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Abstract. We propose a holistic methodology for designing automotive
systems that consider security a central concern at every design stage.
During the concept design, we model the system architecture and define
the security attributes of its components. We perform threat analysis on
the system model to identify structural security issues. From that analy-
sis, we derive attack trees that define recipes describing steps to success-
fully attack the system’s assets and propose threat prevention measures.
The attack tree allows us to derive a verification and validation (V&V)
plan, which prioritizes the testing effort. In particular, we advocate using
learning for testing approaches for the black-box components. It consists
of inferring a finite state model of the black-box component from its ex-
ecution traces. This model can then be used to generate new relevant
tests, model check it against requirements, and compare two different
implementations of the same protocol. We illustrate the methodology
with an automotive infotainment system example. Using the advocated
approach, we could also document unexpected and potentially critical
behavior in our example systems.
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1 Introduction

The advent of connected, cooperative automated mobility provides a huge op-
portunity to increase mobility efficiency and road safety. However, the resulting
connectivity creates new attack surfaces that affect the vehicle’s safety, security,
and integrity. With an estimated 100 million lines of embedded code, modern ve-
hicles are highly complex systems that need to provide consistent cyber-security
assurances. Indeed, there are an alarming spike in cyber-attacks targeting con-
nected cars, their electronic control units (ECUs), and the original equipment
manufacturer (OEM) back-end servers.

Therefore, making the right security decisions from the early design stages is
crucial. The ad-hoc security measures done by domain experts are insufficient to
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meet the requirements in the automotive domain. The standard ISO/SAE 21434
and the mandatory regulation UN R155 advocate for more systematic reasoning
about system security. The United Nations Economic Commission for Europe
(UNECE) has adopted new security regulations, such as UNECE R155 and
R156, for the homologation of future vehicles that address the identified cyber-
attack risks, for example, during software updates. Similarly, the cyber security
standard ISO/SAE 21434, introduced in 2021, defines precise security require-
ments for vehicles during the entire product life cycle, from its development to
its operation and maintenance. Hence, there is an urgent need for methods and
tools that address multiple security-related aspects, from early vehicle design to
deployment and operation phases.

This paper proposes a top-down methodology for systematically assessing
automotive security at different stages of vehicle development. The proposed
methodology follows the product cycle in several steps. During the early design
phase, we use threat modeling, analysis, and repair to provide more systematic
support for the concept design of secure (automotive) systems. These methods
allow us to identify the system’s weaknesses in security threats and develop struc-
tural measures to prevent and mitigate them. We then use the threat analysis
results to capture the system’s critical components concerning security proper-
ties and derive a verification and validation (V&V) plan. We apply established
processes (fuzz testing, penetration testing, etc.) for testing the implemented sys-
tem components. However, the source code of the component implementation is
often unavailable to the V&V team, and they cannot efficiently use the classical
testing methods and tools. In that case, we advocate using automata learning
for testing that builds an explainable model of a black-box implementation of
a component from a set of executed test cases that facilitates testing and other
V&V activities. This methodology is a result of a joint research effort amongst
the industrial and academic partners in Trusted5, a project focusing on trust
and security in autonomous vehicles. In implementing our proposed methodol-
ogy, we were also supported by partners from the related LearnTwins6 project,
which focuses on learning-based testing methods for digital twins.

2 Trusted Methodology

The Trusted methodology starts with the concept design with a threat model
of the vehicle; see Stage 1 in Figure 1. The threat model consists of two com-
ponents: (i) a system model architecture and (ii) a threat database. The sys-
tem model architecture provides a structural view of the vehicle. This view
includes vehicle components and subsystems (e.g., sensors, actuators, ECUs)
and describes their (wireless or wired) interconnections. We can assign security
attributes (e.g., authentication, encryption) to system components and com-
munication links. A system model can define security boundaries that enclose
trusted subsystems and assets we need to protect from potential attacks. The

5 https://TRUSTED.iaik.tugraz.at/
6 https://learntwins.ist.tugraz.at/

https://TRUSTED.iaik.tugraz.at/
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Fig. 1: Overview of the Trusted methodology

threat database contains a set of known threats—these threats from public do-
main sources, relevant standards, and previous experience. The threat model is
an input to a threat analysis method allowing the detection of structural weak-
nesses in the system’s architecture. We then combine the threat analysis with
the repair activities to identify prevention and mitigation actions required to
protect the system from identified threats.

