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Abstract System testing is essential for developing high-quality systems, but the
degree of automation in system testing is still low. Therefore, there is high potential
for Artificial Intelligence (AI) techniques like machine learning, natural language
processing, or search-based optimization to improve the effectiveness and efficiency
of system testing. This chapter presents where and how AI techniques can be applied
to automate and optimize system testing activities. First, we identified different
system testing activities (i.e., test planning and analysis, test design, test execution,
and test evaluation) and indicated how AI techniques could be applied to automate
and optimize these activities. Furthermore, we presented an industrial case study
on test case analysis, where AI techniques are applied to encode and group natural
language into clusters of similar test cases for cluster-based test optimization. Finally,
we discuss the levels of autonomy of AI in system testing.

1 Introduction

The effectiveness and efficiency of system testing, which is conducted on a com-
plete, integrated system to evaluate the systems’ compliance with its requirements,
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is essential for developing high-quality software-intensive systems. However, the
degree of automation in system testing is still low (especially when compared to unit
testing) and system tests are performed manually to a large extent. The main reasons
for this circumstance are that system testing typically relies on less formal artifacts,
especially requirements, than unit testing, which is directly linked to source code,
also resulting in the fact that test automation is more complex on the system level.

Thus, Artificial Intelligence (AI) techniques like machine learning, natural lan-
guage processing, or search-based optimization can significantly improve the effec-
tiveness and efficiency of system testing. For instance, natural language processing
has a high potential to increase the degree of automation in system testing, which
typically relies on natural language requirements.

This chapter provides an overview of the state-of-the art and future trends on the
application of AI techniques in different system testing activities (i.e., test planning
and analysis, test design, test execution, and test evaluation). Furthermore, a concrete
industrial case study is presented in which natural language processing, unsupervised
machine learning, and search-based techniques have successfully been applied to
automate and optimize system testing activities.

To support our concrete industrial study, we provide a project that can be used for
automated functional dependency detection fromnatural language test specifications.
The provided code is written in Python 3, so it assumes you have this installed
on your local machine to execute the examples. The code repository is available
at https://github.com/leohatvani/clustering-dependency-detection. Its README file
comprises instructions on how to download and execute the code.

The chapter is organized as follows: In Sect. 2 we provide an overview about
system testing. In Sect. 3 we discuss the application of AI in system testing. In Sect. 4
we present an industrial case study on the application of selected AI techniques (i.e.,
natural language processing, clustering, and search-based techniques) to system
testing. In Sect. 5 we reflect on the levels of autonomy of AI in system testing.
Finally, in Sect. 6 we conclude this chapter.

2 System Testing

According to the IEEE standard glossary of software engineering terminology [17],
testing is the process of operating a system or component (or unit) under specified
conditions, observing or recording the results, and making an evaluation of some
aspect of the system or component. The definition (and this chapter) refers to dynamic
testing, where the system is executed (in contrast to static testing) and considers unit-
and system-level testing. This classification based on the test level, where units of the
system are tested either in isolation or together as the whole system, is important in
testing. The IEEE standard glossary of software engineering terminology [17] defines
system testing as testing conducted on a complete, integrated system to evaluate the
system’s compliance with its specified requirements. So system testing explicitly
refers to requirements as a specification. The requirements can refer to functional or
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extra-functional system properties. A system often comprises hardware and software;
however, we focus only on the software testing aspects.

Conceptually, system-level testing differs in several respects from unit-level test-
ing. The following items differentiate system testing from unit testing:

• What constitutes a test input changes and is rather input via a user interface or a
system configuration.

• Testing extra-functional properties like performance, security, or usability is more
important as they can typically only be tested on the system level.

• Domain knowledge becomes more important on the system level, which requires
the integration of domain experts into the test process.

• Classically, system testing is the part of testing (differing from unit testing) that is
not anymore in the plain responsibility of developers as domain aspects and the
entire system are essential.

• Test automation is multi-faceted, often only partially possible requires specific
test engineering know-how, and tests might intermediately fail.

• The oracle problem becomes more complex, i.e., deciding on a pass or fail is
more difficult and often even not possible.

• System specifications are not provided in code but in informal, semi-formal or
formal requirements (models).

