
Test Generation and Mutation Analysis of Energy
Consumption using UPPAAL SMC and MATS

Jonatan Larsson ∗, Eduard Paul Enoiu∗
∗Mälardalen University, Sweden

jonatanlarsson8@hotmail.se, eduard.paul.enoiu@mdu.se

Abstract— Testing is an essential process for ensuring the
quality of the software. Designing software with as few errors as
possible in most embedded systems is often critical. Resource
usage is a significant concern for proper behaviour because
of the very nature of embedded systems. To design energy-
efficient systems, approaches are needed to catch desirable
consumption points and correct them before deployment. Model-
based testing can reduce testing effort, one testing method that
allows for automatic test generation. However, this technique
has yet to be studied extensively for revealing resource usage
anomalies in embedded systems development. UPPAAL SMC is
a statistical model-checking tool that can model the system’s
resource usage. This paper shows the tooling needed to achieve
this and experimental results on automated test generation and
selection using mutation analysis in UPPAAL SMC and how this
is applied to a Brake by Wire industrial system. The evaluation
shows that this approach, which we call MATS, is applicable and
efficient for energy-based test generation.

Index Terms—energy consumption, mutation analysis, test
generation, UPPAAL SMC

I. INTRODUCTION

To ensure the development of reliable systems with fewer
errors, the creation of effective extra-functional testing meth-
ods and tools is required. With manual testing being labour-
intensive and error-prone, there is a growing need for effi-
ciently created tests as the complexity and resource usage is
increasing dramatically.

Model checkers have been used to automate the creation
of tests. State-of-the-art model-checkers (i.e., UPPAAL SMC
[1]) can be used to model the system’s resource usage, thus
enabling the generation of test cases that target such extra-
functional requirements. This paper shows some experiments
using UPPAAL SMC and how to use it to perform automated
test generation for energy consumption.

Several recent studies [2], [3] have proposed methods for
automatic test generation and a framework to perform fault
detection analysis. Others have focused on using mutation
testing for timed automata [4], [5]. In comparison with this
line of research, our work is not aiming to describe how faults
are deliberately injected into the specification model, but we
present the necessary tooling to integrate mutation analysis
and test generation with specific energy-aware models created
in UPPAAL SMC.

This paper shows the practical tooling (i.e., the MATS
tool1) needed to achieve test generation and mutation analysis

1The MATS tool is available as an open source solution at
https://github.com/JLN93/MATS-Tool

of energy consumption and several experiments showing its
usage. We show how to generate test cases in UPPAAL SMC
by using its ability to simulate and evaluate the generated
tests by measuring each test suite’s ability to detect injected
faults. Based on this method, one can reduce the test suite by
selecting only the tests that maximize mutation coverage (i.e.,
the ratio of mutants killed to the total number of mutants). To
evaluate this solution, we apply it to an industrial system: a
Brake By Wire industrial prototype system. The results from
the evaluation show that tests can be efficiently generated to
achieve full mutation coverage on the system (around 277
seconds for the Brake By Wire models).

II. UPPAAL SMC

UPPAAL [6] is a toolbox used to model and analyze real-
time systems modelled as timed automata (TA), developed
jointly by Uppsala and Aalborg University. UPPAAL SMC
(Statistical Model Checker) [1] is an extension of UPPAAL
that allows a user to simulate the system over many runs and
has the ability to give approximate responses using statistical
analysis and an estimate of the correctness of the property to
be checked with a given confidence level. By employing such
techniques, UPPAAL SMC avoids the exhaustive state-space
search of usual symbolic model checking, hence providing
benefits in terms of improved scalability. The SMC extension
also supports priced timed automata models which improve the
ability to model continuous resources such as energy. UPPAAL
can compose Timed automata in parallel to form a network of
TA to model complex systems.

In UPPAAL SMC queries are used to control the evalu-
ation process and the query language UPPAAL SMC uses
is Weighted Metric Temporal Logic (WMTL). The following
properties can be verified with UPPAAL SMC:

• Probability Estimation: What is the probability of an
event (i.e., a conjunction of predicates over the states of
the TA network) to occur?

• Hypothesis Testing: Is the probability of an event greater
or equal to a certain threshold?

• Probability Comparison: Is the probability of one event
greater than the probability of another event?
UPPAAL SMC also supports the ability to visualize a
simulation of a system (or a set of overlapping simula-
tions).



Fig. 1. An overview of the MATS approach for test generation and mutation
analysis of energy consumption using UPPAAL SMC.

III. MATS APPROACH

In this section, we describe the test generation and mutation
analysis approach that uses mutation analysis to automatically
select test suites based on random system simulations. An
overview of the approach is presented in Figure 1, where the
numbered steps are the following:

• Step 1: The engineer creates a model, an abstraction of
the SUT that is evaluated.

• Step 2: The engineer also formulates the query to guide
the test case generation.

• Step 3: With the provided model and query, UPPAAL
SMC randomly generates simulation traces, which repre-
sent our test cases and contain the set of inputs and the
expected output.

