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Abstract: In this work, we investigate a task planning problem for assigning and planning a
mobile robot team to jointly perform a kitting application with alternative task locations. To this
end, the application is modeled as a Robot Task Scheduling Graph and the planning problem is
modeled as a Mixed Integer Linear Program (MILP). We propose a heuristic approach to solve
the problem with a practically useful performance in terms of scalability and computation time.
The experimental evaluation shows that our heuristic approach is able to find efficient plans, in
comparison with both optimal and non-optimal MILP solutions, in a fraction of the planning
time.
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1. INTRODUCTION

Coordinating a fleet of robots to perform various tasks is
a problem with high complexity, requiring the solving of
many sub-problems. In this paper, we investigate how to
efficiently plan a kitting application mission, including the
selection of a robot team for this purpose. In a kitting
application, a specified group of objects of different types
shall be fetched from different locations and thereafter
delivered to a specified location. To increase operational
efficiency, some object types may be available at multiple
alternative locations, e.g., if the demand for these objects
is high. Robots available for the mission may be located
at different locations, e.g., for charging. The targeted
objective is to minimize the makespan, which promotes a
balanced usage of the robots and reduces the aggregation
time at the delivery location.

This problem belongs to the category of Multi-Robot Task
Allocation (MRTA) (Khamis et al., 2015). It can also
be categorized as a variant of the Capacitated Vehicle
Routing Problem (VRP), first studied by Dantzig and
Ramser (1959), and extensively studied during the latest
decades to solve many related problem variants in different
domains, e.g., logistic operations and production planning
(Konstantakopoulos et al., 2020; Lahyani et al., 2015).
For a basic VRP, the problem is to deliver a set of
customer orders with a set of vehicles located at a single
depot. The customers to be served are located at different
locations and the vehicles need to return to the depot after
all customers have been served. Vehicles have a limited
order capacity. A solution to the problem will decide the
number of vehicles and their routes, while the objective
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is to minimize the total cost of all routes. In our problem
variant, vehicles represent mobile robots, and customers
to be visited represent robot tasks to be done. Since the
robots are assumed to have an unlimited capacity, the
problem may also be categorized as a Multiple Travelling
Salesperson Problem (MTSP) which covers a subset of
VRPs without capacity constraints (Cheikhrouhou and
Khoufi, 2021). The selection of a team of robots, each
one having a different start location, can be categorized
as a VRP with Multiple Depots (Montoya-Torres et al.,
2015), here assuming there is only one robot at each depot.
The problem includes AND-type precedence constraints
(Bahalke et al., 2022), limiting the execution order of
intra-schedule tasks (Korsah et al., 2013). It also includes
separation constraints (Bortfeldt and Wäscher, 2013) to
provide mutual exclusion of delivery tasks within the same
route. These tasks are used to deliver aggregated objects.
Additionally, the robots are not required to return to
their starting depots to complete the mission, making it
an Open VRP. In practice, the robots may immediately
become available for a new mission and they may start
moving towards a currently free charging location. The
problem can also be categorized as a Balanced VRP
since a minimum makespan objective promotes a balanced
usage of the robot team, as long as the mission does not
include dominating tasks (Miloradović et al., 2019a). The
existence of sets of alternative tasks, in which only one
task needs to be visited, motivates the categorization of
the problem as a Multiple Generalized TSP (MGTSP).
MGTSP and the single robot version GTSP (Ilavarasi
and Joseph, 2014), are generalizations of MTSP and TSP
respectively, where the tasks are divided into different
subsets and at least one task in each subset needs to
be visited. In our problem, these subsets are mutually
exclusive and exactly one task needs to be visited. To



summarize, we have a Balanced, Open, Multi Depot,
VRP/MGTSP with Precedence Constraints (PC) and
separation constraints.

In this paper, we propose an interpretation and exten-
sion of the Robot Task Scheduling Graph (RTSG) (Lager
et al., 2021) to model the addressed multi-robot prob-
lem. Moreover, we provide a problem formulation as a
Mixed Integer Linear Program (MILP), that can be used
by a MILP Solver to find optimal solutions for smaller
problem instances, given enough time. We also propose a
heuristic multi-step approach, targeting a reduced plan-
ning time and efficient solving of larger problem instances.
In the first step, tasks are partitioned into clusters with a
semi-supervised clustering approach based on K-medoids.
Thereafter, the clusters are modeled as separate single-
route scheduling problems using MILP, or as asymmetric
Travelling Salesperson Problems. Finally, any remaining
alternative tasks are removed and the computed schedules
are balanced with a local search approach to further min-
imize the makespan.

