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Abstract: Path planning is an important part of navigation for mobile robots. Several
approaches have been proposed in the literature based on a discretisation of the map, including
A∗, Theta∗, and RRT∗. While these approaches have been widely adopted also in real
applications, they tend to generate non-smooth paths, which can be difficult to follow, based
on the kinematic and dynamic constraints of the robot. Time-Elastic-Bands (TEB) have also
been used in the literature, to deform an original path in real-time to produce a smoother path,
and to handle potential local changes in the environment, such as the detection of an unknown
obstacle. This work analyses the effects on the overall path for different choices of initial paths
fed to TEB. In particular, the produced paths are compared in terms of total distance, curvature,
and variation in the desired heading. The optimised version of the solution produced by Theta∗

shows the highest performance among the considered methods and metrics, and we show that
it can be successfully followed by an autonomous bicycle.

Keywords: Planning, Optimisation, Time-Elastic-Bands, Intelligent Autonomous Vehicles,
Navigation

1. INTRODUCTION

Planning a path between two points in a known, partially
known or completely unknown environment is called path
planning. A map is commonly divided into cells and graph-
based search methods, such as Dijkstra’s algorithm (Dijk-
stra, 1959), can be used to find the shortest path between
two given cells. Other popular search methods include
A∗, Theta∗, D∗ Lite and Rapidly-exploring Random Tree
(RRT). A∗ is an extension of Dijkstra’s, by using a heuris-
tic to focus its search towards the goal (Hart et al., 1968).
Moreover, D∗ Lite and Theta∗ are extensions of A∗ where
D∗ Lite is intended to be used in an unknown environ-
ment (Koenig and Likhachev, 2002). Theta∗ belongs to
any angle path planning algorithms and is not constrained
by the edges of the cells which is the case of A∗, D∗ Lite,
and Dijkstra’s (Daniel et al., 2010).

The initial path planned by A∗, Theta∗, D∗ Lite and its
variants, can be tracked by many different types of robots,
such as differential drive robots or omni-wheeled robots,
which can rotate around their centre axis without forward
or backward motion, thus making sharp turns. The algo-
rithms are also popular in computer games where a low ex-
ecution time is desirable (Yap et al., 2011). However, many
other vehicles such as cars and bicycles are subject to non-
holonomic constraints and are also unable to turn around
their own axis, and thus, can not track the paths planned
directly by A∗, Theta∗, or D∗ Lite. Instead, a kinematically
feasible path is required. To address this issue, there are
several ways of post-smoothing the path, such as utilising

⋆ The work is partly funded by Eskilstuna kommun och Eskilstuna
Fabriksförening.

B-splines, Dubin’s Curve, or polynomial interpolation (Ra-
vankar et al., 2018). As an alternative, it is also possible to
define the problem as an optimisation problem which has
the advantage that it is possible to constrain state vari-
ables. Time-Elastic-Bands (TEB) (Rösmann et al., 2012)
is formulated as a nonlinear optimisation problem with
constraints on parameters such as the maximum velocity
and acceleration, minimum turning radius, and minimum
distance to obstacles in the optimisation problem. The
TEB has been used for trajectory planning for numerous
different robots, such as differential drive robots (Rösmann
et al., 2013), carlike robots (Yongzhe et al., 2018), and
mobile base platforms (Deray et al., 2019). However, the
initial guess to the nonlinear optimisation problem is often
assumed known beforehand.

In this paper, we investigate four different path-finding
algorithms and compare the results by providing them as
initial paths for the TEB. The basic A∗ algorithm, an
any angle path finder represented by Theta∗, a smooth
path finder represented by Hybrid A∗, and finally, RRT∗

as a sample-based path-finder are considered. To evalu-
ate the performance of the optimised and non-optimised
paths, the length of the path, the integrated absolute
value of the heading derivative, and the curvature of the
path are taken into account. Furthermore, to demonstrate
the feasibility of the approach an autonomous bicycle is
tracking the paths in a realistic multi-body simulation
using a previously designed Model Predictive Controller
(MPC) (Persson et al., 2021).

