
Combining Model-Based Testing and Automated
Analysis of Behavioural Models using GraphWalker

and UPPAAL
Saurabh Tiwari

DA-IICT Gandhinagar, India
saurabh t@daiict.ac.in

Kumar Iyer
DA-IICT Gandhinagar, India

201911016@daiict.ac.in

Eduard Paul Enoiu
Mälardalen University, Sweden

eduard.paul.enoiu@mdh.se

Abstract—Model-based Testing (MBT) has been proposed to
create test cases more efficiently and effectively. In contrast,
analysis techniques (e.g., model checking) have been used sepa-
rately from testing and have shown great potential when applied
early in the development process. Still, these are confronted by
applicability and scalability issues and work on specific modeling
languages. The combined use of MBT and analysis techniques can
support engineers in using both dynamic and static techniques.
This paper proposes a hybrid approach by combining MBT using
GraphWalker (GW) with Model-Based Analysis using UPPAAL
by transforming the GW model into UPPAAL timed automata
and supporting a combined analysis and testing process. The
approach enables the automatic verification of both reachability
and deadlock freedom properties to exploit the results obtained
from this analysis step to improve the test model before gen-
erating and executing test cases on the system under test. The
proposed approach can improve the combination of analysis and
testing using a promising open-source MBT tool and is currently
being evaluated in the context of actual use cases.

Index Terms—Model-Based Testing, analysis, behavioural
models, model checking, GraphWalker, UPPAAL

I. BACKGROUND AND MOTIVATION

Model-Based Testing (MBT) has been proposed to allow
test cases to be created with less effort. MBT involves the
creation of test suites from a behavioural model generated
from functional or non-functional requirements. This model
is often represented as a state transition diagram [1]. One
significant benefit of model-based testing is developing a
specification model in the early phase of the life cycle during
the requirement specification. During test generation, different
execution paths of the model would lead to different test cases
that can be used to find new faults or for regression [2][3][4].
An MBT tool will traverse the different paths of a model, gen-
erating abstract and executable test cases as well as executing
these test cases against the system to evaluate the results.

In contrast, analysis techniques such as model checking
are used to check if the model meets the specified require-
ments [5]. Given a model and a verification property, the
model checker verifies if the model satisfies the property or
not [6]. Additionally, it also generates the paths as witnesses
traces and counterexamples. These traces can also be used
for generating test cases [7]. Model-checking can help to
validate the specifications early in the software development
and thereby obtain a better test model from which test cases

can be generated as well as reduce the overall cost of system
development [8].

The idea of combining MBT with model checking motivated
us to come up with the following research question: “Can we
connect an MBT tool with a state-of-the-art model checker?”.
For this purpose, we developed a hybrid approach that trans-
forms a model obtained from an MBT automation tool into
a model compatible with a state-of-the-art model checker. In
addition, we automate the process of model checking by gen-
erating some queries to verify the model. To achieve this, we
used a well known open-source MBT tool named GraphWalker
(GW)1. Models in GW are created in the form of directed
graphs. This tool lacks the capability to automatically analyze
and verify if the model corresponds to certain requirements.
For this purpose, we are using a state-of-the-art model checker
called UPPAAL2 to perform model checking. This integrated
tool environment allows developing models as a network of
timed automata and can verify specific properties on these
models.

In this paper, we propose a hybrid approach that can perform
an automated analysis of a GW model by transforming it into a
UPPAAL model and generating queries that are automatically
verified by running “verifyta” without actually running the
GUI of UPPAAL to perform model checking. An initial
evaluation shows that the time taken by our tool for trans-
forming these models is consistently lower when compared
to manually creating the model and properties in UPPAAL
and checking these using the GUI. However, checking other
properties corresponding to software requirements requires
manual intervention to generate queries. Thus, our proposed
approach is the first step toward combining model-based
testing with automated analysis and verification tools, which
can be further modified to create a more realistic and complex
set of properties.

II. RELATED WORK

Nielsen [9] presented an approach for combining analysis
and testing to improve the quality of embedded systems. The
author has also pointed out that it is challenging to define

1https://graphwalker.github.io/
2https://uppaal.org/



Requirements MBT
Model

Engineer

Analysis ModelModel Checker

modelling

transformation

analysis

analysis
results

Model-Based 
Test Generation

Test Cases
Test Cases

Test Cases

generation

1 2

34

5changes

6

7

Fig. 1. The overall method for combined model-based testing and analysis using model-checking.

a common method applicable in industrial settings, but their
approach seems promising. The proposed method is general
and needs to be formalized for the specific combination of the
analysis approaches and testing.

