
Resource Adaptation for Real-Time Containers
Considering Quality of Control

Václav Struhár1, Mohammad Ashjaei1, Moris Behnam1, Alessandro V. Papadopoulos1, Silviu S. Craciunas2

1Mälardalen University, Västerås, Sweden;
2TTTech Computertechnik AG, Vienna, Austria

Abstract—Container-based virtualization has become a
promising deployment model for industrial applications mainly
due to its benefits, such as providing support for co-located appli-
cations in heterogeneous environments. However, such facilitation
brings challenges, including full temporal isolation among real-
time applications and support for time-critical applications. In
this paper, we tackle such challenges, in particular when the ap-
plications are time-sensitive Control Applications. The literature
suggests that flexible timing constraints for Control Applications
are beneficial in responding to disturbances and minimizing re-
sponse deviation. Therefore, we propose a mechanism to support
such a runtime adaptation in container-based virtualization. To
show the performance of the proposed mechanism, we implement
our approach on a Linux-based hierarchical scheduling platform,
and we evaluate it for a Control application.

I. INTRODUCTION

The deployment of virtualized applications in heteroge-
neous environments with minimal overhead and near-native
performance is made possible by container-based virtualiza-
tion, which shows promise in industrial settings [1], [2], [3],
[4]. Container-based virtualization is a lightweight virtualiza-
tion technology that allows applications to run in isolated
environments, sharing the host operating system’s kernel,
enabling efficient resource utilization and easy deployment.
Container-based virtualization brings several benefits, includ-
ing easier application deployment and management, optimized
hardware utilization, and increased application flexibility and
scalability. This technology also enables the development of
microservices-based applications, facilitating agile develop-
ment, efficient resource utilization, and improved fault iso-
lation. However, despite its advantages, container-based vir-
tualization can pose challenges for applications that require
stringent temporal behavior and predictability. This shortcom-
ing can hinder the utilization of containers for time-sensitive
controllers which have timing requirements.

Industrial domains often leverage controllers to control
the behavior of various systems, such as industrial robots
and vehicles. Traditionally, controllers are designed as digital
controllers with fixed timing behavior (e.g., fixed periods and
deadlines for the control) [5]. Several works [6], [7] show
that flexible timing constraints are beneficial in responding to
disturbances and minimizing response deviations. Moreover,
flexibility can lead to better resource utilization, both in com-
putation and communication. Similarly, in the control com-
munity, event-based controllers [8] have also been proposed
with the idea of computing new control actions only when

necessary, i.e., triggered by specific events, leading to lower
utilization of the computing and communication resources.

The implementation of controllers with flexible timing
constraints is not straightforward in container-based virtual-
ization that uses static resource reservation. The change in
timing constraints must be reflected in the resource reservation
for the real-time container hosting the virtualized controller.
Additionally, container-based virtualization is known for its
imperfect temporal isolation, which leads to timing distur-
bances in virtualized applications. These challenges in the cur-
rent container-based virtualization technologies hinder a full-
fledged utilization of them in time-sensitive control systems
where the system dynamics have to be considered for a better
Quality of Control (QoC).

This paper tackles the challenges mentioned above by
proposing a resource adaptation mechanism for real-time con-
tainers to improve the QoC [9] for virtualized controllers while
minimizing the resource utilization for computing new control
actions. The main goal of the proposed mechanism is to dy-
namically adjust the timing constraints of a flexible controller
together with the adaptation of the resource reservation for
real-time containers.

The resource reservation has to reflect the change in the
timing constraints in the sense that the shorter control period
requires a higher resource reservation and vice versa for the
longer control period. Adjustment of the timing constraints
and resource reservation is done jointly to obtain improved
resource utilization and, at the same time, to improve the
QoC. In this setup, each control function resides in a real-
time container. The proposed mechanism is based on existing
work on flexible control, e.g., [6], [7], to be used together
with dynamic resource reservation for real-time containers.
The concrete contributions of this paper are as follows:
• We propose a mechanism to dynamically adapt the Control

Application’s timing constraints, including the control sam-
pling rates, together with the resource reservation of real-
time containers. Adjustment of timing constraints may lead
to improved QoC [6].