The solution quality and the planning time of the heuristic
approach are compared with a MILP solver, indicating an
ability to generate high-quality solutions within a practi-
cally acceptable time frame. Other benchmark approaches
were not found that can be applied to the full problem
description in an obvious way. To the best of our knowl-
edge, OR-type PC for VRP, (Bahalke et al., 2022), with
alternative predecessors, have not been addressed in the
VRP literature.

The remainder of this paper is organized as follows. Sect. 2
presents related works. Sect. 3 describes the problem and
the assumptions made, while Sect. 4 gives a formal prob-
lem formulation as a MILP. Sect. 5 details the heuristic
solution approach, and Sect. 6 provides the experimental
evaluation. The study is concluded in Sect. 7.

2. RELATED WORK

Robot Task Scheduling Graph is an intuitive task modeling
formalism proposed by Lager et al. (2021). It can be used
by a domain expert to model an industrial mobile robot
application while leveraging automated planning. Until
this work, this modeling formalism has only been applied
to single-robot planning.

For a VRP, a customer normally must be served and
there is only one address to go to. However, a task
to be performed by a robot can often be alternative
or be performed at alternative locations. Examples of
alternative customers (or task locations) in the VRP
literature are sparse but can be found, e.g., in the work
by Goel and Gruhn (2008), where the profit is maximized
by deciding if a transportation request shall be assigned
to a vehicle or bought. Mathew et al. (2015) used an
MGTSP problem formulation to plan a team of charging
robots to support a team of Unmanned Aerial Vehicles on
the ground at alternative locations along planned flight
trajectories. Touzani et al. (2021) targeted a combined
sequencing and path generation problem for industrial
robots, using a genetic algorithm to solve an MGTSP for
the sequencing including a selection of alternative robot
configurations.

Precedence constraints of AND-type have been used exten-
sively in previous works, and OR-type PC was suggested
recently for VRP where only one of a task’s predecessors
must precede the task in a plan (Bahalke et al., 2022;
Roohnavazfar et al., 2022). In our problem, OR-type PC
are modeled. However, different from the mentioned works,
OR-type predecessors of a task are alternative in the sense
that only one will exist in a plan.

The objective to minimize the makespan can often be
improved by increasing the robot team size. However,
robots are a limited resource that may be used in parallel
for alternative missions or multi-mission problems (Milo-
radović et al., 2019b). Therefore, being able to specify
the number of robots, i.e., the number of clusters for
the proposed heuristic approach, can be considered an
advantage for this problem. K-means is a popular method
to partition nodes into K clusters where the total distance
between the nodes and their Euclidian cluster center points
is minimized (Jain, 2010). However, the routes for our
problem, e.g., in a warehouse, are seldom linear and a
Euclidian center point may not be close or even reachable
from other cluster nodes. K-medoids (Park and Jun, 2009)
is a more suitable approach where a node is identified as
a center point. To consider separation constraints in the
computation of clusters, a supervised clustering approach
can be applied. Our supervised approach is based on the
Variable Neighborhood Search (VNS) algorithm presented
by Randel et al. (2019). Cluster algorithms that also
identify the number of clusters sometimes referred to as
automatic clustering, can be appropriate for some problem
types. Several automatic clustering approaches for MRTA
are listed by Ayari and Bouamama (2019).

Ayari and Bouamama (2019), addressed an MRTA prob-
lem where tasks shall be assigned to robots with the
objective to minimize the total completion time given by
a fitness function. They used a two-step approach with
dynamic clustering based on Particle Swarm Optimiza-
tion followed by a robot assignment to clusters with an
approach including the solving of TSP problems for each
combination. Xu et al. (2017) demonstrated a two-phase
heuristic approach to compute solutions for a Balanced
MTSP, where a balanced K-means was used to get clusters
with evenly distributed nodes. This was followed by a
genetic algorithm to compute routes. Murugappan et al.
(2021) compared the performances of different clustering
algorithms for solving a Balanced MTSP, where a convex
hull TSP algorithm was used to generate the routes for
each cluster. The modeling of alternative tasks for the
single route problem within an asymmetric TSP has sim-
ilarities with the approach for converting an asymmetric
GTSP into an asymmetric TSP described by Laporte and
Semet (1999).

