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Abstract— In this paper, we investigate the problem of mod-
eling time-series as a process generated through (i) switching
between several independent sub-models; (ii) where each sub-
model has heteroskedastic noise, and (iii) a polynomial bias,
describing nonlinear dependency on system input. First, we
propose a generic nonlinear and heteroskedastic statistical
model for the process. Then, we design Maximum Likelihood
(ML) parameters estimation method capable of handling het-
eroscedasticity and exploiting constraints on model structure.
We investigate solving the intractable ML optimization using
population-based stochastic numerical methods. We then find
possible model change-points that maximize the likelihood
without over-fitting measurement noise. Finally, we verify the
usefulness of the proposed technique in a practically relevant
case study, the execution-time of odometry estimation for
a robot operating radar sensor, and evaluate the different
proposed procedures using both simulations and field data.

I. INTRODUCTION

Assume that the generated time-series of a process is
affected by a nonlinear function of an input variable and
heteroskedastic noise variance, so both the bias and variance
depend on system states. We also assume that the time-series
is the result of switching between several sub-sequences,
each one is generated using a different and independent sub-
model. Such heteroskedastic models appear in financial risk
analysis and economics to detect changes in stock returns
and short-term interest rates [9], in health care, for prostate
cancer incidence and mortality rates [22], in tire Industry,
for example determine the length of the footprint [15], and
in environmental time-series, for significant wave heights of
storm peak events across the Gulf of Mexico [21].

A practically relevant case study is the execution-time of
the odometry estimation pipeline [1], [2], where the robot
pose is estimated using a scanning radar sensor mounted on
top of a mobile robot. The radar returns ranges of existing
targets surrounding the robot. The robot translation and
orientation are determined after each new scan by matching
detections from consecutive scans. The matching problem is
solved using numerical optimization so that the execution-
time is related to the number of detections in each scan, but
the relationship might not be linear and also has variable
variations. The dataset plotted in Figure 1 shows the relation
between the point-cloud density (the number of detections
in a scan) with the execution-time, tex, of the odometry
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estimation application. We assume that the input (number of
detections in our example) is already available information.
Considering estimation of robot translation and orientation
in real-time, the estimation is improved as we process more
scans. However, relying on worst-case execution-time will
limit the frequency of running the estimation process. On the
other hand, building more precise model for the execution-
time will assist in reducing the number of ignored scans
compared to worst-case execution-time instance and hence
will improve odometry estimation.

The general idea here is to identify the number of sub-
models and then for each one estimate both the bias and
variance functions using recorded data sets of inputs and
corresponding outputs (similar to the one depicted in Fig-
ure 1).
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Fig. 1. The relation between execution-time and point cloud density for
the odometry estimation example is shown on the top plot. The variance is
changing with density values, which indicates heteroscedasticity. The bottom
plot shows the time series for both the input (cloud density) and the output
(execution-time).

We go with the following approach in the paper: starting
from a training sequence similar to the one in Figure 1, we:
1) divide the training sequence into sub-sequences using op-
portune change-point detection algorithm; 2) learning model
parameters and complexity for each sub-model using ML
estimation methods on the corresponding sub-sequence; 3)



apply the learned model on the validation set to verify the
usefulness of this approach.

In this paper, we consider a generic nonlinear model
that switches among different nonlinear heteroskedastic sub-
models. We propose an approach for learning the number of
sub-models composing the nonlinear model, and we estimate
the model parameters using ML methods (closed-form for
homoskedastic models and numerically using population-
based Particle Swarm Optimization (PSO) for heteroskedas-
tic ones).

The remainder of this paper is structured as follows.
Section II analyzes the related work, Section III formalizes
the problem, Section IV describes the proposed approach,
Section V discusses the simulation and numerical results,
and Section VI concludes the paper.