The combination of analysis and testing of architectural
models has been considered broadly. The work by Bertolino
et al. [10] reviewed the research in software architecture-
based analysis and testing. Marinescu et al. [11] describes the
verification of architectural models using the UPPAAL model
checker. The author has introduced a framework supported
by a tool called ViTAL, which captures the model as timed
automata and verifies the model with UPPAAL. The input to
the tool ViTaL is the EAST-ADL model. The tool converts it
into a UPPAAL PORT model and supports the generation of
queries to verify reachability and liveness properties.

Many studies report the use of MBT and model checking
techniques separately [12], [13], [14], [15], [16]. Compared
to such studies, we focus on practically combining these
techniques by integrating two well-known tools.

III. PROPOSED HYBRID APPROACH

The process of combined model-based testing and model
analysis using model checking aims to analyze the created
model using model checking and based on the analysis results
find suitable test cases using a description of the test objectives
that guides towards a certain desirable property.

In Fig. 1, an overall method for model-based analysis and
test generation is identified. A generic process of combined
model-based analysis and test generation proceeds as follows:

• Step 1. Requirements artifacts are used or created for the
purpose of guiding the test generation and analysis. In our
case, the requirement artifact is either a specification of
what the System-under-Test (SUT) should do in different
forms (e.g., finite-state model).

• Step 2. A model is obtained using a testing tool that
can be used for modelling an MBT model objective. The
first step of modelling involves a human understanding
the requirements and exploring the requirements spec-
ification document. For example, an FSM-based model
consists of nodes and directed edges. The nodes represent
the state of the system, whereas edges represent the
requests/decisions when a certain event occurs.

• Step 3. In this step an automatic transformation is needed
to map the test model to an analysis model used for
model checking. For example, in the case of a finite-state
model, guards, actions and variable declarations are used
to generate a formal model.

• Step 4. Given a formal model of the system , a model-
checker can be used to analyse the model given certain
formalized requirements, for example, as a temporal logic
formula. The model-checker returns an answer, and in
some situations a model trace.

• Step 5. Based on the analysis results, the engineer could
do certain changes to the original model and can continue
using the MBT the model for test generation.

• Step 6. Using model-based test generation that encodes
the test criteria and describes how the test generator
should choose the resulting tests, one can generate test
cases based on certain goals (e.g., model coverage, ran-
dom test goals).

• Step 7. A test suite is generated by running the model
over many possible executions using a certain model-
based test generation tool.

Model-based test generation and analysis approaches can
be quite different but all of them have common underlying
dimensions (as shown in our hybrid approach) that can be
quite helpful when implementing a combined model-based
analysis and automated test generation in a certain software
development project. In the following section, we instantiate
this hybrid approach using specific tools.

IV. PROPOSED HYBRID TOOLING

The combined MBT and analysis technique implemented in
our tool is shown in Fig. 2. It is divided into the following
five steps:

1) The test designer creates a GW model, which is exported
as JSON.

2) In the next step, the JSON file is then imported into the
tool by providing the file’s location before executing the
tool (JAR) in the command.

3) While running the GW2UPPAAL tool, the UPPAAL
model in XML format is generated and used for analysis.

4) The generated UPPAAL model is then imported and
executed by starting verifyta and providing the name
of the generated model. This model also contains the



Test Designer

GraphWalker

 
         

User Interface

modelling1

- One or More Diagrams
- Guards
- Actions
- Variable Declaration

Model (JSON):

saved as

GW to UPPAAL 
Model Transformation

UPPAAL Model (XML):
- Generated Templates
Variable Declaration
- Channel Creation
- Guards
- Object Instantiations

VERIFYTA
property verification 

Analysis 
Results

GW2UPPAAL

import

2

feedback

translation

import and
execution

verification

3

4

5

Test Cases

test generation 

Fig. 2. The overall architecture of GW2UPPAAL tool and the interaction with GraphWalker for test generation.

queries to check the reachability and deadlock properties
tested by executing “verifyta”.

5) The results of this verification is then visually displayed
and a test engineer will use these to analyze the model
in the UPPAAL simulator to adapt the model in GW
before test generation.