3. PROBLEM DESCRIPTION AND ASSUMPTIONS

The problem is to fetch and deliver a set of objects while
minimizing the mission makespan. To this end, a team of
robots needs to complete a set of tasks. These are Single-
robot Tasks and the robots are Single-task Robots in a
Time-extended Assignment (Gerkey and Matarić, 2004).
The team size is fixed beforehand. The problem has In-
Schedule Dependencies but no Cross-Schedule Dependen-



cies (Korsah et al., 2013). It is assumed there is no restric-
tion in the number of fetch tasks that can be allocated to
a single robot. Furthermore, the robots are homogeneous
and initially located at different start locations. Each task
is associated with a location and an action duration. A
schedule is referred to as an ordered sequence of tasks to
be executed by a single robot. The solution shall identify
1) the robots to be used for the mission, and 2) the
schedules for the used robots. A mission work description
can be modeled with an RTSG model (Lager et al., 2021).
In this representation, exemplified in Fig. 1, rectangular
nodes represent tasks. Directed edges and paths represent
precedence constraints. A start state is represented by an
S-node and the goal state is represented by a G-node.
AND-Fork (&F) and AND-Join (&J) node pairs are used
to split and rejoin edges. OR-Fork (||F) and OR-Join (||J)
node pairs split a branch into alternative branches. In
previous works, RTSG has exclusively been used with a
single robot.

In our model (Fig. 1), a set of fetch tasks (Fi, Gj,k : i, j, k ∈
N) need to be completed before the execution of delivery
tasks (Dl : l ∈ N). The model allows for defining a number
of OR-pair groups, each one containing a set of alternative
fetch tasks (Gj,k) where only one of them will be planned
(j indicates the OR-pair group). There is one delivery task
for each schedule. The delivery tasks can be co-located, but
this is not a requirement for the solution approaches. We
propose a few multi-robot interpretations and extensions
of RTSG for the multi-robot problem at hand:

• Precedence constraints do only apply if the involved
tasks become allocated to the same schedule.

• If a predecessor of a task is mandatory, it matches an
AND-type PC for VRP in accordance with Bahalke
et al. (2022), where all predecessors of a task must be
planned before any successor.

• If a predecessor is alternative, it matches an OR-
type PC for VRP, as proposed by Bahalke et al.
(2022), where only one of the predecessors to a
common task must precede it. Since the predecessors
are alternative, only one of them will be planned for
execution.

• A Separation Constraint (SC) indicates a group of
tasks that needs to be separated into different sched-
ules. In Fig. 1, the blue color is used to indicate a SC
for the group of delivery tasks.

In the proposed form, the RTSG model is a flexible but
constrained multi-robot work description.

4. PROBLEM FORMULATION

In this section, a MILP problem formulation is proposed
that can be used to compute optimal solutions of the
MRTA problem presented in Section 3.

4.1 Decision variables and objective

Let r be a robot schedule in the set of schedules R, where
the number of total schedules is known a priori. The
set of robot start locations is defined by S, representing
available robots. For each start location s ∈ S, there is
a corresponding goal state, E(s) ∈ G. |S| = |G| ≥ |R|.
The set of all tasks is denoted as A. For convenience, we
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Fig. 1. A work description for the multi-robot mission
modeled as a Robot Task Scheduling Graph.

indicate with AS = A ∪ S, with AG = A ∪ G, and with
Ã = A∪ S ∪G. The set B is the set of all non-mandatory
tasks, indicating they may, or may not be a part of a
schedule. The set B is a subset of set A, i.e., B ⊆ A.
Other tasks that belong to the set A \ B are mandatory.
The notation j ≺ k where j, k ∈ Ã, indicates task j must
be scheduled before task k if they are assigned to the same
schedule.

