
Scheduling Firm Real-time Applications on the
Edge with Single-bit Execution Time Prediction

Shaik Mohammed Salman∗, Van-Lan Dao¶, Alessandro Vittorio Papadopoulos‡, Saad Mubeen†, and Thomas Nolte§
∗Mälardalen University,, Västerås, Sweden, shaik.mohammed.salman@mdu.se

¶Mälardalen University, Västerås, Sweden, van.lan.dao@mdu.se
‡Mälardalen University, Västerås, Sweden alessandro.papadopoulos@mdu.se

†Mälardalen University, Västerås, Sweden, saad.mubeen@mdu.se
§Mälardalen University, Västerås, Sweden, thomas.nolte@mdu.se

Abstract—The edge computing paradigm brings the capa-
bilities of the cloud such as on-demand resource availability
to the edge for applications with low-latency and real-time
requirements. While cloud-native load balancing and scheduling
algorithms strive to improve performance metrics like mean
response times, real-time systems, that govern physical systems,
must satisfy deadline requirements. This paper explores the
potential of an edge computing architecture that utilizes the on-
demand availability of computational resources to satisfy firm
real-time requirements for applications with stochastic execution
and inter-arrival times. As it might be difficult to know precise
execution times of individual jobs prior to completion, we
consider an admission policy that relies on single-bit execution
time predictions for dispatching. We evaluate its performance in
terms of the number of jobs that complete by their deadlines
via simulations. The results indicate that the prediction-based
admission policy can achieve reasonable performance for the
considered settings.

I. INTRODUCTION

Edge computing enables end-user applications to offload
parts of their computations to achieve better response times
and reduce energy consumption on local devices [1], [2], [3].
Some applications require the offloaded parts to be completed
before a certain time for the results to be useful [4]. If the result
has not been generated within this time, the computations (or
jobs) can be abandoned. We refer to these types of applications
as having firm real-time requirements [5]. To satisfy firm real-
time requirements, it may be necessary to ensure that sufficient
servers have been provisioned such that some performance
metric, such as the average number of missed deadlines or the
number of completed jobs, is below or above some threshold,
respectively. In embedded settings, such resource provisioning
is based on worst-case conditions such as worst-case execution
times and minimum inter-arrival times [6]. While this approach
can satisfy the timing requirements, it comes at the cost of
inefficient resource usage. Provisioning based on average-
case conditions, such as mean execution times and inter-
arrival times, can achieve better resource usage, but we cannot
guarantee performance deterministically [7], [8]. In this paper
we investigate a potential approach to manage the conflicting
requirements of efficiency and performance by considering an

edge computing model where we provision a set of servers
based on average-case conditions, while on-demand servers
are provisioned to address transient and occasional worst-case
conditions.

The scheduling strategies employed in such a computing
model play a critical role in determining achievable perfor-
mance. When aiming to minimize mean response times in
single-server settings, scheduling strategies that are aware of
the execution times of offloaded jobs, such as the shortest
remaining processing time (SRPT), outperform strategies like
first-in-first-out (FIFO) scheduling [9]. For multi-server set-
tings where jobs are dispatched to specific servers upon arrival,
the combination of SRPT and dispatching policies like join-
shortest-queue (JSQ) are known to offer better performance
[10]. However, in certain scenarios, execution times can only
be known post-completion. To address this, several studies
have proposed using predicted execution times in the absence
of prior knowledge of true execution times [11], [12], [13],
[14], [15]. Particularly in the context of queuing systems and
aiming to improve the performance metric of mean response
times, Mitzenmacher [15] investigated the effectiveness of
single-bit predictors that can determine whether a job’s ex-
ecution time is above or below a certain threshold. The study
demonstrated that such predictors can offer benefits similar to
those obtained with precise knowledge of execution times.

In addition to scheduling, load balancing or dispatching
strategies can also affect performance. In terms of mean
response times, load balancing techniques such as JSQ out-
perform strategies such as Round-Robin (RR) [16]. This
benefit comes at the cost of increased overheads as JSQ
policy requires the knowledge of pending jobs in each of the
servers to identify the server with the least number of pending
requests. For applications with response times in a few tens
of milliseconds range, these overheads may be unacceptable
and a low-complexity dispatching policy such as RR may be
preferable. For applications with firm real-time requirements,
in addition to removing jobs that can potentially miss their
deadlines when already in the queue [4], it may be beneficial
to admit only those jobs that can be estimated to finish by
their deadlines while rejecting jobs that are most likely to
miss their deadlines given the current pending jobs at the979-8-3503-3902-4/23/$31.00 ©2023 IEEE

servers. This approach allows future jobs with possibly lower
execution times and encountering reduced pending workload
to be completed within deadlines, thereby improving the
throughput.