Testing in general and system testing, in particular, comprises several activities.
The generic testing process comprises the following activities:

• Test Planning and Analysis. This activity comprises planning of the means and
schedule for test activities as well as the analysis of test artifacts to identify test
conditions.

• Test Design. This activity comprises the derivation and specification of test cases
from test conditions like coverage criteria.

• Test Execution. This activity comprises the preparation of the test environment
and running tests on the component or system under test.

• Test Evaluation. This activity comprises decisions on test results and their report-
ing.

In the following, we present important system testing approaches and to what test
activities they relate.

Risk-based testing [11] takes explicit risk assessments into account to steer all test
activities. Therefore, it is linked to all test activities mentioned before. However, in
practice, risk-based testing is primarily used to steer test planning (i.e., distribution
of resources) and test execution (i.e., test case prioritization and selection) purposes.

Model-based testing [36] relies on explicit behavior models that encode the in-
tended behaviors of a system under test and/or the behavior of its environment. The
main focus of model-based testing lies in automated test case generation, i.e., on
test design. However, test models can also support test planning and analysis, test
execution, and test evaluation.
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Exploratory testing [1] is simultaneous learning, test design, and test execution.
It is therefore linked to test design and execution, but also impacts test planning and
evaluation.

Agent-based testing [22] is defined as the application of AI-infused agents (i.e.,
software bots, intelligent agents, autonomous agents, multi-agent systems) to soft-
ware testing problems. Most of these approaches are used for test planning and
analysis as well as test design and execution.

Hardware-in-the-loop and Software-in-the-loop [14] use simulations to test hard-
ware and software, respectively, especially in the context of embedded and cyber-
physical systems. The focus lies on test execution.

3 Application of AI in System Testing

In this section, we first present a classification scheme for the application of AI
in system testing and discuss selected approaches that are classified in the defined
scheme. Then, we discuss the optimization of various test activities based on AI.

3.1 Classification Scheme

Given the current expansion of the use of AI in software testing and the large
number of ways AI can be applied during software development, we aim to outline
the categories of AI applications according to their application point on the system
testing process, i.e., test planning and analysis, test design, test execution as well as
test evaluation.

Feldt et al. [12] proposed a taxonomy that categorizes the different ways of
applying AI in software engineering according to their point of AI application, the
type of AI technology used and the automation level allowed. When using their
classification scheme on some existing work, the authors found that AI application
to software engineering focused on supporting stakeholders during the development
process, but did not directly affect the source code or the runtime behavior of the
systems. In this chapter, we focus on the dimension where AI techniques are applied
in the software testing process.

Here the focus of the AI is to support or optimize the verification that the system
as a whole can accomplish its task.

Even though AI can be applied in different ways during system testing, we argue
that a simpler taxonomy focusing on the generic steps in a system-level testing
process can help in the understanding of the points of applications during system-
level testing. Many AI approaches are applied to more than one system testing step
and the results can be combined.

The following steps where AI is applied to system testing are outlined in Fig. 1:
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• Test Planning and Analysis. AI can be applied in this activity by determining what
is going to be tested and optimizing a test plan by analysing the test artifacts created
during software development (e.g., requirement documents, test specifications).

• Test Design. AI can be applied in this activity for automating system-level test
design. This has been proposed to allow test cases to be created with less effort.
The goal is to automatically find a small set of test cases that check the correctness
of the system and guard against (previous as well as future) faults.

• Test Execution. After test cases have been generated, AI can be applied during the
test selection and execution process in order tomake the following determinations:
which test cases to execute during regression testing, which each test will evaluate
system configurations, and which test setups are available for the actual running
of each test case.

• Test Evaluation. As the test cases execute, valuable data is generated that AI can
exploit through data mining techniques to evaluate the test result and localize
suspicious program behavior as well as to cluster similar and independent faults.

AI

Test Planning  
and Analysis Test Design Test Execution Test

Evaluation

System Testing Process

Fig. 1 Ways of Applying AI in a Generic System Testing Process. These activities are based on the
generalized test process outlined by [6].

The main criterion for classifying the application of AI in system testing is the
“when", i.e., which system testing activity is supported by AI. This criterion is
linked to the “what", i.e., the software and test artifacts and data the application of
AI depends on and refers to. This can be test cases, system interfaces, GUI elements,
natural language requirements, defects, etc.