Decision variable Xj,k,r is a binary variable, i.e., Xj,k,r ∈
{0, 1},∀j, k ∈ Ã, and ∀r ∈ R, where

Xj,k,r =


1, if there is a scheduled direct transition

from task j to task k within schedule r,
0, otherwise,

where Xj,j,r = 0, ∀j ∈ Ã, ∀r ∈ R. The cost to perform task
k after task j within the same schedule includes routing
cost (τj,k) and action cost (αk):

Cj,k = τj,k + αk. (1)
There is no cost to reach the goal state, Cj,G = 0,∀j ∈
Ã. The objective function used for optimization is a
MiniMAX (Nunes et al., 2017). The objective function J
is defined as:

J = max
r

∑
j∈AS

∑
k∈AG

(Xj,k,r · Cj,k). (2)

Since J is not a linear function in Xj,k,r for Equation 2, the
objective function is modeled as a constraint by including
J as one extra decision variable where the size of J is
limited by additional MiniMAX constraints for the total
cost of each schedule:

−J +
∑
j∈AS

∑
k∈AG

(Xj,k,r · Cj,k) ≤ 0, ∀r ∈ R, (3)

4.2 General constraints

There are transitions from exactly |R| robot start loca-
tions: ∑

j∈S

∑
k∈AG

∑
r∈R

Xj,k,r = |R|. (4)

If a transition from a robot start location goes directly
to the goal state, i.e., Xj,k,r = 1 : j ∈ S, k ∈ G, r ∈ R,
schedule r is considered empty and the robot at start
location j will not be allocated. There is at most one
transition from a robot start location and there are no
transitions to a robot start location as defined by:



∑
k∈AG

∑
r∈R

Xj,k,r ≤ 1, ∀j ∈ S, (5)∑
j∈Ã

∑
r∈R

Xj,k,r = 0, ∀k ∈ S. (6)

Similarly, there is at most one transition to a robot goal
state and there are no transitions from a robot goal state:∑

j∈AS

∑
r∈R

Xj,k,r ≤ 1, ∀k ∈ G, (7)

∑
k∈Ã

∑
r∈R

Xj,k,r = 0, ∀j ∈ G. (8)

One start location is included in each schedule:∑
j∈S

∑
k∈AG

Xj,k,r = 1, ∀r ∈ R. (9)

The number of transitions from a robot start location in
a schedule is the same as the number of transitions to the
corresponding goal state:∑

k∈AG

Xj,k,r =
∑

j′∈AS

Xj′,E(j),r, ∀j ∈ S, ∀r ∈ R. (10)

There is one transition from and one transition to manda-
tory tasks: ∑

k∈AG

∑
r∈R

Xj,k,r = 1, ∀j ∈ A \B, (11)∑
j∈AS

∑
r∈R

Xj,k,r = 1, ∀k ∈ A \B. (12)

There is at most one transition from and one transition to
non-mandatory tasks.∑

k∈Ã

∑
r∈R

Xj,k,r ≤ 1, ∀j ∈ B, (13)

∑
j∈Ã

∑
r∈R

Xj,k,r ≤ 1, ∀k ∈ B. (14)

The number of incoming and outgoing transitions to non-
mandatory tasks must be the same:∑

k∈Ã

∑
r∈R

Xj,k,r =
∑
j′∈Ã

∑
r∈R

Xj′,j,r, ∀j ∈ B. (15)

A task is entered and departed within the same schedule:∑
j∈AS

Xj,k,r =
∑

k′∈AG

Xk,k′,r, ∀k ∈ A,∀r ∈ R. (16)

No cyclic sub-route are allowed:∑
j∈V

∑
k∈V

Xj,k,r ≤ |V |−1, ∀V ⊆ A : V ̸= ∅,∀r ∈ R. (17)

Thus, to eliminate the sub-tours, it is required that for
each nonempty subset V ⊆ A, the number of edges
between the elements of V must be at most |V | − 1. Let
O be a set of alternative tasks in the set of all sets of
alternative tasks Õ, i.e., O ∈ Õ where O∩U = ∅,∀U ∈ Õ\
O. Additionally, O is a subset of B, i.e., O ⊆ B. The
number of transitions to and from a set of alternative tasks
is limited to 1.∑

s∈O

∑
j∈AG

∑
r∈R

Xs,j,r = 1, ∀O ∈ Õ (18)

∑
j∈AS

∑
s∈O

∑
r∈R

Xj,s,r = 1, ∀O ∈ Õ (19)

In order to constrain fetch tasks to be done before delivery
tasks within the same schedule, as indicated by the edges
of the RTSG in Fig. 1, general precedence constraints are
introduced:

|D|−1∑
j=1

XDj ,Dj+1,r ≤ |D| − 2,

∀D ⊆ Ã : |D| ≥ 2, D|D| ≺ D1, ∀r ∈ R,

(20)

where D is an ordered subset D = {D1, . . . , D|D|} ⊆ Ã.