Apart from automated analysis, the generated model can
also verify manually created queries to gain more confidence
in the developed model before testing.

A. GW2UPPAAL: A Hybrid Approach

GW uses JSON (JavaScript Object Notation) as the model
file format. JSON is a human-readable, lightweight, text-based
data interchange format and is language-independent. On the
other hand, UPPAAL exports a model in XML (Extensible
Markup Language) files. Both JSON and XML are commonly
used to transfer data back and forth between software pro-
grams through APIs.

Our tool transforms the GW JSON into UPPAAL compat-
ible XML file to import the model in UPPAAL and perform
model checking. The approach is divided into four steps
(Section IV.B to Section IV.E). The programming language
used for transformation is JAVA.

B. Importing the GW Model

The first step of GW2UPPAAL is to import the GW model
(i.e., representing a state machine as shown in Fig. 3). This
model is in JSON form, which is then parsed to extract the
relevant data.

C. UPPAAL XML Layout Creation

Initially, we construct a basic UPPAAL template. This
template is in XML form. The major challenge is to form the
XML file compatible with UPPAAL and then populate it with
the information needed to transform the model. In this step, we
create a basic XML layout with elements specifically created

Fig. 3. Model Created in GraphWalker Studio

for UPPAAL. For example the root element 〈nta〉, 〈declara-
tion〉 element which contains all the global declarations, XML
version, the UPPAAL XML document type definition (DTD),
etc. are created in this step.

D. Data Extraction from GW and the Generation of the
UPPAAL Model

Each GW model contains the data that has to be extracted.
For example, the model includes guards, actions, and variable
declarations. In this step, this information is extracted, stored
and used while generating the UPPAAL model.

For every model in GW, a model in UPPAAL is generated.
If multiple diagrams have shared vertices, a single model is
created in UPPAAL by flattening such diagrams. For example,
the 〈template〉 tag is created which corresponds to an UPPAAL
model, a 〈name〉 tag is created and populated, which describes
the name of the model. Subsequent data of vertices are
extracted from the GW model and added to the UPPAAL
model. We also need to extract edge/transition information for
generating the UPPAAL model. The information about guards
and variables/actions is also extracted. The tool adds them to
corresponding transitions and also initializes them with the
original values. The reference to the initial state is included
by adding the 〈init〉 tag and populating the start vertex id from
GW. In the end, the tool also includes queries for verifying
reachability and deadlock properties.



Fig. 4. UPPAAL model generated through GW2UPPAAL

E. UPPAAL Model Export

The last step is to export the UPPAAL XML. After all the
information is extracted and added to the UPPAAL XML, the
model is finally exported and used for model analysis and
verification.

F. Demonstration

Fig. 3 shows the model created in GraphWalker studio.
It is a Communication system example. Our tool generates
the model shown in Fig. 4. We note here that the edge
names are not included in the transformed UPPAAL model
because UPPAAL needs an environment to execute the model
to check these properties. By providing a common transition
synchronization (i.e., run!), we create an environment that
contains only one vertex with a self-loop and a synchronization
channel (i.e., run?). Using this approach, the environment
model can trigger transitions to all outgoing and incoming
edges to use the verifier.
Demonstration video: https://youtu.be/EtsJ-GNSjJM
Code & artifacts: https://github.com/iyerkumar/GW2UPPAAL

V. EXPERIMENTAL ANALYSIS AND RESULTS

We evaluated the tool with models containing single as well
as multiple diagrams. Multiple diagrams are essentially part of
a single model but are divided into multiple diagrams for better
understanding and ease of use. These diagrams are connected
by using shared vertices. A shared vertex is a vertex in the
diagram that can be shared between multiple diagrams so that
the test runner can execute the whole model, where the shared
state is defined. This tool transforms it into a single model
by flattening all the multiple diagrams. This is needed since
UPPAAL does not directly support multiple diagrams in the
same way as GW does.

Therefore, the GW2UPPAAL tool identifies every shared
vertex and its corresponding shared vertices in all the dia-
grams. It creates one vertex representation for all of them
and creates outgoing transitions to all the vertices that the
shared vertex contains. The queries are generated in every
model based on the number of vertices present in the model.

Furthermore, for every vertex, the tool checks whether the
vertex is reachable from the initial vertex. “Verifyta” is used
to verify those properties.