• We implement the proposed mechanism in the hierarchical
control group scheduler patch (HCBS) [10] on Linux. This
enables Docker containers to host controllers with flexible
timing constraints.

• We experimentally evaluate the performance of the proposed
mechanism on an example of a Control Application. We
demonstrate that such an adaptation, together with the
resource reservation in real-time containers, will lead to



better responses to disturbances in the Control Application,
as well as minimize response deviations.

This paper is structured as follows. Section II reviews the
related literature. Section III presents the technical background
on resource adaptation for real-time containers and on control
using flexible constraints. Section IV proposed an adaptive
virtualized controller, while Section V evaluates the feasibility
of the adaptive virtualized controller. Finally, in Section VII
we conclude the paper and present an outlook on future work.

II. RELATED WORK

There have been several proposals related to support for
real-time applications in container-based virtualization that can
be a foundation for the virtualization of control applications.
Moreover, several works have addressed the challenges of dy-
namic resource reservation for container-based virtualization.
In addition, the field of control theory focuses on flexible
timing constraints. In this section, we briefly present these
proposals to position the contribution of this paper.

Resource adaptation for containers: Several works focus
on resource adaptation (also known as vertical scaling) for
containers in the presence of performance losses. For instance,
the work in [11] proposes a framework that, through a con-
troller hierarchy, dynamically adjusts the resources of real-
time containers to match the required performance levels. In
this work, the HCBS patch [10] is utilized to implement the
adaptation mechanisms. Moreover, the work in [12] proposes
ElasticDocker, a system that automatically scales Docker con-
tainers vertically based on the current workload of container-
ized applications. ElasticDocker monitors the performance
of containers at runtime and dynamically changes resource
reservations to adapt to the dynamic changes via a threshold-
based algorithm. The work presented in [13] proposes metrics
to measure the performance of real-time containers. The
paper describes a container orchestration framework based on
Kubernetes that uses real-time metrics for container placement
decisions. Rossi et al. [14] uses reinforcement learning to
enable adaptive runtime deployment without manually tuning
container-based applications using horizontal and vertical elas-
ticity. The work of Shekhar et al. [15] proposes a data-driven
approach by machine learning to create predictive system
performance runtime models that can be adapted to workload
changes.

Controllers with flexible timing constraints: The work
in [6] argues that static timing constraints hinder controllers
from adapting to changing system dynamics, resulting in sub-
optimal results since higher execution rates that can more
quickly react to disturbances waste resources when the system
is at an equilibrium. Furthermore, the work in [16] argues that
there is a need to add flexibility in real-time control loops,
since, previously, systems have been based on static analysis
and design under the assumption that the controllers execute in
a predictable (hardware and software) environment. However,
the authors in [16] argue that hardware platforms and operating
systems tend to be commercial-off-the-shelf (COTS) products

no error

V
ir
tu

al
iz

ed
C
on

tr
ol

 A
p
p
lic

at
io

n
C
PU

 r
es

er
va

ti
on

R
T
 C

on
ta

in
er

no errorerror

time

desired system response

High CPU reservation Low

sampling instances

actual system response

Low

Fig. 1. The control period and resource reservation change in relation to the
entity of the error (adapted from [6]).

with poor real-time specifications that are typically tailored
to improve average-case performance rather than predictable
worst-case performance.

Our work aims to bridge the gap between these two dis-
tinguished research areas of dynamic resource adaptation for
container-based virtualization and control with flexible timing
constraints to better utilize computational resources.

III. TECHNICAL BACKGROUND

This section aims to provide a comprehensive overview of
technical concepts related to the control with flexible timing
constraints and resource reservation for real-time containers.