The high-level threat analysis performed in the early stages of the design
provides essential insights into the security-related weaknesses in the system
architecture. We can take structural defense actions to improve the system’s
security based on threat repair outcomes (e.g., implementing authentication in
a specific component). Yet, there is no guarantee that an attacker cannot break
the resulting measures. Hence, it is imperative to have a solid verification and
validation (V&V) plan. In the Trusted methodology, we use the insights gained
by threat analysis and repair to identify risks and prepare an effective V&V plan
corresponding to 2 in Figure 1.

We use the system architecture model developed during the concept design
phase to implement and integrate the components of the system. The implemen-
tation step is outside the scope of the Trusted methodology, but we assume the
components are available as black boxes (see 3 in Figure 1). That is, we assume
that we can execute components, but we cannot access their implementations.

During the development and integration of different components from the
system architecture, verifying and testing safety and security functionalities be-
comes another critical aspect that we must address. Model validation ( 3 in
Figure 1) tests the model for conformance against the component under test.
This step provides either affirmation for the correctness (or completeness, re-
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spectively) of the model or counterexamples to refine the latter in a loop until
the model is considered good enough to be used for test case generation.

We propose a learning-for-testing approach using automata learning ( 4 in
Figure 1) as the core method for generating tests during V&V. In automata
learning (see Section 4.1), we construct a Finite State Machine (FSM) of the
System Under Test (SUT). We use the inferred FSM to: (1) obtain potential
attack data, and (2) identify critical inputs that might show differences between
the FSM and the SUT. We must automatically perform the necessary tests
during the development and especially the maintenance phase to guarantee a
quick response in the event of a threat.

We chose the learning-based testing approach due to its versatility and nu-
merous V&V activities that we can undertake with the inferred FSM ( 5 in
Figure 1). We can use the inferred FSM to: (1) visualize and understand the
implementation, (2) model check it against its formalized requirements (possi-
bly generating test cases on specification violations), (3) generate additional test
cases by fuzz testing, and (4) Test for equivalence between implementation and
a reference model or another implementation.

In the last phase ( 6 in Figure 1), we use various V&V strategies to verify the
specified properties against the actual component under test. The test results
are final verification outcomes; meanwhile, we can use them as counterexamples
for the learning algorithms in 4 in Figure 1. This policy provides a feedback loop
for refining the model in the learning-based testing approach. We execute and
store tests using an automated test execution platform that augments generic
test cases with additional information. This additional information comes from
a test database or is provided in a grey box testing [12].

The threat model and the tests created during various design phases must
be continuously maintained and updated throughout the vehicle lifecycle. We
must incorporate new unknown threats and vulnerabilities into the model and
re-evaluate the model to find new security issues. We must also integrate the
changes to functions resulting from software updates into the system model
and their impact on the vehicle’s security analyzed and re-tested. This closely
corresponds with the notions on testing in ISO 21434 and UNECE R155.

3 Automotive Security by Design

In this section, we demonstrate the use of THREATGET [17], a tool for threat
modeling and analysis to improve the security of automotive applications during
their early stages of design (step 1 in Figure 1) and generate an appropriate
V&V plan (step 2 in Figure 1). We illustrate the approach with an automotive
infotainment system developed by the industrial partner.

We first model the system using THREATGET (Section 3.1) and apply anal-
ysis to identify potential structural weaknesses in the system architecture (Sec-
tion 3). We then use this analysis to derive a V&V plan (Section 3.3). Finally, we
can augment it with threat repair to propose additional security measures [20].
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Fig. 2: Automotive infotainment system model.

3.1 System Architecture Model

We first create an accurate model of the automotive infotainment system (IS),
shown in Figure 2. The IS is part of a larger ADAS reference model. It has sev-
eral external interfaces that expose an attack surface of the vehicle. The external
interfaces in Figure 2 are Bluetooth, WiFi, Interior Camera, and On-Board Diag-
nostics (OBD). The Multimedia Interface Hub (MIH) is an essential component
of the infotainment system that (co-)implements core functionalities, including
navigation, phone calls, and music playback. MIH also bridges external and in-
ternal interfaces. The Telematics Communication Unit (TCU) is the primary
interface to the Internet. Many components in a modern vehicle depend on the
TCU. For example, navigation systems use TCUs to access and update maps,
and ECUs use them for over-the-air updates. Finally, all components except for
TCU and Head Unit communicate through a CAN interface. We add two assets
to the model – the confidentiality asset associated with the Head Unit and the
availability asset associated with the TCU. The assets need to be protected, and
their associated components are potential targets for attackers.