Within this context, we consider applications with offload-
able jobs whose execution times are given by a probability
distribution and should be completed by a fixed relative
deadline. Given the difficulty in knowing precise execution
times of individual jobs, we assume the presence of a single-
bit predictor1 that can indicate if a job is a short job or a long
a job and investigate the performance in terms of throughput,
i.e, number of jobs that complete by their deadlines. The jobs
are admitted or rejected on arrival based on an admission
policy that estimates response time of the incoming job using
the information from the single-bit predictor and dispatched
following the JSQ or RR strategy with all admitted jobs sched-
uled in FIFO order. Furthermore, due to strong impossibility
results in terms of competitive analysis, jobs must contain
some, (possibly large) amount of slack [17], [18]. We include
this in our work by setting the relative deadline to be ten times
the mean value of the execution time distribution. We use the
value ten as we target applications with similar characteristics
where the ratio between their worst-case execution times and
the relative deadlines is large.

Concretely, we investigate the performance via simulations
by considering exponential execution time distribution and
Poisson arrivals. As we consider only the edge layer, we limit
our simulations to non-asymptotic conditions. Additionally,
we compare the performance of the prediction-based policy
to a clairvoyant policy that has complete knowledge of the
execution time of each pending as well as newly arriving job,
as well as a policy that estimates the execution time of each
job as the mean of its distribution. Our findings suggest that
the prediction-based policy performs better than the mean-
approximation policy, while being only slightly inferior to the
clairvoyant policy when on-demand servers are available.

II. BACKGROUND & RELATED WORK

A. Edge Computing and On-Demand Servers

Edge computing architectures extend the concepts and ben-
efits of cloud computing such as the provisioning of additional
computing capabilities depending on the current workload
for applications with latency and predictability requirements.
Several auto-scaling strategies have been proposed that include
vertical scaling where the amount of CPU time, (for example,
in containerized deployments where a server is sharing a single
CPU with other servers) allocated for a given application is
increased or decreased, and horizontal scaling where the num-
ber of allocated servers is increased or decreased depending
on average workload monitored over some time window [19].
In contrast, our edge-computing model is designed to address
instantaneous load changes and assumes that all necessary
setup for executing a job on on-demand servers is done

1Although single-bit prediction is coarse, it may be easier to realize them
with better accuracy compared to fine-grained predictions.

Reserved Server

CPU
Queue

Reserved Server

Dispatcher

CPU
Queue

Reserved Server

Reserved Server

CPU
Queue

On Demand Server

CPU
Queue

On Demand Server

End User

End User

End User

End User

Reserved Server

Fig. 1. System Architecture

during an initialization stage. We note that auto-scaling for
sustained changes in workload can be easily incorporated into
our model by changing the number of reserved servers. Close
to the work presented in this paper, Wang et al. [20] provided
a load balancer and core allocation strategy to minimize
mean response times for non-preemptive FIFO by considering
heterogeneous servers with reserved and on-demand servers
within a cluster. Here the on-demand servers are utilized
when the queue is full or when the waiting time exceeds the
maximum waiting time. In our work, jobs are dispatched to
on-demand servers based on the estimated response times. A
distinguishing and reasonable assumption for edge computing
is that the number of available computing nodes is much less
compared to those of large data centers that make up the
cloud infrastructure. As a consequence of this assumption,
we restrict our analysis to small-sized clusters. In addition
to this, we assume that the number of on-demand servers is
also limited and known in advance. Fig. 1 depicts an example
architecture with two reserved and two on-demand servers.
Additionally, we assume that not all of the on-demand servers
are available at all times for a specific application, as these on-
demand servers may be shared among multiple applications.
The availability is explicitly considered, and we model it as a
Bernoulli distribution.

