
Requirements Classification for Smart Allocation:
A Case Study in the Railway Industry

Sarmad Bashir1, Muhammad Abbas1, Alessio Ferrari2, Mehrdad Saadatmand1 and Pernilla Lindberg3
1RISE Research Institutes of Sweden, Västerås, Sweden, {first.last}@ri.se

2CNR-ISTI, Pisa, Italy, {first.last}@isti.cnr.it
3Alstom, Västerås, Sweden, {first.last}@alstomgroup.com

Abstract—Allocation of requirements to different teams is a
typical preliminary task in large-scale system development
projects. This critical activity is often performed manually and
can benefit from automated requirements classification
techniques. To date, limited evidence is available about the
effectiveness of existing machine learning (ML) approaches for
requirements classification in industrial cases. This paper aims
to fill this gap by evaluating state-of-the-art language models
and ML algorithms for classification in the railway industry.
Since the interpretation of the results of ML systems is
particularly relevant in the studied context, we also provide an
information augmentation approach to complement the output
of the ML-based classification. Our results show that the BERT
uncased language model with the softmax classifier can allocate
the requirements to different teams with a 76% F1 score when
considering requirements allocation to the most frequent teams.
Information augmentation provides potentially useful
indications in 76% of the cases. The results confirm that
currently available techniques can be applied to real-world
cases, thus enabling the first step for technology transfer of
automated requirements classification. The study can be useful
to practitioners operating in requirements-centered contexts
such as railways, where accurate requirements classification
becomes crucial for better allocation of requirements to various
teams.

Index Terms—requirements classification, requirements
allocation, natural language processing, language models

I. INTRODUCTION

In the domain of large-scale software-intensive embedded
systems, such as those running on trains, cars, and airplanes,
the platforms to be developed are typically decomposed into
multiple interacting sub-systems. This fosters architectural
modularity and, in turn, maintainability and adaptability [1],
[2]. Developing these complex systems also requires
structuring the development teams in a modular way [3].
Having a dedicated team responsible for a particular
sub-system or component allows companies to have better
control over the process, as the components can be
independently implemented, tested, and incrementally
integrated.

Embedded software systems responsible for train
management and control are one example of complex
safety-critical systems that are composed of multiple
sub-systems. In the railway industry, products need to
comply with various safety standards—e.g., the CENELEC
norms [4]—which typically require requirements-centered
development processes based on the traditional

V-model [5]–[7]. In these contexts, requirements for the
overall system are first defined based on the customer’s
needs. The customer requirements are then refined
(internalized), and the derived requirements are associated
with various sub-systems for which different teams are
assigned as responsible. The allocation of requirements is
normally performed by a requirements analyst, which can be
time-consuming, subject to fatigue effects, and human
errors [8]. Since requirements are written in natural
language, as common also for other domains [9], [10],
analysts can benefit from automated natural language
processing (NLP) tools to support allocation.

The problem of automated requirements allocation can
essentially be formulated as a text classification problem.
The literature in this area reveals the use of text
classification for different goals in software engineering [10],
such as binary classification for identifying requirements and
non-requirements [11]–[13], and classification of
requirements into functional and non-functional
classes [14]–[16]. Some studies also include comparisons of
different machine learning (ML) and deep learning (DL)
algorithms [17]–[19]. However, only a limited number of
studies is dedicated to requirements allocation (e.g., [20],
[21]). Furthermore, most related studies on multi-class
classification only experiment with public datasets annotated
by students or researchers (e.g., PROMISE [22]), and lack
application in industry. In addition, with some
exceptions [20], existing studies do not focus on augmenting
the classification with additional useful information that can
help requirements analysts in the allocation of requirements.
Augmentation is particularly important, as NLP tools are
imperfect, and a human-in-the-loop is normally needed to
sanitize the output [8].

This study is conducted in close collaboration with
Alstom, Sweden (Alstom), a world’s leading railway vehicle
manufacturing company with customers across the globe. In
this paper, we report the development of the REQuirement
Assigner—REQA—approach for requirements allocation at
Alstom. We first empirically evaluate different
transformer-based and traditional classifiers in the studied
context. In addition, we leverage lexical clustering to
generate information augmentations in relation to the
predictions to support well-informed allocation. Evaluation
of the proposal on 1,680 requirements at Alstom shows that

Pre-print accepted to the 31st IEEE International Requirements Engineering 2023 conference

Please cite the original paper: https://www.es.mdu.se/publications/6697-

our approach with the SciBERT uncased language model
achieves a 67% F1 score. The results further indicate an
average F1 score of 76% when considering the most
frequent classes with the BERT uncased language model.
Furthermore, our approach is able to generate supplementary
augmentations with a 76% average F1 score. Within our
evaluation, we have also studied (a) the effect of
pre-processing on classification performance; (b) the
coverage of the vocabulary of our railway-specific
requirements in the language models used for representation.
Our results show that pre-processing negatively affects the
classification performance of transformer-based approaches.
The results further indicate that out-of-vocabulary (OOV)
words in the selected language models are 65% on average.
This calls for developing railway-specific and possibly
company-specific language models to further improve the
classification performance.

The rest of the paper is organized as follows. Section II
briefly introduces the background of natural language
processing and text classification. Section III presents the
REQA approach for requirements allocation. Section IV
presents the evaluation method. Section V presents and
discusses the obtained results. Section VI discusses the
related work in relation to this paper. Section VII presents
the potential threats to validity. Finally, Section VIII
concludes the paper with future directions.

II. BACKGROUND

This section introduces the NLP approaches and algorithms
used for allocation via classification.

1) Pre-Processing: Requirements classification using NLP
starts with pre-processing the input requirements. A typical
pre-processing pipeline can include but is not limited to
tokenization, Part-of-Speech (POS) tagging, stop-words
removal, stemming, or lemmatization. In this paper, we use
classification pipelines both with pre-processing—using all
the filters listed above—and without pre-processing.

2) Requirement Representation and Classification: Most
NLP approaches do not work on raw text but transform each
text unit—in our case, a single requirement—into a feature
vector. The vectors can be generated with information
retrieval (IR)-based lexical approaches, or with semantic
approaches. After representation, classification of the feature
vectors can be performed with different ML or DL
techniques.

a) Lexical Approaches: From lexical approaches, we
use the tf-idf (term frequency-inverse document frequency)
representation. With this strategy, each component of the
feature vector is associated with a word in the entire
vocabulary of the considered requirements corpus. The value
of the vector component for a certain requirement is given
by the frequency of the word in the requirement, divided by
its frequency in the corpus. In our work, the tf-idf vectors
are reduced via principal components analysis (PCA). Based
on our previous experience, we notice that pipelines with
tf-idf perform better when the dimensionality is reduced

[7], [23], [24]. We use the normalized vectors extracted from
the tf-idf matrix and use PCA to automatically select a
subset of features that explains at least 95% of the variance
in the dataset. This way, we drop most of the correlated and
duplicate features and, in turn, reduce the dimensions of the
vectors.