A. Control with flexible timing constraints

Classical closed-loop control applications that have a static
execution rate assume that the sampling and actuation rates
are constant over the lifetime of the system. The chain
of (i) measuring the controlled variable, (ii) computing the
control signal, and (iii) applying the computed value to the
actuators is triggered by a single periodic source of events [17].
Not only is the choice of the rate of sensing, computing,
and actuating crucial for the correct operation of the system
but this rate must also be maintained between successive
execution instances of the control loop in order to ensure
system stability and meet the QoC objectives [5]. In principle,
it may be possible to use different rates of execution for
the control, but typically control system designers adhere to
one value that has been computed at design time. Translated
into real-time requirements, the sensing, control, and actuation
actions are expressed as periodic tasks (with the task period
being equal to the period of the control) with implicit or
constrained deadlines that are mainly used to restrict the
completion times of tasks [6]. Marti et al. [6] demonstrates that
being able to adapt the rate of execution and, therefore, the
timing constraints for control tasks can lead to better control
by allowing faster reactions to transient disturbances. Fig. 1
illustrates control period instances and the error (represented
by the shaded area) in the closed-loop system that was induced



by a perturbation. The figure shows that the controller executes
a control algorithm more frequently at instants with a high
quantity of perturbation.

B. Resource reservation for real-time containers

Techniques such as container-based virtualization have
emerged as interesting mechanisms to be used in complex em-
bedded systems [10], [18], [19]. Container-based virtualization
uses mechanisms of the host operating system (e.g., cgroups
in Linux) to provide spatial isolation of tasks and control
their bandwidth access to, e.g., CPU and memory. Improving
the timing predictability of container-based virtualization has
been attempted, e.g., via PREEMPT RT patch [20], [21],
real-time co-kernel such as Xenomai [22], or RTAI [23].
Several real-time scheduling mechanisms can be employed
to ensure temporal isolation amongst virtualized components
sharing the same physical resource. One such approach is the
Compositional Scheduling Framework [24], which is imple-
mented in Linux as the Hierarchical Control Group Scheduler
(HCBS) [10].

HCBS uses a reservation-based algorithm in which at each
replenishment period (Pk), each container (k) is assigned a
maximum budget (or runtime) Qk. The scheduler guarantees
that the container will be able to execute the reserved budget
within the period but not exceed it, thus not interfering
with the resource allocation of other co-located containers.
HCBS uses static resource reservation that a system designer
typically determines before the system starts. Therefore, the
system cannot respond to dynamic changes such as changes
in workload or the need to execute the controller at a higher
(or lower) rate. Additionally, container-based virtualization
is prone to timing disturbances due to shared platforms of
co-located containers [25], [15], [26], [27]. In instances of
changing workloads or interference from other components,
static reservation may lead to timing violations. Conversely,
not being able to adapt the rate of execution may lead to either
insufficient resource usage or a degrading of QoC.

IV. QOC CONTROLLER

In this section, we present the design of a QoC controller
targeting time-critical Control Applications. We design the
QoC controller to automatically change the timing constraint
of the virtualized application and, at the same time, adjust the
container’s resource reservation to the varying QoC metrics
expressing the performance of the virtualized Control Applica-
tion. The overall concept is presented in Fig. 2, which consists
of four elements. These elements include (i) a real-time (RT)
container that encompasses the Control Application, (ii) the
Control Application itself that is responsible for controlling the
system under control, (iii) the Plant, which is the target system
to be controlled by the Control Application, and (iv) the QoC
Controller which is responsible for adaptation in the resources
and timing constraints for improving the performance of the
Control Applications. Following, we describe the elements in
more detail.

QoC
Controller 

Control
Application 

Plant

RT Container
QoC

Sampling rate

Resource reservation

Resource adjustment

Control Period
Controller

CLM

Resource Reservation
Controller

Interference Mitigation

Fig. 2. System overview containing QoC Controller and its modules, real-
time container hosting a Control Application, and a plant.

Real-time container (RT container): Real-time contain-
ers provide a separate and secure environment for running
software applications, and they are designed to ensure the
temporal predictability of the system. We use the HCBS
patch [10] for the implementation of real-time containers that
allow for a static reservation of computing resources. We
use Docker, which is a platform that enables the packaging,
configuration, and execution of applications via container-
based virtualization technology (e.g., utilizing Linux features
cgroups and namespaces). Developers can bundle applications
and their dependencies into containers that can be ported and
run on any machine that has Docker installed. This makes
it easy to deploy in various environments. In terms of real-
time behavior, each of the real-time containers (k) has a
CPU reservation Qk that is replenished every period Pk, as
described above. Once the budget is exhausted, the container
will be suspended until the next replenishment period.