Table I shows the comparison between the GW2UPPAAL
approach for generating the model and a manual translation
performed by the developers on ten available models. The
results revealed that the time taken by GW2UPPAAL to create
and execute the model is negligible compared to a manual
transformation. We also found that the model generated by
the GW2UPPAAL about guarantees correctness between the
GW model to the UPPAAL model. Also, as the complexity of
the model increases, the time taken to transform these models
manually increases with the number of vertices and edges. In
contrast, GW2UPPAAL can automate this modelling step and
can reduce the time needed to verify the created models.

A. Features and Limitations of the Tool

Here, we report some of the benefits of using the
GW2UPPAAL and, consequently, model checking via UP-
PAAL on a GW model. The main advantage of using UPPAAL
is that it allows us to check synchronous and asynchronous
flows in the system, which GW tool support lacks. We can
check several requirements by manually creating multiple
objects of the model or by using clocks and the updates on
variables. Also, after applying the transformation through our
tool, we can add manual queries. By updating the model based
on the tester’s need, we can check the different execution flows
represented in the model. For example, we can check that
while a vertex is reached, the value of a specific variable must
be true. This is an example of a requirement that cannot be
checked against the model directly in GW.

It is important to note that the time taken by the tool to
generate the UPPAAL model is roughly between 140 and
300 ms. As expected, this time is relatively low compared
to manually creating the same model. It took between 5 to 15
minutes to create the same models manually. The integration
of verifyta in the tool automates the execution of the generated
queries. Out of the 15 models we evaluated through the tool,
we found two models where verifyta did not execute, but
the model and queries were generated correctly. The tester
has to manually import the generated file in UPPAAL and
run the queries to check the result. There were certain cases
where GW ran indefinitely, whereas UPPAAL stopped the
execution environment and generated an error promptly for a
disconnected graph. The generation of queries and execution
through “verifyta” is the first step toward the fully automated
model analysis. Nonetheless, the transformation itself is highly
beneficial for the tester to obtain confidence in the test model
before generating test cases. The four types of properties
supported by UPPAAL are reachability, liveness, safety, and
deadlock. The safety and liveness properties are dependent on
the requirements, and to express these, we need to analyze the
requirements and generate queries from them.

GW2UPPAAL is based on adding model checking benefits
to GW. So, in this case, we are not analyzing the requirements
but focusing on the transformation. Hence, GW2UPPAAL



TABLE I
COMPARISON BETWEEN THE GW2UPPAAL APPROACH FOR GENERATING THE MODEL AND A MANUAL TRANSLATION

Model Name Type of model #Vertices #Edges Time by GW2UPPAAL Manual transformation
Amazon shopping cart Single 6 11 0.202 s 243 s
Can deposit machine Single 3 8 0.200 s 187 s
Coffee machine Single 20 33 0.220 s 789 s
Communication system Single 15 37 0.178 s 772 s
Login system Multiple 6 20 0.176 s 642 s
Door system Single 4 6 0.140 s 182 s
Online chat application Single 3 10 0.174 s 202 s
Server Multiple 14 28 0.184 s 842 s
Spotify login Single 3 9 0.177 s 172 s
Pet clinic Multiple 11 25 0.182 s 844 s

does not support automatically checking safety and liveness
properties, but one can check these by manually creating
queries. It is worth noting that the tester must have a good un-
derstanding of UPPAAL and also the query language (TCTL)
supported by UPPAAL to create and execute queries manually.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents an approach used for combining MBT
and model-based analysis. This approach is instantiated us-
ing GraphWalker and UPPAAL tools. The GW2UPPAAL
tool-suite identifies all the modeling information from the
GraphWalker model. Subsequently, it transforms it into the
UPPAAL model and generates queries that can also be checked
automatically. Thus, GW2UPPAAL not only automates the
transformation process but also bridges the gap between model
checking and an MBT tool.

We have evaluated our approach and tool with models
containing both single as well as multiple diagrams. We found
that the transformation of the model from GraphWalker to
UPPAAL is applicable for several models available in the
GraphWalker documentation and models created by industrial
practitioners. Also, the average time taken to generate and
execute the model using GW2UPPAAL is negligible compared
to the manual approach. As a part of the extension, in
future, we aim to evaluate how close are the models to the
ones that are automatically translated using GW2UPPAAL
by conducting an experimental study. Also, the usefulness of
the proposed hybrid approach in terms of how good the final
model is for performing model-based testing.