After tf-idf -based representation, classification is
performed through five classical supervised ML algorithms:
Support Vector Machine (SVM), Multi-nomial Naive Bayes
(MNB), Logistic Regression (LR), Decision Trees (DT), and
Random Forest (RF). The objective of the SVM classifier is
to find the hyperplane in an n-dimensional space for
separating the data points (i.e., the feature vectors) into
classes. SVM utilizes a kernel function to convert the input
data points into a higher dimensional space, in which linear
separation of the data points is possible [25]. The MNB
classifier is based on the Bayes theorem and classifies a
feature vector based on the Maximum A Posterior (MAP)
decision rule. Based on the training instances, this supervised
classifier establishes the most probable class so as to
minimize the probability of miss-classification [26]. LR
utilizes cross-entropy loss to minimize training error and
softmax function to compute the probability distribution to
be used to predict the class given the feature vector [27].
The DT classifier learns the decision rules inferred from
feature vectors used for training to predict the target class.
The leaf nodes in the tree are associated with the target
classes, and classification is based on comparing the values
of the components of the feature vector against learned
thresholds at each node [28]. Finally, the RF algorithm is
based on multiple DTs that operate as an ensemble, where
each DT casts its vote, and the target class with the most
votes is the prediction from the model.

b) Semantic Approaches: From the semantic
approaches, we consider multiple state-of-the-art strategies,
which are based on neural networks. These are fastText [29]
(FT), and transformer-based approaches, based on the
well-known BERT architecture, (Bidirectional Encoder
Representations from Transformers), proposed by Devlin et
al. [30]. A fundamental building block of all the semantic
approaches is the concept of the Language Model (LM).
LMs capture the regularities, morphological, and
distributional properties of a language.

With FT, the LM is based on the FT algorithm, which
considers the internal structural information of the words by
representing each word as a bag of character n-grams. FT
learns a distributed representation of n-grams based on their
context (i.e., co-occurring n-grams), to maximize the average
log probability of n-grams.

The BERT LM is based on a type of neural network
called transformer. This differently weights the significance
of each part of the input text by means of the so-called
attention mechanism. During training, BERT randomly
masks words in a sentence of the training data (typically
large sets of generic documents), and then it tries to predict
them. BERT looks in both directions, and it uses the full

Tender
Document

Augmenter

Assigner

Customer
Requirements

R
eq

u
ir

em
en

t
A

n
al

ys
is

A

B

Tokenizer Fine-Tuned
BERT Classier

15%

20%

90%

...

Converters

Systems

Drives

Predictions

Pre-Processing TF-IDF Top-5 Neighbours
labels AugmentationClustering

Fig. 1: REQA approach for requirements allocation with augmentation

context of the sentence, both left and right words, in order to
predict the masked word. Unlike other LMs, it takes both the
previous and next words into account simultaneously. This
task is used to learn the LM for requirements representation.
The BERT LM is then coupled with a hidden layer of 512
nodes followed by a softmax classifier with n nodes as
output (with n equal to the number of possible classes). The
classifier is designed to output a probability for each class
and is trained on the examples from the requirements
dataset. This step is called fine-tuning. In other terms, BERT
leverages generic documents to first learn the principles of
text syntax and semantics and the requirements data to learn
the classification task. The BERT variants considered in our
paper are BERT base [30], RoBERTa [31], and
SciBERT [32]. We do not consider software
engineering-specific approaches, namely, such as
BERTOverflow [33], which is oriented to named entity
recognition, which are substantially different tasks from ours.
BERT base is pre-trained on Toronto BookCorpus and
English Wikipedia datasets for a total of 16 GB of data.
RoBERTa (Robustly Optimized BERT pre-training
Approach) is an optimized version of BERT, which uses a
slightly different training process. In addition to the BERT
datasets, it is also trained on other datasets like CC-News
(Common Crawl-News), Open WebText, and others. The
total size of these datasets is around 160 GB. Finally,
SciBERT is trained on scientific papers from Semantic
Scholar. The corpus size is 1.14M papers, about 643GB.

To perform classification, these semantic approaches for
text representation are coupled with a statistical classifier.
For FT, the classifier is based on the Long Short-Term
Memory (LSTM) neural network. FT is coupled with LSTM
for classification. This is a recurrent neural network (RNN),
which can distinguish relevant and irrelevant information
within a sequence of input, to support classification [34]. For
BERT-based approaches, the classifier is a softmax layer at
the end of the vector representation pipeline.

III. REQA — APPROACH

The REQA approach aims to support requirements
engineers in the allocation of requirements to different
teams. Since we address the problem of requirements
allocation through classification, we will use the two terms
interchangeably. The same holds for the words “team” and

“class”. The REQA approach is composed of two main
modules, Assigner and Augmenter, as shown in
Figure 1.

The Assigner module is responsible for generating a
representation for the input requirement and for suggesting a
possible allocation based on the results of a classification
algorithm. We select the best configuration for the
Assigner in the evaluation section IV, and these are used
in the final design. Given a requirement, the Assigner
outputs a list of potential allocation classes, ranked by
likelihood. Only the most probable class is shown to the
user, while the ranked list will be used by the Augmenter.

Input: Additional brake resistor capacity shall be installed in
the event of DC conversion to create dual voltage Units. The
DC Brake Resistor shall be fitted on the underframe of the
DMS, MS1 and MS2 vehicles. The DC Brake Resistor shall be
fully rated.
Ground truth for Allocation: ‘Systems’
Assigner prediction: ‘Systems’
Generated Augmentation: 3/5, existing similar requirements
were allocated to ‘Systems’.
Example of Similar Requirement: The Over Voltage / blending
resistor modules shall be mounted on the underframe of the
DMS, MS1, MS2 and MS3 vehicles.
—————————————————————————
Input: In the event that the 25kV AC supply is lost, either
unexpectedly, or due to traversing a neutral section, then the
ACM 400V 3 phase output shall not be interupted while the
train is moving. Any minimum operating speed that applies to
this requirement shall be stated.
Ground truth for allocation: ‘Systems’
Assigner prediction: ‘Systems’
Generated Augmentation:

3/5 existing similar requirements were allocated to
‘Converters’.
Example of Similar Requirement: The system shall be
compatible with a static converter generated supply with the
following characteristics: Nominal 3 phase supply, phase to
phase: 400Vrms ±10% Nominal single phase supply, phase to
neutral: 230Vrms ±10% Nominal frequency: 50Hz ± 2Hz
Harmonic distortion: < 10% Maximum peak voltage: <

1000V

Listing 1: Example outputs.
©This listing is a property of Alstom.

The Augmenter module produces additional information
to complement the predictions generated by the Assigner.
This additional information helps in providing the most
likely classes derived from lexical similarity-based
measurements. The Augmenter searches for the most
similar requirements in the training set used to train the
Assigner. Then, it checks whether the classes produced
by the Assigner match with the classes of the most
similar requirements identified based on lexical features.
This can be regarded as a complementary channel to better
inform the requirements analyst in deciding the allocation. If
the classes proposed by the Augmenter include the class
predicted by the Assigner, then one can have higher
confidence in the results of the Assigner itself. Otherwise,
the requirements analyst needs to consider the prediction
more carefully. The examples (shown in Listing 1) above
report the output of the two modules in case of a consistent
and inconsistent prediction, respectively.

