
Consistency Before Availability: Network Reference
Point based Failure Detection for Controller

Redundancy
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Abstract—Distributed control systems constitute the automa-
tion solution backbone in domains where downtime is costly.
Redundancy reduces the risk of faults leading to unplanned
downtime. The Industry 4.0 appetite to utilize the device-to-cloud
continuum increases the interest in network-based hardware-
agnostic controller software. Functionality, such as controller
redundancy, must adhere to the new ground rules of pure
network dependency. In a standby controller redundancy, only
one controller is the active primary. When the primary fails,
the backup takes over. A typical network-based failure detection
uses a cyclic message with a known interval, a.k.a. a heartbeat.
Such a failure detection interprets heartbeat absences as a
failure of the supervisee; consequently, a network partitioning
could be indistinguishable from a node failure. Hence, in a
network partitioning situation, a conventional heartbeat-based
failure detection causes more than one active controller in the
redundancy set, resulting in inconsistent outputs. We present a
failure detection algorithm that uses network reference points
to prevent network partitioning from leading to dual primary
controllers. In other words, a failure detection that prioritizes
consistency before availability.

I. INTRODUCTION

Distributed control systems (DCSs) progress toward more
network-oriented architectures where switched Ethernet in
combination with OPC UA1 constitute the interoperabil-
ity communication backbone in future automation installa-
tions [1]. A progression observable through the increase of
Ethernet solutions and decrease of fieldbus installations [2],
[3].

The trajectory to network-centric architectures yields that
DCS controllers, denoted Distributed Control Nodes (DCN)
by the Open Process Automation Forum (OPAF), and Fieldbus
Communication Interfaces (FCI) will rely more on Ethernet.
Ethernet enables new controller deployment alternatives, such
as the execution of control applications in a virtualized context
in the cloud or in orchestrated embedded clusters [4], [5], [6].

DCN redundancy is an example of functionality that must
refrain from customized hardware dependency to avoid reduc-
ing deployment alternatives. Today, standby redundancy with
hardware duplication is a typical redundancy pattern in a DCS
context. One DCN is the active primary DCN, and the other
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is the passive backup DCN, ready to take the primary role in
case of failure of the current primary. Only the primary DCN
provides output values to I/O connected to the process and
physical world.

A common failure detection method is a heartbeat, a cyclic
message sent within a known interval from the supervisee to
the supervising [7]. The supervising node interprets heartbeat
timeout as a supervisee failure. We denote such a conventional
heartbeat-based failure detection Conv. FD.

In a DCN redundancy context, the supervisee is the primary
DCN, and the backup DCN is the supervising. The backup
DCN in a DCN redundancy pair using Conv. FD interprets
a heartbeat timeout as a primary DCN failure and resumes
the primary role. However, a timeout is not necessarily a
consequence of a primary DCN failure; it could follow from
a network failure causing a network partitioning between
the primary and backup DCN. Hence, in a network parti-
tioning situation, with a DCN redundancy using Conv. FD,
the partitioning causes the backup DCN to become primary
while the former primary remains primary, resulting in dual
primaries. A consequence of dual primaries is that both the
DCNs in the DCN redundancy pair control I/O values, causing
inconsistency.

DCN redundancy is typically used with network redundancy
to reduce the probability of communication failures. However,
the partitioning probability is not zero, not even with dupli-
cated networks. Hence, DCN redundancy based on Conv. FD
gives a dual primary probability larger than zero.

If the DCN redundancy cannot ensure a single primary, it
is better to have no output than conflicting outputs from dual
primaries. This prevents fluctuations in the controlled process
because I/O channels that expect DCN updated values will
output preconfigured values when updates are missing. This
setting is named Output Set as Predetermined (OSP) [8] in
ABB I/O system context, and the input channel equivalent
is Input Set as Predetermined (ISP), which the DCN control
application uses when input values are absent.