B. Dispatching Policies

In multi-server environments, dispatching policies deter-
mine the server on which an incoming job will be executed.
In the online dispatching problem that we are considering,
the dispatching decision is made when the job arrives at the
dispatching server. Dispatching policies, such as joining the
shortest queue and its variants, such as the shortest queue
among k randomly chosen servers, require knowledge of the
exact number of pending jobs in each of the considered servers
[9]. Gathering this information may take a significant amount
of time, depending on the number of servers and the network
traffic [16]. As an alternative, policies such as round-robin are
agnostic to pending jobs on the servers and dispatch incoming
jobs to the servers in a repeating pattern. The advantage of

policies such as round-robin is that they do not have the over-
head associated with policies that require information about
the pending workload. In most existing work, the objective
of dispatching policies has been to minimize mean response
times. Several additional policies, such as join-the-idle-queue
and join-below-threshold, where servers notify the dispatchers
when they are idle or have pending jobs less than a predefined
value, have been proposed to balance the trade-off between
overheads and response times [6], [16]. In this paper, we aim
to evaluate the performance of the prediction-based admission
policy in terms of achievable throughput and consider JSQ and
RR as representative dispatching policies. We augment them
with admission policies with the intuition that rejecting jobs
that are unlikely to meet their deadlines can reduce the amount
of time servers spend doing unuseful work.

C. Execution Time Predictions

Several works have investigated the possibility of improving
the performance of algorithms with machine-learned advice or
predictions including classical algorithms targeting problems
such as online scheduling and load-balancing [11]. The evalu-
ation of these prediction augmented algorithms has been done
in terms of competitive analysis under accurate predictions
and for possibly incorrect predictions [15], [21], [22], [6].
For the online scheduling problem, some of the authors have
considered predicting parameters such as job execution times
[6], [13] and permutation ordering of jobs [22]. Mitzen-
macher [15] studied the impact of single-bit predictors that
can indicate if a job’s execution time is above or below some
threshold in the context of large-scale queuing systems for the
performance metric of mean response times and showed that
such predictors can provide benefits similar to those achievable
with the knowledge of exact execution times for Poisson
arrivals and certain execution time distributions. The analysis
included the impact of incorrect predictions and highlighted
the improvements achieved even with such incorrect predic-
tions against the policy of choosing a queue with the least
number of pending jobs. Similarly, they extended their analysis
in [21] for the case where individual execution times were
also predicted and showed via simulations that the benefits
of the supermarket model in large distributed systems were
retained if the predictions were reasonably precise. Based on
the evaluations, they proposed the shortest queue selection and
predicted shorted processing job first policy for use in actual
systems, as it performed well in a diverse range of scenarios.
In a similar context, Zhao et al.[23] extended the randomized
multi-level feedback algorithm (RMLF) that makes no as-
sumption on job execution times with predicted job execution
times to minimize mean response times. Their experimental
evaluation shows that the prediction-based algorithm achieves
performance close to that of SRPT when the prediction error
is small. If the error is large, their algorithm can achieve better
performance than RMLF. An important requirement for such
prediction-based enhancements is that the predictions should
be learnable in practice. Keeping this in mind, we limit our
attention in this paper to single-bit predictors that can identify

jobs that can take a long time to execute and those that take
a shorter duration. We use this information in our admission
policy that estimates the response time of a new job and does
a schedulability test using this response time. The work in
our paper is inspired by the findings of these studies and
is extended in the context of deadline constraints in terms
of performance criteria while being restricted to single-bit
predictions, FIFO order, and non-asymptotic conditions with
probabilistic availability of on-demand servers.

Scheduling Firm Real-time Tasks: Gao et al. [4] proposed
scheduling strategies for firm semi-periodic real-time tasks in
single-server settings, where jobs are released periodically and
have the same relative deadline, but execution times have an
arbitrary probability distribution. They investigated several op-
timization criteria, including the Deadline Miss Ratio (DMR).
They introduced three new control parameters to decide at
run-time whether to interrupt a job before its deadline. The
parameters include (i) an upper bound on completion times,
based on which a job is dropped if it is not completed by
this time. This bound is a value between periodic inter-arrival
time and relative deadline, (ii) an upper bound on job execution
times, based on which jobs with execution times exceeding this
value are rejected, and (iii) an upper bound on waiting time
based on which a job that has waited until this bound will be
dropped. In addition to this, they considered four admission
policies which include (i) admitting all jobs, (ii) admitting
jobs until a fixed number of jobs are in the queue, (iii)
admitting jobs with some fixed probability and (iv) admitting
jobs following a repeating pattern. Their evaluation shows that
the key control parameter is the upper bound on the waiting
time of each job achieving the best DMR. In comparison to
this work, our work uses admission policies that estimate the
response times based on the job execution time distribution
and the number of pending jobs on a specific server while
letting admitted jobs stay in the queue until their completion
or until their deadline.