Let us now consider the behavior of the Augmenter in
more detail. To produce the output, the Augmenter takes
as input: (1) the top-3 classes that are produced by the
Assigner, c1, c2, c3; (2) the requirement r, which has been
just classified. The input requirement is first preprocessed
and represented as a feature vector with tf-idf and PCA. The
Augmenter then uses the k-Nearest Neighbor (kNN)
algorithm to find the 5 most similar requirements r1, . . . , r5
in the training set that was used to train the Assigner. To
perform this step more efficiently, the Augmenter first
partitions the search space. This is done by preprocessing
and vectorising all the requirements in the training set with
tf-idf and PCA, and then by applying k-means clustering to
partition this space. Once clustering has been performed,
given the requirement r, the k-means algorithm—in the
so-called query or inference mode—returns the cluster that is
closer to r. The search for the most similar requirements
r1, . . . , r5 is performed only within this cluster. Based on the
ranked prediction of the Assigner, the classes c1, c2, c3
are scanned, and the Augmenter produces an augmentation
together with an example similar requirement. If no class in
c1, c2, c3 is found within the classes of r1, . . . , r5, no
augmentation is generated. The generated augmentation
contains c1, if c1 is found also within the classes of
r1, . . . , r5. Otherwise, the augmentation contains c3 if it
appears more than once within the classes of r1, . . . , r5, or
else c2. This order was decided based on preliminary trials
using the training set. The augmenter also reports the
fraction of requirements among r1 . . . r5 that belong to the
class of the augmentation.

It is important to remark that Assigner and
Augmenter are not two independent modules, as the latter
considers solely the top-3 classes produced by the former to
provide its recommendation. In principle, we could have
used as output the ranked list of classes produced by the
Assigner, and let the requirements analyst select the right
class. However, this was not considered sufficiently useful by
the company, who required more reliable suggestions. The

Vehicle TeamTender
Document

produces

Requirement
Document

produces

Requirements
Manager

Annotated Document
(Requirements & Information)

allocate to

Requirements
Manager

1

2

Teams

accept/reject

3

Fig. 2: Requirements flow in the studied context

Augmenter module was thus introduced to increase the
confidence in the output of the Assigner, or to suggest a
better reflection on its output when disagreements occur with
the Augmenter. In addition, the Augmenter’s output is
also more interpretable, as it depends on lexical
features [16].

For k-means clustering, the optimal k is determined with
the elbow method. For kNN, we select the five nearest
neighbors to have a manageable size of similar requirements.
Only the top-3 classes of the Assigner are considered to
avoid information overload. These values have been tuned
through preliminary trials.

IV. EVALUATION

Our evaluation is conducted by means of a case study,
following the guidelines of Runeson et al. [35] for reporting.

A. Study Context

This study is conducted in close collaboration with
Alstom, a railway vehicle manufacturing company with sites
around the globe. Developing a railway vehicle requires the
development of several sub-systems—such as alarm control,
door control, traction, and propulsion control—that must
comply with different regulatory, regional, and customer
requirements. When agreed-upon customer specifications for
a vehicle are derived, they must be assigned to their
respective teams—often geographically distributed—for
implementation and rigorous testing. The assignment of the
requirements is done using a requirements management tool,
and the respective team might accept or reject the allocation.
If teams are assigned requirements unrelated to their teams,
the allocation is rejected. This creates longer feedback
cycles, and therefore, Alstom is looking for smart
approaches to assist engineers in allocation. This is expected
to reduce human errors as well. Below, we discuss a typical
flow of requirements in Alstom.

Many of the projects at Alstom start with an answer to a
call for tender. As shown in Figure 2, after the successful
project acquisition, the vehicle team internalizes and extracts
potential requirements from the tender documents [36]. The
documents typically contain chunks of text, normally in
English, which includes requirements and supplementary

18%
15%

14%
14%

8%
6%

4%
3%
3%

3%
3%

3%
3%
2%
2%

0 100 200 300
High Voltage

CCTV System
Drives

Doors Control
Infrastructure Testing

Industrial Design
Entertainment System

Electro Magnetic Compatibility
Sanitary System
Standard design

Integrated Logistic Support
Operability

Converter Control
Converters

Systems

No. of Requirements

Te
am

s

Fig. 3: Requirements distribution over teams in the data

TABLE I: Datasets

Dataset Reqs. AW APP Train Test
Complete data 1680 32 17 1344 336
Top-5 labels data 1124 31 17 900 224
* AW= Avg. words, APP= Avg. words in pre-processed reqs.
Train= Training requirements, Test= Test requirements

information to explain the requirements 1 . A typical
document consists of 600 to 1800 individual chunks of text.
Manual labeling is performed by the requirements analyst to
distinguish between requirements and information. This
produces an annotated requirements document 2 . After
requirements are identified, they are assigned to 15+ teams
for implementation and testing. This study is focused on
improving step 3 to assist the requirements analyst in
allocation and possibly reduce the rejection of allocations
from the teams.

B. Research Questions

Our goal is to first identify the best ML pipelines to
support accurate allocation. The best pipelines will be used
as part of the Assigner. As different ML algorithms may
perform differently depending on the use of preprocessing,
we also want to analyze the impact of preprocessing on the
performance. In addition, since the observed performance for
BERT-based approaches—which are the ones achieving the
best results—could depend on the coverage of the
requirements-specific vocabulary by the LMs, we also
investigate whether a relationship exists between vocabulary
coverage and performance. Finally, based on the best
pipelines identified, we want to measure the performance of
the Augmenter in terms of consistent recommendations
and misleading ones. According to the rationales above, we
formulate the following research questions (RQs).

• RQ1. Which requirements classification pipeline yields
the most accurate results on our data?

• RQ2. What is the impact of pre-processing on the results?
• RQ3. What is the coverage of our domain’s vocabulary

in BERT-based language models?
• RQ4. What is the performance of the augmentations

generated by the approach?

C. Data collection & Preparation

We had access to six recent and representative
requirements documents at the company. The documents
already had ground truth on team allocations of the
requirements. In addition, all the non-requirement text in the
document was also tagged. We prepared all the requirements
(excluding non-requirements) from the six documents using
the following steps. First, we removed duplicates across all
documents. Then, we found some requirements being
assigned to more than one team. As these cases were around
15%—low in number for training multi-label classifiers—we
considered only the top team as the label after agreement
with the industrial partner. As shown in Table I in the Reqs.
column, a final set of 1,680 requirements was reached. All
the 1,680 requirements were allocated to 15 teams, as shown
in Figure 3. For cross-validation of the potential results, we
created five random stratified folds, selecting 20% (336
requirements) of the data as a test set. As shown in Figure 3,
our dataset is imbalanced since around 70% of the
requirements in our data are allocated to the top-5 teams.
Classification pipelines typically perform worse on
imbalanced data. Therefore, as shown in the last row of
Table I, we also considered the requirements allocated to
top-5 teams only. The folds for top-5 teams also resulted in
around 20% of the data (224 requirements) in the test set.