4.3 Delivery task constraints

Delivery tasks, P ⊆ B, cannot be allocated to the same
schedule. The number of delivery tasks equals the number
of computed schedules, |P | = |R|. Since schedules may
become empty, delivery tasks are a subset of the non-
mandatory tasks, B. At most one delivery task in P is
allocated to schedule r, i.e., a separation constraint. No
delivery task is allocated to r if the schedule is empty,
meaning there is a direct transition between the start
location and the goal state:∑
j∈AS

∑
k∈P

Xj,k,r ≤ 1, ∀P ⊆ B, ∀r ∈ R, (21)

Xs,E(s),r +
∑
j∈AS

∑
k∈P

Xj,k,r = 1, ∀P ⊆ B, ∀s ∈ S, ∀r ∈ R.

(22)

5. HEURISTIC APPROACH

The general idea of the proposed heuristic approach is
to partition all tasks into K mutually exclusive clusters,
where K is the number of robots to use. Thereafter, a
single route scheduling problem is solved for each cluster.
Eventually, alternative tasks remaining in different routes
are reduced, and the costs of the routes are balanced by
transferring tasks between the routes.

5.1 Task Clustering

To reduce routing costs, it is assumed that tasks within
the same cluster should be in proximity to each other.
K-medoids partitions the nodes into K clusters while
minimizing the total dissimilarities of the nodes and their
medoid, i.e., a node assigned as the center for a cluster:∑

l∈L

∑
i∈l

dml,i, (23)

where L is the set of clusters (|L| = K), dx,y is a
dissimilarity measure of nodes x and y. The assigned
medoid of cluster l is ml.

For our problem, nodes represent robot tasks, and the
elements of the dissimilarity matrix, dx,y, represent rout-
ing costs between task x and task y. The separation
constraints for the delivery tasks require them to end
up in different clusters. These constraints are converted
to cannot-link constraints, indicating tasks that must be
separated in different clusters (Basu et al., 2008).

The clustering approach is detailed in Algorithm 1. It im-
plements the Semi-Supervised K-medoids algorithm pre-
sented by Randel et al. (2019). It starts with an initial



Algorithm 1 Semi Supervised K-medoids
function ComputeClusters(A,k)

CL← K-medoids clustering of A with k random medoids
CL← Repair(CL)
ret← CL
while Stop criterion not reached do

v ← 1
while v ≤ k do

CL← Switch v medoids randomly in CL
CL← Repair(CL)
CL← LocalSearch(CL)
CL← Repair(CL)
if CL.cost() < ret.cost() then

ret← CL
v ← v + 1

return ret

random selection of K medoids, and the tasks in the set A
are grouped with their closest medoid. In each iteration,
a randomly selected subset of the medoids are exchanged
and the tasks are regrouped. Thereafter, the LocalSearch
algorithm, proposed by Resende and Werneck (2007), re-
duces the total cluster cost (23) by greedy modifications of
the medoid selections and regrouping of tasks. After each
modification of the medoid selection, a repair step adjusts
the clusters to satisfy cannot-link constraints by moving
conflicting, non-medoid tasks between clusters. Different
from the original approach by Randel et al. (2019), the
cost of the clusters to be minimized is set in this paper as
the max cluster cost:

max
l∈L

∑
i∈l

dml,i + αi (24)

where dml,i and αi represent routing cost and action cost.

5.2 Routing and robot selection

A MILP model is used to model the routing and robot
selection problem for an individual cluster, having a sig-
nificantly smaller complexity than the MILP model in
Section 4. The decision variables are significantly less as
we do not have dimension r. Since the clustering already
provided the allocation of tasks to robots, we can now
solve the sub-problems for each robot. Specifically, at least
K such problems need to be solved in this approach.
These smaller problems can be solved by a MILP solver
to compute (sub-)optimal solutions for the sub-problems.
Moreover, for the kitting application problem investigated
in this work, the sub-problems are modeled as asymmetric
TSPs making it possible to use off-the-shelf efficient TSP
solvers, instead of using more general-purpose solvers to
compute solutions of the downsized MILP problem pre-
sented in Section 4. The optimality of the overall solution
will be affected by the clustering resulting from the semi-
supervised K-medoids method, i.e., the solution of the
asymmetric TSP will only optimize the route of the in-
dividual robots, but the task allocation is decided a priori
through the clustering.

