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ABSTRACT
Convolutional Neural Networks (CNNs) have received great atten-

tion in the computer vision domain. However, CNNs are vulnerable

to adversarial attacks, which are manipulations of input data that

are imperceptible to humans but can fool the network. Several

studies tried to address this issue, which can be divided into two

categories: (i) training the network with adversarial examples, and

(ii) optimizing the network architecture and/or hyperparameters.

Although adversarial training is a sufficient defense mechanism,

they suffer from requiring a large volume of training samples to

cover a wide perturbation bound. Tweaking network activation

functions (AFs) has been shown to provide promising results where

CNNs suffer from performance loss. However, optimizing network

AFs for compensating the negative impacts of adversarial attacks

has not been addressed in the literature. This paper proposes the

idea of searching for AFs that are robust against adversarial attacks.

To this aim, we leverage the Simulated Annealing (SA) algorithm

with a fast convergence time. This proposed method is called SARAF.
We demonstrate the consistent effectiveness of SARAF by achieving

up to 16.92%, 18.3%, and 15.57% accuracy improvement against BIM,

FGSM, and PGD adversarial attacks, respectively, over ResNet-18

with ReLU AFs (baseline) trained on CIFAR-10. Meanwhile, SARAF
provides a significant search efficiency compared to random search

as the optimization baseline.
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1 INTRODUCTION
Adversarial attacks are perturbed inputs that preserve labels but

fool deep learning models [42]. Recent studies demonstrate that

adversarial attacks can present a significant threat to various ap-

plications, such as computer vision [34], cyber-physical systems

[50], medical machine learning models [12], and wireless commu-

nication [1]. Convolutional Neural Networks (CNNs) have shown

their great ability to solve problems in various artificial intelligence

fields such as computer vision [29, 62], natural language processing

[30, 44], bioinformatics [18, 43], and machine translation [11, 52].

However, CNNs are vulnerable to adversarial attacks [5, 13, 53].

A number of studies have been conducted to address this issue,

mostly utilizing robust training methods [16, 26, 49]. The methods

used for robust training are challenging because they require large

input datasets, which necessitates a lot of resource-intensive data

augmentation processes [61]. Additionally, adversarial examples

suffer from instabilities caused by physical transformations, such

as translation, illumination, and rotation [53, 61].

Despite the success of previous studies in improving adversarial

robustness (Section 3.1), no studies have been conducted to examine

the impact of optimizing network AFs over the robustness of CNNs

against perturbed examples. In addition, most of the proposed AF

tweaking methods have huge computing demands (up to 2000 GPU

hours [2]), resulting in a lack of interest in AF optimization for

various deep learning problems.

In this paper, we introduce SARAF, a method that discovers acti-

vation functions that make CNNs more robust against adversarial

attacks by considering robustness accuracy as the search objective.

We leverage the Simulated Annealing (SA) algorithm [27] as a meta-

heuristic search method. SARAF has a fast convergence which is due

to the single-solution nature of SA, while for example, the genetic

algorithms are relatively slow due to a population-based optimiza-

tion [40]. Unlike previous work [9], SARAF is a generic optimization

approach that does not require data augmentation or adversarial

training. Inspired by [38, 39], we rely on lower fidelity estimations

by training each candidate during the search iterations with fewer

epochs, leading to expediting the search procedure by up to 13×
compared to [2]. Subsequently, to achieve maximum performance,

we need to fully train the network weights after searching for AFs

with more epochs.

Paper Contributions. The main contributions of this paper are

listed in the following:

(1) We introduce a fast search method, dubbed SARAF, that op-
timizes network AFs against adversarial attacks in a rea-

sonable time (up to 6 end-to-end GPU days for a ResNet-18

architecture trained on CIFAR-10).

(2) We propose a flexible search space by coding the architecture

as a list of operational nodes with a variable size.
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SARAF demonstrates its consistent effectiveness by achieving up

to 16.92%, 18.3%, and 15.57% accuracy improvement against BIM,

FGSM, and PGD adversarial attacks, respectively, over ResNet-18

with ReLU AF (as the baseline architecture) trained on CIFAR-10.