D. Experimental Setup

To answer the RQs, we considered all the approaches
listed in Section II. We also included a random pipeline for
comparison. Note that for each pipeline, we use the
recommended best configuration for a fair comparison [37],
[38]. Below, we detail all the pipelines selected and
implemented for the evaluation.

a) Weighted Random (W. Rand.): this pipeline is
configured to generate a random number between 1 and 100
with equal probability. We extract ranges for each team in
the training set based on their frequency of occurrence in
descending order. The generated random number is mapped
to a team based on the extracted ranges. For example, team
‘Systems’ with the frequency of occurrence in allocation is
18%, and if the generated random number is between 1 and
18, then the input requirement from the test set will be
allocated to team ‘Systems’. For the next team, ‘Converters’,
the allocation frequency of ‘Converters’ is 15%, and if the
generated random number is between 19 and 33, an
allocation is predicted for team ‘Converters’, and so on.

b) Lexical Approaches: include traditional ML-based
algorithms for text classification described in Section II. For
the selection of the optimal hyperparameters, we apply
random multi-search optimization [38]. Each algorithm is
implemented in a separate pipeline with optimal
hyperparameters. Typically, ML algorithms like SVM and
LR are binary classifiers. However, in our case, we applied
meta-strategy One-vs-Rest to perform multi-class
classification. We applied multiple settings to get the best
results from ML algorithms. SVM and LR perform better on

evaluation metrics when trained with normalized tf-idf
vectors, reduced with PCA. The rest of the ML
pipelines—DT, RF, and MNB—achieved better results with
normalized tf-idf vectors without PCA applied.

c) Semantic Approaches: include the ones listed in
Section II. For the evaluation of LSTM’s network
performance on our data, we used custom-trained FT’s
skip-gram model for requirement representation. To train the
FT model, we get the best results when the word embedding
dimension is set to 100, window size—maximum distance
between a current and predicted word within a sequence—is
set to 3, and with 20 epochs. We employ a two-layered
LSTM network for training on the custom FT embeddings.
We found the optimal hyperparameters using Adam
optimizer [39] with a learning rate set to 0.001 with an
objective set to reduce the training loss function. We employ
a dropout layer after every LSTM layer with a dropout rate
of 0.1, which randomly drop units with their connections to
prevent over-fitting. Additionally, maximum sequence, batch,
and epochs are set as 128, 32, and 10, respectively.

To prepare the dataset for fine-tuning of BERT-based
classifiers, we utilize a BERT WordPiece tokenizer to split
the words in a requirement either into one word per token or
into word pieces—where one word is split into multiple
tokens. For input representation, the tokenizer encodes
input-ids—token indices for each requirement—, pad and
truncate requirements with respect to the defined maximum
requirement length. Furthermore, the BERT tokenizer
prepends a [CLS] token at the start of each requirement and
appends a [SEP] token at the end to indicate the end of the
requirement. The additional tokens represent a requirement
as a single vector. We fine-tuned the BERT models with
multiple hyperparameter configurations, as follows. To
optimize the weights during fine-tuning of the BERT
network, we used AdamW-optimizer—an adaption of
Adam—with weight decay set to 0.01. To avoid catastrophic
forgetting of BERT pre-trained knowledge, instead of
aggressive learning rates, we used a maximal learning rate of
2e-05. We tried multiple batch sizes (16, 32, 64).
Experiments show that a batch size of 16 performed best
across all runs. A practical maximum sequence size of 128
is used across all the BERT pipelines due to computational
constraints. We set the epochs to 10. The intuition behind
selecting a relatively high number of epochs on a small
dataset is because of the fact that BERT’s common
one-size-fits-all (three-epochs) practice for fine-tuning is
sub-optimal and needs more training time for stabilization of
the training network [37]. Some studies in the literature
opted for an even bigger number of epochs (e.g., [15]), but
we argue it might cause over-fitting.

For the Augmenter, we generated tf-idf vectors and
applied PCA. For computing the optimal k for k-means, we
use the elbow method. We plot the derivatives of the
distortions across k, with k ranging from 1 to 10. An
optimal k based on the elbow point was detected at k = 3
for all runs.

We performed stratified 5-fold cross-validation for the 15
classes, and for the top-5 classes. We implemented and
executed the pipelines both with and without pre-processing.

E. Evaluation Metrics

We use the standard metrics, Precision (P), Recall (R), F1
score, and Accuracy (A) to evaluate the performance of
different requirements classification approaches with and
without pre-processing (RQ1 and RQ2). Since our dataset
appears to be highly imbalanced, we report both macro and
weighted average scores. To answer RQ3, we report the
proportion of the out-of-vocabulary words in each
BERT-based LM in relation to the weighted F1 observed for
classification. Finally, to answer RQ4, we also use P, R, F1,
and A, considering a prediction to be correct when the
generated augmentation belongs to the true class of the
requirement r to be allocated. Basically, we evaluate
Assigner and Augmenter independently, and we
arguably consider the output of the Augmenter as correct
also when this correctly predicts the true class, but it
disagrees with the Assigner. Indeed, in these cases, the
requirements analyst can still find the true class as part of
the Augmenter’s output and take a decision.

F. Implementation

For the implementation of the experimental setup, we used
Python. We use transformers library to fine-tune BERT LMs
for the downstream classification task, Scikit-learn [40] for
traditional ML approaches, NLTK 1 and SpaCy 2 for text pre-
processing.

V. RESULTS & DISCUSSION

Table II and Table III show the results of the stratified
5-fold cross-validation for the complete data and the top-5
most frequent classes, respectively. Pipeline names starting
with ‘p’ indicates that pre-processing was applied. The setup
column shows the setup of the pipeline execution. In both
tables, we show the best-performing pipeline in bold and
with an asterisk. In the following, we discuss the best results
based on weighted measures, as done by other studies [14],
[15]. For completeness, we also report macro averages.

RQ1. As shown in Table II, SciBERT outperforms all
other pipelines in terms of weighted F1=.67, followed by
BERT cased and uncased (F1=.66). Best weighted P and R
are also similar for the two pipelines. The effectiveness of
SciBERT could be explained by its large vocabulary
compared to other BERT-based pipelines. In general, it is
rather clear that semantic approaches, excluding LSTM, have
an average performance that is higher with respect to lexical
ones when it comes to unbalanced datasets, as the one that
we obtain when considering all the 15 classes. Results do
not change when considering the macro-average. One
exception is SVM, which performs well in terms of macro
P=.73, though it suffers from poor R rates. This indicates

1Available online, https://www.nltk.org/
2Available online, https://spacy.io/usage/v2

TABLE II: Pipelines performance on all the requirements

Pipeline Setup Weighted Average Macro Average Avg. A.
P R F1 P R F1 A

W. Rand. .11 .11 .11 .07 .07 .07 .11
SVM Norm., PCA .65 .62 .60 .73 .53 .58 .64
pSVM Norm., PCA .66 .64 .62 .72 .56 .60 .65
MNB Norm. .56 .53 .47 .55 .31 .32 .52
pMNB Norm. .54 .54 .48 .50 .31 .32 .54