To give an overview and apply the classification scheme defined before,we provide
selected approaches that vary in the types of AI techniques applied and the targeted
test activity based on the classification scheme presented before.

Ramler and Felderer [29] integrate machine-learning-based defect prediction
based on classifiers into risk-based testing. The goal of the approach is to predict risk
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probability, which is used to plan system testing in general and the depth of testing
for different system components in particular.

Tahvili et al. [32] provide a test analysis approach that derives test cases’ simi-
larities and functional dependencies directly from the test specification documents
written in natural language, without requiring any other data source. The approach
uses natural language processing to detect text-semantic similarities between test
cases and then groups them using different clustering algorithms. The approach is
further discussed in the case study in Sect. 4.

Adamo et al. [2] apply reinforcement learning for automating test design and
execution of GUI testing of Android apps. The authors use a test generation algorithm
to systematically select events and explore the GUI of an application under test
without requiring a preexisting abstract model.

Briand et al. [7] apply search-based approaches to automate test design for stress
testing of real-time systems. Genetic algorithms were used to search for the sequence
of arrival times of events for aperiodic tasks that would cause the most significant
delays in the execution of the target task. The fitness function was expressed in an
exponential form, based on the difference between the deadline of an execution and
the execution’s actual completion.

Memon et al. [28] use AI plan for automated test design. For example, given a set
of operations, an initial state and a goal state for a GUI, a planning system produces
a sequence of operations that transforms the initial state to the goal state.

Frounchi et al. [13] use machine learning to construct an oracle for test eval-
uation, which can then be used to verify the correctness of image segmentations
automatically.

Arcuri et al. [4] use AI to generate whole-suite system-level test cases for RESTful
API web services by using the Many Independent Objective (MIO) algorithm.

3.2 Test optimization

optimizing test activities, i.e., test planning and analysis, test design, test execution, or
test evaluation, using AI is a process we call test optimization. Test optimization goes
beyond plain automation and defines an explicit optimization function. The overall
architecture of a generic AI-based system testing process used for test optimization
is shown in Figure 2. This approach starts with only two inputs: the choice of the
representation of the problem based on the available raw data and the definition of
the heuristic function. With these two, an engineer can implement AI-based system
testing using optimization algorithms and obtain results.

Test optimization helps make the test process more time and resources efficient
without compromising test accuracy or coverage. Eliminating unnecessary steps and
automating some steps can be considered the two main strategies in an efficient test
optimization process to save time, reduce errors, and avoid duplicate work.
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Fig. 2 Overall Architecture of AI-based System Testing Approaches adapted from [15].

Employing the test optimization in an iterative testing process (e.g., where re-
gression testing is applied) can significantly improve system testing efficiency and
effectiveness.

However, guiding a testing team to work more efficiently, supported by a proper
test optimization approach, is a challenging task. Generally, optimizing a continuous
testing process requires hardwork and effort, in terms of designing and implementing
the new solution without stopping the testing process.

In this regard, evaluating the efficiency of the investment (e.g., return on invest-
ment, internal rate of return) in all optimization process is a golden key that can
guide the testing team to select a proper optimization approach. Therefore, employ-
ing artificial intelligence techniques for optimizing the testing process has received a
great deal of attention recently. However, training a single artificial inference model
can be an ongoing costly process since the data that feeds the AI models tends to
change over time. Furthermore, there’s a reciprocal relationship between big data
and AI especially in a continuous testing process, where large data (e.g., test results)
is generated after each execution. However, one of the main purposes of AI is to min-
imize the need for human intervention, which might end up having higher accuracy
and less uncertainty and ambiguity.

Figure 3 illustrates an overall overview of employing AI technologies for opti-
mization of a testing process. As one can see in Figure 3 the optimization process
can be performed in three main phases:

1. Analyze: everything regarding the data, e.g., data gathering and data pre-
processing, is being performed in this phase. The required data for applying
an AI-based solution should be captured and be ready for training the AI model.
The required data might be different based on the optimization goal. However,
all system and test artifacts such as requirements specification, test cases (spec-
ification or script), and test results (log files) can be considered as data.