Also, the robustness accuracy of AlexNet against BIM, FGSM, and

PGD adversarial attacks is improved by 6.86%, 8.72%, and 11.14%

respectively. Meanwhile, SARAF provides a significant search effi-

ciency by requiring up to 6 GPU days for optimizing the network,

which is 13× faster compared to other competing methods. Finally,

SARAF generates similar results with 6.7% STDEV, thus demon-

strating our results are reproducible.

2 BACKGROUND ON ADVERSARIAL
ATTACKS

Research on adversarial attacks initially focused on systems that

provide safety functionality [10, 23]. An adversarial example, de-

fined as inputs that fool a network with high confidence but cannot

be spotted by humans, was added to the literature in 2013 [53]. The

vulnerability of convolutional neural networks (CNNs) to adversar-

ial attacks has been shown in many studies [10, 15, 23, 45, 53].

To formalize adversarial attacks, assume 𝑁 is a CNN classifier

and 𝑋 is the input sample with correct classification, i.e., 𝑁 (𝑋 ) =
𝑌𝑡𝑟𝑢𝑒 . An adversarial example (𝑋𝑎𝑑𝑣

) is constructed by adding a

small perturbation to 𝑋 , where 𝑁 classifies it to a wrong label,

i.e., 𝑁 (𝑋𝑎𝑑𝑣) ≠ 𝑌𝑡𝑟𝑢𝑒 . There are two types of adversarial attacks:

white-box and black-box. White-box attacks have access to the

structure and parameters of the network, while black-box attacks

have limited knowledge of these details. This paper examines three

popular white-box attacks, which are described below.

2.1 Fast Gradient Sign Method (FGSM) [15]
FGSM was introduced as a pioneering white-box attack. A small

vector is added to the input sample by FGSM, in which the elements

of the vector are the same as the sign of elements of the gradient

of the loss function (Eq.1).

𝑋𝑎𝑑𝑣 = 𝑋 + 𝜖 ∗ 𝑠𝑖𝑔𝑛(∇𝑥L(𝜃, 𝑋,𝑌𝑡𝑟𝑢𝑒 )) (1)

where 𝜃 denotes the parameters of the network, 𝜖 is a small value

that restricts the amount of perturbation, ∇ computes the gradient

of the loss function with respect to an original sample 𝑋 with

correct label 𝑌 classified by the network. A stronger attack may be

achieved by increasing 𝜖 .

2.2 Projected Gradient Descent (PGD) [42]
PGD is an iterative extension of FGSM which performs a projected

gradient descent on the negative loss function. PGD starts with a

randomly initialized perturbation 𝑋𝑎𝑑𝑣
0

∈ S, which is updated at

each step via Eq.3:

𝑋𝑎𝑑𝑣
𝑡+1 = ΠS (𝑋𝑎𝑑𝑣

𝑡 + 𝛼 ∗ 𝑠𝑖𝑔𝑛(∇𝑥L(𝜃, 𝑋 + 𝑋𝑎𝑑𝑣
𝑡 , 𝑌𝑡𝑟𝑢𝑒 )) (2)

𝑋 and 𝑌𝑡𝑟𝑢𝑒 are the input sample and corresponding output label,

L denotes the loss function, and S is a set of allowed perturbations.

2.3 Basic Iterative Method (BIM) [31]
BIM is an extension to FGSM. It applies the FGSM with small steps

while trying to hold the resulting perturbation close to the original

data by using a clipping function by iteration (Eq.3).

𝑋𝑎𝑑𝑣
0

= 𝑋 ; 𝑋𝑎𝑑𝑣
𝑛+1 = 𝐶𝑙𝑖𝑝𝑋,𝜖 {𝑋𝑎𝑑𝑣

𝑛 + 𝛼 ∗ 𝑠𝑖𝑔𝑛 (∇𝑥 L(𝜃,𝑋𝑎𝑑𝑣
𝑛 , 𝑌𝑡𝑟𝑢𝑒 ) ) } (3)

where 𝛼 denotes the step size and 𝐶𝑙𝑖𝑝𝑋,𝜖 {𝐴} is the element-wise

clipping of 𝑋 . Although BIM is computationally intensive, it has

a higher chance to fool the network since adversarial samples are

closer to the original input.

3 RELATEDWORK
3.1 Activation Function Optimization
To ensure that CNNs perform effectively, Activation Functions

(AFs) must be present to provide non-linearity. This section reviews

major studies that tried to improve the performance of CNNs by

optimizing network AFs.