The paper is structured in the following way, first, back-
ground on the different path planners and related work is
presented in Section 2. The optimisation of the paths using



the TEB is described in Section 3. Next, the metrics used
to evaluate the different path planners are presented in
Section 4 followed by the results in Section 5. Concluding
remarks and future work are outlined in Section 6.

2. BACKGROUND

In this section, the background and details of the path
planners considered in this paper are presented. Next,
work conducted using TEB and related work in terms of
path planning for autonomous bicycles is given.

2.1 Path planning

In this paper, we consider a map, Mm×n, which is rep-
resented by a 2-dimensional binary occupancy grid, and
each cell or node, mi, is either free mi = 0 or occupied
mi = 1. Four different path planners are used to find a
path between the start and the goal cell. A∗ is a graph
search algorithm where a heuristic is used to focus the
search towards the goal. It was the first path planning
algorithm that combined the cost, f(mi), from the start
cell to the current cell, g(mi), with the heuristic, h(mi),
between the current cell and the goal:

f(mi) = g(mi) + h(mi). (1)

Where the euclidean distance is chosen as the heuristic.
Moreover, A∗ is a complete path planner, meaning that
if there is a path of free cells between the start and goal
node, it will be found. In the A∗ algorithm, each node
has eight neighbouring nodes, i.e., its horizontal, vertical
and diagonal neighbours. In Figure 1(a) it is clear that
A∗ is constrained to movements in the directions of these
neighbours.

Theta∗ works similarly to A∗ and in fact, they are sharing
the same main loop. As in the case of A∗, Theta∗ considers
eight nodes as neighbours and searches the grid, i.e. the
edges of the cells. In the case of A∗, the parent of a node
will be within the neighbours of its current node. However,
the parent of the current node in Theta∗ is not constrained
to the neighbours of the current node. Instead, Theta∗

checks if the current node and the parent node lie within
Line Of Sight (LOS) of each other (Daniel et al., 2010),
i.e. the two nodes do not need to be connected. Thus,
the resulting path of Theta∗ is made up of several line
segments which have an arbitrary angle and in general
result in a path with fewer turns and shorter paths
compared to a path planned by for example A∗ where the
heading is constrained (Daniel et al., 2010). However, it is
important to note that Theta∗ requires longer execution
time compared to A∗, due to the LOS check, which may be
important in some applications (Uras and Koenig, 2015).
From Figure 1(b), it is clear that the path planned by
Theta∗ can have an arbitrary angle between two nodes.

In this paper, we also consider the Hybrid A∗ algorithm
which is a path planner designed for creating kinematic
feasible paths. The paths planned by Hybrid A∗ are
constrained by the minimum turning radius of the vehicle,
the length of the motions, and the number of motion
primitives generated (Petereit et al., 2012). Instead of
planning on a grid as in the case of A∗ and Theta∗, Hybrid
A∗ generates N number of smooth motion primitives from
the current node and the planner is constrained to these

motion primitives. As a consequence, Hybrid A∗ is not
constrained to only search on the grid or the centre of
the cells, which is the case of A∗ and Theta∗. Instead,
the nodes of Hybrid A∗ can be placed anywhere within a
free cell. This is illustrated in Figure 1(c), where the five
motion primitives, in red, generated by Hybrid A∗ are not
constrained by the edges or the centre of the cells. The
resulting smooth path is visualised in green.

There are also sampling-based path planners, such as RRT
and RRT∗. A tree structure is obtained by repeatedly
sampling a new randomly selected node in space and
connecting this node with the closest node already in
the tree. The advantage of the sampling-based algorithms
compared to graph-based search methods is that they can
effectively find feasible paths in larger state spaces and
are not constrained to discrete cells in the map (LaValle,
2006). Another advantage of the RRT∗ is that even if
the original planned path is found unfeasible due to some
unknown obstacle, a new path can quickly be planned
by using the already generated tree structure (Karaman
and Frazzoli, 2011). Similarly to Hybrid A∗, RRT∗ is not
constrained to discrete cells either, and the nodes can be
anywhere within the free space of the map. Furthermore,
as in the case of A∗ and Theta∗, RRT∗ is a complete path
planner if a sufficient number of iterations are performed.
In fact, RRT∗ will converge towards the optimal path as
the number of nodes approaches infinity as it continues
to optimise the path after the goal is reached. This is the
main difference between RRT and RRT∗ (Karaman and
Frazzoli, 2011). However, an infinite number of nodes is
impracticable. Instead, it is up to the designer to determine
the maximum number of iterations and the maximum
number of nodes. Another important parameter for RRT∗