2. optimize: the AI model needs to be trained in this phase using the pre-processed
data from the previous phase. Moreover, the hyperparameter tuning needs to
be done in this phase. Tuning (also known as hyperparameter optimization)
refers to choosing a set of optimal hyperparameters for a learning algorithm (see
"Improve" arrow in Fig. 3). This improvement process (tuning) can be performed
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Analyze1

optimize2

Evaluate3

Data preparationData analysis
Test solution

Improve

Train the model

Fig. 3 Test optimization process using Artificial Intelligence.

via employing different approaches e.g., Grid search, Random search, Bayesian
optimization, Population-based approaches, etc.

3. Evaluate: the proposed AI-based solution needs to be evaluated with respect to
specific metrics in this phase.

However, in a continuous testing process, a large and new dataset might be
generated, thus the optimization process should be connected to both Analyze and
Test phases directly. The mentioned phases in Fig. 3 are exemplified in an industrial
cases study in the next section.

Considering all mentioned issues, especially all aspects of test automation, espe-
cially in the context of regression testing, have a high potential for test optimization.
In fact, instead of regressing the same test cases each time, this process can be fully
automated. Therefore, test automation can be a suitable test optimization approach in
large industries where some of the features of the software hardly change when a new
build is made [21]. However, the maintenance of test scripts needs to be considered
a recurring expense that is usually a low cost. Regression testing tasks that benefit
in particular from test optimization based on AI techniques are the following:

• Test case selection: refers to identifying a subset of test cases for execution which
has to be sufficient for achieving given requirements.

• Test case prioritization: ranks the test cases based on some priority score to guide
testing activities.

• Test suite minimization: keeps the test case precise and unique and eliminates
non-effective test cases which reduces regression testing time and lowers costs
while maintaining quality.

In addition, utilizing exploratory testing by employing on-the-go testing in order
to make the testing process faster and to make use of domain expertise has a high
potential for test optimization. This topic touches on the different levels of autonomy
of AI in system testing and is discussed in Sec. 5.
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4 Industrial Case Study

In this section, we describe a replicable industrial case study on system test analysis.
We first motivate it and define its industrial context. Then we present the underlying
Natural Language Processing approach for detecting test case similarity. Afterwards,
we discuss clustering similar test cases using unsupervised machine learning. Then,
we discuss the data processing and visualization. Finally, we sketch test optimization
application scenarios.

4.1 Motivation

Testing a software product in large industries is a time and resource-consuming
process. Manual testing is still an essential approach to system testing, especially in
safety-critical domains. In a purely manual testing process, all test cases are created
and executed manually by the tester without using any automation tool. In fact,
a testing team consisting of several testers creates and later executes manual test
cases based on the requirement specifications (that takes the different stakeholders’
perspectives into account).

System (integration) testing is recognized as one of the most complex and critical
levels of testing, where the interaction of all subsystems and the entire system should
be tested. Therefore, the number of test scenarios that need to be defined for testing
the interaction between modules might be very high. Considering a high number of
test cases that need to be tested manually, highlights the need for test optimization.
However, manual test creation by different testers might lead to having similar or
even duplicated test cases. Similar test cases can refer to test cases designed to test the
same function or require the same system setup, preconditions, or post-conditions.
Identifying similar or duplicate test cases in an early stage of a testing process can
help one to apply different test optimization approaches such as test case selection,
prioritization, scheduling, and test suite minimization. For example, assume that we
have clusters of similar test cases.We can then use these clusters for test optimization,
e.g., by eliminating some clusters or just selecting some test case samples from the
clusters and ranking them for test execution.

Clustering in general is an unsupervised machine learning approach that scans
data and groups itwithout any labels. Therefore, unsupervised (machine) learning can
be considered a suitable approach for solving the industrial problem of identifying
similar test cases and using this information to guide system testing.