The IS is a weak security link in modern vehicles because it is more prone to
successful cheap attacks than other components (e.g., Body Control Unit or the
Engine Control Unit). This is due to versatile attack scenarios provided by the
use of mainstream Unix-like operating systems, e.g., Uconnect and Automotive
Grade Linux, the user requirements demanding functionalities like a built-in
internet browser and installing third-party apps enabling remote code execution
attacks, and the use of CAN bus that cannot guarantee communication integrity
between the vehicle’s external and internal interfaces.

3.2 Threat Analysis

We analyze the system model with THREATGET against its threat database,
defining a set of possible threats formulated as rules. The threat descriptions are
collected from multiple sources: automotive security standards and regulations
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(e.g., ISO/SAE 21434, ETSI, UNECE WP29 R155, and UNECE R156), publicly
documented threats identified in past incidents, and expert knowledge.

We illustrate threat rules with two examples used during the analysis of the
infotainment system model: the rule named “Gain Control of Wireless Interface
(e.g., WiFi, Bluetooth, or BLE)” and the rule named “Flood CAN Commu-
nication with Messages”. Both threat rules originate from automotive security
analyses performed by domain experts. The first threat’s formalization is

ELEMENT : "Wireless Interface"{

"Authorization" NOT IN ["Yes", "Strong"] & "Input Sanitization" != "Yes" &

"Authentication" NOT IN ["Yes", "Strong"] & "Input Validation" != "Yes" &

PROVIDES CAPABILITY "Control" := "true". }

This rule specifies that a wireless interface (e.g., WiFi or Bluetooth) that neither
implements authorization and authentication nor sanitizes or validates its inputs
is susceptible to threats. The last line in the rule explicitly states that if this
threat is exploited, the malicious user can control the wireless interface. The
“Threat Flood CAN Communication with Messages” threat is formalized as

FLOW {

SOURCE ELEMENT : "ECU" { REQUIRES CAPABILITY "Control" >= "true" } &

TARGET ELEMENT : "ECU" {

HOLDS ASSET {

"Cybersecurity Attribute" = "Confidentiality" &

PROVIDES CAPABILITY "Read" := "true" } } &

INCLUDES ELEMENT : "BUS Communication" &

INCLUDES NO ELEMENT : "ECU" { "Anomaly Detection" = "Yes". } }

This rule states that the threat is present if there is a path starting from an
ECU that is under the control of a malicious user to another ECU that holds
the confidentiality asset and that there is a bus between them and no ECU on
the path has implemented anomaly detection.

When applied to the infotainment system model, THREATGET identifies
multiple threats. One threat is “Spoof messages in the vehicle network because
of the missing components”. It describes a pattern that starts at an Interface
with no Authentication and ends at an ECU with no Input Validation and holds
an asset. It includes a wired Shared Medium representing a vehicle’s CAN BUS.
Moreover, no element (of type Firewall, Server, ECU, or Gateway) on the flow
from the Interface to the ECU takes care of Anomaly Detection.

We can address the identified threats with appropriate security measures.
Threat repair [20] consists of preventing concrete threats by proposing security
measures that can be implemented during the system’s design. THREATGET
implements attribute repair, a method that proposes changes in the components’
security attributes as locally deployed measures with a simple cost model.

In the case of the automotive infotainment system model, e.g., the proposed
threat repair measures include enabling authorization and implementing authen-
tication in the WiFi and Bluetooth components. We note that threat repair does
not remove the need for the planned V&V activities. The fact that authentication
is integrated into the WiFi device, following the outcomes of threat repair, does
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not guarantee that the authentication algorithm’s implementation is weakness
free. On the contrary, systematic testing of the WiFi’s authentication protocol
is even more necessary to gain confidence that the WiFi device is not a possible
entry point for malicious users.