II. RELATED WORK

We are focusing on solving two problems in this research,
the first one is change-point detection and the second one
is parameter estimation for nonlinear and heteroskedastic
models. So we list the important related work for each one
in separate paragraphs.

change-point detection

In the literature, finding a single change-point in a se-
quence is solved optimally using non-parametric methods
like cumulative sum (CUSUM) [27] and cropped version of
CUSUM to improve detection at sequence boundaries [10],
or parametric methods like Likelihood Ratio Test (LRT) [23]
that requires exact knowledge of the signal model.

Multiple change-points detection is done either using
global methods that are considering the whole sequence to
determine the cost of each candidate or local methods that
are considering only samples inside a window around the
candidate sample. Global methods are usually based on Bi-
nary Segmentation [29], [30], an iteratively repeating single
change-point method over all the resulted sub-sequences for
minimizing a cost function that favors the newly created
sub-sequences against the original whole sequence over all
possible change-points in a sequence. For example, Gener-
alized Likelihood Ratio (GLR) cost is used in [14] to decide
change-points in the execution-time sequence of hidden
Markov model (HMM). Penalized likelihood cost used to
account for over-fitting due to increased model complexity.
Akaike Information Criterion (AIC), Schwarz Information
Criterion (SIC), and Maximum Description Length (MDL)
are common examples of penalization [6]. Segment Neigh-
borhood [4] is an exact method that computes costs for all
possible change-points between zero and a specified max
number. However, the computation cost is significant, i.e.,
O(n3) where n is the sequence length. All those methods
assume a known signal model. An example of local methods
is screening and ranking algorithm [26] which is based on de-
tecting changes in signal statistics inside the sliding window.
A useful review of existing methods is [34], [31] and [13].
The last compared several methods and their performances,
simulation results favor Bayesian methods over classical

ones. In this paper, we consider heteroskedastic models,
change-points with heteroskedastic noise discussed in [36],
[11] and [16] where summing the squares of the partial sums
statistics and its variants were proposed. In this paper we
are doing another approach to deal with the heteroskedastic
models, it is based on transforming the heteroskedastic model
into a homoskedastic one and then applying the classical
methods to find change-points.

parameter estimation with heteroskedastic noise

When small heteroskedasticity is presented, Ordinary
Least Squares (OLS) is usually used for estimating model
parameters. The solution is asymptotically unbiased but
also an inefficient estimator [8]. However, when large het-
eroskedasticity is presented, it will give biased estimate of
the variance and incorrect confidence intervals and statistical
inference for the parameters [35].

The heteroskedasticity in heteroskedastic systems are clas-
sified to either be dependent on the states or independent
of the states. We focus in this paper on state-dependent
noise structure, when the noise structure is an unknown
nonlinear function of the states. Similar models have been
studied in econometrics literature, e.g., a two-step estimation
procedure for models where the ith disturbance variance σi

is of the form σi = σ2xλ
i , where xi is the state, σ2 and λ

are unknown model parameters was proposed by [28]. The
authors in [17] examined this procedure in details with more
generic variance models similar to σi = exiλ, and compared
with the iterative ML. The analysis carried out by [17] shows
that the two-step estimation procedure is inconsistent in the
heteroskedasticity parameters and then proposed a consistent
two-step estimation procedure. The authors in [7] proposed
Bayesian estimators for heteroskedastic systems for variance
models similar to σi = σ2x−λ

i . The Bayesian approach
of [7] were extended to multidimensional by [33]. They used
opportune Markov chain Monte Carlo (MCMC) sampler to
estimate the parameters then compared the performance with
the aforementioned estimators (the two-step and iterative
ML). They showed that Bayesian estimators commit better
performance in the Root-Mean-Square Error (RMSE) and
the interquartile range sense.