However, detecting similar test cases for a large-size product is a challenging
task that might suffer from human judgment, uncertainty, and ambiguity. Since the
input for the similarity section is the natural-language test case specification (due to
manual testing). Thus, employing AI techniques such as natural language processing
(NLP), unsupervisedmachine learning, and deep learning can be considered a proper
approach.
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4.2 Industrial Context

In the following, we provide an industrial case study conducted at Bombardier
Transportation (BT) in Sweden1. This case study focuses on finding the similarity
and duplication between manual system integration test cases. It, therefore, covers a
test analysis scenario, where system and test artifacts are analyzed. In this regard, the
case study provided in this section can be employed for different test optimization
purposes such as test case selection (selecting a subset of test cases for test execution
or automation) or test scheduling (ranking the test cases for test execution). In
other words, the running industrial case study in this section can easily be reused for
achieving several test optimization goals simultaneously. The case study is performed
in the following steps:

1. One ongoing testing project is selected as a case under study.
2. A total number of 1, 748 test specifications are extracted from the database at

BT.
3. Each test case is saved in a separate file in the comma-separated values (.CSV)

format.
4. Some irrelevant information such as the name of the tester, date, and time is

removed from the test specification.
5. The .CSV files are utilized later as input to the natural language processing

model.
6. The generated outputs of the NLP approach are then clustered.
7. The obtained clusters are later removed or ranked for the test execution.

4.3 Detecting Test Case Similarity using Natural Language Processing

As stated earlier, in a manual testing process, a large number of test specifications
with short or long text are processed. The provided test specifications include the
testing procedure, requirements specification, system setup, etc., which are generally
subjective and also semantics-oriented. Detecting the similarity between created test
cases is the problem of finding the score to which test cases have similar content.
Usually, two text documents are similar either lexically or semantically if the two
text documents are used in the same context or have the same meaning [26]. Due to
a wide application of semantic similarity detection (e.g., text summarization [20],
topic extraction [18], finding duplication [23] and text document clustering and
classification [34]) it always plays a vital role in the NLP domain. The following
approaches can be considered as the main solutions for detecting the similarity
problem between texts:

1 Please note that the authors have approval from the third party for the utilized case study and its
code provided in the Git repository https://github.com/leohatvani/clustering-dependency-detection.
The permission to use the code is also granted to the reader.
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• String distance algorithms such as: token-based, edit-based, and string-matching
• Normalized compression distance such as: bzip2, gzip, zstd
• Deep learning such as: Doc2vec and SBERT

However, most of the mentioned solutions for similarity detection deliver the
extracted features as input to machine learning algorithms, especially clustering
algorithms. In this regard, the deep learning approach can execute feature engineering
by itself compared to other existing solutions.

We especially want to highlight Doc2vec, which has been applied in our approach.
It is a deep learning model for representing documents as a vector which was
first proposed by Le and Mikolov [27]. Doc2vec has excellent scalability and has
filled gaps of previously proposed approaches in the test analysis domain where
the semantics of the words were ignored (see [34]). Doc2vec reads different text
documents as input, transfers them to the high dimensional vectors, and measures
the cosine distance between them. The dimension of each vector is directly related
to the text size. Via applying a proper clustering method on the obtained vectors
provided by Doc2vec, we can divide the similar text (test specification in this study)
into different clusters [33].

4.4 Clustering Similar Test Cases using Unsupervised Machine
Learning

Clustering large data sets that have thousands of dimensions is a complex and
challenging problem. Most of the proposed solutions in the state-of-the-art focus
on dimension reduction. In that process, data from a high-dimensional space needs
to be transferred into a low-dimensional space, which can be handled by most of
the clustering and classification algorithms [24]. However, during dimensionality
reduction, some properties of the data might be lost, whereas some meaningful
properties of the original data might remain [34].

The clustering algorithms can mainly contain the following commonly used ones:

• Hierarchical-based such as the Agglomerative algorithm.
• Partition-based such as the Affinity algorithm.
• Density-based such as the HDBSCAN algorithm.

In order to keep all data properties, we recommend employing new types of clus-
tering algorithms that can handle high-dimensional data sets. Hierarchical Density-
Based Spatial Clustering ofApplicationswithNoise (HDBSCAN). It is a hierarchical
clustering algorithm that extracts a flat clustering-based on the stability of clusters.
Moreover, HDBSCAN can produce a cluster of non-clustered data points that need
to be interpreted accordingly based on the application. For instance, in our setting,
non-clusterable data points can be considered as non-similar test cases.