Mathematically, AFs are nonlinear functions that convert the

weighted sum of the neurons’ input into an output. As a very well-

known activation function example, ReLU [19] (Rectified Linear

Unit) is defined as 𝑓 (𝑥) =𝑚𝑎𝑥 (0, 𝑥) where 𝑥 is the input vector of

the neuron and 𝑓 (𝑥) defines the output of that node. ReLU is one of

the most widely used activation functions in CNNs’ architectures

[48]. Besides ReLU, a lot of different activation functions were

developed and studied how they affect the performance of artificial

neural networks [21, 48].

[14] proposed a novel activation function with the ability of

continuous logarithmic, linear and exponential functions which

potentially could help neural networks to perform better by replac-

ing the piece-wise linear nature of ReLU AF. SReLU [24] extends

ReLU by combining three piece-wise linear functions, which are

formulated by four learnable parameters. SReLU outperforms ReLU

on popular image classification datasets. Swish [48] was discovered

using an RL-based AutoML technique. Although Swish works bet-

ter than ReLU across various challenging datasets, it suffers from

an expensive design cost. [8, 38] leveraged evolutionary algorithms

to find the best-performing solution from a predefined set of AFs.

Even though these methods are simple, they are not very effective

at improving performance. [3] proposes a multi-stage optimization

for designing a learnable AF. In the first stage, they utilized an

evolutionary algorithm to find the general form of the function.

Afterward, they use the gradient descent algorithm to optimize

learnable parameters during the training process. [2] designed new

AFs by merging them using a set of binary and unary operations.

An evolutionary algorithm is leveraged to search operations and

in a tree-based design space. [36, 46] aimed to optimize the perfor-

mance of quantized neural networks by automatically searching for

better AFs using the genetic algorithm. Despite the effectiveness of

prior studies, they suffer from significant search costs due to lever-

aging RL or evolutionary algorithms. Compared to prior studies,

this paper focuses on finding new AFs using simulated annealing

in order to expedite the search process (up to 13× faster search).
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3.2 Adversarial Robustness
It has been demonstrated that AFs play a key role in the vulnerabil-

ity of CNNs [4, 58]. Recently, researchers have tried to address this

problem by proposing new activation functions for CNNs that are

robust against adversarial attacks [9, 47, 54, 56, 59, 60]. CROWN

[60] certified the robustness of CNNs by using different AFs for

different layers and bounding them with linear and quadratic func-

tions. Since ReLU is not smooth and inputs close to zero cause its

gradient to abruptly change, the Softplus AF is proposed by [56]

whose derivative is continuous and 𝑛-times differentiable. Using

smooth AFs in the process of adversarial training helps to find

more difficult adversarial examples. In [47], authors studied the

robustness of different types of CNNs’ layers (forward, convolu-

tional and residual) against adversarial attacks based on Lyapunov

theory where each individual layer of the network is treated locally

as a nonlinear system and its robustness is proved. Instead of using

non-linear AFs, SPLASH uses piece-wise linear AFs which boosts

the robustness of CNNs against adversarial attacks and accuracy as

well [54]. CNNs can be more robust by using SPLASH instead of

ReLU. Authors in [9] studied the impact of AFs’ shape on the accu-

racy and also the robustness of CNNs by parameterizing different

AFs. To this aim, they added an 𝛼 parameter to various AFs and

studied the effects of tweaking the 𝛼 parameter. Due to the use of

only restricted values and the linear effect of the 𝛼 parameter, this

performance gain is limited. In addition, [9] utilized the adversarial

training technique for the sake of robustifying input datasets for

optimizing AFs. In contrast, SARAF is more generalized as it does

not make any assumptions regarding the input dataset.

4 PROPOSED OPTIMIZATION METHOD
This work aims to increase the accuracy of CNNs against adver-

sarial attacks by searching for robust AFs. In general, searching

for new AFs is an NP-hard problem with an exponential time com-

plexity [38]. Thus, in a reasonable time, polynomial optimization

cannot find the optimal solution. In addition, using exhaustive

search methods is infeasible in practice, e.g., to exhaustively search

an 8000-solution design space, [41] needs 334 GPU days. To this

end, we utilize a meta-heuristic search method to deal with the

exponential complexity of the AF search problem. The proposed

search space and search method can be found in Section 4.1 and

Section 4.2, respectively.