The precedently cited papers [28], [17], [7], [33] assume
models useful for econometrics, however, in this research,
the authors will present analysis for parameter estimation
in generic non-linear and heteroskedastic systems, in which,
both the non-linearity and variance functions are modeled
using a polynomial of suitable order. Recently, a Bayesian
parameters estimation method handling heteroskedasticity
and capable to exploit prior information about the model
parameters presented in [3] to solve sensor calibration ap-
plications for several heteroskedastic models with increased
complexity. The Bayesian problem was solved using MCMC
methods. The idea of [3] is to simplify the heteroskedastic
model in the favor of reduced computation complexity. In
this paper, we are not doing approximations but we seek to
estimate the parameters of the full noise model. The esti-
mation problem will be of increased complexity and hence



intractable. Therefore, we investigate the use of population-
based stochastic methods for solving ML estimation prob-
lem.

Statement of contributions

1) a generic nonlinear model constructed from switching
between several nonlinear heteroskedastic sub-models,

2) learning the number of sub-models from data using
statistical methods,

3) estimate model parameters using ML methods (closed-
form for homoskedastic models and numerically using
population-based PSO for heteroskedastic ones)

III. PROBLEM STATEMENT

A general model consists of several nonlinear sub-models

input model #2
θ2

model #1
θ1

...

model #M
θM

output
xk yk

yk,1

yk,2

yk,M

Fig. 2. The proposed model structure.

We propose the following generic model, depicted in
Figure 2, for the sequence of outputs y0:N and inputs x0:N

(execution-times and density in our example) where N is
the sample size. It consists of M different sub-models that
are combined according to an unobserved variable, each
sub-model is described by a different set of parameters θi,
i ∈ {1, 2, . . . ,M}. At each time instant k the output is taken
from only one of those models, according to

yk =

M∑
i=1

δk,iyk,i (1)

where δk,i ∈ {0, 1} is a binary selection variable such that
only one element of the vector ∆k :=

[
δk,1 · · · δk,M

]⊤
is 1 and all others are zeros i.e.

∑M
i=1 δk,i = 1. We also

assume that when the output is chosen from a model i at an
instant k, i.e δk,i = 1, it continues to have the output from
the same sub-model i during the instants k + 1, k + 2, · · ·
for a sufficient number of samples to avoid identifiability
problems. This sufficient number is not known precisely for
each model, but a lower bound for all sub-models Kmin is
assumed to be known.

Each one of the sub-models is described by the following
generic heteroskedastic non-linear model

yk,i = fbias,i(xk) + fσ,i(xk)ek,i (2)

where

• yk,i ∈ R is the execution-time of the model i at instant
k;

• xk ∈ R is the recorded input of the process at instant
k;

• fbias(·) and fσ(·) are generic nonlinear functions for bias
and variance respectively, such that f : R → R>0;

• ek,i ∼ N (0, 1) is independent and identically dis-
tributed (iid) standard Gaussian noise.

Using polynomial expansions of the functions and for sub-
model m we get

fbias,m (xk) =

nbm∑
i=0

αi,mxi
k

fσ,m (xk) =

nvm∑
i=0

βi,mxi
k

(3)

where αm := [α0,m, · · · , αnbm,m]
⊤ and βm :=

[β0,m, · · · , βnvm,m]
⊤, nbm, and nvm are the linear model

parameters for bias and variance functions and the corre-
sponding model orders, respectively;

Then each sub-model is characterized by the set of param-
eters θm = [αm, βm] of size nbm + nvm + 2. Rewriting the
above equations in vector form gives

y0:N = diag
([
y0:N,1 y0:N,2 · · · y0:N,M

]
∆
)

(4)

where
y0:N,m :=

[
y0,m · · · yN,m

]⊤
∆ :=

[
∆0 · · · ∆N

] (5)

Where N > m is the number of samples. The full
model parameter vector is the stack of all parameter vectors

θ = [∆, θ1, . . . , θM ] of size N+1+

M∑
i=1

nbi+

M∑
i=1

nvi+2M .

Rewriting (3) in vector form give

y0:N,m = Hbαm + diag (Hvβm) em (6)

where

Hb :=

1 x0 x2
0 · · · xnbm

0
...