is the maximum distance between a new sample and the
nodes in the tree as this choice will have a high impact
on the convergence time. In Figure 1(d), the tree of RRT∗

after 500 iterations and a maximum connection distance of
1m is illustrated together with the shortest path in purple.

However, both Hybrid-A∗ and RRT∗ share the drawback
of often producing jagged paths where an increasing num-
ber of heading changes is required, as compared to straight
paths. This will lead to increased energy consumption
and longer reference paths. Moreover, it might increase
the complexity of the path tracker. In the case of an
autonomous bicycle, the change of heading can be slow,
especially if the bicycle is only equipped with a propulsion
motor and a steering motor, as the steering regulation
would also be in charge of balancing the bicycle (Zhao
et al., 2017). Furthermore, the resulting path from Theta∗,
A∗, and RRT∗ have sharp turns which would require the
vehicle tracking the path to turn around its own axis. This
is a manoeuvre that is not possible for vehicles which ad-
here to non-holonomic constraints, such as an autonomous
bicycle, instead a smooth path is desirable.

2.2 Related work

One approach for smoothing the path is to use TEB
(Rösmann et al., 2012) which are based on the Elastic
Bands proposed by Quinlan and Khatib (1993). An ad-
vantage of the TEB compared to Elastic Bands is that
constraints on the kinodynamic properties of the vehi-
cle can easily be included in the nonlinear optimisation
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Fig. 1. The path planned by A∗, Theta∗, Hybrid A∗, and RRT∗ respectively.

problem while keeping a safe distance from obstacles and
minimising travel time. Thus, the TEB optimises a trajec-
tory, instead of a path. In the work of Deray et al. (2019)
the Timed-Elastic Smooth Curve (TESC), an extension of
TEB that relies on Lie groups, is proposed and compared
to the TEB. Both TESC and TEB are given the task to
plan between the start position and randomly selected
goal position, i.e. no initial path is planned. Both plan-
ners fail repeatedly in environments with static obstacles,
something that could have been avoided if an initial path
was planned with a complete path planner such as A∗

or Theta∗. In the work of Yongzhe et al. (2018) a car-
like robot used TEB to park the robot in a parking lot.
The initial path was planned by A∗ and the strategy
was evaluated in both simulations and experiments with
promising results. A∗ was also used in the work of Ma
et al. (2021) where the number of heading changes in the
planned path was reduced by minimising the snap of the
trajectory. Next, TEB was used to find a local optimal
path.

Planning a feasible path for an autonomous bicycle re-
quires the path to be smooth due to the non-holonomic
constraints of the bicycle. This has been solved using
different methods such as in the work of von Wissel and
Nikoukhah (1995), where a path is planned based on the
manoeuvres which can be performed by an autonomous bi-
cycle, similar to Hybrid-A∗. The manoeuvres are optimised
to minimise the time of travel of the bicycle. The trajectory
for a bicycle is also considered in the work of Yuan et al.
(2014), where the trajectory is optimised by means of
Particle Swarm Optimisation (PSO). A curve in the XY
plane is parameterized by two third-order polynomials
while satisfying initial and final constraints on the yaw
angle and the x,y position. This leaves two free parameters,
one for each polynomial which can be used by PSO to
minimise the maximum lean angle of the bicycle. However,
the initial path is assumed known, moreover, it is not
clear how the proposed method would handle obstacles
between the two points. In the work of Turnwald and
Liu (2019) motion planning of a bicycle is investigated.
They conclude that models that possess a positive trail
(which most bicycles do), can produce paths which are
best suitable for an autonomous bicycle.