DT Norm. .48 .46 .46 .50 .46 .47 .46
pDT Norm. .49 .48 .48 .50 .46 .46 .48
LR Norm., PCA .64 .59 .56 .71 .43 .48 .59
pLR Norm., PCA .65 .61 .58 .73 .47 .51 .61
RF Norm. .61 .58 .57 .69 .52 .57 .58
pRF Norm. .61 .59 .58 .69 .54 .58 .59

SciBERT* uncased .68 .67 .67 .71 .66 .67 .67
pSciBERT uncased .64 .64 .63 .69 .61 .63 .64
RoBERTa base .66 .66 .65 .70 .64 .65 .66
pRoBERTa base .61 .61 .58 .64 .54 .55 .61

BERT base, cased .67 .67 .66 .69 .63 .64 .67
pBERT base, cased .65 .64 .62 .73 .57 .60 .64
BERT base, uncased .68 .68 .66 .73 .63 .65 .68
pBERT base, uncased .67 .66 .64 .71 .62 .64 .66
LSTM FT custom .53 .50 .49 .48 .43 .43 .50

pLSTM FT custom .58 .57 .56 .57 .54 .53 .57

TABLE III: Pipelines performance on the subset of requirements allocated to top-5 most frequently occurring teams

Pipeline Setup Weighted Average Macro Average Avg. A.
P R F1 P R F1 A

W. Rand. .21 .21 .21 .20 .20 .20 .21
pSVM Norm., PCA .76 .74 .74 .78 .73 .75 .75
pMNB Norm. .77 .73 .73 .80 .70 .72 .73
pDT Norm. .61 .60 .60 .61 .60 .61 .60
pLR Norm., PCA .76 .74 .74 .79 .72 .74 .74
pRF Norm. .70 .68 .68 .72 .67 .68 .68

SciBERT uncased .76 .75 .75 .77 .75 .76 .75
RoBERTa base .76 .75 .75 .77 .75 .76 .75

BERT base, cased .77 .76 .76 .79 .76 .77 .76
BERT* base, uncased .77 .77 .76 .78 .77 .77 .77
pLSTM FT custom .68 .65 .65 .67 .65 .64 .66

TABLE IV: Vocabulary coverage for the BERT pipelines

Model Vocab. UW OOV W. F1
SciBERT uncased 31090 6919 4057 (59%) .67
RoBERTa cased 50265 7618 6041 (79%) .65
BERT cased 28996 7618 4720 (62%) .66
BERT uncased 30522 6919 4079 (59%) .66

UW= Unique Words in Data, OOV= Out of Vocabulary

that false positives are limited for SVM, even for the less
represented classes, whose contribution is emphasised with
macro averages. Overall, SVM-based pipelines also
outperform most lexical pipelines. This is in line with the
results presented in the literature (e.g., [14]).

Based on the subset of top-5 teams’ data, shown in
Table III, the BERT uncased classifier outperforms all other
pipelines (F1=.76). That means that with more balanced
data, BERT uncased could be a more appropriate choice.
Nevertheless, it is also tightly followed by RoBERTa and
SciBERT (F1=.75). Among the lexical approaches, pSVM
has the best performance (F1=.74). Large language models
often require high-end hardware for fine-tuning, and

therefore, we argue that SVM-based pipelines would be best
suited for smaller companies with constrained computational
resources.

Answer to RQ1: BERT uncased, and SciBERT
pipelines outperform all other pipelines for
requirements allocation via classification. RoBERTa
also performs well when considering the top-5 classes,
i.e., a more balanced dataset. However, SVM-based
pipelines closely follow semantic approaches in terms
of performance.

RQ2. Table II shows the results of all pipelines, both with
and without pre-processing. All the lexical pipelines clearly
show a slight increase in F1 when pre-processing is applied.
LSTM also shows a more substantial increase in
performance across all metrics when preprocessing is applied
(F1 from .49 to .56). For the BERT family, pre-processing
shows a negative impact on the results. A decrease across all
metrics could clearly be observed when pre-processing is
applied to any of the pipelines from the BERT family. This
can be explained by the BERT’s use of stop words for

TABLE V: Performance results of Augmenter

Pipeline Data Weighted Average Macro Average Avg. A. Cases
P R F1 P R F1 A ✓ X

SciBERT
uncased All 0.68 0.67 0.67 0.70 0.65 0.66 0.67 0.31 0.27

BERT base
uncased Top-5 Teams 0.77 0.76 0.76 0.78 0.76 0.77 0.76 0.44 0.20

contextual learning. Indeed, BERT learns bidirectional
representation from requirements by joint conditioning on
both left and right contexts. The stop words provide enough
contextual information and receive the same attention as
other non-stop words.

Answer to RQ2: Pre-processing (with stop-words
removal and lemmatization) shows a positive impact on
the performance of traditional ML-based and
LSTM-based pipelines. BERT-based pipelines for
requirements allocation show a decrease in performance
after pre-processing.

RQ3. Table IV shows all the pre-trained language models
that the transformer-based pipelines utilise for fine-tuning.
The Vocab. column shows the size of the vocabulary of the
pre-trained models; the UW column shows the unique words
in our dataset; the OOV column shows the out-of-vocabulary
words that exist in our data but aren’t found in the
pre-trained language models; and the W. F1 column shows
the best weighted F1 from Table II.

Based on the data presented in Table IV, around 65% of
the unique words in our dataset could not be found in the
pre-trained models. The best weighted F1 score is found with
the SciBERT and BERT LMs, where most words from our
dataset are not OOV (on average 60% OOV words). No huge
difference between the results can be observed. This could
be explained by how BERT-based LMs handle OOV words
using sub-word information. However, the semantic meaning
of the in-vocabulary word deteriorates when the word is
found as a sub-string in the OOV word [41]. Therefore,
clearly, there is a need for industry-specific language models
for software engineering-related downstream tasks. There are
some models trained on public software engineering-specific
data, such as BERTOverflow and CodeBERT, which are,
however, not designed for classification (cf. Sect. II). Based
on the results, we believe that these models could improve
the performance of the approach if they are adapted to the
domain and the task. We will assess this hypothesis in future
work, keeping in mind that challenges exist when adapting
large LMs to specific domains [41].

Answer to RQ3: On average, around 65% of the unique
words from our dataset are out of the vocabulary in the
pre-trained language models. This calls for more studies
on adapting large language models to industry-specific
data.

RQ4. As shown in Table V, we coupled the Augmenter

with the best-performing pipelines for all classes (SciBERT)
and top-5 classes (BERT). On average, the Augmenter
generated augmentations in 98% of the cases, thereby
identifying a dominant class within the ones of the five most
similar requirements (not shown in the table). When
considering all the classes, the Augmenter achieves
F1=.67, while for the top-5 classes F1=.76. This suggests
that, independently of the prediction of the Assigner, the
Augmenter will provide a useful suggestion in a
substantial number of cases. It is worth noting that this does
not mean that the Augmenter has comparable performance
with the Assigner, since the output of the Augmenter
depends on the top-3 classes produced by the Assigner. In
other words, the Augmenter cannot function independently
of the Assigner.