In order to ensure the schedulability of the system, the
following condition must be fulfilled

∑n
k=1 Pk/Qk ≤ 1,

where n is a number of co-located containers in a physical
platform. In our case, schedulability refers to all containers
being able to execute until their deadlines, which are assumed
to be implicit, i.e., they are equal to the container period.

The Control Application: The Control Application is
implemented as a periodic real-time task that performs com-
putations at predefined intervals (not only a single interval)
determined by the system designer [17]. The shorter the
interval, the better the QoC, and the more computational power
required. This can be a limiting factor for embedded systems
with limited resources. Nevertheless, this is a typical trade-
off in real-time systems in which more resources will lead
to better performance; however, the available resources are
typically limited. Therefore, resource management becomes an
important issue to handle, in particular dynamically, to support
the system’s dynamicity.

The Plant: The term plant refers to the physical instance
or mathematical model of the system being controlled. The



continuous-time behavior of the plant is sampled at regular
intervals through sensors.

QoC Controller The primary objective of the QoC con-
troller, as depicted in Fig. 2, is to optimize the performance of
the Control Application through the execution of four distinct
functions: (i) a function to adjust timing constraints of the
virtualized Control Application based on its QoC metrics, (ii)
a container’s resource reservation, (iii) interference mitigation,
and (iv) communication with co-located QoC controllers.

Timing constraints adjustment refers to the adaptation of
control periods for control applications based on QoC metrics.
It refers to the adjustment of the control period. In particular,
QoC can be improved by sampling the state of the plant
more frequently by decreasing the period of control, resulting
in more precise control actions. This is particularly useful
for handling transients. However, if the QoC is fairly good,
the frequency at which the controller takes action may be
decreased, which in turn releases computing resources for
other co-located controllers.

The resource allocation function is responsible for adjusting
the time constraints of the container resource reservation based
on current requirements and real-time performance. It can
either increase or decrease the resource allocation accordingly.
This function dynamically adjusts the allocation of CPU re-
sources to meet the changing demand of the Control Applica-
tion. The interference mitigation function aims to compensate
for performance losses caused by co-located containers, which
can result in unpredictable interference, and to optimize the
provisioned CPU resources. In the next section, we provide
a detailed analysis of the performance of these functions
within the QoC controller. Lastly, the communication function
ensures fair distribution of CPU resources among co-located
QoC controllers and prevents the over-reservation of available
resources.

A. Control Period Controller

The Control Period Controller continuously observes the
Control Application’s QoC metric and, based on this metric,
the controller determines the control period.
QoC metric measurement: The performance of the Control
Application can be expressed as a QoC cost function computed
as follows:

QoC(t) =
∫ t

t−h

∥ydes(t)− yact(t)∥2 (1)

where, ydes(t) is the setpoint, i.e., the desired behavior of
the controlled variable yact(t), and t − h is the time the last
control action has been taken. Note that high values of QoC
correspond to poor controller performance and low values of
QoC correspond to good performance.

The controller determines the difference between the cur-
rent (yact) and desired (ydest) states of the controller system,
then generates a control signal with the aim of bringing the
difference to zero. The instantaneous value of QoC can be used
to evaluate the current performance of the controller, and it can
be used to adjust the control period of the controller.

TABLE I
THRESHOLD OF QOC CONTROLLER.

QoC Control Period Container Budget
Low Very High Very High
Normal Normal Normal
High Low Low
Very High Very Low Very Low

Control period calculation: To implement the controller, we
chose a threshold controller as our control system. A threshold
controller functions by comparing a measured quantity, specif-
ically the QoC, to a predefined threshold or setpoint value.
When the measured quantity exceeds the threshold value, the
controller initiates appropriate actions to modify the system
and bring the measured quantity back within the desired
range. The thresholds for the QoC controller are described
in Table I. We assume that the thresholds are defined by a
system designer.