3. PATH OPTIMISATION

Since we are interested in smooth paths which can be
tracked by an autonomous bicycle, the planned paths are
smoothed by TEB (Rösmann et al., 2012). The TEB
can be visualised as putting an elastic band on top of
the previously planned path, then tightening the band
between the start and goal position to remove any slack
and create a smooth path, while keeping a safe distance
to obstacles, omin, and adhere to a minimum turning
radius, rmin. Moreover, the algorithm minimises the time
to travel from the start pose, xs = [xs, ys, θs]

⊤, to the
goal pose, xg = [xg, yg, θg]

⊤ while considering constraints
on the velocity, acceleration, angular velocity, and angular
acceleration of a bicycle model

ẋ = v cos(θ) (2)

ẏ = v sin(θ) (3)

θ̇ =
v tan(δ)

b
, (4)

here δ is the steering angle, b the wheelbase, x, y are the
position on the plane, and θ is the heading. TEB is a multi-
objective optimisation problem where the states of the ve-
hicle, X = x1,x2, . . . ,xn and time of travel between states,
T =

∑n−1
k=1 ∆T1,∆T2, . . . ,∆Tn−1, are the variables and

collected asM := {x1,∆T1,x2,∆T2, . . . ,xn−1,∆Tn−1,xn}.
Following the approach in the work of Rösmann et al.
(2017), the optimisation problem can be formulated as:

min
M

n−1∑
k=1

∆T 2
k

s.t. x1 = xs,

xn = xg,

hk(xk+1,xk) = 0,

rk − rmin ≥ 0,

ok(xk)− omin ≥ 0,

|vk| ≤ vmax, |ak| ≤ amax,

|ωk| ≤ ωmax, |αk| ≤ αmax,

(5)

with

hk(xk+1,xk) =

[
cos(θk) + cos(θk+1)
sin(θk) + sin(θk+1)

0

]
× dk = 0, (6)

where the direction vector, dk, is computed as

dk =

[
xk+1 − xk

yk+1 − yk
0

]
. (7)



Furthermore, hk(xk+1,xk) = 0 iff two consecutive poses
xk,xk+1 are located on a common arc of constant cur-
vature. Thus, this constraint affects the smoothness of
the resulting path. ok(xk) is the distance to a set of
obstacles in the proximity of xk and rk is the turning
radius. Moreover, vmax, amax, ωmax, and αmax define
the maximum velocity, acceleration, angular velocity and
angular acceleration respectively. The nonlinear program
in equation 5 is solved by means of Levenberg-Marquard
solver by approximating the problem as a nonlinear least
square problem where the constraints are used as penalty
terms in the objective (Rösmann et al., 2017). Moreover,
each penalty term is weighted to express the importance
of each constraint. The constraints and the corresponding
weights are presented in Table 1.

As the problem is a nonlinear program, there is no guar-
antee for converging to the optimal solution. The solution
is heavily dependent on the initial guess, which in this
case are the initial path and the initial velocities and
accelerations. The initial path is the path planned by the
A∗, Theta∗, Hybrid A∗, and RRT∗ respectively and with,
v1 = 0, a1 = 0, ω1 = 0, and α = 0.

4. EVALUATION

The paths planned by Theta∗, A∗, Hybrid-A∗, RRT∗ and
their optimised versions are compared in 300 randomised
maps. The size of each map is 100×100m with a resolution
of 1 cell per meter. For each map, a maze is created
with a wall thickness of 3m and a passage width of 8m,
where the structure of the maze is randomised. Three
different scenarios are used, in the first scenario, the
passages in the maze are made up of free space. In
the second scenario, the free space is cluttered with 50
randomly positioned obstacles and in the third scenario
100 randomly positioned obstacles are used. The start
and goal positions are placed randomly on the map, with
a minimum distance of 70m apart. Moreover, to realise
a safety distance to the obstacles and the walls of the
mazes, the obstacles and walls are inflated by a radius
of 1m. To evaluate the performance of the different path
planners the path length, the curvature of the paths and
the integrated absolute value of the heading derivative
(IAT ) are considered. A shorter path length is desirable as
it can save both time and energy for the vehicle tracking
the path. To compute the path length, the euclidian
distance is computed for each path and normalised with
respect to Optimised Theta∗, the average and standard
deviation is computed for each scenario. The number of
heading changes metric is also related to energy efficiency
as a vehicle consumes more energy when it has to change
its heading a lot. It is also related to the comfort of the
ride, as constantly changing the steering direction will
make an uncomfortable ride. However, the metric is better