...
...

...
...

1 xN x2
N · · · xnbm

N


Hv :=

1 x0 x2
0 · · · xnvm

0
...

...
...

...
...

1 xN x2
N · · · xnvm

N


em :=

[
e0,m · · · eN,m

]⊤
(7)

and diag(A) is the diagonal matrix of vector A. The sec-
ond term is a zero mean Gaussian with covariance matrix
diag (Hvβm)

2.

IV. METHODOLOGY

Starting from a training sequence similar to the one
in Figure 1, we first learn the parameters and complexity
for model (6) using ML estimation methods as described
in Section IV-A. Then we divide the training sequence into
two sub-sequences, if it is necessary, using change-point



detection methods described in Section IV-B. Then we repeat
the above steps for each newly formed sub-sequence until no
further sub-sequence can be obtained. The number of sub-
sequences is m̄ ≥ m and the corresponding indexes vector
[τ0, τ1, . . . , τm̄+1] where τ0 = 1 and τm̄+1 = K. In the last
step, we combine similar sub-sequences using the procedure
described in Section IV-C ending up with m different models.

A. Estimating parameters and complexity of (6)

In this section, we devise a method for learning θm and
the complexities nvm and nbm from training sub-sequences
yτm−1:τm and inputs xτm−1:τm which have Ñ = τm−1 − τm
samples. Given the frequentist assumptions on the unknowns,
we want to apply ML estimate, i.e., seek to solve

θ̂m = argmax
θm

P
[
yτm−1:τm

∣∣ xτm−1:τm , θm, nvm, nbm

]
(8)

for all values of complexity starting from one to a specified
maximum value. Larger order values makes (8) intractable,
so we solve it numerically using PSO techniques, a widely
used population-based method in optimization that one may
use to explore the likelihood function searching for the
maxima. It has the advantage of not using the gradient of
the function being optimized, so it does not require the
problem to be differentiable. It is a very powerful and flexible
algorithm, but there is no guarantee to converge toward the
global maxima. It has been firstly described by Kennedy and
Eberhart [20] for solving collective intelligence in biological
populations, and then been used to solve various optimization
problems [18], [25], [24]. Many varieties are suggested for
tuning the hyperparameters, see for example [5]. We used the
linear decreasing inertia weight since it gives the minimum
error [5]. We used the Matlab implementation of PSO the
algorithm from Matthew Kelly [19], more details about the
algorithm and its steps are in the early researches [20], [32],
[12].

Once we have the estimated parameters for all suggested
model complexities, we select the model that minimizes the
corrected AIC score for sample size

AIC = 2p− 2loglikelihood +
2p2 + 2p

Ñ − p− 1
(9)

where p = nvm + nbm.

B. Dividing the sequence into sub-sequences

Assume that we have the estimated model

yτm−1:τm,m = Hbα̂m + diag
(
Hvβ̂m

)
em (10)

or

y∗
τm−1:τm,m := yτm−1:τm,m −Hbα̂m = diag

(
Hvβ̂m

)
em (11)

with its parameters estimated from the output sub-sequence
yτm−1:τm and its corresponding input xτm−1:τm . Now we
investigate the possibility of having the execution-time se-
quence consisting of two smaller sub-sequences each one
generated using a different and unknown model. For doing
so, we need to find if a change-point will result in better

modeling for the sequence (expressing the data more effi-
ciently).

Common statistical measures for deciding the changes are
mean, variance, and the sum of squares. Since in our model,
we have an available input sequence, we need to modify
the change-point detection algorithm to consider not only
the output sequence but also the input. Adding to that, the
heteroscedasticity nature of the noise. We first transform (10)
into a homoskedastic model

y̆τm−1:τm,m := diag(Hvβ̂m)−1yτm−1:τm,m

= diag(Hvβ̂m)−1Hbα̂m + em
(12)

and write in terms of variations,

ỹτm−1:τm,m = em (13)

where

ỹτm−1:τm,m := diag
(
Hvβ̂m

)−1 (
yτm−1:τm,m −Hbα̂m

)
.