B. Resource Reservation Controller

Based on the decision of the Control Period Controller, the
resource reservation controller adjusts the resource reserva-
tions for the real-time container. It adjusts the resource reser-
vation by modifying the period and budget of the containers.

Similarly to the Control Period Controller, the Resource
reservation controller employs threshold-based rules to pro-
vision and de-provision resources for the RT containers, as
shown in Table I.

C. Interference Mitigation

The resource adjustment function acts as a bridge between
the ideal container resource reservation, which is based on
simplified models, and the actual dynamic behavior of the
containers. The performance of containers can be negatively
impacted by the presence of co-located containers. This issue
becomes particularly significant in systems like the one ex-
amined in this article, where co-located containers experience
significant variations in their workload. When containers are
colocated on shared platforms, they may compete for shared
resources that may introduce timing disturbances, such as
cache misses, memory and bus contention, and translation
look-aside buffers [15], which are discussed in [11].

Hence, the resource adaptation function in the system dy-
namically modifies the CPU resources allocated to real-time
containers by continuously assessing their real-time perfor-
mance. Its primary objective is to counteract the unforeseen
interference caused by co-located containers. To evaluate real-
time performance, the system uses container-level metrics
(CLM) introduced in a previous work [13]. These metrics
include response time and missed deadlines. By measuring
and readjusting the CPU bandwidth reservation for containers,
this function compensates for performance losses within a
computing node. Its purpose is to ensure that the control
application meets the specified response time in the presence
of interference that may cause the execution time to exceed



the worst-case assumption that was used to check the system
schedulability.

D. Communication with other controllers

Due to the limited CPU resources on physical platforms, it is
essential for the system to monitor the available CPU resources
that can be allocated among real-time (RT) containers based
on predefined policies. The problem is the fact that there are
limited resources if multiple co-located Control Applications
face an increase in QoC values, and the controller can not
independently increase the control period. As depicted in
Fig. 3, there are multiple QoC controllers that adjust the
control period and CPU resources for its corresponding real-
time containers.

QoC
Controller 

C
PU

 R
es

o
u
rc

es

RT Container

QoC
Controller 

RT Container

QoC
Controller 

RT Container

Control
Application 

Resource reservation
Policy

Fig. 3. Multiple controllers.

V. EXPERIMENTAL EVALUATION

In this section, we present an experiment that evaluates
the feasibility of controlling the control periods and CPU
resources based on the QoC values. We conducted an ex-
perimental demonstration of the adaptation process utilizing
an Intel i5 computer equipped with 8GB of RAM, running
Debian Linux (Kernel version 5.2.8) that was patched with
the HCBS, and running Docker v20.10.

In this experiment, we used the inverted pendulum use case
to show the performance of the designed control system. An
inverted pendulum is a widely studied use-case in control
theory, which involves a pendulum anchored on a platform
(cart) that can move along a track in one dimension (along
the x-axis). The governing equations for the inverted pendulum
given in the literature (e.g. [28, p. 43]) are:{

(M +m)ẍ+ bẋ+mlθ̈ cos θ −mlθ̇2 sin θ = F

(I +ml2)θ̈ +mgl sin θ = −mlẍ cos θ
(2)

where M are the masses of the cart and pendulum, respec-
tively, b represents the friction coefficient, l is the length
of the pendulum, I represents the moment of inertia of the
pendulum, F is the force that is applied to the entire cart, x
is the position of the cart, and θ is the angle of the pendulum
beam. The pendulum is balanced in an inverted position, which
means that its center of mass is directly above the pivot point.
The control loop tries to maintain the inverted pendulum in
balance while also maintaining a given position of the cart by
actuating the force applied to the cart along the x-axis. We use
a virtualized PID controller as a Control Application. Fig. 5
illustrates a system consisting of an uncontrolled inverted
pendulum.

Pe
n
d
u
lu

m
 S

ta
te

Stream of Images

Force

C
on

tr
ol

 A
ct

io
n

QoC
Controller 

Control
Application 

RT Container

Fig. 4. Inverted pendulum experiment.

-0.5
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5

0 1 2 3 4 5 6 7 8 9 10

theta [rad]

time [s]

x [m]

Fig. 5. Inverted pendulum use-case.