Furthermore, Fuzzy C-Means Clustering (FCM) is another alternative for solving
the clustering problem. FCM generally considers each object a member of every
cluster, with a variable degree of membership [33], which makes sense in the context
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of system testing. In fact, each test case can be similar to one or more test cases.
Listing 1 shows a Python code snippet for selecting and applying HDBSCAN and
FCM.

1 if opt_method==’hdbscan’:
2 clusterer = hdbscan.HDBSCAN().fit(values)
3 mylabels = clusterer.labels_
4 elif opt_method == ’fcm’:
5 values_rotated = np.rot90(values)
6 cntr, u, u0, d, jm, p, fpc = skfuzzy.cluster.cmeans(

values_rotated , opt_nclusters , 2, error=0.005, maxiter=1000,
init=None)

7 mylabels = np.argmax(u, axis=0)
8 else:
9 print("Clustering method unknown")

Listing 1 Python script for clustering

4.5 Data Processing and Visualization

In this case study, we combine Doc2vec with the HDBSCAN clustering algorithm in
order to divide all test cases into several clusters based on their semantic similarity
in the test specifications. In order to rerun this case study with your own data, the
following steps need to be performed2:

1. All irrelevant information such as testing date, time, station, testers ID should
be eliminated from the test case specifications. In other words, just the relevant
informationwhich indicates the testing purposes, requirements, steps, and testing
procedure need to be kept.

2. For improving the accuracy of the model, different data pre-processing tech-
niques such as tokenization, which is a way of separating a piece of text into
smaller units called tokens, should be applied to the test case specifications.

3. The pre-processed data (i.e., the test case specifications) are the input for
Doc2vec providing numeric representations of the test case specifications.

4. Since the output of the Doc2vec is a large set of high dimensional data, the HDB-
SCAN algorithm can be employed for clustering, which relaxes the pressure of
dimensional reduction. However, if one wants to use other clustering algorithms,
then the high dimensional data (output fromDoc2vec) might be processed by di-
mensionality reduction algorithms such as t-SNE. t-distributed stochastic neigh-
bor embedding (t-SNE) is a statistical method for high-dimensional reduction
that gives each datapoint a location in a two or three-dimensional map. Listing 2
shows a Python code snippet to apply t-SNE.

1 def get_tsne(_values):

2 The source code of our work can be found online at [16], together with anonymized feature vectors
and a test case graph.
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2 tsne = TSNE(n_components=2, random_state=0)
3 return tsne.fit_transform(_values)

Listing 2 Python script for t-SNE based dimensionality reduction

5. As HDBSCAN utilizes an unsupervised learning approach, the algorithm itself
decides on the number of clusters (including non-clusterable data points). How-
ever, the end-user can decide the minimum number of data (test cases) for each
cluster.
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Fig. 4 The clustered test case using Doc2vec and HDBSCAN, where�D represents non-clusterable
data points and = indicates the size of each cluster.

Listing 3 shows the Python code snippet to generate the graph shown in Fig. 4
1 def clustered_graph(file_name , labels, label2cluster , X_tsne):
2 sns.set_context(’paper’)
3 sns.set_style(’white’)
4 sns.set_color_codes()
5

6 plot_kwds={’alpha’:0.75, ’s’:40, ’linewidths’:0}
7 fig = plt.figure()
8 fig.set_dpi(72)
9 fig.set_size_inches(6, 6)

10 ax = fig.add_subplot(111)
11

12 sns.despine(top=True, bottom=True, left=True, right=True)
13 ax.set_xticks([])
14 ax.set_yticks([])
15

16 maxcolors = ceil((max(label2cluster.values())+1)/3)
17 pal = my_palette(maxcolors)
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18

19 fltrdX = []
20 fltrdY = []
21 for i in range(0,len(labels)):
22 if label2cluster[labels[i]] == -1:
23 fltrdX.append(X_tsne[i, 0])
24 fltrdY.append(X_tsne[i, 1])
25 plt.scatter(fltrdX, fltrdY, c=mpl.colors.rgb2hex(

(0.5,0.5,0.5) ), label="$C_u$ $(n={})$".format(len(fltrdX)),
**plot_kwds)