Fig. 1 shows a partitioning situation, with two network
failures F1 and F2 between the redundant DCN pair. Both
the DCNs (DCN A1 and DCN A2) take the primary role when
using Conv. FD and provide output values in the resulting dual
primary situation. FCI B gets output values from both DCNs.
Values that differ since the DCNs reach two different FCIs.
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Fig. 1. Example of a network failure causing a partitioning where both DCN
will become primary and drive output signals. The DCN redundancy recovery
time is typically between ten to hundred milliseconds.

DCN A1 reaches FCI A and B, while DCN A2 reaches FCI B
and C. Hence, the two DCNs will use different input values.
DCN A1 will use the ISP values instead of actual I/O values
from FCI C, while DCN A2 will use the actual I/O values
from FCI C. Vice versa applies to FCI A and the DCNs.

We address this problem by proposing a failure detection
algorithm that utilizes a Network Reference Point (NRP)
external to the DCNs to mitigate dual primary situations due
to network partitioning while striving to keep high availability.
We use the name NRP Failure Detection (NRP FD) for the
proposed algorithm.

The paper is structured as follows, Section II presents the
related work, and Section III describes NRP FD. Section IV
compares NRP FD and Conv. FD concerning the availability
and consistency tradeoff, followed by an experimental com-
parison of NRP FD and Conv. FD described in Section V.
Lastly, Section VI summarizes the paper.

II. RELATED WORK

The Consistency, Availability, and Partition tolerance (CAP)
theorem [9], [10] state that in case of partitioning, a distributed
system can be either consistent or available, not both. Lee
et al. present a modified version of CAP, the Consistency,
Availability, and apparent Latency (CAL) theorem [11], [12].
Using CAL, Lee et al. quantify consistency and availability
compromises under latency requirements. NRP FD preserves
consistency under network partitioning by ensuring one or no
primary, i.e., availability before consistency, further described
in Section III.

Failure detection is crucial in a standby redundancy solution,
and existing work ranges from the introduction of unreliable
failure detection concept [13] and failure detection Quality
of Service (QoS) attributes [14] to heartbeat optimizations
and improvements [15], [16]. However, none of these works
addresses differentiation between node and network failure,
which, as pointed out by van Steen [17], a failure detector
ideally should do. Distinguishing node and network failures
could solve the problem we address.

We have not found any scientific failure detection publica-
tion addressing the differentiation between node and network
failures in wired networks, but two patents that do. Charny et
al. [18] uses an alternative path to the node when failing to
reach the node on the first path, a solution that is similar to
the neighboring using approach van Steen [17] discuss. I.e.,

querying neighbors of the suspected node to learn if they can
reach it. Filsfils et al. [19] describe a Bidirectional Forwarding
Detection (BFD) based approach to distinguish network from
node failures using multiple BFD sessions over various disjoint
paths. BFD [20] is a protocol for quick link failure detection
between adjacent nodes, typically used by routers.

Ritter et al. [21] present a similar approach for ad-hoc
mobile wireless networks. A beacon node sends heartbeats to
all other nodes. The beacon’s closest neighbor, the buddy node,
supervises the beacon faster than the heartbeat interval. If the
buddy node does not hear the beacon, it tries an alternative
path, and if that also fails, the beacon node is assumed to
have failed. Otherwise, the network is considered partitioned.
Our work addresses partitioning without alternative paths. The
work described above would treat such partitioning as a node
failure and cause a dual primary situation, which we want to
avoid.

Failure detection in a redundant DCN context, with only
one backup, constitutes an implicit leader election. The Bully
algorithm [22] is one of the more famous leader election algo-
rithms, and many variants exist [23], [24], [25]. However, they
will all elect a leader per partition, i.e., provide availability
before consistency.

Quorum consensus protocols like Paxos [26], [27] and
Raft [28] provide consistency and tolerates (N − 1)/2 faults,
where N is the number of nodes. A redundant DCN only
requires two individual DCNs, N = 2, i.e., a consensus
protocol-based redundancy would not tolerate one fault if
N = 2, making quorum-based DCN redundancy meaningless.

Active redundancy means that all the nodes in the redundant
set are active [29], [30]. However, it pushes the decision of
which data to use to a selection function such as a voter, a
selection that needs to be made on the data consumers to be
partition tolerant, forcing DCN redundancy data handling to
all data consumers.