5.3 TSP modeling

As it is already mentioned in the sub-section above, the
reduced routing and robot selection problem can be ex-
pressed as an asymmetric TSP problem. The reason for
this conversion is the possibility to use efficient solvers

dedicated to the TSP problem, which will have some
performance advantage over a more general MILP solver.
In order to use symmetric TSP solvers, e.g., Concorde
(Applegate et al., 2011), the asymmetric TSP is trans-
formed into a symmetric TSP with the approach by Jonker
and Volgenant (1983). In a TSP problem, a salesperson
needs to visit all assigned cities and return to the starting
point. An optimal solution will find a visiting order that
minimizes the total travel distance. A presumption for the
presented conversion to TSP is a limited problem instance
in terms of modeled precedence constraints, where one
task, i.e., the delivery task d, is preceded by all other tasks
and needs to be visited last. This is in accordance with the
RTSG model in Fig. 1, where the objects can be fetched
in any order before being delivered. The TSP problem can
be specified with a cost matrix, Cj,k : j, k ∈ AS :

Cj,k =



0 ∀j, k ∈ S

0 j = d,∀k ∈ S

M k = d, ∀j ∈ S : |A| > 1

M j = d,∀k ∈ A

M ∀j ∈ A,∀k ∈ S

τj,k + αk otherwise, where j, k ∈ AS

(25)

where M is a value big enough to block related transitions.
A solution will put all start locations in a sequence, where
the last indicates the selected robot. It is followed by all
the tasks where the delivery task becomes last. Thereafter,
the cost matrix is modified and extended to handle subsets
of alternative tasks:

For a subset representing a set of alternative tasks, O =
{O1, . . . On} ⊆ A, where n is the number of tasks in a
corresponding OR-pair group of the RTSG model, one
extra task O

′

i is added for each Oi,∀i ∈ {1, . . . , n}, where
O

′
= {O′

1, . . . O
′

n} ⊆ A ⊆ AS . The transition costs
are arranged to make Oi represent transitions to this
alternative task while the added O

′

i represents transitions
from the very same task. We indicate with OE = O ∪ O

′

and order the tasks of O and O
′
in closed loop sequences,

so that Oi+n = Oi,∀i ∈ {1, . . . , n} and O
′

i−n = O
′

i,∀i ∈
{1, . . . , n}. For each subset O, the related elements of the
cost matrix are defined as:

Cj,k =



τj,k + αk ∀j ∈ AS \OE ,∀k ∈ O

M ∀j ∈ O,∀k ∈ AS \OE

τj,k + αk ∀j ∈ O
′
,∀k ∈ AS \OE

M ∀j ∈ AS \OE ,∀k ∈ O
′

0 j = Oi, k = Oi+1,∀i ∈ {1, . . . , n}
0 j = Oi, k = O

′

i,∀i ∈ {1, . . . , n}
0 j = O

′

i, k = O
′

i−1,∀i ∈ {1, . . . , n}
M otherwise: j, k ∈ OE

(26)
where M is a value big enough to block related transitions.
Within a solution of the TSP, all the tasks of a set OE

become grouped in a sub-sequence: (Oi, Oi+1, . . . , Oi+n,
O

′

i+n, . . . , O
′

i+1, O
′

i) where i ∈ {1, . . . , n}. Only the outer
task pair, Oi, O

′

i, contributes a cost to the solution, while
the inner transitions have zero cost. In turn, the outer
task pair indicates the selected alternative task, and the
intermediate tasks are removed from the solution. All sets
of alternative tasks that were distributed over multiple



clusters will remain with one task in each computed sched-
ule. In this step, all of them are removed and bypassed,
except the one whose removal causes the smallest cost
saving.

5.4 Balancing

The balancing step is a local search algorithm, detailed
in Algorithm 3. At each iteration, a task is selected and
moved from the schedule with the highest cost into another
sequence that does not increase the maximum cost. The
selected task may not have a separation constraint from
tasks in the receiving sequence. The selection criteria of
the task, the receiving schedule, and the predecessor in
the receiving schedule is critical to avoid sub-optimization.
E.g., a prioritization of the largest overall cost reduction
will often move tasks to the least expensive sequence,
even if other scheduled sequences are much closer. An-
other important aspect is to minimize the intersections
between different routes. Our selection criterion is based
on maximizing a gain vs loss ratio, where the gain is the
cost reduction of the sending sequence and the loss is the
cost increase of the receiving sequence.