4.1 Search Space
To use search methods, the first step is to define the search space.

Let us assume we have a CNN model with 𝑙 hidden layers. The

goal is to replace the AFs of these layers with newly built AFs or

with AFs from a pre-defined set of candidates. Inspired by [51], the

search space is represented by vectors which we call chromosomes.
Chromosomes are divided into three parts, each of which has a

length of 𝑙 . As a result, the total length of the chromosome would

be 3 × 𝑙 . Fig. 1 shows an example of a chromosome for a CNN with

four hidden layers.

In this work, a set of potential candidate activation functions

is selected where different operations could be applied to them.

We considered ReLU, LeakyReLU, Sigmoid, SELU, CELU, Mish, and

GELU as the candidate activation functions.

 

 Switch AF #1 AF #2 

Gene 0 0 0 0 0 0 0 0 0 0 0 0 

Index 0 1 2 3 4 5 6 7 8 9 10 11 

    
 

Figure 1: A sample chromosome illustrating a CNN with four
hidden layers, all with ReLU activation function.

The search space size depends on the number of layers in the

CNN, the number of activation functions in the candidate list, pos-

sible values for the constant coefficient ({0.25, 0.5, 0.75}), and the

number of mathematical operations. Assume 𝑙 is the number of

layers, 𝛼 is the number of candidates, 𝛽 is the number of possi-

ble values for the constant coefficient, and the number of pos-

sible mathematical operations would be 𝜃 . Then, the size of the

search space will be calculated based on the following formula:

𝑆𝑒𝑎𝑟𝑐ℎ 𝑆𝑝𝑎𝑐𝑒 𝑆𝑖𝑧𝑒 = 𝛼 × (1 + 𝛽 + (𝛼 × 𝜃 ))𝑙 . According to Table 1,

the size of the search space is equal to 7 × 32
7
for AlexNet with

seven hidden layers.

As mentioned before, each chromosome is divided into three

parts. The first part of each chromosome is 𝑆𝑤𝑖𝑡𝑐ℎ which selects

the corresponding operation for building new AFs. For the sake

of simplicity, every possible option for 𝑆𝑤𝑖𝑡𝑐ℎ is coded into the

numbers, as listed in Table 1.

Fig. 2 shows two different chromosome examples of new AFs for

a CNN with four hidden layers. In Fig. 2.a, since the value for the

genes at indices 0, 1, and 3 of 𝑆𝑤𝑖𝑡𝑐ℎ part are zero, then single AFs

from AF #1 will be selected from indices 4, 5, and 7, respectively. As

the value for indices 4, 5, and 7 are zero, the selected AFs for the

1
st
, 2

nd
, and 4

th
hidden layers would be 𝑅𝑒𝐿𝑈 (𝑥). Also the AF for

3
rd

hidden layer would be 0.25 ×𝐺𝐸𝐿𝑈 (𝑥)

 

 Switch AF #1 AF #2 

Gene 0 0 5 0 0 0 6 0 0 0 0 0 

Index 0 1 2 3 4 5 6 7 8 9 10 11 

    

a) layer #1: ReLU(x), layer #2: ReLU(x),  
layer #3:  0.25*GELU(x), layer #4: ReLU(x) 

 

 Switch AF #1 AF #2 

Gene 0 1 4 7 0 2 5 2 0 6 0 0 

Index 0 1 2 3 4 5 6 7 8 9 10 11 

    

b) layer #1: ReLU(x), layer #2: Sigmoid(x)+GELU(x),  
layer #3:  Mish(ReLU(x)), layer #4: 0.75*Sigmoid(x) 

 

Figure 2: A chromosome example for a CNNwith four hidden
layers.

A remarkable flexibility is provided by the proposed search space

for the generation of new AFs. For example, consider 𝑔(𝑥) and ℎ(𝑥)
are two AFs. Then, a new AF 𝑓 (𝑥) could be defined as the following:
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Table 1: Possible values for the 𝑆𝑤𝑖𝑡𝑐ℎ part of the chromosome and corresponding operations.