None of the related work covered solves the problem we
address, a real-time capable failure detection that prioritizes
consistency without requiring a DCN quorum while minimiz-
ing the availability compromise.

III. NETWORK REFERENCE POINT FAILURE DETECTION

A. Overview

NRP FD is a heartbeat-based failure detection with ad-
ditions. We describe it in the context of a redundant DCN
pair. A failed DCN is assumed to stop sending heartbeats.
Generalization and adaptation to more flexible redundancy
patterns are future work.

NRP FD provides consistency over availability, meaning
that both DCNs will not be primary due to multiple network
failures, but none might.

The NRP FD additions are (i) the usage of the NRP and
(ii) the optional utilization of temporal properties of received
heartbeats. We use the word network to describe a communica-
tion path between primary and backup DCN. NRP FD does not
dictate any requirement on the number of networks connecting
the primary and backup. In the description, we use a redundant
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Fig. 2. NRP in a system context where each DCN has one candidate per
network and the primary has appointed one NRP (switch A1).

network (two networks), exemplified in Fig. 2. NRP FD
assumes that the NRP is an individually accessible node in
the network infrastructure between primary and backup; in
practice, a managed switch. Each DCN in the redundant pair
has an NRP candidate per network; see Fig. 2. How NRP FD
is made aware of the NRP candidates is outside the algorithm’s
scope. Section III-B describes the considerations that apply to
the NRP candidates. Only one of the NRP candidates is the
NRP; selected by the primary.

Algorithm summary; the primary sends heartbeats on all
networks connecting the primary and the backup DCNs,
containing the IP address of the NRP that the primary has
selected. If the backup does not observe any heartbeat within
a timeout period, it checks if it can reach the NRP, and if it
can, it becomes the new primary, and if it cannot, it remains
passive.

We use the term PINGNRP for the NRP reachability test.
NRP FD is agnostic to the implementation behind PINGNRP.
To comply with COTS switches, the PINGNRP is limited
to communication means and protocols supported by most
managed industrial COTS switches; in practice, this means
using ICMP2 ping.

An ICMP ping does not have a bounded response time, but
NRP FD can guarantee a bounded reaction time by utilizing
temporal aspects of heartbeats received on the different net-
works. NRP FD can assume that a heartbeat silence is due
to a primary failure if heartbeats timeout simultaneously on
multiple networks and skip the PINGNRP. Note that this is
optional handling with the cost of a small risk of treating
simultaneous network failures as a failure of the primary.

A backup that does not use the simultaneous timeout
optimization or only has one functioning network always uses
the PINGNRP to determine if it should become the primary
in case of heartbeat silence.

In addition to the PINGNRP performed by the backup, NRP
FD prescribes that the primary checks if it can reach the NRP;
if it can’t, it tries to elect a new NRP from the NRP candidates.
If that fails, it surrenders the primary role.

If a backup does not receive heartbeats on the network of
the NRP but on other networks, the backup checks if the NRP
is reachable. If it is not, the backup proposes a switch of NRP
to the primary.

2https://www.rfc-editor.org/rfc/rfc792
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Fig. 3. NRP FD state machine.

Fig. 3 gives an overview of NRP FD, further described in
Section III-C.

B. Assumptions

NRP FD requires that the NRP (i) has no common cause
failure with the DCN and (ii) that the NRP is uniquely
addressable.

The NRP must not have any common cause failure with
the DCN, such as being powered by the same power supply
or using the same CPU for processing requests, such as ICMP
pings. That could be the case if the NRP were an embedded
switch mounted on the DCN hardware.

The DCN is assumed to have an IP address per network, and
the IP addresses of the partner DCN per network, are known
for each DCN. The NRP candidates’ IP addresses are pre-
configured and unique, making the NRP candidates uniquely
addressable.

C. Detailed description

We begin the detailed description with the startup and the
transition to the specific roles, followed by NRP selection.
Then, we continue with the actual failure detection, the (i)
backup - supervision handling, and the (ii) primary - super-
visee handling. Finally, the NRP change handling wraps up
the section.