5.5 Algorithmic overview

A pseudo-code for the heuristic approach is given in
Algorithm 2. The main function ComputeSchedules,
takes as input arguments the set of tasks (A), the set of
robot start locations (S), and the number of schedules (k)
to be computed. First, the clusters are computed using
the function ComputeClusters. Thereafter, a schedule and
a robot selection are computed for each cluster, using the
TSP model in Section 5.3. Since there is a chance that a
group of multiple schedules may select the same robot, the
schedule in the group with the highest cost will be used,
while the other schedules are recalculated without this
robot available. The worst case for this conflict resolution
approach is K(1+K)/2 schedule computations, which may
cause a planning efficiency problem if the given robot team
size, K, is large. In the next step, redundant alternative
tasks are removed. Finally, the schedules are balanced with
Algorithm 3, BalanceSchedules.

6. EXPERIMENTS

The goal of the experiments is to compare the proposed
heuristic planning approach with a MILP solver with re-
spect to plan quality and planning performance. In our
experiments, the operational area where the missions are
planned is 40 × 50 m, containing 468 task locations and
72 robot locations. For each experiment, a mission work
description is generated in the form of the RTSG model
in Figure 1. The model is populated with a randomly
selected subset of the tasks in the operational area, where
the number of tasks is a controlled parameter. 20% of
the tasks are modeled to be alternative, partitioned in
randomly composed alternative sets with 2-4 tasks in each
set. Delivery tasks are co-located. Eight randomized robot
locations indicate possible robot team members to be
selected, where the team size is a controlled parameter.
Routing distances are Euclidian and routing costs, i.e.,
routing times, are estimated with a robot speed of 0.5m/s.

Algorithm 2 Clustering-based heuristic approach.
function ComputeSchedules(A,S,k)

CL← ComputeClusters(A, k) ▷ Clusters
SC ← ∅ ▷ Schedules
AR← S ▷ Available robots
for all c ∈ CL do

s← Schedule() ▷ New empty schedule
s.cl← c ▷ Schedule has cluster c
s.seq ← ∅ ▷ Schedule has no sequence yet
s.robot← ∅ ▷ Schedule has no robot yet
SC ← SC ∪ s

while |S| − |AR| < k do
for all s ∈ SC do

if s.robot = ∅ ∨ s.robot /∈ AR then
s.robot, s.seq ← ComputeSchedule(s.cl, AR)

for all s ∈ SC do
if s.robot ∈ AR then

y ← x ∈ SC : x.robot = s.robot,maxx x.cost
AR← AR \ s.robot

SC ← ReduceAlternativeTasks(SC)
SC ← BalanceSchedules(SC)
return SC

Algorithm 3 Balancing of schedules
function BalanceSchedules(SC)

SC.Sort() ▷ Sort in order of decreasing routing cost
while true do

costImproving ← false
maxRatio← 0
for all t ∈ SC[0].seq do ▷ tasks in the longest route

for all s ∈ SC \ SC[0] do
for all p ∈ s.seq do

if NoSeparationConstr(p, SC[0].seq) then
loss← CalcLoss(s.seq, t, p)
if s.seq.cost+ loss < SC[0].seq.cost then

gain← CalcGain(SC[0].seq, t)
ratio← gain/loss
if ratio > maxRatio then

costImproving ← true
maxRatio← ratio
task ← t
predecessor ← p
receiver ← s

if costImproving then ▷ Move task into shorter route
receiver.insert(task, predecessor)
SC[0].remove(task)
SC.Sort() ▷ Update the sorting for next iteration

else
return SC

Task action durations are randomized in the interval 5-15s.
The makespan is minimized by the two compared plan-
ning approaches, while planning time is a corresponding
performance measure. 10 experiments were run for each
combination of team size and the number of tasks. The
planning time was limited to a maximum of 30 minutes
for the MILP solver. It can be noted that the problem
is NP-hard, since it generalizes the NP-hard TSP prob-
lem (Ilavarasi and Joseph, 2014).