Table 1. Constraints and weights for TEB

Constraint Value w Constraint Value w

vmax 5m/s 1 rmin 3m 10
amax 2m/s2 1 ∆T 0.1s -

ωmax 0.3rad/s 1
∑n−1

k=1
∆T 2

k - 20

αmax 0.5rad/s2 1 h - 1000
omin 1m 3

suited to be used in non-continuous paths where sharp
heading changes are applied such as those produced by
A∗ or Theta∗. In the case of smooth paths, there may be
small variations in the heading even on paths that appear
straight. Moreover, small and large heading changes would
count the same which makes the metric favouring large
changes which are rarely found on smooth paths. Instead,
the IAT is considered and is defined as:

IAT =

n−1∑
k

∣∣∣∣θk+1 − θk
Ts

∣∣∣∣ , (8)

where Ts is the sampling time θk is the heading in sample
k. This metric combines the magnitude of the heading
changes with the frequency of heading changes. Before IAT
is computed each path is interpolated linearly over 1000
samples. The resulting value is normalised with respect
to Optimised Theta∗ for each map and the mean and
standard deviation of 100 iterations for mazes with 0,
50, and 100 obstacles are computed. The curvature of the
paths is only computed for the interpolated paths planned
by the optimised versions of the path planners and the
Hybrid A∗, as the paths planned by Theta∗, A∗, and RRT∗

are made up of line segments and thus are not smooth and
have curvature equal to zero everywhere. As in the case of
the path distance and the IAT, the curvature is normalised
with respect to the Optimised Theta∗ for each map and
the mean and the standard deviation are computed for
each scenario.

5. RESULTS

In this section, the results from the different path planning
algorithms are presented. In the comparison, the maxi-
mum distance between a new node and the tree in RRT∗

is set to 10m, and 105 iterations are performed with a
maximum of 3×104 nodes in the tree. The Hybrid A∗ uses
a minimum turning radius of 3m, a motion primitive length
of 1.5m and 15 motion primitives are sampled at each
node. Moreover, only forward motion is considered for all
path planners. The resulting paths planned by A∗, Theta∗,
Hybrid A∗, and RRT∗ are optimised using the TEB as
described in Section 3. Moreover, the path tracking results
are presented where an autonomous bicycle is tracking
a path planned by Optimised Theta∗. The code for the
comparisons and simulation, together with a video of the
simulation, are available online 1 . The section is wrapped
up with a discussion of the results.

5.1 Path planning & simulation results

In Figure 2, the mean and standard deviation of the nor-
malised path lengths are presented. The mean and stan-
dard deviation of the curvature is presented in Figure 3.
Moreover, the mean and standard deviation for the IAT
value for all paths are given in Figure 4.

As the Optimised Theta∗ produces the most promising
results when compared to the other path planners, it
is used to plan a path for an autonomous bicycle in a
realistic multi-body dynamics simulation using Simscape.
A randomised maze of size 50 × 50m with a resolution of

1 https://github.com/NiklasPerssonMDU/

On-the-Initial-of-Timed-Elastic-Bands.git
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1 cell per meter with no further obstacles is considered.
A minimum turning radius of 3m is used and a safety
distance of 1m is considered. The 2-dimensional map is
generated as a 3-dimensional environment in Simscape
and a SolidWorks model of an ordinary-sized bicycle
is imported and controlled through Simulink. Based on
previous work (Persson et al., 2021), an MPC is used to
track the difference, r∆, between the reference trajectory,
Γ = [θr, xr, yr, φr, δr]