1) Startup - init / waiting: Algorithm 1 describe the startup
and initial handling. It consists of the function BECOME-
WAITING that does three things (i) wait for available NRP
candidates, (ii) wait for acknowledgment to become primary
or a heartbeat from an existing primary, (iii) transition to the
primary or backup role.

WAITFORNRPCANDIDATES waits for at least one NRP
candidate to be available. Available means answering to
PINGNRP. When at least one NRP candidate is available,
the next step is to wait for either a heartbeat from an ex-
isting primary or an OK-to-be-primary acknowledgment. The
function HBORPRIMARYACK performs this wait. An operator
or maintenance engineer issues the primary acknowledgment,
okaying the DCN to become primary, mitigating the risk that
a DCN starting up in a partitioned network becomes primary.
The person issuing the acknowledgment must ensure that this
is not the case.

Algorithm 1 Startup - init / waiting
1: BECOMEWAITING( )
2: function BECOMEWAITING( )
3: WAITFORNRPCANDIDATES( )
4: do
5: do
6: hbOrAckSts← HBORPRIMARYACK( )
7: while hbOrAckSts ̸= HbOrPrimaryAck
8: if hbOrAckSts = AckToBePrimary then
9: BECOMEPRIMARY( )

10: else ▷ HB seen, become backup
11: BECOMEBACKUP( )
12: end if
13: while not(isPrimary OR isBackup)
14: end function
15: function WAITFORNRPCANDIDATES( )
16: do
17: MONITORNRP( ) ▷ See Algorithm 2
18: while reachableCandidates = {∅}
19: end function
20: function BECOMEPRIMARY
21: SELECTNRP( ) ▷ Select the NRP to use.
22: isPrimary ← TRUE
23: end function
24: function BECOMEBACKUP
25: SENDIMHERETOPRIMARY( )
26: isOwnIpInHb←WAITFOROWNADDRINHB(Tmo)
27: if isOwnIpInHb == TRUE then
28: isBackup← TRUE
29: else
30: isBackup← FALSE
31: end if
32: end function

2) BecomePrimary - transition to the primary role: The
transition to the primary role only consists of selecting an
NRP from the NRP candidates (reachableCandidates from

Algorithm 2), Line 20-23 in Algorithm 1. Any NRP candidate
reachable is selectable.

3) BecomeBackup - transition to the backup role: The
backup informs the primary of its presence, Line 25-27 in
Algorithm 1. Then, the backup waits for the primary to
acknowledge its presence by adding the IP address of the
backup to the heartbeat field Backups Known, see Table I. This
ensures that the backup does not resume the primary role due
to a failure when the primary is unaware of the backup. Since a
primary without backups will remain primary even if the NRP
reachability is lost. A backup is not a backup unless it sees
its address in the heartbeat field Backups Known, continuously
checked while in the backup state.

4) NRP selection and candidate monitoring: The set
reachableCandidates, contains the reachable NRP can-
didates; see Algorithm 2. The primary selects an NRP
from the reachableCandidates set as the NRP. The
reachableCandidates set is updated with a suitable interval,
for example, a few times per minute. Each network has an NRP
candidate. The algorithm description does not cover how NRP
FD becomes aware of NRP candidates; however, Section V-A
presents alternatives. The function GETCANDFORNW repre-
sents NRP candidate retrieval for a specific network nw.

Algorithm 2 NRP candidate monitoring
1: function MONITORNRP( )
2: reachableCandidates← {∅}
3: for all nw ∈ AllNetworks do
4: candidate← GETCANDFORNW(nw)
5: isReachable← PINGNRP(candidate)
6: if isReachable then
7: reachableCandidates ←

reachableCandidates ∪ {candidate}
8: end if
9: end for

10: end function

5) Backup - supervising: The backup continuously, with
a cycle time preferably longer than the heartbeat interval,
announces its presence to the primary, see Algorithm 3 Line 2.
Further described in Section III-C6.