3.3 V&V Planning

In addition to threat analysis, there is support for identifying and modeling more
sophisticated threats using attack trees; c.f. [8]. This results in more knowledge
about potential attackers’ steps when intruding into a system. Simple rules can
be assigned attributes called capabilities that are either required for an intrusion
or can be gained through the intrusion of a system component. Moreover, we
can define the different access levels to a component (e.g., Access < Read <
Modify < Control). Depending on previously acquired capabilities, different
attack tree rules trigger, yielding distinct attack trees. An example of such a
generated attack tree is illustrated in Figure 3.

The attack tree depicted in Figure 3 shows how a malicious user can access the
confidentiality asset associated with the Head Unit via external interfaces such
as WiFi and Bluetooth. For instance, control of the Bluetooth interface can be
gained if its security attributes (input validation and sanitization, authorization
and authentication) are not implemented or have weaknesses. From there, the
user can gain control of the Multimedia Interface Hub, which is not sufficiently
secure, and then get control of the Head Unit and hence the access to the asset.
The attack tree exposes the most critical components that need to be protected.
We note that the attack tree from Figure 3 is not maximal nor unique – while
THREATGET generates multiple trees for each asset in the model, including
the maximal attack trees, we use a simpler tree for illustration purposes.

Confidentiality Asset
Read = true

Head Unit
Control = true Head Unit

Updates = yes
Managed = no
Secure Boot = no
Anomaly Detection = no

Multimedia IF Hub
Control = true Multimedia IF Hub

Updates = yes
Managed = no
Secure Boot = no
Anomaly Detection = no

Bluetooth
Control = true Bluetooth

Input Validation = no
Input Sanitization = no
Authorization = no
Authentication = no

WiFi
Control = trueWiFi

Input Validation = no
Input Sanitization = no
Authorization = no
Authentication = no

Fig. 3: Attack tree derived from THREATGET. Multiple children from the same node
are implicitly interpreted with an OR operation.
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4 Automotive Security Testing

In this section, we advocate an approach based on learning to test critical com-
ponents identified by the threat analysis methods during concept design, when
these components are assumed to be black-box to the tester.

4.1 Automata Learning for Correctness

Many cyber-physical components in the automotive domain implement one or
multiple finite state machines (FSMs). Implementing larger automotive FSMs
becomes cumbersome mainly because: (1) ensuring FSM’s correctness w.r.t. its
specification is expensive, (2) correctly coding the structure of a large FSM
is difficult, and (3) correct integration of FSMs in complex software is hard.
Unfortunately, many software-driven components in the automotive industry
are black boxes from different manufacturers, hence are hard to verify and thus
do not provide functional or non-functional guarantees.

Given an FSM of a black-box automotive component, we can test and verify
it to increase our confidence in its correctness. Automata learning has proven
to be a successful method for learning-based testing of communication protocols
that are also used in the automotive domain, e.g., MQTT [19] or Bluetooth Low
Energy [16]. We use automata learning [3] to infer an FSM model (concretely a
Mealy machine) of the the SUT. In the learning context we refer to the SUT by
system-under-learning (SUL). In automata learning, a learner asks an oracle two
types of queries. First, membership queries to determine the SUL’s output for
a given input word. Second, equivalence queries check whether a learned model
conforms to the SUL, to which the oracle returns positive answer or a coun-
terexample. A counterexample is an input-output word distinguishing SUL from
hypothesis. In practice, oracles for black box systems work with conformance
testing.

Ordinarily, real-world systems’ alphabets are not manageable for learning
algorithms. Abstraction helps to both cope with this fact and to make inferred
models more human-readable. Too much abstraction, however, might induce
non-deterministic behavior and hide problems we intend to find. There are also
automatic abstraction refinement approaches for an optimum of abstraction in
a mapper [1, 10]. An abstraction mapper consists of a mapping function that
converts a concrete input into an abstract symbol. It also observes the SUL’s
concrete outputs and sends an abstraction to the learner. To send a concrete in-
put to the SUL, the mapper inverses the abstraction. There are multiple methods
to assess the behavioral correctness of the learned FSMs, including (1) black-
box checking [15], adaptive model checking [9], a combination of learning-based
testing and machine learning [13] and symbolic execution [2].