The approach and its tooling automatically create queries
to check reachability and deadlock properties. However, since
safety and liveness properties are specific requirements, the
test designer currently has to check these manually on the
model generated by the tool. In the future, the gap between
requirements and model checking of certain properties can be
minimized by identifying key requirements from the specifi-
cation and generating queries.

ACKNOWLEDGEMENT

This work has received funding from the European Union’s
Horizon 2020 research and innovation program under grant
agreement No. 957212; from the Swedish Innovation Agency
(Vinnova) through the SmartDelta project.

REFERENCES

[1] H. Robinson, “Finite state model-based testing on a shoestring,” in
Proceedings of the 1999 International Conference on Software Testing
Analysis and Review (STARWEST 1999), 1999.

[2] P. Akpinar, M. S. Aktas, A. B. Keles, Y. Balaman, Z. O. Guler,
and O. Kalipsiz, “Web application testing with model based testing
method: Case study,” in 2020 International Conference on Electrical,
Communication, and Computer Engineering (ICECCE), 2020, pp. 1–6.

[3] S. R. Dalal, A. Jain, N. Karunanithi, J. Leaton, C. M. Lott, G. C. Patton,
and B. M. Horowitz, “Model-based testing in practice,” in Proceedings
of the 21st international conference on Software engineering, 1999, pp.
285–294.

[4] A. Marques, F. Ramalho, and W. L. Andrade, “Comparing model-based
testing with traditional testing strategies: An empirical study,” in 2014
IEEE Seventh International Conference on Software Testing, Verification
and Validation Workshops, 2014, pp. 264–273.

[5] M. M. Ben-Ari, “A primer on model checking,” ACM Inroads, vol. 1,
no. 1, p. 40–47, mar 2010.

[6] B. Das, D. Sarkar, and S. Chattopadhyay, “Model checking on state
transition diagram,” in ASP-DAC 2004: Asia and South Pacific Design
Automation Conference 2004 (IEEE Cat. No.04EX753), 2004, pp. 412–
417.

[7] P. E. Ammann, P. E. Black, and W. Majurski, “Using model checking to
generate tests from specifications,” in Proceedings second international
conference on formal engineering methods (Cat. No. 98EX241). IEEE,
1998, pp. 46–54.

[8] W. Chan, R. J. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin,
and J. D. Reese, “Model checking large software specifications,” IEEE
Transactions on software Engineering, vol. 24, no. 7, pp. 498–520, 1998.

[9] B. Nielsen, “Towards a method for combined model-based testing and
analysis,” in Proceedings of the 2nd International Conference
on Model-Driven Engineering and Software Development, ser.
MODELSWARD 2014. Setubal, PRT: SCITEPRESS - Science
and Technology Publications, Lda, 2014, p. 609–618. [Online].
Available: https://doi.org/10.5220/0004873106090618

[10] A. Bertolino, P. Inverardi, and H. Muccini, “Software architecture-based
analysis and testing: a look into achievements and future challenges,”
pp. 633–648, 2013.

[11] R. Marinescu, C. Seceleanu, and P. Pettersson, “An integrated framework
for component-based analysis of architectural system models,” in ICTSS
2012 Ph. D. Workshop held in conjunction with the The 24th IFIP Int.
Conference on Testing Software and Systems (ICTSS’12) in Aalborg,
Denmark, November 19, 2012., 2012, pp. 1–6.

[12] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based
testing approaches,” Software testing, verification and reliability, vol. 22,
no. 5, pp. 297–312, 2012.

[13] T. Ahmad, J. Iqbal, A. Ashraf, D. Truscan, and I. Porres, “Model-
based testing using uml activity diagrams: A systematic mapping study,”
Computer Science Review, vol. 33, pp. 98–112, 2019.

[14] L. Villalobos Arias, C. U. Quesada López, A. Martı́nez Porras, and
M. Jenkins Coronas, “A tertiary study on model-based testing areas,
tools and challenges: Preliminary results,” 2018.

[15] A. K. Karna, Y. Chen, H. Yu, H. Zhong, and J. Zhao, “The role
of model checking in software engineering,” Frontiers of Computer
Science, vol. 12, no. 4, pp. 642–668, 2018.

[16] M. Luckcuck, M. Farrell, L. A. Dennis, C. Dixon, and M. Fisher,
“Formal specification and verification of autonomous robotic systems:
A survey,” ACM Computing Surveys (CSUR), vol. 52, no. 5, pp. 1–41,
2019.


