sei.cmu.edu/news-at-
sei/columns/the_architect/1999/June/Architect.jun99.pdf, Usng scenarios in
architecture eval uations.

Kazman R., Kruchten P., Nord R.L., and Tomayko JE., Integrating Software-
Architecture-Centric Methods into the Rational Unified Process, report CM U/SEI-2004-
TR-011, Software Engineering Institute SEI, 2004.

Kazman R., Nord R.L., and Klein M., A Life-Cycle View of Architecture Andysis and
Design Methods, report CMU/SEI-2003-TN-026, Software Engineering Institute SEI,
2003.

Kotonya G. and Sommerville ., Requirements Engineering - Processes and Techniques,
John Willey & Sons Ltd, 1997.

Laprie J.-C., e, Dependability Handbook, report 98-346, Laboratory for Dependability
Engineering LAAS, 1998.

Liu JW.S and others, Imprecise computations, Proceedings of the |IEEE, volume 82,
issue 1, 1994.

Maier M. and Rechtin E., The art of systems architecting, CRC Press, 2000.

Microsoft Corporation, http://msdn.microsoft.com/library (Feb 2003), How Windows
CE .NET is Designed for Quality of Service.

Microsoft Corporation, Windows Hardware and Driver Central homepage,
http://www.microsoft.com/whdc/, 2003.

Microsoft Research, http://research.microsoft.com/slam/, SLAM Project 2003.

Musa JD., Operationa profiles in software-reliability engineering, |IEEE Software,
volume 10, issue 2, 1993.

Mustapic G. and Crnkovic 1., "Propagation of quality attributes in a layered design”,
Third Conference on Software Engineering Research and Practise in Sweden,
SERPS03, Lund, Sweden, 2003.

Mustapic G. and et al, A Dependable Open Platform for Industrial Robotics - A Case
Sudy, in Rogerio de Lemos A.R.a.C.G. (editors): Architecting Dependable Systems |1,
ISBN 3-540-23168-4, Springer, 2004.

-104 -

Mustapic G. and et a, "Real World Influences on Software Architecture - Interviews
with Industrial Systems Experts’, |IEEE Working Conferance on Software
Architectures, WICSA, Oslo, June 2004, 2004.

Mustapic G., Wall A., Norstrom C., Crnkovic |., Sandstrom K., Froberg J., and
Andersson J,, http://www.idt.mdh.se, MRTC Technical Report: Influences between
Software Architecture and its Environment in Industrial Systems - a Case Studly.

Neill C.J. and Laplante P.A., Requirements Engineering: The State of the Practice, IEEE
Software, volume 20, issue 6, 2003.

Nord R.L., Barbacci M., Clements P., Kazman R., Klein M., and et al, Integrating
Architecture Tradeoff Analysis Method (ATAM) with the Cost Benefit Anadysis
Method (CBAM), report CMU/SEI-2003-TN-038, SEI Software Engineering Institute,
Carnegie Mdlon University, PA USA, 2003.

Nord R.L., Wood G.W., and Clements P., Integrating Quality Attribute Workshop
(QAW) and the Attribute-Driven Design (ADD) Method, report CMU/SEI-2004-TN-
017, SEI Software Engineering Institute, Carnegie Mellon University, PA USA, 2004.
Parnas D., "The Limits of Empirical Studies of Software Engineering”, |EEE
International Symposium on Empirica Software Engineering, |SESE, 2003.

Pfleeger S.L., Software Engineering - Theory and Practice, Prentice Hall, 2000.

Pfleeger S.L. and Kitchenham B., Software Quality: The Elusive Target, |IEEE
Software, 1996.

Poort R.E. and With H.N.P, "Resolving Requirements Conflicts through Non-
Functional Decomposition”, WICSA'04 4th Working | EEE/IFP Conference on Software
Architecture, Oslo, Norway, 2004.

Preiss O., "Foundations of Systems and Properties. Methodological Support for
Modeling Properties of Software -Intensive Systems', Ecole Polytechnique Federale de
Lausanne, Switzerland, 2004

Preiss O. and Wegmann A., "Stakeholder discovery and classification based on systems
science principles”, Second Pacific-Asia Conference on Quality Software, 2001.

Raadt B. and et al, "Polyphony in Architecture”, Proceedings of the 26th Internationa
Conference on Software Engineering (ICSE'04), 2004.

Robson C., Real World Research, second edition, Blackwell Publishers, 2002.
Schwanke W.R., "Architectural Requirements Engineering: Theory vs. Practice”,
STRAW'03 Second International Sof Tware Reguirements to Architectures Workshop,
2003

Shaw M., "The Coming-of-Age of Software Architecture Research", 23rd International
Conference on Software Engineering, ICSE, 2001.

Shaw M., "Writing good software engineering research papers. minitutoria”,
Proceedings of the 25th International Conference on Software engineering, ICSE, 2003.
Smolander K., Hoikka K., Isokallio J., Kataikko M., and M&kea T., "What is Included
in Software Architecture? — A Case Study in Three Software Organizations',

- 105-

proceedings of the 9th |EEE International Conference and Workshop on Engineering of
Computer-Based Systems, 2002.

Sommervillel., Software Engineering, Addison-Wesl ey, 2001.

Soni D., Nord R.L., and Hsu L., "An Empirical Approach to Software Architectures’,
proceedings of the 7th International Workshop on Software Specification and Design,
1993.

Takashio K. and Tokoro M., "An Object-Oriented Language for Distributed Real-Time
Systems", OOPSLA'92, Vancouver, 1992.

Thane H., "Monitoring, Testing and Debugging of Distributed Real-Time Systems”,
Doctoral Thesis, Royal Institute of Technology, KTH, Mechatronics Laboratory,
TRITA-MMK 2000:16, Swveden, 2000

Thane H., Sundmark D., Husdius J., and Pettersson A., "Replay Debugging of Real-
Time Systems using Time Machines", Paralld and Distributed Processing Symposium,
2003.

Voas J., Trusted Software's Holy Grail, Software Quality Journal, volume 11, issue 1,
2003.

Wall A., Andersson J., and Norstrom C., "Probabilistic Simulation-based Analysis of
Complex Real-Time Systems®, 6th IEEE International Symposium on Object-oriented
Real-time distributed Computing, Hakodate, Hokkaido, Japan, 2002.

Y ao P., http://msdn.microsoft.com/library (Sep 2002), Choosing a Windows Embedded
APIl: Win32 vs. the .NET Compact Framework.

- 106 -