26

27 for cluster in range(0,max(label2cluster.values())+1):
28 fltrdX = []
29 fltrdY = []
30 for i in range(0,len(labels)):
31 if label2cluster[labels[i]] == cluster:
32 fltrdX.append(X_tsne[i, 0])
33 fltrdY.append(X_tsne[i, 1])
34 marker = ’o’
35 if (cluster >= maxcolors):
36 marker = ’^’
37 if (cluster >= 2*maxcolors):
38 marker = ’D’
39

40 plt.scatter(fltrdX, fltrdY, c=mpl.colors.rgb2hex(pal[
cluster%maxcolors]), marker=marker, label="$C_{{{}}}$ $(n={})
$".format(cluster+1, len(fltrdX)), **plot_kwds)

41

42 lgd = plt.legend(bbox_to_anchor=(1.05, 1), borderaxespad=0.,
prop = {"size": 6})

43 fig.tight_layout()
44 plt.savefig(file_name , format="pdf", bbox_extra_artists=(lgd

,), bbox_inches=’tight’)
45 plt.clf()

Listing 3 Python script for clustering graph

As mentioned before, in our case study in total 1, 748 natural language test case
specifications were analyzed. Figure 4 visualizes the initial results with a total of
93 clusters obtained from applying HDBSCAN. However, as one can see in Fig. 4
the size of each cluster is different. Note that with hyperparameter tuning we set the
minimum cluster size to 2. Moreover, in total 126 test cases are detected as non-
clustered data points (see �D in Fig. 4), which represent the non-similar test cases.
The source code of our work can be found online at [16], together with anonymized
feature vectors and a test case graph.

4.6 Test Optimization Strategies

The results shown in Figure 4 can be utilized in several ways and also for dif-
ferent test optimization purposes. Cluster-based test optimization strategies can be
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applied based on the company policies, resources, and constraints. In our context the
following cluster-based test optimization strategies were applied:

• Test case selection: for that purpose, one or more test cases are selected from each
cluster. Since the grouped test cases inside of the obtained clusters are similar,
some test cases can be selected for test execution purposes. However, to keep
the test coverage and to avoid unnecessary failure, some parameters need to be
checked, and some conditions need to be satisfied. For instance, the dependency
between test cases [31], requirement coverage, and execution time [30] should be
checked in advance. In this regard, a good test candidate from each cluster can be
a test case that is independent or has the highest requirements coverage compared
to other test cases of the same cluster. This strategy can also be used for the test
suite minimization and also test automation, where some test cases from each
cluster or even some clusters can be eliminated from the test suite. Moreover,
since we are working with the manual test cases, some of the test cases from each
cluster (or even some clusters) can be selected for the test automation. In fact,
knowing similar test cases in advance can help the testing team to select some test
specifications for test script generation. However, for the resulting clusters shown
in Fig. 4, we recommend executing all non-similar test cases in cluster �D as the
setting is safety-critical.

• Cluster prioritization: the resulting clusters in Fig. 4 can also be ranked for
execution. In this regard, those clusters which have a bigger size (see = in Fig. 4)
can be high or low ranked for the execution. However, the mentioned constraints
(dependency, requirement coverage) need to be evaluated in this strategy as well.

• Functional dependency detection between test cases: the entire proposed solution
in this chapter can also be employed for detecting the functional dependencies
between system integration test cases. Previously (see [34], [33]), we proved
that two test cases can be functionally dependent on each other if there is a
semantic similarity between their test specification. This hypothesis is evaluated
several times against a conducted ground truth at Bombardier Transportation. The
utilized performance metrics (F1-Score3 and AUC4) indicate promising results.

To sum up, we first pre-processed test specification data, then applied Doc2vec to
encode the natural language text into vectors, and later applied clustering algorithms
to cluster test cases into groups of similar test cases. These groups formed the basis
for cluster-based test optimization.

5 Levels of Autonomy of AI in System Testing

The approaches to applyingAI in the previous sections, i.e., search-based approaches,
natural language processing, and machine learning, were applied by supporting

3 is a measure of a model’s accuracy on a dataset.
4 The Area Under Curve provides an aggregate measure of performance across all possible classi-
fication thresholds.



16 Felderer et al.

human testers in performing testing activities. However, the AI did not operate
autonomously but was triggered by humans and relied on their knowledge.