The backup checks the heartbeats on all used networks,
Line 3. If heartbeats timed out on all networks and two or more
timed out simultaneously, NRP FD assumes that the cause is
a failure of the primary rather than two (or more) independent
network failures in a short time frame, Line 3-5. Treating
a simultaneous timeout of heartbeats as a primary failure is
an optimization, a way to reduce decision time by avoiding
PINGNRP when a failover time shorter than the response
time of the PINGNRP is required. If the PINGNRP have a
sufficiently low upper bounded reply time, Line 3-5 could be
removed and be covered by the handling described on Line 6-
10.

Equation 1 defines the simultaneous timeout, where
∆hbTmo is the interval for considering two heartbeats to be
simultaneous, hbTmoT is the time of the timeout, and NW



Algorithm 3 Backup - supervising
1: while isBackup do
2: SENDIMHERETOPRIMARY( ) ▷ Longer interval.
3: hbSts = CHKHBSTSONALLNW( )
4: if hbSts == tmoAllSimul then
5: BECOMEPRIMARY( )
6: else if hbSts == tmoAllNotSimul then
7: isNrpReachable = PINGNRP( )
8: if isNrpReachable then
9: BECOMEPRIMARY( )

10: end if
11: else if hbSts == tmoSomeNotAll then
12: isNrpReachable = PINGNRP( )
13: if not isNrpReachable then
14: ASKPRIMARYTOSWITCHNRP( )
15: end if
16: end if
17: isBackup← isOwnIpInHb ▷ See Alg. 1
18: end while

is the set of all networks connecting the primary and backup.
hbTmoT is zero in case of no timeout.

i, j ∈ NW,∀hbTmoTi,∀hbTmoTj ,

i ̸= j, hbTmoTi ̸= 0, hbTmoTj ̸= 0 |

|hbTmoTi − hbTmoTj | ≤ ∆hbTmo

(1)

If heartbeats timeout on all networks but not simultaneously
(or if the optimization is not used), the NRP reachability test
determines if the backup should become the primary, Line 6-
10.

If heartbeats timed out on some, but not all, networks, the
backup tests the NRP reachability. If unreachable, the backup
asks the primary to change NRP, Line 11-16; further described
in Section III-C7.

6) Primary - supervisee: The primary sends heartbeats
on all networks, with the configured interval containing the
address of the current NRP; see Algorithm 4 Line 3.

The primary also checks the NRP reachability, Line 4.
A reachable NRP does not require any further actions. The
remaining parts of Algorithm 4 pseudocode cover the unreach-
able NRP scenario, Line 5-24. If a backup and an alternative
NRP candidate exist, the primary tries to switch NRP, Line 7-
18.

The primary must ensure that the backup accepts an NRP
change before changing NRP. Hence, the primary requests the
backup to change NRP and waits for a response with a timeout,
Line 9-15. The primary leaves the primary role if it does not
receive a positive confirmation in time. If no backup exists,
the primary just switches NRP.

If no reachable NRP candidate exists, Line 19-23, the
primary leaves the primary role if the backup is present and
remains primary if the backup is not present. The primary

Algorithm 4 Primary - supervisee
1: nrpAddr ← GETNRPADDR( )
2: while isPrimary do
3: SENDHEARTBEAT(nrpAddr)
4: isNRPReachable← PINGNRP(nrpAddr)
5: if not isNRPReachable then
6: newNRPAddr ← GETNEWREACHABLENRP( )
7: if IsV alid(newNRPAddr) then
8: if isBupAvailable then
9: ASKBUPTOCHGNRP(newNRPAddr)

10: isNRPChgOk ← NRPCHGRESP(Tmo)
11: if isNRPChgOk then
12: nrpAddr ← newNRPAddr
13: else
14: BECOMEWAITING( ) ▷ See Alg. 1
15: end if
16: else
17: nrpAddr ← newNRPAddr
18: end if
19: else
20: if isBupAvailable then
21: BECOMEWAITING( ) ▷ See Alg. 1
22: end if
23: end if
24: end if
25: isBupAvailable← ISBACKUPPRESENT( )
26: end while

expects the backup to report its presence within a timeout,
see Line 25, allowing the primary to vacate the primary role
only if a backup is present. The backup presence timeout is
preferably at least one order of magnitude larger than the
heartbeat interval since backup presence detection does not
affect the failover time.