III. SYSTEM MODEL

We now describe our system model and our assumptions in
detail.

a) Specifying System Load: In queuing systems, it is es-
sential that job arrival rates be less than departure rates to avoid
queue build-up over time. For applications with execution
time variability, a system designer has the option to consider
inter-arrival times proportional to worst-case execution time or
some value between the worst-case value and the mean of the
execution time distribution. If the arrival times are proportional
to worst-case values, the total number of jobs released over a
fixed duration of time can be much less than when the arrival
times are close to the mean values. Since we consider applica-
tions with firm real-time requirements, we define system load
such that the arrival times are proportional to mean execution
times rather than worst-case values. Our reasoning is based on
the intuitive idea that even though executing a large number
of jobs can result in more of the jobs missing their deadlines,
the number of jobs that complete by their deadlines can be

larger than the number of jobs released when the arrival times
are set to values proportional to worst-case execution times.
This higher number of completed jobs can provide better
functional performance than the scenario where no jobs miss
their deadlines but only fewer jobs are released. Therefore,
we model system load such that the average arrival rate is
proportional to the mean of the execution time distribution
and scales accordingly to the different number of reserved
servers. Because we define system load based on average case
parameters, there may be a situation where incoming jobs over
a short duration of time take longer time to execute resulting in
temporary overload. To manage this temporary overload, we
consider the availability of on-demand computing resources
within the edge layer.

b) Job Model: We assume that jobs have an execution
time distribution with a known mean value µ. The exact
execution time of a job remains unknown until its completion.
All arriving jobs have a fixed relative deadline D. The jobs
have a Poisson arrival process with a constant arrival rate λ.
Whenever a job arrives, a dispatcher should decide if the job
will be admitted or rejected. If admitted, each job remains
in the server queue until completion or until its deadline. We
assume that the fixed relative deadline is such that there is
some amount of slack l with respect to the mean value µ. In
this paper, we set l equal to ten times the mean µ. We set the
system load proportional to the number of reserved servers. A
job is said to be schedulable if its estimated response time is
less than or equal to its relative deadline and unschedulable
otherwise.

c) Server Model: We assume a cluster of homogeneous
servers divided into a set of reserved servers R and a set of
on-demand servers S. Each reserved server has its own queue
and executes the jobs of a single application. Each admitted
job is added to the queue of one of the servers on its arrival.
Once assigned, the job stays in this queue until its completion.
All admitted jobs are sequenced in FIFO order in each server
queue and are executed non-preemptively. For the on-demand
servers, each server can execute jobs for multiple applications
and has a separate queue for each application. The server
is considered available for a specific application if it meets
one of the following criteria: (i) it is idle, (ii) it is executing
jobs of the same application and has no pending jobs from
higher-priority applications, or (iii) it is executing jobs of a
lower-priority application. If the server does not meet any of
these criteria, it is considered unavailable for the application.
In our simulations, we model the availability of the on-demand
servers using a Bernoulli distribution. Although this availabil-
ity model is simple, it enables a straight-forward quantitative
comparison of the different admission and dispatching policy
combinations.

IV. ADMISSION POLICIES AND DISPATCHING

In our on-arrival dispatching model, an admission policy
determines whether a job should be accepted or rejected. In
this work, we consider three admission policies that estimate
the response time of an incoming job by taking into account

Algorithm 1 Dispatcher
1: Input: Incoming job J , set of reserved servers R and set

of on demand servers S, dispatching policy P , deadline
D, response time estimation policy A

2: Output: The id of server if job schedulable, NULL
otherwise.