Notice that the error distribution in model (13) is always
standard Gaussian. Then we apply the following change-
point algorithms

1) CUSUM test: It was first introduced by [27] to detect
changes between the sample mean and the partial mean using
the statistics [31]

Tk := max
1≤k<N

∣∣∣∣∣ 1√
N

(
k∑

i=1

xi − kx

)∣∣∣∣∣ (14)

where x := N−1
∑N

i=1 xi is the sample mean. This test is
based on homoskedastic Gaussian models. It is not designed
for our generic nonlinear and heteroskedastic model (2)
and it is not easy to investigate its asymptotic properties
due to heteroscedasticity, therefore, we suggest using the
transformed models (13) or (12) in the test (14) which
is homoskedastic when we use the ML estimate of the
parameters. This will give the alternative test

Tk := max
τm−1≤k<τm

∣∣∣∣∣∣ 1√
Ñ

 k∑
i=τm−1

Yi − kY

∣∣∣∣∣∣ (15)

where Y could be any of y, y∗, y̆, or ỹ. The alternative test
is easy to compute and will be useful if we can show that
the change-points of the original model (2) correspond to the
change-points of the transformed models (12) and (13). We
are not going to show that mathematically since it is beyond
the scope of this paper, but we alternatively use the ablation
study in Section V-A to validate change-point detection
in mean and variance. The selected Tk that maximize the
CUSUM test will divide the sequence yτm−1:τm into two
sub-sequences yτm−1:Tk

and yTk+1:τm . We then accept this
division when having at least Kmin samples and minimizing
the AIC score in (9) to avoid noise overfitting.



2) Likelihood Ratio Test (LRT): It is a parametric test,
which means that the signal model should be known before
the test. It compares the likelihood of the whole sequence
to the likelihood of the sub-sequences. Applying LRT to
model (2) requires parameters and complexity estimation
for the generated sub-sequences at each possible change-
point, this is a time-consuming process, especially for het-
eroskedastic models. However, it is possible to apply it on
the transformed models (12) or (13) since the error will be
Gaussian or standard Gaussian, respectively. The test will be

Λk = max
τm−1≤k<τm

L(µ̂τm−1:τm)

L(µ̂τm−1:k, µ̂k:τm)
(16)

where µ̂a:b := (b − a)−1
∑b

i=a yi is the ML estimate of
sample mean between a and b, and L(·) is the likelihood
function. After that, similar to CUSUM, AIC and Kmin are
used to decide whether to accept the change-point or not.
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Fig. 3. Parameters estimation progress in PSO (synthetic data). The dashed
lines are the true values of the parameters.
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Fig. 4. Parameters estimation progress in PSO when applied to the same
sequences of Figure 1.

C. Combining similar models

Once we have no more change-points, we examine all
the m̄ sub-models to combine similar models until we end
up with m sub-models. We define similar models as the
ones that have the same model order and the Mean Squared
Error (MSE) between their parameter vectors do not exceed
a defined maximum error ϵmax.

V. SIMULATIONS AND NUMERICAL RESULTS

A. Ablation study

To evaluate the performance of our method, we generated
synthetic data set with heteroskedastic noise so we compare
the estimated parameters with the actual ones. In PSO
simulations, we used the same input sequence presented
in Figure 1 to make the synthetic data closer to reality, while
in change-point simulation we used synthetic input generated
using the following random-walk process

xk+1 = xk + wk. (17)

with wk ∼ N
(
0, 0.0252

)
.