When the Assigner incorrectly predicts the class, the
Augmenter disagrees and outputs the right class in 31% of
the cases (all classes) and in 44% of the cases (top-5
classes)—cf. ✓column. This further supports the potential
usefulness of the Augmenter. On average, an agreement,
but with incorrect predictions, is observed in 23% of the
cases (X column). Reducing these cases is particularly
important. Indeed, while in case of disagreement, the analyst
must think better about the tool’s output, in case of incorrect
agreement, the analyst could be misled in the allocation. In
the studied context, generating additional augmentations is
favored by engineers as it is expected to lead to
well-informed allocation. However, a rigorous evaluation of
the approach in a human-in-the-loop scenario is needed and
is planned as part of future work.

Answer to RQ4: The augmentations produce correct
recommendations with weighted F1=.67 (all classes)
and weighted F1=.76 (top-5). On average, the
Augmenter achieved an accuracy of around 71%. When
wrong predictions are produced by the Assigner,
correct predictions are produced by the Augmenter in
31% of the cases (all classes) and in 44% of the cases
(top-5).

VI. RELATED WORK

This paper is concerned with requirements allocation to
different teams through automated classification. In the broad
field of NLP for requirements engineering (RE),
classification is the second most common task, right after
defect detection, according to the mapping study on NLP for
RE by Zhao et al. [10]. Furthermore, the systematic
literature review of Binkhona and Zhao [42], specifically

focused on automatic requirements classification, identifies
about 24 different approaches and 16 different algorithms
used. Most of the studies provide solutions to distinguish
between functional (FRs) and non-functional requirements
(NFRs, or “quality”), and especially considering different
NFR classes, such as security, performance, usability,
etc. [14], [15], [19], [43]–[47]. Within this group, several
studies compare multiple language representations, and
existing ML algorithms [16]–[18], [48], [49]. A limited set
of contributions also aim to identify different classes of FRs,
e.g., to facilitate allocation and definition of architectural
models [20], [21]. In the following, we will summarise
prominent works in the three groups. Though there are also
works focusing on the classification of security
requirements(e.g., [50], [51]), and on distinguishing between
requirements and other types of information [11]–[13], these
are not discussed here, as their task is substantially different
from ours.

a) Classification of FRs vs. NFRs, and NFRs
sub-classes: One of the earliest contributions in this group is
the study by Cleland-Huang et al. [43], [44], which proposes
to use a set of key-terms to identify different classes of
NFRs. This study introduces the PROMISE NFR
dataset [22], which has been widely used as a benchmark by
the research community. More recently, Kurtanović and
Maalej [14] apply SVM to requirements classification on the
same dataset. They select characterising meta-data, lexical,
and syntactical features and then apply SVM, achieving
performance above 90% in terms of precision and recall.
Dalpiaz et al. [16] reconstruct this study and manually label
1,500+ requirements from the PROMISE dataset and others.
They use SVM to support classification, using interpretable
linguistic features, as the explainability of automated
algorithms is considered particularly important in RE. More
recent studies introduce the use of DL methods to bypass the
time-consuming task of feature engineering, which affects
classical ML methods. Among the works using DL, it is
worth mentioning the use of convolutional neural networks
(CNN) by Navarro et al. [46] together with language
representations based on pre-trained word2vec embeddings
of the words found in the requirements. Aldhafer et al. [47]
proposes the usage of another DL approach, namely
Bidirectional Gated Recurrent Neural Networks (BiGRU), to
classify requirements using their raw text. The advent of
transfer learning has seen the widespread usage of the
BERT model [30] for language representation and
classification. BERT is a generic language model trained on
a vast amount of domain-generic natural language texts,
which is then fine-tuned with additional training examples
from a specific downstream task—in our case, requirements
classification. Among others, BERT is used by Hey et
al. [15], achieving state-of-the-art performance, similar to
Kurtanović and Maalej [14], on the PROMISE dataset.

b) Comparative Works: Slankas et al. [17] present one
of the earliest comparative studies in which different
supervised algorithms, namely SVM, KNN, and Naive Bayes

(NB) are compared on the PROMISE dataset, achieving the
best performance with SVM. Later, Abad et al. [48] compare
different ML techniques, namely Latent Dirichlet Allocation
(LDA), Biterm Topic Model (BTM), Hierarchical, K-means,
Hybrid and Binarized Naı̈ve Bayes (BNB) to distinguish
between different NFRs classes using the PROMISE dataset.
Best performance is obtained with BNB. In another work,
Mahmoud et al. [18] compare different semantic techniques
to measure the similarity between requirements to enable the
identification of different NFR classes. Unsupervised
techniques, namely Latent semantic analysis (LSA) and
Normalized Google Distance (NGD) are found to be the
most effective similarity measures. As these techniques are
unsupervised and require no labeled datasets for training.
Focusing on requirements representation impact, Amasaki et
al. [49] compare five vector-based representation methods
(Term Frequency (tf), tf-idf, Sparse Composite Document
Vectors, word2vec and Doc2Vec) and four supervised
classification methods, i.e., Logistic Regression (LR), NB,
SVM, and RF. When these methods are used to classify FRs
vs. NFRs, SVM performs well regardless of representation
methods. Still, on requirements representation, the recent
work of Alhoshan et al. [19] compares multiple language
models, and use the unsupervised zero-shot learning
approach on the PROMISE dataset, achieving performance
that is comparable with other supervised methods [14], [15].

c) Requirements Allocation: Studies on the
classification of requirements into sub-classes to facilitate
allocation and architecture decomposition—a similar task to
ours—are limited in the literature. Among them, Casamayor
et al. [21] compares the performance of different clustering
algorithms, namely Expectation–maximization (EM),
COBWEB, X-Means, and DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) on three sample use
case-based requirements specifications, achieving best results
(F1 > 80%) with EM. Another set of studies is dedicated to
issue (typically bug) allocation to developers or teams in
issue tracking systems [20], [52]. Among them, Aktas et
al. [20] report the development of an SVM-based classifier
and its application to an industrial case in the finance
domain, achieving an F1 score of 80%. On the same task,
Jonsson et al. [52] used an ensemble learner named Stacked
Generalization (SG) on data from two different companies,
achieving an accuracy of 89%.

Contribution: Compared to works on the classification
of NFRs and comparative studies, we also use transfer
learning techniques as the most recent works [15], [19].
However, our study differs in terms of focus, in that we aim
to classify requirements into subsystem-related categories to
enable allocation, as in the last group of works discussed in
this section. With respect to Casamayor et al. [21], we use a
substantially larger dataset and more advanced
state-of-the-art algorithms. Compared to studies on issue
assignment [20], [52], we work with different artifacts, i.e.,
natural language requirements. This is also one of the few
works using an industrial dataset for requirements

classification. Furthermore, our proposal also generates
additional augmentations to support informed allocation.