3: function GETBESTSERVER(J,R, S, P,D)
4: if P == JSQ then
5: id← get shortest queue server(R)
6: else if P == RR then
7: id← get next rr server(R)
8: end if
9: fi ← get estimated response time(id, J,A)

10: if fi ≤ D then
11: return id ▷ job deemed to be schedulable
12: else if fi > D then
13: Sx ← get available on demand servers(S)
14: if P == JSQ then
15: id← get shortest queue server(Sx)
16: else if P == RR then
17: id← get next rr server(Sx)
18: end if
19: fi ← get estimated response time(id, J,A)
20: if fi ≤ D then
21: return id ▷ job deemed to be schedulable
22: else
23: return NULL ▷ job deemed to be

unschedulable
24: end if
25: end if
26: end function

the pending jobs on a given server (see Section IV-A). Admis-
sion or rejection can be done in two steps. In the first step, the
dispatcher looks for a server within the set of reserved servers.
If it fails to admit a job onto a reserved server, it searches for
an available on-demand server and checks for schedulability.
A job is admitted if the policy considers it to be schedulable
on a reserved server, and then it is sent to that server by
the dispatcher. If a job is unschedulable on a reserved server,
the dispatcher tries to find an available on-demand server and
tests the schedulability of the job on this on-demand server. It
dispatches the job to it if it is schedulable. Otherwise, the job is
rejected. Algorithm 1 describes our dispatching process, which
takes as input the identifiers of the reserved servers and on-
demand servers, the dispatching policy, the relative deadline,
and the specific admission policy.

If the configured dispatching policy is JSQ, the dispatcher
selects the server with the shortest queue among the reserved
servers. If the dispatching policy is RR it cyclically selects
a server. When a new job arrives and a reserved server has
been identified, the dispatcher uses one of the response time
estimators and checks if the estimated response time is less
than or equal to the relative deadline. If so, the job is sent to
the identified server (lines 9-11). If the response time estimate

is not within the deadline, the dispatcher identifies the subset
of available on-demand servers and selects a server according
to the configured policy. The dispatcher then uses one of the
response time estimators and checks if the estimated response
is less than or equal to the relative deadline. If so, the job is
sent to the identified on-demand server (lines 19-21). If the
estimated response time is not within the deadline, the job is
rejected.

A. Response Time Estimation

We now describe the response time estimation policies used
to admit or reject the jobs. We consider three policies based
on how the job execution times are considered, (i) mean-
approximation policy, (ii) clairvoyant policy, and (iii) single-bit
prediction policy.

a) Mean-approximation policy: In this policy, we use
mean µ of the execution time distribution to estimate the
response time fi on the selected server i. If the number of
pending jobs on this server is given by Ni, the estimated
response time is given by

fi = (Ni + 1) · µ. (1)

We consider the mean-approximation policy because of its low
computational overhead.

b) Clairvoyant policy: In this policy, we assume the
knowledge of exact execution times. The response time fi on
any server i is given by

fi = xj +

Ni∑
k=0

xk, (2)

where xk is the exact execution time of each job k assigned
to server i and xj is the execution time of the newly arrived
job.

c) Single-bit prediction policy : In this policy, we assume
that there exists a predictor which can indicate if a job is a
short job or a long job. A job is said to be a short job if its true
execution time is less than µ and long otherwise. The response
time fi of a job on any server i where Ns

i is the number
of pending jobs classified as short and N l

i is the number of
pending jobs classified as long is given by

fi = (Ns
i · µs) + (N l

i · µl) + (τ · µs + (1− τ) · µl), (3)

where µs and µl are specified by the designer and τ is the
output of predictor indicating if the new job is a short job or
a long job. We assume that a server can identify both Ns

i and
N l

i and make this information available to the dispatcher.
For all of the estimation methods, the admission test returns

true if the following condition is satisfied:

fi ≤ D. (4)

V. EVALUATION

We use simulation to evaluate the performance of the
prediction-based policy in terms of throughput. We consider
throughput as the ratio of jobs that completed before or at
their deadlines and the total number of jobs that arrived during
the simulation interval. We set the simulation interval to ten
thousand time units and take the average of the measured
throughput for ten simulation runs. We generated the inter-
arrival times of the jobs and the execution time distributions
using the exponential distribution class of the C++ library.
We set the mean of execution time distribution µ equal to
ten and the arrival rate as proportional to the inverse of µ.
Each generated job is assigned a deadline equal to ten times
the mean of the distribution. We set µs equal to five and µl

equal to fifteen. The number of reserved servers was varied
between two, four, and eight but we only present the results
for the scenario where the number of servers was set to eight.
Similarly, we set the number of on-demand servers equal to
the number of reserved servers. We make the assumption that
there are no overheads involved in obtaining the state of the
queues from the servers.