PSO for parameter estimation with heteroskedasticity: To
evaluate the performance of PSO for parameter estimation
with heteroskedasticity, we simulated samples from a het-
eroskedastic model with second-order polynomial expansion
for both bias and variance having random parameter values in
the range 0 < αi, βi < 1. Applying PSO to estimate bias and
variance functions parameters using 1000 particles, resulting
in the estimation statistics presented in Table I, where each
value is the average of 1000 simulations. We compared three
initial sets for parameters initialization, zero vector, inde-
pendent samples from standard Gaussian, and Least Squares
(LS) for bias parameters and zeros for variance parameters,
the results suggest using LS for initialization. Figure 3 shows
one example of parameter evolution against iteration number,
while Figure 4 shows the obtained parameters when using
the same data set of Figure 1.

initial mean error error variance iterations
LS 0.00042682 2.2154e-06 180.285

zeros 0.00047027 4.6296e-06 197.264
random 0.00055556 3.1156e-06 187.284

TABLE I
PSO ESTIMATION RESULTS FOR HETEROSKEDASTIC SYSTEM WITH

DIFFERENT INITIALIZATION. (SIMULATED DATA)

Finding change-points on transformed model: We com-
pared LRT and CUSUM for detecting change-points on our
various models (10), (11), (12), and (13). Table II lists
the corresponding change-point location errors (the unit is
samples) where each value in the table is computed from
100 tests. As stated in Section IV-B.2, it is computationally
expensive to apply LRT to heteroskedastic models (10)
and (11), therefore, we approximate the variance model by
keeping only the highest order parameter while forcing the
others to zero (therefore colored with light gray). This will
make closed-form solution possible. The results suggested
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method model absolute error median
LRT y (10) (approx.) 102.78 79
LRT y∗ (11) (approx.) 132.64 29
LRT y̆ (12) 36.36 1
LRT ỹ (13) 122.76 28.5

CUSUM y (10) 210.65 216
CUSUM y∗ (11) 232.62 231
CUSUM y̆ (12) 193.26 208
CUSUM ỹ (13) 212.72 215.5

TABLE II
CHANGE-POINT POSITION ESTIMATION ERROR FOR THE VARIOUS

MODELS.
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transformed models (synthetic data). Notice that the data has a change-
point at 500.

that LRT returns a more accurate estimate of the change
position than CUSUM, in general, and the heteroskedastic

model (12) gives the smallest error for both methods with
global min error using LRT. The second-best model based
on change error median is (13) which shows that trans-
forming the model improve estimating the change position.
Surprisingly the original model (10) returns the second-best
absolute error for both tests but not the error median, this
could be due to neglecting the input resulting in less outliers
(having absolute error closer to the median). CUSUM test,
in general, having almost similar values for average absolute
error and error median, which means it is over all performing
worse than LRT. An example of those simulated sequences
is presented in Figure 6 with the corresponding statistics.

B. Real data

We applied the algorithm described in Section IV on the
same data plotted in Figure 1, the resulted sub-sequences
are plotted in Figure 5 bounded by black dotted lines. The
test applied to the transformed model (12) that is suggested
by the simulations in the previous subsection. It is not easy
to say which one performs better since we do not know
the true change-points, and it should not reflect changes
in the input. The red dotted lines corresponds to the sub-
sequences obtained from another sequence obtained from the
same input.

VI. CONCLUSION

PSO can be used to solve accurately the ML estimate
of nonlinear and heteroskedastic model parameters when
polynomial expansions are used to express the non-linearity
and heteroscedasticity.

It is not practical to use LRT to find the points of change in
a sequence with heteroscedasticity since the computations do
not scale well, as it requires solving complex ML problems
at each possible change-point. On the other hand, CUSUM
does not have such restrictions, but it is hard to show the
asymptotic properties.

Transforming the nonlinear heteroskedastic model into ho-
moskedastic one maintains at least part of the change-points
while making both LRT and CUSUM easier to deal with.
Another advantage of the transformed model, it encodes



the input sequence with the output sequence in the newly
transformed one which makes it easier to suppress possible
change-points due to input rapid variations, not to actual
model changes.
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