7) NRP change handling: The backup and primary must
never use different NRPs; an NRP change must never violate
that. It is beneficial to change the NRP in two situations.
The first is when the primary fails to reach the NRP. In that
situation, the primary proposes a new NRP to the backup
as shown in Algorithm 4. A backup that accepts the new
NRP starts using it after it sees the new NRP address in
a heartbeat. Hence, during the time between acceptance and
heartbeat receiving, the backup can not use the NRP reacha-
bility to become primary. The backup can only know that the
acceptance message is delivered to the primary once it sees
a confirmation. The confirmation is the changed NRP address
in received heartbeats. If the NRP address is not changed,
the backup reverts to using the former NRP address after two
heartbeat cycles by using the iteration number in the heartbeat
message, see Table I.

The second situation is when the backup cannot reach the
NRP. A backup that cannot reach the NRP cannot take the
primary role using the NRP reachability test. Hence, in that
situation, the backup suggests that the primary switches the
NRP.



TABLE I
HEARTBEAT MESSAGE FIELDS.

Name Description
NRP Address of the current NRP
Backups The addresses of the backups known
Known by the primary.
Iteration Identifies the iteration/cycle the
(seq.) number the heartbeat was sent. Incremented

each cycle by the primary.

IV. CONSISTENCY AND AVAILABILITY COMPARISON

In this section, we present a consistency and availability
comparison between Conv. FD and NRP FD using switch
failure scenarios. We use two topologies, T1Sw with one
switch per network between the DCN redundancy pair and
T3Sw with three switches, depicted in Fig. 2.

We assume that all switches, and thereby the NRP and NRP
candidates, are the same and have the same MTTF. We use a
switch MTTF of 75 years, same as the Westermo managed-
switch Lynx3. The DCN MTTF is assumed to be lower since
DCNs are likely more complex hardware vise. We assume a
DCN MTBF of 20 years.

The reliability function R(t) = e−λt and the corresponding
failure function F (t) = 1−R(t) give the failure probabilities.
We use a run time of ten years, i.e., t = 10. The scenarios
are multiple faults, requiring the failure of one network path
between the primary and backup and another failure. One week
is the assumed reparation time for the first failure. Heartbeats
are sent from the primary to the backup every 50 milliseconds,
Line 3 in Algorithm 4, and the backup presence timeout
IsBackupPresent, Line 25, is one second. Table II presents
the probabilities for the scenarios described below.

The scenarios where NRP FD prioritizes consistency before
availability by vacating the primary or backup role potentially
negatively impact availability. Therefore, these are the sce-
narios used for comparison. In other words, we compare the
probability of scenarios that lead to no primary using NRP FD
with the likelihood of scenarios leading to dual primary using
Conv. FD.

NRP FD vacates the primary role if the NRP is not
reachable, a backup is present, and the request to change
NRP fails, see Line 5-24 in Algorithm 4. The NRP change
request can fail for two reasons, partitioning or backup
failure. In the partitioning case, the backup will become
primary unless the second failure is a failure of the NRP
itself, denoted NRPFdNRPAndNWFail, failure combi-
nation F1F4 in Fig.4. For NRPFdNRPAndNWFail to
result in a no primary situation, the NRP must fail while
the other network path is broken. Hence the probabil-
ity increases with the reparation time. The second rea-
son and scenario for an NRP change request to fail
is a backup failure simultaneously to the primary loss
of NRP reachability, denoted NRPFdNRPAndBupFail.

3https://www.westermo.se/-/media/Files/Data-sheets/westermo ds lynx
100-and-200-series 2205 en revg.pdf

TABLE II
AVAILABILITY AND CONSISTENCY LOSS PROBABILITIES.

Scenario Probability
NRP FD Conv. FD

No primary Dual primary
NRPFdNRPAndNWFail T1Sw: 3.2 ∗ 10−3% 0% 1

T3Sw: 8.5 ∗ 10−3%
NRPFdNRPAndBupFail T1Sw: 1.7 ∗ 10−8% 0%

T3Sw: 1.7 ∗ 10−8%
NRPFdBupNotRchNRP T1Sw: 2.0 ∗ 10−9% 0%

T3Sw: 5.2 ∗ 10−9%
ConvFdNwPart See note2. T1Sw: 3.2 ∗ 10−3%

T3Sw: 2.5 ∗ 10−2%
1 Partitioning due to NRP failure is included in ConvFdNwPart for Conv.