A. Performance of prediction-based admission policy

We compare the performance of the admission policy that
uses the information provided by the single-bit predictor
against a baseline solution that uses the exact execution time
information and another solution that uses the mean of the
service time distribution to estimate the response times of
newly arriving jobs before deciding to admit or reject the jobs.
We evaluate this performance for varying loads, dispatching
policies, and availability of on-demand servers.

As seen in Fig. 2 when only using the reserved servers, the
difference between the throughput achieved by the prediction-
based policy and the clairvoyant policy becomes more ap-
parent as the load is increased. This behavior is observed for
both dispatching policies. When on-demand servers are always
available, the observations remain consistent. The benefits of
the prediction-based policy are more evident when compared
to the mean-approximation policy at higher loads and always
available on-demand servers.

Prediction-based admission policy provides better
throughput performance compared to mean-
approximation policy while the clairvoyant policy
provides the best throughput among all the considered
policies.

B. Performance of dispatching policies

Our evaluation indicates that both JSQ and RR have similar
throughput performance for loads greater than one when only
using reserved servers for identical admission policies. This
indicates that the dispatching policy has very little impact on
the throughput compared to the impact of the response time
estimation policies. When on-demand servers are considered
to be always available, the performance difference remains
negligible as seen in Fig. 2 and Fig. 3.

0.9 1 1.1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

0.
99

0.
9

0
.8
3

0.
75

0
.9
9

0.
9
6

0.
9
2

0
.8
80
.9
9

0.
92

0.
84

0
.7
9

Load

T
hr

ou
gh

pu
t

Mean Actual Prediction

a

0.9 1 1.1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

0.
9
8

0
.9
1

0.
85

0.
82

1 1 1 10.
9
9

0.
97

0
.9
6

0.
95

Load

T
hr

ou
gh

pu
t

Mean Actual Prediction

b

0.9 1 1.1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

0.
9
5

0.
9

0
.8
2

0.
75

0.
9
7

0
.9
5

0.
9
2

0.
90
.9
6

0.
9
1

0.
86

0
.8

Load

T
hr

ou
gh

pu
t

Mean Actual Prediction

c

0.9 1 1.1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

0.
96

0.
93

0
.9

0.
88

1 1 1 10
.9
9

0.
9
8

0.
97

0
.9
7

Load

T
hr

ou
gh

pu
t

Mean Actual Prediction

d

Fig. 2. Throughput of various admission tests and load for exponentially distributed service times for (a) JSQ, (b) RR, (c) JSQ with on-demand servers, and
(d) RR with on-demand servers.

0.9 1 1.1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

0
.9
9

0.
9

0.
83

0
.7
5

0.
9
8

0.
91

0
.8
5

0.
82

0.
95

0
.9

0.
82

0.
75

0
.9
6

0.
93

0.
9

0
.8
8

Load

T
hr

ou
gh

pu
t

JSQ JSQ+O RR RR+O

a

0.9 1 1.1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

0
.9
9

0.
96

0.
92

0.
8
8

1 1 1 10
.9
7

0.
95

0.
92

0
.9

1 1 1 1

Load

T
hr

ou
gh

pu
t

JSQ JSQ+O RR RR+O

b

0.9 1 1.1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

0.
99

0.
9
2

0
.8
4

0.
79

0.
99

0
.9
7

0.
96

0.
9
5

0
.9
6

0.
9
1

0.
86

0
.8

0.
9
9

0.
9
8

0
.9
7

0.
97

Load

T
hr

ou
gh

pu
t

JSQ JSQ+O RR RR+O

c

Fig. 3. Throughput under various load conditions when using on-demand servers in addition to reserved servers for admission policies with (a) mean (b)
exact execution time (c) Single-bit job type prediction

0 0.2 0.4 0.6 0.8 1
0.7

0.75

0.8

0.85

0.9

0.95

1

Availability

Pe
rf

or
m

an
ce

JSQ-P
RR-P
JSQ-C
RR-C

JSQ-M
RR-M

a

0 0.2 0.4 0.6 0.8 1
0.7

0.75

0.8

0.85

0.9

0.95

1

Availability

Pe
rf

or
m

an
ce

JSQ-P
RR-P
JSQ-C
RR-C

JSQ-M
RR-M

b

0 0.2 0.4 0.6 0.8 1
0.7

0.75

0.8

0.85

0.9

0.95

1

Availability

Pe
rf

or
m

an
ce

JSQ-P
RR-P
JSQ-C
RR-C

JSQ-M
RR-M

c

0 0.2 0.4 0.6 0.8 1
0.7

0.75

0.8

0.85

0.9

0.95

1

Availability

Pe
rf

or
m

an
ce

JSQ-P
RR-P
JSQ-C
RR-C

JSQ-M
RR-M

d

Fig. 4. Throughput for varying availability probability of on-demand servers when (a) Load = 0.9, (b) Load = 1, (c) Load = 1.1, and (d) Load =1.2