The setting of the inverted pendulum experiment is depicted
in Fig. 4. We developed a pendulum simulator that is equipped
with a (virtual) camera that produces images of the pendulum.
The camera streams the pendulum images into the controlled
system. The controller utilizes image processing algorithms to
analyze the image stream and infer the state of the pendulum.
The stream of images is processed by the OpenCV library,
which is a computer vision toolkit that offers a range of
functions and algorithms specifically designed for real-time
object detection and tracking. Using the OpenCV library, the
controller captures the image feed from a camera and applies
image-processing techniques to detect the position and angle
of the pendulum. This information is used to calculate the
appropriate control actions to keep the pendulum upright. The
algorithm uses a template matching to locate the tip of the
pendulum, its base, and the left corner of the cart as indicated
in Fig. 4. The processing of the images is a non-trivial action
that requires properly allocated CPU resources.

The results of the inverted pendulum experiment are il-
lustrated in Fig. 6. In all sub-figures, the y-axis presents
the measured values, while the x-axis is the time instance
we measured each value. In this experiment, we have the
pendulum not in the upright position at the beginning. Then,
after equilibrium, at time instance 300, we intentionally make
the pendulum unbalanced again to see how the QoC value
develops again.

Based on this experiment, Fig. 6.a shows the QoC values
and instant errors of the control. Initially, the pendulum is
not situated in the desired upright and balanced position,
leading to a significant error between the desired and actual
state. As time progresses, the pendulum converges towards its
setpoint, resulting in the reduction of the error and QoC. At



0 50 100 150 200 250 300 350 400 450 500
0

2,000

4,000

6,000

8,000

Job nr.

Q
oC

(a) QoC

QoC High
Medium Low

0 50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

Job nr.

C
on

tr
ol

Pe
ri

od
[m

s]

(b) Control Period

Control Period LOW NORMAL
HIGH EXTRA HIGH

0 50 100 150 200 250 300 350 400 450 500
0

5

10

Job nr.

C
PU

B
ud

ge
t

[u
s]

(c) CPU Budget

CPU Budget LOW NORMAL
HIGH EXTRA HIGH

0 50 100 150 200 250 300 350 400 450 500
0

5

10

Job nr.

R
es

po
ns

e
Ti

m
e

[m
s]

(d) Response time

Response Time

Fig. 6. Experimental results for the inverted pendulum experiment.

time instance 300 the pendulum is perturbed, leading to an
increase in error and QoC again. We divided the QoC range
into four thresholds that classify the level of QoC: Low (for
QoC lower than 500), Normal (when it is 2000), High (when
it is 5000), and Very High (QoC higher than 5000). Note that
these values are selected based on the use-case which can vary
depending on the system under control. The development of
QoC values shows that the quality can reach the Low range
when the pendulum becomes stable. In general, Fig. 6.a shows
that the Control Application within the container performs as
expected.

Fig. 6.b shows the corresponding control period. The value
for the control period is based on the QoC value. With the
decreasing QoC value, while the pendulum is converging to
equilibrium, the control period increases. This will reduce
computing resource utilization as there is no need for frequent
control of the system. At time instance 300, the control period
decreases again to perform a better control on the pendulum,
which is not in equilibrium again. This is necessary because
there is a need for more frequent control of the system.

Fig. 6.c shows the CPU budget. Similarly to the control
period, the CPU budget value is based on the QoC value. With
decreasing QoC value, the CPU budget reservation decreases.
The CPU budget decreases to decrease the computing resource
utilization when the pendulum becomes stable, i.e., there is
no need for frequent control. Note that increasing the period
and decreasing the budget significantly reduces computing
resource utilization. Finally, Fig. 6.d shows the response
time of the container that consists of the image processing
part and the control action. The value depends on the CPU
budget reservation. Allocating more CPU budget decreases the
response time.