• Step 4: From this, the test cases (i.e., inputs and output
values) are extracted and used later in Step 8.

• Step 5: The generated input values are extracted and used
for mutation analysis.

• Step 6: The sequence of inputs in each test case is
automatically inserted in a set of mutated models that
the engineer has created or generated.

• Step 7: The mutated models are simulated with the
extracted inputs using UPPAAL SMC to generate new
sets of actual energy outputs from the mutated models in
order to measure the difference between the original and
the mutated model.

• Step 8: The actual energy outputs extracted from the
mutated models for each test case will be compared to
the expected energy outputs in order to determine the test
case’s ability to kill (detect) any difference between the
mutated models and the original (assumed correct) model.

• Step 9: From the analysis result in Step 8, test cases are
selected based on the mutation score achieved. This step
removes the tests that are not contributing to a larger
mutation score for the entire test suite.

The set of selected mutants used in MATS is created by

adding mutations in the original model (e.g., changes in the
rate of energy consumption for different components). These
mutants can be created manually or automatically based on a
predefined set of mutation operators [3]. These mutants should
express naturally-occurring defects affecting energy consump-
tion. For example, one can change the timing behaviour by
adjusting the period and execution time conditions in the
model (i.e., the period and execution time values).

These energy mutants are simulated using the same inputs
generated by the reference model in each test case. The inputs
of each test case are given as a predefined set of inputs for the
mutated model. The mutated models with the predefined inputs
are ready to be simulated. The result of these simulations
represents the actual energy output signal which is stored and
compared with the expected energy output signal generated
initially from the original model. To evaluate the mutation
result (i.e., energy oracle) each energy output is sampled
using a user-defined granularity and then compared at each
time point with the expected energy output to detect any
significant differences larger than a user-defined delta value.
MATS relies on the expertise of the engineers responsible for
testing such systems. An experienced engineer should define
what is an acceptable energy deviation. We note here that small
deviations between the energy outputs are to be expected and
the delta value can vary from one system to another.

IV. MATS TOOL

The user interface of the MATS tool is shown in Figure
2. This interface contains several adjustable parameters. The
user needs to choose multiple mutants based on the reference
model. The query parameters are adjusted with the numericUp-
Down controls from the Simulation Runs item, Period Count
item, and Period Length item. These items are explained as
follows:

• Simulation runs are used to define how many simulations
will be generated on the reference model which corre-
sponds to the number of generated test cases,

• Period Length is used to define how long each execution
period is. This is represented in time units and is based
on the system model’s execution period to be simulated
by UPPAAL SMC,

• Period Count stands for how many periods the simulation
will execute. Both Period Length and Period Count are
used to generate the Simulation Time,

• Sample Size allows the user to choose the granularity of
the mutation analysis,

• Output Delta sets the delta limit for the output comparison
based on the difference between the actual and mutated
output signals at each time unit,

• The Input Query Parameters item allows the user to define
which variables to be monitored as inputs,

• Output Query Parameter item allows the user to define
which variables to be monitored as outputs. Both Sample
Size and Output Delta values are used to calculate a quan-
titative measure of fault detection. A mutant is considered
to be detected by a test suite if the values differ drastically



at certain time points. Sample Size decides how often
this detection should be checked while the Output Delta
defines how large the output difference can be.

In the MATS tool, we use mutation analysis [7], a method
used to analyze tests by evaluating the ability of these tests
to detect small changes in the software (e.g., to evaluate
the effectiveness of a test suite). These small changes in the
software (also called mutants) are manually or automatically
created based on a set of mutation operators or manually
injected faults. MATS detects if a test suite kills energy
mutants if the energy signal diverges drastically at certain
time points from the expected values (e.g., substantial energy
deviations). If there is at least one energy value for which the
distance is larger than the expected threshold, then we consider
the mutant detected.

MATS is automatically generating simulation runs using
UPPAAL SMC for a model described in TA extended with
energy consumption. MATS is then transforming these simu-
lations into actual test cases. A simulation run produced by the
model checker for a given random run defines the set of inputs
in time executed on the model, which in our case is considered
the system model. Test cases are obtained by extracting from
the test path the observable input values at any given time. The
automatic test generation step in MATS is implemented using
the UPPAAL SMC command line and extracts the parameter
names and the points pairs representing the simulation trace
as (x,y) points in a vector. MATS needs to sample this trace
at predefined data points to retrieve all the needed information
for test execution.

We mention that MATS does not automatically check if the
used mutants are equivalent. This is a problem when using
automatically generated mutants since these mutations keep
the model semantics unchanged and thus cannot be detected by
any test case. In our study, we used manual mutant equivalence
checks, and we say that two models are equivalent if there
is no input parameter for which the difference in energy
consumption of the models exceeds some predefined threshold
within some bounded time limit.