4.2 Use-Case Scenarios

The attack tree (see Figure 3) poses the critical components that need to be
tested for security. In this section, we illustrate our learning-based testing ap-
proach on the two components highlighted in gray color in Figure 3 - the Blue-
tooth interface (as an entry vector) and the Head Unit ECU.
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Bluetooth and Bluetooth Low Energy Bluetooth is a well-established stan-
dard for wireless audio used in most infotainment systems. Bluetooth Low En-
ergy (BLE) grows in popularity for car access and sensor data transmission. The
protocols have a variety of known vulnerabilities [4–7,18], some also specifically
for automotive systems7.
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s3s1
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s4

s5

s6

s7
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P2 P3 Encrypt

Pause0

Pause1Pause2

Closed

s⊥

Fig. 4: Inferred FSM structure for Bluetooth pairing.

Learning Setup we use Intel Wireless Controllers (AC 8265 and AX200) imple-
menting Bluetooth and BLE. The learning setups are similar, the difference is
in the radio hardware and the physical layer, requiring three entities: (1) Ra-
dio Device, (2) Learner, and (3) Interface between the two with a mapper. The
learner was implemented using the LearnLib framework [11].

Learned Model and Findings We inferred the pairing process models, which are
used for encryption and therefore security-critical in the SULs. As a tangible
result, we discovered a BLE deadlock state (red state in Figure 4) in the Linux
BLE host software. With repeated out-of-order transmission of pairing requests
of different types, we force the respective BLE stack into a state that limits the
device to respond to basic link-layer control packets. After the state is reached,
each following connection will start in this state until the controller is reset.

Unified Diagnostic Services Each ECU has a secure access mode reachable
through its UDS implementation, available via vehicle’s OBD connector. An
attacker able to exploit UDS security features would be also able to manipulate
data or even flash the ECU with a malicious firmware.

Learning Setup To communicate with the ECU we used a CAN interface. To
learn a different ECU we only need to adapt the interface. We started by im-
plementing a reduced UDS interface, consisting of instructions to put an ECU
into secure access mode. Communications occures via a CAN bus interface. The
learner was implemented using the AALpy framework [14].

Learned Model and Findings The learning experiment resulted in a reduced FSM
of the UDS shown in Figure 5. An analysis of the results shows that once being
7 https://research.nccgroup.com/2022/05/15/technical-advisory-tesla-ble-phone-as-a-

key-passive-entry-vulnerable-to-relay-attacks/

https://research.nccgroup.com/2022/05/15/technical-advisory-tesla-ble-phone-as-a-key-passive-entry-vulnerable-to-relay-attacks/
https://research.nccgroup.com/2022/05/15/technical-advisory-tesla-ble-phone-as-a-key-passive-entry-vulnerable-to-relay-attacks/
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successfully authenticated (state s4), an incorrect authentication key will still
result in the same state. This is unexpected and allows for prolonging a ses-
sion without authentication. When requesting a new seed for re-authentication
(s5) this behavior persists. Moreover, on re-entering a secure session afterwards
(from s6), the ECU accepts an old key as well; an unexpected behavior after re-
initiating the key authentication. Figure 5 marks all unexpected behaviors in red.

5 Conclusion

We introduced the Trusted methodology for designing and assessing trusted
and secure automotive systems. The main novelty of the proposed methodol-
ogy is its holistic and systematic approach to security, which starts at concept
design and is carried down to the implementation and assessment of individual
components. We instantiated the different parts of the methodology using the
state-of-the-art methods and tools for threat modelling and analysis, automata
learning and testing. We illustrated the use of the methodology by applying
it step-by-step an automotive infotainment system. Using the learning-based
testing approach we could document previously unpublished denial-of-service
conditions in the examined BLE setups, as well as unexpected behavior allowing
for extending secure UDS programming sessions on the scrutinized ECU.

Future Work We plan to further automate the transition from the concept design
and V&V planning on one side, to the actual testing activities done on the level
of components by devising a domain-specific test description language that can
define abstract V&V plans derived from the attack trees, and be refined in a way
so that eventually it can be executed on a platform (e.g., as in [21]). Second, the
Trusted methodology mainly focuses on the transition from concept design to
testing the implementation. We plan to also study the opposite direction – how
to use the component testing results to update the system model and have a
more refined threat analysis and a more realistic threat assessment.
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