⊤, and the output denoted y =
[θ, x, y, φ, δ]⊤. Where θr, xr, yr are computed by Optimised
Theta∗ and φr = δr = 0. In the inner loop, the error
between the lean angle, φ, and the reference lean angle,
φ∗, is fed to a PID controller that is used for balancing
the bicycle by actuation of the steering velocity, δ̇. The
inner loop is executing at 100Hz and the outer trajectory

MPC PID
Simscape
bicycle

Compute
reference

φ∗+ δ̇ y

φ

+

yr∆

Γ

05×1

Fig. 5. Simulation setup of the control system.

tracking loop is running at 10Hz, while the bicycle model
is simulated in continuous time. The control strategy is
illustrated in Figure 5. To ensure a uniform sampling time
of the optimised trajectory it is re-sampled with a sampling
time of Ts = 0.1s before the simulation starts. The planned
path and path-tracking performance of the autonomous
bicycle are presented in Figure 6.

5.2 Discussion

From Figure 2, 3, 4 it is clear that the paths optimised
using the TEB are shorter, have less curvature, and do not
require as much heading regulation as compared to their
non-optimised counterparts in general. However, RRT∗ is
actually performing worse when optimised using TEB in
terms of IAT for mazes which are cluttered with obstacles.
Due to the cluttered environments RRT∗ tends to plan
paths which have lots of nodes on a short distance which
makes it difficult for the TEB to respect some constraints
such as the minimum turning radius. An increased number
of iterations and nodes allowed in the solution could
improve the results of RRT∗ but at the cost of the
execution time which is already high compared to the other
path planners. Moreover, tuning of the maximum distance
could have a positive effect on the results.

The paths length are decreased with 4.4%, 3.1%, 2.1% and
7.3% for A∗, Theta∗, Hybrid A∗, and RRT∗ respectively
when computing the average of the three different obstacle
scenarios. Furthermore, the Optimised Theta∗ produces
the shortest paths which were expected as Theta∗, in
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general, produces short paths, by smoothing the path
using an elastic band the slack at the curves can be
minimised. However, the TEB perform worse on paths
which are already smooth, as in the case of Hybrid A∗.
This can be explained by the ratio of the weights and
that the TEB favours smoothing the path and gets stuck
in a locally optimal solution. The results highlights the
importance of the initial conditions given to the NLP
in equation 5. For the initial condition of the TEB, a
discrete path with sharp turns, but with a low number
of heading changes and short path length is performing
better compared to an already smooth path with a longer
path length and an increasing number of heading changes
such as in the case of Hybrid A∗. The results also suggests
that TEB performs better on paths planned by grid search
algorithms compared to sampled based algorithms and
hybrid search algorithms. Moreover, Figure 6 shows that
the path planned by Optimised Theta∗ successfully can be
tracked by an autonomous bicycle in an environment with
static obstacles.

6. CONCLUSION

In this paper, four different path planners are compared in
300 different maps. The resulting paths are optimised us-
ing Timed-Elastic-Bands which creates smooth paths that
adhere to a number of different constraints, including max-
imum velocity, acceleration, and minimum turning radius.
The results highlight the importance of the initial path fed
to the TEB. Moreover, the results show that the resulting
paths from the optimised Theta∗ have the shortest path
length, the lowest curvature, and the lowest IAT. The
optimisation does not only smooth the paths but in general
improves the path planned by all algorithms in terms of
all path lengths, heading changes, and curvature. This
emphasizes the importance of optimisation when it comes
to path planning for non-holonomic constrained vehicles.
Furthermore, to demonstrate that it is possible to track the
resulting path of the Optimised Theta∗, an autonomous
bicycle is used in a multi-body dynamic simulation. An
MPC is utilised as a path tracker and a PID is used to
keep the bicycle balanced by steering the bicycle into the
fall. In the future, a TEB formulation with an more elabo-
rated bicycle model could be investigated to constrain the
maximum lean angle of the bicycle and include dynamic
and unknown obstacles in the path planning.
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