The generated plans for one such experiment is illustrated
in Figure 2, where the diagrams indicate 2D locations in
the operational area. Units of axes are meter. The heuristic
solution is visualized in the upper diagram and the MILP
solver solution in the lower diagram. Available robots are
marked with pink X-markers and tasks are marked with
O-markers. Each route starts from a selected robot (an



X-marker) and ends with one of the black-colored and co-
located delivery tasks (d01,d02,d03). Action durations are
indicated by the size of the O-markers. The color of non-
selected alternative tasks is grey, i.e., a07 and a17 for the
heuristic solution, and a04 and a15 for the MILP solution.
For the heuristic approach, the medoids of the clusters
are highlighted in orange and the colors of planned tasks
indicate their clusters. The balancing step has moved two
red tasks (a1,a13) from the red route to the green route.

The experiments were run on an Intel i5-4570 with 8 GB
of RAM and Ubuntu 20.04.5 operating system. Gurobi
(Gurobi Optimization, 2021) was used to compute MILP
solutions. For the heuristic approach, Concorde (Apple-
gate et al., 2011) was used to compute TSP solutions
while the remaining algorithmic steps, e.g., clustering,
were implemented in Python.

A comparison of the heuristic approach and the MILP
solver is found in Fig. 3. The horizontal axes indicate the
number of tasks. In the top graph, the average computed
makespan is given for the MILP solver and for the heuristic
approach for different team sizes. For the MILP solver, a
few makespan values are marked with a red dot. They
indicate problem instances where the MILP solver was
able to find optimal solutions for at least 5 out of 10
runs. To give a quantitative indication of the optimality of
the heuristic approach, only the runs with optimal MILP
solver solutions are included in the data set for these
problem instances. The middle graph indicates the average
planning time, and the bottom graph gives the Planning-
time to Makespan Ratio (PMR).

The heuristic approach generated solutions with a slightly
higher makespan than the MILP solver for the smallest
problem instances, while performing better than the MILP

Fig. 2. Illustrated example of computed problem solutions.
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Fig. 3. Makespan and planning time for different sizes
of robot teams, displayed with logarithmic scales to
provide a compact view.

solver for the larger problem instances. The heuristic
approach found solutions within a few seconds, while
the MILP solver delivered an optimal solution in less
than 30 minutes, or a sub-optimal solution at the 30
minute timeout. The PMR comparison in the bottom
graph indicates that the MILP solver in general uses
significantly more time for producing a plan compared
to the makespan of that plan. This implies the MILP
solver is a less suitable approach, especially in online
planning scenarios where the planning time may have a
direct impact on the mission time. On the other hand, the
heuristic approach has a planning time that is a fraction
of the makespan. With 200 tasks, the planning time is still
reasonable with PMR < 10%. Some quantitative data of
the solution optimality for the heuristic approach can be
indicated with a Makespan Optimality Ratio (MOR):

MOR =
Makespanheur

Makespanopt
(27)

MOR ≥ 1, where a value of 1 indicates an optimal solu-
tion. MOR of the heuristic approach can be evaluated for
the problem instances with optimal MILP solver solutions,
i.e., Makespanopt = MakespanMILP . For problem sizes
with two robots, MOR was 104%, 105%, 106%, 104% and
104% for 21, 31, 41, 51 and 61 tasks, respectively. For 3
robots, MOR was 113% for 21 tasks. These are all sub-
optimal solutions, but indicate an acceptable gap to opti-
mality, especially when considering the superior planning
time compared to the MILP solver. However, the evalu-
ation is quantitative and we do not provide a guarantee
on the optimality. For the largest problem instances with
200 and 400 tasks, the MILP solver was unable to find
any feasible solution in the given time. With 400 tasks,
the planning time of the heuristic approach increases with
smaller robot teams. This is caused by TSP computations



becoming the dominating sub-problem, where a smaller
team size scales up the size of the TSP problems.

7. CONCLUSION

We have investigated a novel heuristic approach to select
and plan a multi robot team for an industrial kitting
application modeled with a Robot Task Scheduling Graph.
It is benchmarked against a MILP model implemented
in Gurobi, that is able to generate optimal solutions
for smaller problem instances. The experiments confirm
an ability to generate high quality solutions within a
few seconds, i.e., a fraction of the time required by the
MILP solver. Additionally, solutions can be generated
within reasonable time for significantly scaled up problem
instances.

Future extensions of this work may investigate, e.g., Cross-
Schedule Dependencies and mission planning in a dynamic
environment.
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