Code 𝑆𝑤𝑖𝑡𝑐ℎ Description
0 𝑓 (𝑥) = 𝑔(𝑥) Replacing current AF with another AF selected from the list of candidates

1 𝑓 (𝑥) = 𝑔(𝑥) + ℎ(𝑥) Accumulating selected AFs, where 𝑔(𝑥) comes from AF #1 and ℎ(𝑥) comes from AF #2
2 𝑓 (𝑥) = 𝑔(𝑥) − ℎ(𝑥) A minus operation is performed on the selected AFs, 𝑔(𝑥) and ℎ(𝑥)
3 𝑓 (𝑥) = 𝑔(𝑥) × ℎ(𝑥) Multiplication of selected AFs, 𝑔(𝑥) and ℎ(𝑥)
4 𝑓 (𝑥) = 𝑔(ℎ(𝑥)) Composition of selected AFs

5 𝑓 (𝑥) = 0.25 × 𝑔(𝑥) A constant value of 0.25 is multiplied by the selected AF 𝑔(𝑥) from AF #1
6 𝑓 (𝑥) = 0.5 × 𝑔(𝑥) A constant value of 0.5 is multiplied by the selected AF 𝑔(𝑥) from AF #1
7 𝑓 (𝑥) = 0.75 × 𝑔(𝑥) A constant value of 0.75 is multiplied by the selected AF 𝑔(𝑥) from AF #1

• 𝑓 (𝑥) → 𝑔(𝑥) (replacing the current AF with a new AF)

• 𝑓 (𝑥) = 𝛼 × 𝑔(𝑥)
• 𝑓 (𝑥) = 𝑔(𝑥)+ℎ(𝑥), 𝑓 (𝑥) = 𝑔(𝑥)×ℎ(𝑥), or 𝑓 (𝑥) = 𝑔(𝑥)−ℎ(𝑥)
• 𝑓 (𝑥) = 𝑔(ℎ(𝑥)).

Results of applying different operations on two examples AFs,

Sigmoid and Tanh, are shown in Fig. 3. Results demonstrate that by

applying different operations, newly generated AFs significantly

differ from the original ones, indicating the proposed search space

is flexible to generate very different outputs. Our experiments (Sec-

tion 6) show the proposed search space significantly improves the

performance of CNNs when input data is perturbed by different

adversarial attacks.

−2 −1 0 1 2

−2

−1

0

1

2

AF Input

A
F
O
ut
pu

t

Sigmoid(x)

Tanh(x)

Sigmoid(x)+Tanh(x)

Sigmoid(x)-Tanh(x)

Sigmoid(x)×Tanh(x)
Sigmoid(Tanh(x))

Figure 3: Generating differentmathematical operations using
Sigmoid and Tanh AFs.

4.2 Search Strategy
As mentioned in Section 4.1, a meta-heuristic search algorithm fits

better for our non-convex optimization problem. Several research

studies examined different meta-heuristic optimization methods,

e.g., genetic algorithm [38], late acceptance hill-climbing [39], sim-

ulated annealing [39], and particle swarm optimization [22], to

solve different problems. In this work, we leverage the simulated

annealing (SA) algorithm [27] to find the near-optimal solutions

for robust AF search.

SA is a probabilistic single-solution-based search method that

iteratively explores solutions with fewer 𝐸𝑛𝑒𝑟𝑔𝑦 function values. If

a reduction in the 𝐸𝑛𝑒𝑟𝑔𝑦 function is found, the current solution is

replaced with the newly generated neighbor, otherwise, the current

solution remains unchanged. To avoid becoming trapped in a local

optimum, SA sometimes accepts a bad solution with a probability of

𝑒𝑥𝑝 (−Δ/(𝑘×𝑇 )). 𝑘 is the Boltzmann’s constant and𝑇 is the cooling

parameter which is decreased with a logarithmic shape based on the

predefinedmaximum (𝑇𝑀𝑎𝑥 ) andminimum temperatures (𝑇𝑀𝑖𝑛). SA

starts with a high 𝑇𝑀𝑎𝑥 for preventing being prematurely trapped

in a local optimum. By approaching 𝑇 toward 𝑇𝑀𝑖𝑛 , most uphill

moves will be rejected. The SA process continues until no further

improvements can be made or it will be terminated after a specified

number of iterations. In this paper, the 𝐸𝑛𝑒𝑟𝑔𝑦 function of the SA

algorithm is defined as (Eq. 4):

𝐸𝑛𝑒𝑟𝑔𝑦 = 1 − 𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (4)

In this paper, the 𝐸𝑛𝑒𝑟𝑔𝑦 function and the objective function are

used interchangeably.