Both JSQ and RR have similar performance when using
identical admission policies on reserved servers. When
on-demand servers are always available, RR achieves
similar average throughput compared to JSQ.

C. Performance impact of availability of on-demand servers

We investigate the impact of the availability of on-demand
servers on the achievable throughput for different admission
policies and dispatching combinations. As seen in Fig. 3 When
the load is close to 0.9, the impact of on-demand server
availability is negligible for all the admission and dispatching
policies. However, when the load is increased, the availability
of on-demand servers provides considerable improvement in

throughput. Clairvoyant policy dominates the performance for
all of the availability values. Increasing availability results in
improved performance for all of the admission policies as seen
in Fig. 4. Additionally, combining the prediction-based policy
with either of the dispatching policies outperforms the mean-
approximation policy while closely following the clairvoyant
policy.

Increased availability of on-demand servers improves
throughput significantly under overload conditions for
all admission policies compared to using only reserved
servers.

VI. CONCLUSION

We have studied the performance of a single-bit prediction
based admission policy for the problem of online dispatching
and scheduling of jobs with stochastic execution and inter-
arrival times, along with deadline constraints for firm real-time
systems in a multi-server edge computing environment. Using
simulations, we evaluated and compared the performance of
the prediction based policy against the mean-approximation
and the clairvoyant admission policy with two well-known
dispatching strategies, JSQ and RR. We have also considered
an architecture that provides access to on-demand servers in
addition to a set of reserved servers. Our results indicate
that the achievable throughput is primarily influenced by the
estimation accuracy of the admission policy and availability
of on-demand servers, rather than the dispatching policy. In
addition, the single-bit prediction policy outperformed mean-
approximation policy while falling short of the performance
of the clairvoyant policy.

ACKNOWLEDGEMENT

The research leading to these results has received funding
from the Knowledge Foundation (KKS), under the projects
FIESTA (Project No. 20190034) and SACSys (Project No.
20190021), and under the Swedish Research Council (VR),
under the project PSI (Project No. 2020-05094).

REFERENCES

[1] J. Zilic, A. Aral, and I. Brandic, “Efpo: Energy efficient and failure
predictive edge offloading,” in Proceedings of the 12th IEEE/ACM
International Conference on Utility and Cloud Computing, 2019, pp.
165–175.

[2] J. Zilic, V. De Maio, A. Aral, and I. Brandic, “Edge offloading for
microservice architectures,” in Proceedings of the 5th International
Workshop on Edge Systems, Analytics and Networking, ser. EdgeSys ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
1–6. [Online]. Available: https://doi.org/10.1145/3517206.3526266

[3] M. Jansen, A. Al-Dulaimy, A. V. Papadopoulos, A. Trivedi, and
A. Iosup, “The spec-rg reference architecture for the edge continuum,”
2022. [Online]. Available: https://arxiv.org/abs/2207.04159

[4] Y. Gao, G. Pallez, Y. Robert, and F. Vivien, “Dynamic scheduling
strategies for firm semi-periodic real-time tasks,” IEEE Transactions on
Computers, vol. 72, pp. 55–68, 1 2023.

[5] G. Bernat, A. Burns, and A. Liamosi, “Weakly hard real-time systems,”
IEEE Transactions on Computers, vol. 50, no. 4, pp. 308–321, 2001.

[6] Y. Zhao, R. Zhou, and H. Zeng, “Design optimization for real-time
systems with sustainable schedulability analysis,” Real-Time Systems,
vol. 58, no. 3, pp. 275–312, 2022.

[7] T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C. Wu, and J.-
S. Liu, “Probabilistic performance guarantee for real-time tasks with
varying computation times,” in Proceedings real-time technology and
applications symposium. IEEE, 1995, pp. 164–173.