VII. THREATS TO VALIDITY

Construct Validity. We cast the requirements allocation
problem as a multi-class text classification problem. Initially,
our dataset contained some requirements that were allocated
to multiple teams. We did not account for requirements that
were allocated to multiple teams and only limited the
allocation to a single team, i.e., a one-to-one assignment.
This was done after a discussion with the company. As the
number of requirements allocated to multiple teams is rare,
we argue that those cases would be insufficient for training
multi-label multi-class classifiers. In line with the literature,
precision, recall, F1, and accuracy are used to assess the
performance of the two modules of the proposed approach.

Internal Validity To mitigate potential internal validity
threats, we followed the recommended hyperparameters
setting for the pipelines [37], [38]. Additionally, we used
standard libraries for the implementation and for computing
the metrics. Furthermore, we designed the pipelines in
varying configurations and selected the best-performing one
as a final candidate for evaluation. Finally, we include
authors from diverse backgrounds in validating the study
design and experiment setup. Nevertheless, typically machine
learning-based pipelines include a higher degree of
randomness, and therefore, results may vary in different
execution of the same pipelines. To account for the
randomness in approaches, we used five-fold
cross-validation.

External Validity Our results are based on data from one
big railway manufacturing company. Furthermore, we only
have limited access to six documents containing 1,680
requirements. While we argue that the six documents were a
good representative of requirements documents at the
company and that Alstom is a representative of the railway
industry, the results might not generalize beyond our studied
context. Nevertheless, in the lens of the guidelines for
case-based generalization [53], our results might be
applicable to similar domains, e.g., railway and automotive
industries.

VIII. CONCLUSION AND FUTURE DIRECTIONS

Requirements allocation is a typical task in large
distributed companies with multiple teams, which can, in
principle, be supported by automated classification
approaches. However, there is a lack of empirical evidence
on using classification for requirements allocation in
industrial contexts. In this paper, we presented the REQA
approach and its evaluation at Alstom, a railway company.
Our approach makes use of transfer learning-based language
models to assign requirements to various teams at the
company. Furthermore, it also uses traditional lexical
clustering to generate useful supplementary information to
enable more informed allocation.

In the future, we aim to qualitatively evaluate our
approach and especially the augmentation components with
users from Alstom. We also plan to explore the domain
adaptability (re-training and its impact) of large
transformer-based language models on downstream tasks,
including requirements allocation and retrieval.

Acknowledgement. This work is partially funded by the
AIDOaRt (KDT) and SmartDelta [54] (ITEA) projects.

REFERENCES

[1] R. W. Selby, “Enabling reuse-based software development of large-scale
systems,” IEEE Transactions on Software Engineering, vol. 31, no. 6,
pp. 495–510, 2005.

[2] D. Šmite, C. Wohlin, T. Gorschek, and R. Feldt, “Empirical evidence in
global software engineering: a systematic review,” Empirical software
engineering, vol. 15, no. 1, pp. 91–118, 2010.

[3] J. Bosch, “Software product lines: organizational alternatives,” in
Proceedings of the 23rd International Conference on Software
Engineering. ICSE 2001. IEEE, 2001, pp. 91–100.

[4] “EN 50128 – Railway applications – Communication, signalling and
processing systems – Software for railway control and protection
systems,” CENELEC, June 2011.

[5] M. Abbas, R. Jongeling, C. Lindskog, E. P. Enoiu, M. Saadatmand, and
D. Sundmark, “Product line adoption in industry: An experience report
from the railway domain,” in Proceedings of the 24th ACM Conference
on Systems and Software Product Line: Volume A - Volume A, ser. SPLC
’20. New York, NY, USA: ACM, 2020.

[6] A. Ferrari, A. Fantechi, S. Gnesi, and G. Magnani, “Model-based
development and formal methods in the railway industry,” IEEE
software, vol. 30, no. 3, pp. 28–34, 2013.

[7] M. Abbas, A. Ferrari, A. Shatnawi, E. Enoiu, M. Saadatmand, and
D. Sundmark, “On the relationship between similar requirements and
similar software: A case study in the railway domain,” Requirements
Engineering, vol. 28, no. 1, pp. 23–47, 2023.

[8] D. M. Berry, “Empirical evaluation of tools for hairy requirements
engineering tasks,” Empirical Software Engineering, vol. 26, no. 6, pp.
1–77, 2021.

[9] M. Kassab, C. Neill, and P. Laplante, “State of practice in requirements
engineering: contemporary data,” Innovations in Systems and Software
Engineering, vol. 10, no. 4, pp. 235–241, 2014.

[10] L. Zhao, W. Alhoshan, A. Ferrari, K. J. Letsholo, M. A. Ajagbe, E.-
V. Chioasca, and R. T. Batista-Navarro, “Natural language processing
for requirements engineering: A systematic mapping study,” ACM
Computing Surveys (CSUR), vol. 54, no. 3, pp. 1–41, 2021.

[11] J. Winkler and A. Vogelsang, “Automatic classification of requirements
based on convolutional neural networks,” in 2016 IEEE 24th
International Requirements Engineering Conference Workshops (REW).
IEEE, 2016, pp. 39–45.

[12] S. Abualhaija, C. Arora, M. Sabetzadeh, L. C. Briand, and M. Traynor,
“Automated demarcation of requirements in textual specifications: a
machine learning-based approach,” Empirical Software Engineering,
vol. 25, no. 6, pp. 5454–5497, 2020.

[13] A. Sainani, P. R. Anish, V. Joshi, and S. Ghaisas, “Extracting and
classifying requirements from software engineering contracts,” in 2020
IEEE 28th International Requirements Engineering Conference (RE).
IEEE, 2020, pp. 147–157.

[14] Z. Kurtanović and W. Maalej, “Automatically classifying functional
and non-functional requirements using supervised machine learning,”
in 2017 IEEE 25th International Requirements Engineering Conference
(RE). Ieee, 2017, pp. 490–495.

[15] T. Hey, J. Keim, A. Koziolek, and W. F. Tichy, “Norbert:
Transfer learning for requirements classification,” in 2020 IEEE 28th
International Requirements Engineering Conference (RE). IEEE, 2020,
pp. 169–179.

[16] F. Dalpiaz, D. Dell’Anna, F. B. Aydemir, and S. Çevikol, “Requirements
classification with interpretable machine learning and dependency
parsing,” in 2019 IEEE 27th International Requirements Engineering
Conference (RE). IEEE, 2019, pp. 142–152.

[17] J. Slankas and L. Williams, “Automated extraction of non-functional
requirements in available documentation,” in 2013 1st International
workshop on natural language analysis in software engineering
(NaturaLiSE). IEEE, 2013, pp. 9–16.

[18] A. Mahmoud and G. Williams, “Detecting, classifying, and tracing non-
functional software requirements,” Requirements Engineering, vol. 21,
no. 3, pp. 357–381, 2016.

[19] W. Alhoshan, A. Ferrari, and L. Zhao, “Zero-shot learning for
requirements classification: An exploratory study,” Information and
Software Technology, p. 107202, 2023.