V. EXPERIMENTAL RESULTS

To perform experiments, we use the MATS tool to generate
test suites, measure the time needed to generate these suites
and the mutation coverage reached with different parameters.
For example, as shown in Figure 3, for a set of parameters
(Simulation runs: 25, Simulation Time: 64, Sample Size:
0.050, Output delta: 4.0), two test suites will be automatically
generated and suggested to the engineer. The test suites gen-
erated for the BBW system kill all mutants, which results in
full mutation coverage2. In order to fine-tune these parameters
and show the applicability of this approach, we repeated this
process for different parameters. The reference model selected

2As the results show, energy mutants at the model level are not as easily
killed. This can be explained by the fact that energy consumption needs to
diverge drastically at multiple time points. This differs from studies using
mutants created at the code level, which can be killed in some cases by even
trivial test cases.

Fig. 2. User Interface of the MATS tool.

Fig. 3. Example of a test selection result using mutation analysis using the
MATS tool.

in our case study is the BBW model, which contains a network
of 50 timed automata divided into 25 pairs, 16 of which are
computational blocks.

The BBW prototype is a braking system equipped with an
anti-lock brake system (ABS) and is controlled electronically
instead of mechanically. A sensor is attached to the brake
pedal to read its position, which is used to compute the
desired force applied to the brakes. With additional sensors
to measure each wheel’s speed, the ABS algorithm and the
desired brake force, the actual brake torque is calculated
and applied. This prototype system was originally described
in EAST-ADL [3], an architectural language dedicated to
automotive systems with support for resource annotations.
A transformation from EAST-ADL to UPPAAL SMC was
proposed by Marinescu et al. [2]. This model represents
an industrial brake-by-wire system developed by industrial
engineers. Five manually created mutants of the BBW model
are used in this experiment. The BBW Prototype is a result of
this transformation and is then manually extended with energy



Fig. 4. The test generation results on the BBW system; X-axis represents the
number of tests generated by the MATS tool (i.e., 25, 50, 100, 200, 400).

information. The transformation generates two TAs for each
component, one based on the component’s interface and one
based on the component’s behaviour. For more details about
this transformation, we refer the reader to the original paper
[2].

The results of our measurements are shown in Figure 4.
The result indicates that mutation coverage keeps increasing
until it reaches 100% (when MATS is generating 400 test
cases). Generating these 400 test cases takes 277 seconds on
average when using the MATS tool on an Intel i5 series 4.5
GHz processor with 8GB of RAM. This shows that MATS is
useful and efficient when using manually injected mutations.
We note here that the generation time increases linearly with
the number of simulations and mutants.

VI. DISCUSSIONS AND CONCLUSIONS

The obtained results could be useful for industrial engineers,
test generation tool developers and researchers.

MATS does not rely on UPPAAL SMC’s built-in simulation
sampler. We found out that this sampler does not support

resampling without simulating the model. To overcome this,
we extract the raw data output and manipulate the data later
using our own MATS tool.

In this paper, we have shown how UPPAAL SMC can be
used for test generation and mutation analysis using energy
consumption deviations at the model level. In addition, the
MATS tool selects test suites contributing to the overall
mutation score. Future work aims to apply this tool to a more
industrial use case to expose its strengths as well as limitations
both in terms of test efficiency and effectiveness.

VII. ACKNOWLEDGMENT

This work has received funding from H2020 under grant
agreement No. 737494, from Vinnova through the SmartDelta
projects and from KKS through ACICS project.

REFERENCES

[1] Alexandre David, Kim G Larsen, Axel Legay, Marius Mikučionis, and
Danny Bøgsted Poulsen. Uppaal smc tutorial. International journal on
software tools for technology transfer, 17:397–415, 2015.

[2] Raluca Marinescu, Eduard Enoiu, Cristina Seceleanu, and Daniel Sund-
mark. Automatic test generation for energy consumption of embedded
systems modeled in east-adl. In 2017 IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW), pages
69–76. IEEE, 2017.

[3] Eduard Paul Enoiu and Cristina Seceleanu. Model testing of complex
embedded systems using east-adl and energy-aware mutations. Designs,
4(1):5, 2020.

[4] Bernhard K Aichernig, Florian Lorber, and Dejan Ničković. Time for
mutants—model-based mutation testing with timed automata. In Tests
and Proofs: 7th International Conference, TAP 2013, Budapest, Hungary,
June 16-20, 2013. Proceedings 7, pages 20–38. Springer, 2013.

[5] Florian Lorber, Kim G Larsen, and Brian Nielsen. Model-based mu-
tation testing of real-time systems via model checking. In 2018 IEEE
International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), pages 59–68. IEEE, 2018.

[6] Gerd Behrmann, Alexandre David, and Kim G Larsen. A tutorial
on uppaal. Formal Methods for the Design of Real-Time Systems:
International School on Formal Methods for the Design of Computer,
Communication, and Software Systems, Bertinora, Italy, September 13-
18, 2004, Revised Lectures, pages 200–236, 2004.

[7] Allen T Acree, Timothy A Budd, Richard A DeMillo, Richard J Lipton,
and Frederick G Sayward. Mutation analysis. Technical report, Georgia
Inst of Tech Atlanta School of Information And Computer Science, 1979.