FD.
2 Partitioning due to failure of any switch is covered

by NRPFdNRPAndNWFail for NRP FD.

For NRPFdNRPAndBupFail to cause a non-primary sit-
uation, the NRP must fail before the IsBackupPresent ex-
pires, see Line 25 in Algorithm 4.

If the backup cannot reach the NRP, it cannot resume
the primary role using the PINGNRP. Therefore, it proposes
an NRP change; see Line 12-15 in Algorithm 3. If the
primary fails before it has changed the NRP, the backup won’t
takeover, denoted NRPFdBupNotRchNRP . We use 100
milliseconds as the NRP change time, i.e., twice the heartbeat
interval.

Conv. FD causes a dual primary situation in any network
partitioning scenario, denoted ConvFdNwPart.

Table II shows that the inconsistency probability for Conv.
FD is higher than NRP FD’s availability loss probability for
topology T3Sw. The main reason for that is that a Conv. FD
causes a dual primary situation for any partitioning situation,
i.e., if any of the switches between the primary and backup
fail on the two networks. NRP FD only causes a no primary
situation when the specific failure mentioned above occurs.
For T1Sw, the probability of availability loss with NRP FD
is marginally higher than the probability for consistency loss
using Conv. FD.

V. IMPLEMENTATION AND EVALUATION

A. Implementation

The NRP candidates are the switches, see Table III and
Fig. 4, that NRP FD learns about using a dynamic approach
based on Link Layer Discovery Protocol (LLDP). LLDP
allows neighboring devices to announce their presence. The
switches reveal their existence and IP addresses with LLDP,
and NRP FD in each DCN learns about adjacent switches on
each network. Those adjacent switches are the NRP candi-
dates, from which NRP FD selects an NRP.

LLDP provides vendor-specific extension possibilities.
Hence, LLDP could announce the support of low la-
tency PINGNRP that NRP FD could utilize if avail-
able. For example, a future switch supporting a real-
time PINGNRP could reveal that through LLDP, and NRP
FD could use this knowledge to avoid using simultaneous
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Fig. 4. The evaluation setup used. F1 - F4 marks the network faults induced.

TABLE III
SOFTWARE AND HARDWARE USED.

Node name Hardware Software
DCN A1 MSI, Core i3 VxWorks 7.0
DCN A2 Lenovo, Core i5 VxWorks 7.0
Input sig. provider Intel NUC, Core i3 VxWorks 7.0
Output sig. consumer Lenovo, Core i7 Windows 10
Switches Zyxel, GS1900-8 V2.40

heartbeat timeout handling when switches that support real-
time capable PINGNRP are used.

Our implementation uses ICMP ping as the PINGNRP, and
our test shows that our switches typically reply to ping with
a sub-millisecond response time.

B. Evaluation

Fig. 4 shows the evaluation setup we use. Input sig. provider
emulates an input I/O. It generates a sinus wave with a
frequency of two Hertz and an update rate of 100 updates
per second. Outputting a new value every ten milliseconds on
network A and B, using UDP multicast.

The control application that runs on the redundant DCN pair
(DCN A1 and DCN A2) expects Input sig. provider values,
and outputs values to the Output sig. consumer. The control
application checks for an updated value every five ms. If
received, it outputs the value received; if it does not receive a
value after three iterations, it outputs the ISP value zero.

The Output sig. consumer emulates an output I/O and uses
the last received value as OSP. It is a Windows application
that plots the received value for visualization purposes; Fig. 6
shows the Output sig. consumer value plot when OK.

We compare our NRP FD and Conv. FD implementation and
show the resulting consistency difference between NRP FD
and Conv. FD in network partitioning situations by breaking
the network in the places marked F1 - F4 in Fig. 4. Fault F1
breaks network B and is always the first fault. We combine
F1 with F2 - F4 separately, resulting in three different fault
combinations, (i) F1F2, (ii) F1F3, and (iii) F1F4.