In general, these optimization algorithms involve a significant

number of performance evaluations on candidate architectures.

Each performance evaluation usually requires hundreds of training

epochs, leading to a remarkable computational cost (e.g., up to

2,000 GPU days [63]). The key motivation for using SA as the

search method is that SA enables faster search compared to genetic

programming and random search [6, 25, 40]. Our experimental

results show that SARAF requires ≈6 GPU days on a single NVIDIA
®

RTX A4000 for finding the best-performing activation function

for ResNet-18 trained on the CIFAR-10 dataset. In the end, it is

worth mentioning that the convergence of SA to global results is

guaranteed [17].

5 EXPERIMENTAL SETUP
This section describes the experimental setup used to evaluate

the proposed method, including evaluation datasets, search, and

training details.

5.1 Evaluation Dataset
To evaluate SARAF, we use MNIST [33] and CIFAR-10 [28] classifi-

cation datasets. The MNIST dataset consists of 70k hand-written

177



SARAF: Searching for Adversarial Robust Activation Functions ICMVA 2023, March 10–12, 2023, Singapore, Singapore

labeled digits from zero to nine, 60k as training, and 10k as test data.

Note that since MNIST is a tiny dataset and complex CNNs tend to

saturate it, the primary purpose of our experiments on MNIST is to

validate the consistency of our method. CIFAR-10 consists of 60k

32×32 colorful images in ten different classes, 50k as training and

10k as test data. We leverage CIFAR-10 in this study since CIFAR-10

is a subset of ImageNet with 330 similar categories [7]; thus, com-

pared to other complex classification datasets, it probably has more

relevant representations.

5.2 CNN Architecture
In this work, we studied AlexNet [29], the 2012 winner of the

ILSVRC (ImageNet Large Scale Visual Recognition Competition)

with a top-5 error rate of 15.3%, and ResNet-18, a variation of ResNet

[20] the 2015 winner of the ILSVRC with a 3.57% error on the

ImageNet test set. Activation functions can be changed in both

architectures based on the configuration provided.

Table 2: Summarizing experimental setup.

Search Configuration

Parameter

MNIST CIFAR-10 CIFAR-10

(AlexNet) (AlexNet) (ResNet-18)

Training Epoch 10 40 15

Optimizer Adam Adam Adam

Learning Rate 0.001 0.001 0.001

Weight Decay 0 0 0

Train Batch Size 1000 512 256

Test Batch Size 1000 256 128

Hardware Specification
GPU NVIDIA

®
RTX A4000

GPU Memory 16 GB

GPU Compiler NVIDIA
®
NVCC v. 10.1

𝐶𝑂2 Emission/Day
†

1.45 Kg

Training System Memory 64 GB

CPU Intel
®
Xeon

®
W-2245 CPU @ 3.90GHz

† Calculated using the ML𝐶𝑂2 impact framework: https://mlco2.github.io/impact/ [32]

6 EXPERIMENTS
6.1 Results on MNIST
Fig. 4 presents the results of optimizing AlexNet trained on the

MNIST dataset using SARAF against three different adversarial at-
tacks including BIM, FGSM, and PGD. AlexNet with ReLU activation

functions is selected as the compression baseline (□). SARAF (⃝)

significantly outperforms the default configuration by providing

up to 33.07%, 15.09%, and 28.83% higher accuracy over BIM, FGSM,

and PGD attacks, respectively.

6.2 Results on CIFAR-10
Fig. 5 presents the results of optimizing AlexNet trained on the

CIFAR-10 dataset using SARAF against three different adversarial
attacks including BIM, FGSM, and PGD. AlexNet with ReLU activa-

tion functions is selected as the compression baseline (□). SARAF
(⃝) remarkably outperforms the default configuration by provid-

ing up to 6.86%, 8.72%, and 11.14% higher accuracy over BIM, FGSM,

and PGD attacks, respectively.

Fig. 6 presents the results of optimizing ResNet-18 trained on

the CIFAR-10 dataset using SARAF against three different adversar-

ial attacks including BIM, FGSM, and PGD. ResNet-18 with ReLU

activation functions is selected as the compression baseline (□).
SARAF (⃝) significantly outperforms the default configuration by

providing up to 16.92%, 18.3%, and 15.57% higher accuracy over

BIM, FGSM, and PGD attacks, respectively. The search step takes

up to ≈6 GPU days on a single NVIDIA
®
RTX A4000 for ResNet-18

trained on the CIFAR-10 dataset.