VI. IMPLEMENTATION ON LINUX

In order to demonstrate the feasibility and behavior of
the system, we have integrated the suggested QoC-aware
controller into the Debian GNU/Linux 10 (buster) operating
system patched with the HCBS patch. This patch enables
the management of resources for containers during runtime
without the need for modifications of the container runtime.
We have enhanced the Linux Kernel by incorporating the
adaptability of CPU resources for RT containers based on the
QoC values. While the HCBS patch allows static configuration
of CPU budget and CPU period for containers, our supple-
mentary modifications enable dynamic adjustment of CPU
resources for RT containers during runtime. The cornerstone of
the Kernel extension is a set of custom syscalls that are being
called from a containerized Control Application. Based on the
syscalls, the Kernel adjusts the control period and resource
reservation. The containerized application is a C application
that generates an infinite sequence of jobs. Each job measures
controlled variables and computes the value of the control
signal. After the completion of the job, the application is
suspended until the time of the next job activation (using
clock nanosleep()). The application communicates with the
Linux kernel via syscalls, which computes error and QoC



then actuates the CPU budget for the real-time containers and
control period. An overview of custom syscalls is as follows:
• Application Initialization: It is called after the application

is started and sets initializes variables and constants for the
control mechanism in Linux Kernel: QoC values, the QoC
thresholds, periods, and CPU budgets.

• Job Activation: This syscall is called right after a job is
activated (waked up). It captures the job activation time,
that is used for computing job response time.

• Job Finished: It is called on the completion of the job.
It computes error as the difference between the desired
and actual states. And computes current QoC as shown in
Equation 1.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a resource adaptation approach
that takes into account the QoC for real-time containers.
Container-based virtualization offers significant benefits for
the deployment of industrial applications. However, address-
ing challenges such as ensuring complete temporal isola-
tion among real-time applications and supporting time-critical
applications becomes crucial, particularly in scenarios with
varying workloads. This paper proposes a mechanism to
dynamically adapt timing constraints and resource reservations
in order to improve the QoC for time-sensitive control applica-
tions. The proposed mechanism is implemented and evaluated
on a Linux-based hierarchical scheduling platform. The results
obtained from the evaluation demonstrate the feasibility of our
approach, where the controller modifies the timing constraints
of the virtualized control application and updates the resource
reservation for the hosting container accordingly. With an
experiment using an inverted pendulum, we show that it is
possible to control the pendulum while simultaneously adjust-
ing the utilization of computing resources during the control
process. This capability has a direct impact on optimizing
computing resource usage.

There are several interesting directions for future work. In
this paper, we have presented a resource adaptation mecha-
nism for real-time containers considering the QoC. However,
more complex control, decision, and predictive algorithms are
needed to capture more complex scenarios. An ongoing work
targets systems that have multiple virtualized controllers.

REFERENCES

[1] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and
C. A. F. De Rose, “Performance evaluation of container-based virtual-
ization for high performance computing environments,” in Euromicro
Int. Conf. on Par., Distr., and Netw. Proc. (PDP), 2013.

[2] M. G. Xavier, M. V. Neves, and C. A. F. De Rose, “A performance
comparison of container-based virtualization systems for mapreduce
clusters,” in Euromicro Int. Conf. on Par., Distr., and Netw. Proc. (PDP),
2014.

[3] F. Ramalho and A. Neto, “Virtualization at the network edge: A
performance comparison,” in IEEE Int. Symp. A World of Wirel., Mob.
and Multim. Net. (WoWMoM), 2016.

[4] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated perfor-
mance comparison of virtual machines and Linux containers,” in IEEE
Int. Symp. on Perf. Analysis of Syst. and Soft. (ISPASS), 2015.

[5] B. Wittenmark, K. J. Åström, and K.-E. Årzén, “Computer control: An
overview,” IFAC Professional Brief, 2002.

[6] P. Marti, J. M. Fuertes, G. Fohler, and K. Ramamritham, “Improving
quality-of-control using flexible timing constraints: metric and schedul-
ing,” in 23rd IEEE Real-Time Systems Symposium, 2002. RTSS 2002.
IEEE, 2002.

[7] G. Fohler, “Dynamic timing constraints - relaxing overconstraining
specifications of real-time systems,” 2001.