[8] J. Diaz, D. Garcia, K. Kim, C.-G. Lee, L. Lo Bello, J. Lopez, S. L. Min,
and O. Mirabella, “Stochastic analysis of periodic real-time systems,”
in 23rd IEEE Real-Time Systems Symposium, 2002. RTSS 2002., 2002,
pp. 289–300.

[9] M. Harchol-Balter, Performance modeling and design of computer
systems: queueing theory in action. Cambridge University Press, 2013.

[10] I. Grosof, Z. Scully, and M. Harchol-Balter, “Load balancing guardrails:
Keeping your heavy traffic on the road to low response times (invited
paper),” in Proceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing, ser. STOC 2021. New York, NY, USA:
Association for Computing Machinery, 2021, p. 10. [Online]. Available:
https://doi.org/10.1145/3406325.3465359

[11] M. Purohit, Z. Svitkina, and R. Kumar, “Improving online algorithms
via ml predictions,” Advances in Neural Information Processing Systems,
vol. 31, 2018.

[12] Y. Azar, S. Leonardi, and N. Touitou, “Flow time scheduling
with uncertain processing time,” in Proceedings of the 53rd
Annual ACM SIGACT Symposium on Theory of Computing,
ser. STOC 2021. New York, NY, USA: Association for
Computing Machinery, 2021, p. 1070–1080. [Online]. Available:
https://doi.org/10.1145/3406325.3451023

[13] Z. Scully, I. Grosof, and M. Mitzenmacher, “Uniform bounds for
scheduling with job size estimates,” arXiv preprint arXiv:2110.00633,
2021.

[14] M. Akbari-Moghaddam and D. G. Down, “Seh: Size estimate hedging
scheduling of queues,” ACM Transactions on Modeling and Computer
Simulation, 2023.

[15] M. Mitzenmacher, “Queues with small advice,” in SIAM Conference on
Applied and Computational Discrete Algorithms (ACDA21). SIAM,
2021, pp. 1–12.

[16] X. Zhou, F. Wu, J. Tan, Y. Sun, and N. Shroff, “Designing low-
complexity heavy-traffic delay-optimal load balancing schemes: Theory
to algorithms,” Proceedings of the ACM on Measurement and Analysis
of Computing Systems, vol. 1, no. 2, pp. 1–30, 2017.

[17] F. Eberle, N. Megow, and K. Schewior, “Optimally handling
commitment issues in online throughput maximization,” in 28th
Annual European Symposium on Algorithms, ESA 2020, September
7-9, 2020, Pisa, Italy (Virtual Conference), ser. LIPIcs, F. Grandoni,
G. Herman, and P. Sanders, Eds., vol. 173. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2020, pp. 41:1–41:15. [Online].
Available: https://doi.org/10.4230/LIPIcs.ESA.2020.41

[18] ——, “Online throughput maximization on unrelated machines:
Commitment is no burden.” ACM Transactions on Algorithms, 12 2022.
[Online]. Available: https://dl.acm.org/doi/10.1145/3569582

[19] C. Qu, R. N. Calheiros, and R. Buyya, “Auto-scaling web applications
in clouds: A taxonomy and survey,” ACM Comput. Surv., vol. 51, no. 4,
jul 2018. [Online]. Available: https://doi.org/10.1145/3148149

[20] S. Wang, X. Li, Q. Z. Sheng, R. Ruiz, J. Zhang, and A. Beheshti, “Multi-
queue request scheduling for profit maximization in iaas clouds,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 11, pp.
2838–2851, 2021.

[21] M. Mitzenmacher and M. Dell’Amico, “The supermarket model with
known and predicted service times,” IEEE Transactions on Parallel and
Distributed Systems, vol. 33, pp. 2740–2751, 11 2022.

[22] A. Lindermayr and N. Megow, “Permutation predictions for non-
clairvoyant scheduling,” in Proceedings of the 34th ACM Symposium
on Parallelism in Algorithms and Architectures, ser. SPAA ’22. New
York, NY, USA: Association for Computing Machinery, 2022, p.
357–368. [Online]. Available: https://doi.org/10.1145/3490148.3538579

[23] T. Zhao, W. Li, and A. Y. Zomaya, “Real-time scheduling with predic-
tions,” in 2022 IEEE Real-Time Systems Symposium (RTSS), 2022, pp.
331–343.