[20] E. U. Aktas and C. Yilmaz, “Automated issue assignment: results
and insights from an industrial case,” Empirical Software Engineering,
vol. 25, no. 5, pp. 3544–3589, 2020.

[21] A. Casamayor, D. Godoy, and M. Campo, “Functional grouping of
natural language requirements for assistance in architectural software
design,” Knowledge-Based Systems, vol. 30, pp. 78–86, 2012.

[22] J. Cleland-Huang, S. Mazrouee, H. Liguo, and D. Port, “NFR,” Mar.
2007. [Online]. Available: https://doi.org/10.5281/zenodo.268542

[23] M. Abbas, A. Ferrari, A. Shatnawi, E. P. Enoiu, and M. Saadatmand,
“Is requirements similarity a good proxy for software similarity?
an empirical investigation in industry,” in Requirements Engineering:
Foundation for Software Quality, F. Dalpiaz and P. Spoletini, Eds.
Cham: Springer International Publishing, 2021, pp. 3–18.

[24] M. Abbas, M. Saadatmand, E. Enoiu, D. Sundamark, and C. Lindskog,
“Automated reuse recommendation of product line assets based
on natural language requirements,” in Reuse in Emerging Software
Engineering Practices, S. Ben Sassi, S. Ducasse, and H. Mili, Eds.
Cham: Springer International Publishing, 2020, pp. 173–189.

[25] K. Crammer and Y. Singer, “On the algorithmic implementation of
multiclass kernel-based vector machines,” Journal of machine learning
research, vol. 2, no. Dec, pp. 265–292, 2001.

[26] I. Rish et al., “An empirical study of the naive bayes classifier,” in IJCAI
2001 workshop on empirical methods in artificial intelligence, vol. 3,
no. 22, 2001, pp. 41–46.

[27] D. G. Kleinbaum, K. Dietz, M. Gail, M. Klein, and M. Klein, Logistic
regression. Springer, 2002.

[28] B. Charbuty and A. Abdulazeez, “Classification based on decision
tree algorithm for machine learning,” Journal of Applied Science and
Technology Trends, vol. 2, no. 01, pp. 20–28, 2021.

[29] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Transactions of the association for
computational linguistics, vol. 5, pp. 135–146, 2017.

[30] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[31] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[32] I. Beltagy, K. Lo, and A. Cohan, “Scibert: A pretrained language model
for scientific text,” arXiv preprint arXiv:1903.10676, 2019.

[33] J. Tabassum, M. Maddela, W. Xu, and A. Ritter, “Code and named
entity recognition in StackOverflow,” in Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics. ACL, 2020,
pp. 4913–4926.

[34] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[35] P. Runeson and M. Höst, “Guidelines for conducting and reporting
case study research in software engineering,” Empirical Software
Engineering, vol. 14, no. 2, 2009.

[36] S. Bashir, M. Abbas, M. Saadatmand, E. P. Enoiu, M. Bohlin, and
P. Lindberg, “Requirement or not, that is the question: A case from the
railway industry,” in Requirements Engineering: Foundation for Software
Quality, A. Ferrari and B. Penzenstadler, Eds. Cham: Springer Nature
Switzerland, 2023, pp. 105–121.

[37] T. Zhang, F. Wu, A. Katiyar, K. Q. Weinberger, and Y. Artzi, “Revisiting
few-sample bert fine-tuning,” arXiv preprint arXiv:2006.05987, 2020.

[38] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” Journal of Machine Learning Research, vol. 13, no. 10,
pp. 281–305, 2012.

[39] K. Diederik and J. A. Ba, “A method for stochastic optimization. arxiv
2014,” arXiv preprint arXiv:1412.6980, 2015.

[40] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of machine learning
research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[41] A. Nayak, H. Timmapathini, K. Ponnalagu, and V. G. Venkoparao,
“Domain adaptation challenges of bert in tokenization and sub-word
representations of out-of-vocabulary words,” in Proceedings of the First
Workshop on Insights from Negative Results in NLP, 2020, pp. 1–5.

[42] M. Binkhonain and L. Zhao, “A review of machine learning algorithms
for identification and classification of non-functional requirements,”
Expert Systems with Applications: X, vol. 1, p. 100001, 2019.

[43] J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc, “Automated
classification of non-functional requirements,” Requirements
engineering, vol. 12, no. 2, pp. 103–120, 2007.

[44] J. Cleland Huang, R. Settimi, X. Zou, and P. Solc, “The detection
and classification of non-functional requirements with application to
early aspects,” in 14th IEEE International Requirements Engineering
Conference (RE’06). IEEE, 2006, pp. 39–48.

[45] A. Casamayor, D. Godoy, and M. Campo, “Identification of non-
functional requirements in textual specifications: A semi-supervised
learning approach,” Information and Software Technology, vol. 52, no. 4,
pp. 436–445, 2010.

[46] R. Navarro-Almanza, R. Juarez-Ramirez, and G. Licea, “Towards
supporting software engineering using deep learning: A case of software
requirements classification,” in 2017 5th International Conference in
Software Engineering Research and Innovation (CONISOFT). IEEE,
2017, pp. 116–120.

[47] O. AlDhafer, I. Ahmad, and S. Mahmood, “An end-to-end deep learning
system for requirements classification using recurrent neural networks,”
Information and Software Technology, vol. 147, p. 106877, 2022.

[48] Z. S. H. Abad, O. Karras, P. Ghazi, M. Glinz, G. Ruhe, and K. Schneider,
“What works better? a study of classifying requirements,” in 2017 IEEE
25th International Requirements Engineering Conference (RE). IEEE,
2017, pp. 496–501.

[49] S. Amasaki and P. Leelaprute, “The effects of vectorization methods
on non-functional requirements classification,” in 2018 44th Euromicro
Conference on Software Engineering and Advanced Applications
(SEAA). IEEE, 2018, pp. 175–182.

[50] N. Munaiah, A. Meneely, and P. K. Murukannaiah, “A domain-
independent model for identifying security requirements,” in 2017 IEEE
25th International Requirements Engineering Conference (RE). IEEE,
2017, pp. 506–511.

[51] V. Varenov and A. Gabdrahmanov, “Security requirements classification
into groups using nlp transformers,” in 2021 IEEE 29th International
Requirements Engineering Conference Workshops (REW). IEEE, 2021,
pp. 444–450.

[52] L. Jonsson, M. Borg, D. Broman, K. Sandahl, S. Eldh, and P. Runeson,
“Automated bug assignment: Ensemble-based machine learning in large
scale industrial contexts,” Empirical Software Engineering, vol. 21,
no. 4, pp. 1533–1578, 2016.

[53] R. Wieringa and M. Daneva, “Six strategies for generalizing software
engineering theories,” Science of computer programming, vol. 101, pp.
136–152, 2015.

[54] M. Saadatmand, E. P. Enoiu, H. Schlingloff, M. Felderer, and
W. Afzal, “Smartdelta: Automated quality assurance and optimization
in incremental industrial software systems development,” in 25th
Euromicro Conference on Digital System Design (DSD), 2022.