6.3 Results of Search Convergence
Fig. 7 plots the simulated annealing 𝐸𝑛𝑒𝑟𝑔𝑦 function (Eq. 4) across

search iterations. Our proposed search method finds activation

functions with a monotonic decrease in 𝐸𝑛𝑒𝑟𝑔𝑦, indicating SARAF
leads to a higher accuracy with more search iterations. We also

present an empirical evaluation of SA compared to random search to

show the superior optimization performance of SA. Random search

is able to find the optimal architecture in many applications [35, 57].

However, as shown in Fig. 7, SA reached the highest global values

for the 𝐸𝑛𝑒𝑟𝑔𝑦 function (Eq. 4). Therefore, simulated annealing

succeeds to find a feasible solution in a reasonable time.
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Figure 7: Demonstrating the reproducibility of results
(STDEV=6.7%).

6.4 Discrimination Power of SARAF
Weuse t-distributed stochastic neighbor embedding (t-SNE) method

[55] for visualizing the decision boundaries of the original ResNet-

18, ResNet-18 with perturbation, and SARAF for the FGSM attack

(𝜖 = 10/255) on the CIFAR-10 dataset. Fig. 8 illustrates the decision

boundaries of classification for each scenario. According to the

results, SARAF has a higher discrimination power than ResNet-18

with perturbation, and SARAF behaves similarly to the original

ResNet-18.
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Figure 4: Comparison of AlexNet accuracy trained on MNIST using □ ReLU AFs and AFs searched by ⃝ SARAF against (a) BIM,
(b) FGSM, and (c) PGD adversarial attacks.
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Figure 5: Comparison of AlexNet accuracy trained on CIFAR-10 using □ ReLU AFs and AFs searched by ⃝ SARAF against (a)
BIM, (b) FGSM, and (c) PGD adversarial attacks.

Labels: Default (ReLU) SARAF
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Figure 6: Comparison of ResNet-18 accuracy trained on CIFAR-10 using □ ReLU AFs and AFs searched by ⃝ SARAF against (a)
BIM, (b) FGSM, and (c) PGD adversarial attacks.
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(a) Original ResNet-18 (b) Perturbed ResNet-18 (c) ResNet-18 + SARAF

Figure 8: Visualizing the decision boundary with t-SNE embedding method for (a) original ResNet-18 without perturbation, (b)
perturbed ResNet-18, and (c) ResNet-18 with SARAF optimization.

6.5 Visualizing Feature Map Results
Fig. 9 shows a sample feature map of ResNet-18 trained on CIFAR-10

with (i) ReLU AFs and (ii) AFs searched by SARAF against different

adversarial attacks. As shown, feature maps extracted by SARAF
AFs are more visible, indicating SARAF is robust against adversarial

attacks (up to 33.07% accuracy improvement).

6.6 Reproducibility Statement
• Code release. SARAF is an open-source project. The code

is made available on the GitHub repository through

https://github.com/RobustInsight/SARAF.

• Availability of database. In this study, we evaluated our

networks using the MNIST and CIFAR-10 datasets. Thus, this

work does not involve any new data collection or human

subject evaluation.

• Reproducibility Analysis.Many works on Automated Ma-

chine Learning had issues regarding reproducibility due to

intrinsic stochasticity [37]. We re-ran the SARAF search pro-

cedure three more times with different random seeds to

verify the reproducibility of the results. Fig. 7 shows the

average of 𝐸𝑛𝑒𝑟𝑔𝑦 function variations as well as the confi-

dence intervals. Results show that the average of multiple

runs converges to AFs with similar results with the standard

deviation (STDEV) of 6.7%.

7 CONCLUSION
In this work, we studied the impact of optimizing activation func-

tions on the robustness of CNNs against adversarial attacks. We

found that ReLU is not robust in adversarial attacks, but optimiz-

ing network AFs significantly improves robustness over various

attacks. Experimental results demonstrate the importance of acti-

vation functions in adversarial training and the potential of AFs for

enhancing the robustness of deep learning models against adver-

sarial examples.
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