[8] K. J. Åström, Event Based Control. Springer Berlin Heidelberg, 2008.
[9] M. Barzegaran, A. Cervin, and P. Pop, “Towards quality-of-control-

aware scheduling of industrial applications on fog computing platforms,”
in Proceedings of the Workshop on Fog Computing and the IoT, ser. IoT-
Fog ’19. Association for Computing Machinery, 2019.

[10] L. Abeni, A. Balsini, and T. Cucinotta, “Container-based real-time
scheduling in the linux kernel,” ACM SIGBED Review, 2019.

[11] V. Struhár, S. S. Craciunas, M. Ashjaei, M. Behnam, and A. V.
Papadopoulos, “Hierarchical resource orchestration framework for real-
time containers,” 2023.

[12] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Autonomic
vertical elasticity of docker containers with elasticdocker,” in 2017 IEEE
10th international conference on cloud computing (CLOUD). IEEE,
2017.

[13] V. Struhár, S. S. Craciunas, M. Ashjaei, M. Behnam, and A. V.
Papadopoulos, “React: Enabling real-time container orchestration,” in
2021 26th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA). IEEE, 2021.

[14] F. Rossi, M. Nardelli, and V. Cardellini, “Horizontal and vertical scaling
of container-based applications using reinforcement learning,” in 2019
IEEE 12th International Conference on Cloud Computing (CLOUD).
IEEE, 2019.

[15] S. Shekhar, H. Abdel-Aziz, A. Bhattacharjee, A. Gokhale, and X. Kout-
soukos, “Performance interference-aware vertical elasticity for cloud-
hosted latency-sensitive applications,” in 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD). IEEE, 2018.

[16] A. Cervin, “Integrated control and real-time scheduling,” Ph.D. disser-
tation, Univ., 2003.

[17] A. Leva and A. V. Papadopoulos, “Tuning of event-based industrial
controllers with simple stability guarantees,” Journal of Process Control,
2013.

[18] A. Celesti, D. Mulfari, M. Fazio, M. Villari, and A. Puliafito, “Exploring
container virtualization in iot clouds,” in 2016 IEEE international
conference on Smart Computing (SMARTCOMP). IEEE, 2016.

[19] A. V. Papadopoulos, M. Maggio, A. Leva, and E. Bini, “Hard real-time
guarantees in feedback-based resource reservations,” Real-Time Systems,
2015.

[20] A. Moga, T. Sivanthi, and C. Franke, “Os-level virtualization for
industrial automation systems: are we there yet?” in SAC ’16, 2016.

[21] T. Goldschmidt, S. Hauck-Stattelmann, S. Malakuti, and S. Grüner,
“Container-based architecture for flexible industrial control applica-
tions,” 2018.

[22] T. Tasci, J. Melcher, and A. Verl, “A container-based architecture for
real-time control applications,” in 2018 IEEE International Conference
on Engineering, Technology and Innovation (ICE/ITMC). IEEE, 2018.

[23] M. Cinque, R. Della Corte, A. Eliso, and A. Pecchia, “Rt-cases:
Container-based virtualization for temporally separated mixed-criticality
task sets,” in 31st Euromicro Conference on Real-Time Systems (ECRTS
2019), 2019.

[24] I. Shin and I. Lee, “Compositional real-time scheduling framework,” in
25th IEEE International Real-Time Systems Symposium. IEEE, 2004.

[25] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis,
“Heracles: Improving resource efficiency at scale,” in Proceedings of the
42nd Annual International Symposium on Computer Architecture, 2015.

[26] S. K. Garg and J. Lakshmi, “Workload performance and interference
on containers,” in 2017 IEEE SmartWorld, Ubiquitous Intelligence &
Computing, Advanced & Trusted Computed, Scalable Computing &
Communications, Cloud & Big Data Computing, Internet of People and
Smart City Innovation, 2017.

[27] P. Sharma, L. Chaufournier, P. Shenoy, and Y. Tay, “Containers and
virtual machines at scale: A comparative study,” in Proceedings of the
17th international middleware conference, 2016.

[28] G. Conte, C. Moog, and A. Perdon, Algebraic Methods for Nonlin-
ear Control Systems, ser. Communications and Control Engineering.
Springer London.