In this section, we reflect on the potential of autonomously operating AI for
system testing. The term “autonomy” is generally used to mean the capacity of an
artificial agent to operate independently of human guidance [19]. Agents or bots
act autonomously, perceive their environment, persist over a prolonged time period,
adapt to change, and create and pursue goals. Software agents are called softbots or
software robots, and it is a natural approach to use them in system testing to simulate
real users or perform exploratory testing. Autonomous agents or softbots have al-
ready been used to automate different aspects of software development [38, 37, 10].
Several researchers have proposed different approaches for using agents specifically
in software testing [35, 9], by considering different aspects that relate to test opti-
mization. A recent study [22] suggests that autonomous agents are predominantly
used at system-level testing functional, non-functional and white-box testing.

Similar to the levels of autonomy in automotive engineering,we define and discuss
several levels of autonomy when applying AI in system testing. Autonomy in itself
can be described through two dimensions, self-sufficiency, i.e., ability to fulfill a task
without outside help, and self-directness, i.e., the ability to decide upon one’s own
goals as well as the involvement of an external human actor.

Overall, we can distinguish four levels of autonomy of AI in system testing5 from
Level 0 to not apply AI at all to Level 3 of full autonomy. In the following, we
describe each level in more detail and provide examples:

• Level 0 - AI is not applied: System testing tasks are performed by humans
or automated without AI. For example, test design at the system level can be
automated using fuzzing, model-based testing, or combinatorial techniques [3].

• Level 1 - AI algorithms assist humans by performing (semi-)automate testing
tasks: AI algorithms support test analysis, design, execution, and evaluation ac-
tivities, as described in the previous section for test case dependency detection
and execution. Another such Level 1 approach is the adaptive test management
system (ATMS) [25], which aims at selecting an appropriate set of test cases to
be executed in every test cycle using test unit agents and fuzzy logic.

• Level 2 - AI replaces or mimics human behavior (e.g., agents that replace users):
On this level not specific testing activities, but human behavior that is an integral
part of testing is (partially) replaced by intelligent agents. Typical human behavior
that is replaced are users of system under test or testers performing exploratory
testing. For instance, in [8] intelligent agents are applied for real time testing of
insider threat detection systems. As the number and variety of system interfaces
increases, e.g., via image or voice recognition, the potential and need for the
application of bots for system testing further increases. A different approach is
presented in the work of Tang et al. [35]. Their study aims at automating the whole
testing life cycle by using four types of agents: requirement agent, construct agent,
execution, and report agent.

5 Based on the levels shown by Synopsis https://www.synopsys.com/automotive/autonomous-
driving-levels.html
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• Level 3 - System testing is done fully automated by AI agents: This is the fully
autonomous level, where system testing is performed fully automated by intelli-
gent agents. Currently, this is just a vision and it is even not clear whether this is
achievable both from a theoretical or practical point of view. Several approaches
[9, 5] have shown some incipient but promising results on how this vision can be
attained.

These levels of autonomy differ on how humans are involved and we can consider
that this categorization is a continuum of autonomy rather than a dichotomy. Similar
to this, Feldt et al.[12] used the Sheridan-Verplanck taxonomy to categorize the
levels of AI automation based on decision and action selection performed by different
actors. Nevertheless, more research is needed to characterizeAI-infused system-level
testing techniques that enable autonomous behavior.

6 Conclusion

This chapter presented where and how AI techniques can be applied to automate
and optimize system testing. We first provided an overview of system testing, where
testing is conducted on a complete, integrated system to evaluate the system’s com-
pliance with its specified requirements. Then, we identified different system testing
activities (i.e., test planning and analysis, test design, test execution, and test evalua-
tion) and indicated howAI techniques like optimization algorithms, natural language
processing and machine learning could be applied to automate and optimize these
activities. Furthermore, we presented an industrial case study on test case analysis. In
the case study, natural language test cases are - based on natural language processing
with Doc2vec and clustering - grouped into clusters of similar test cases that formed
the basis for cluster-based test optimization. Finally, we discuss levels of autonomy
of AI in system testing from Level 0 to not apply AI at all to Level 3 of full autonomy.
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