Fig. 5 shows the Output sig. consumer plot with fault
combination F1F2 using Conv. FD. DCN A1 receives values
from Input sig. provider while DCN A2 does not. Hence,
DCN A1 outputs the sine wave values, and DCN A2 uses the
ISP value and outputs a constant zero. Output sig. consumer
receives values from both DCN A1 and DCN A2, resulting
in the distorted sine wave shown in Fig. 5. With the same
fault combination, F1F2, NRP FD ensures that DCN A1

Fig. 5. Conv. FD based redundancy causes dual primaries in partitioning
situation F1F2. Output sig. consumer receives different (inconsistent) values
from DCN A1 (over the lower network) and DCN A2 (over the uper network).

remains primary and DCN A2 passive. Hence, the Output sig.
consumer receives consistent values, shown in Fig. 6.

Fig. 6. Correctly received and plotted values by Output sig. consumer. NRP
FD ensures one primary; hence, Output sig. consumer receives the correct
sine wave values even under partitioning.

The fault combination F1F3 results in a dual primary
situation using Conv. FD. The difference from F1F2 is that
DCN A1 and DCN A2 receive values from the Input sig.
provider. Hence, the inconsistency in the output values is less
than for F1F2, as shown in Fig. 7, but it still shows. With
NRP FD, DCN A2 becomes primary, and DCN A1 vacates
the primary role, keeping consistency as shown in Fig. 6.

Fault combination F1F4 covers NRP failure (F4) and the
Conv. FD result is the same as for F1F2, shown in Fig. 5.
Fault combination F1F4 using NRP FD results in DCN A1
vacating the primary role; it cannot reach the NRP nor elect a
new NRP since it cannot communicate with DCN A2. DCN
A2 does not become primary since it can’t reach the failed
NRP. Hence, no primary and Output sig. consumer, do not get
any values and therefore use the OSP value, shown in Fig. 8.

Performance is also an important aspect, and the penalty
using NRP FD comes from the additional PINGNRP, realized
with ICMP ping in our evaluation. However, the overhead is
typically less than a millisecond. We used a heartbeat period

Fig. 7. Conv. FD caused dual primary, where both DCN use the same input
values, hence inconsistency is less than for F1F2, shown in Fig. 5, but still
visible when compared to Fig. 6.

Fig. 8. No value received - Output sig. consumer plots the last value, as OSP.



of five milliseconds and required two missing heartbeats to
indicate a failure. With that configuration, we did not see any
difference when measuring the time between two consecutive
updates in the Output sig. consumer when primary failed.

More elaborated performance measurements are future
work. Future implementation optimized for performance and
combined with a time bounded low latency implementation in
the switches for the PINGNRP.

VI. SUMMARY AND FUTURE WORK

This paper presents NRP FD, a failure detection algorithm
that prioritizes consistency, in contrast to the conventional fail-
ure detection, Conv. FD, that prioritizes availability. The target
use case, and the description base of the NRP FD algorithm, is
controller redundancy. With a theoretical comparison between
NRP FD and Conv. FD we showed that the NRP FD is less
likely to lose availability than Conv. FD is to lose consistency.
Further, with a testbed and implementations of NRP FD and
Conv FD, we showed the consistency gain NRP FD gives over
Conv. FD by injecting failures causing network partitioning
between the redundant pair.

Potential continuations include incorporating a hard real-
time, low-latency PINGNRP support in the switches to per-
form a more exhaustive and challenging failover perfor-
mance test. With tailored switch support, the heartbeat and
PINGNRP could be integrated to allow NRP FD to guaran-
tee at most one primary, not only under persistent network
partitioning but also under transient disturbance. Future work
would aim to prove that property using model checkers and
probabilistic network models.

Furthermore, a low-latency PINGNRP can also be used for
performant network supervision and breakage localization if
combined with a topology map. Additional future work is to
combine NRP FD with failure detection and role selection
targeting other redundancy configurations than 1oo2, such as
Heartbeat bully [31].
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