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Abstract— Applications are becoming increasingly data-
intensive, requiring significant computational resources to meet
their demand. Cloud-based services are insufficient to meet
such demand, leading to a shift of the computation towards
the devices closer to the edge of the network, leading to the
emergence of an Edge-to-Cloud computing Continuum (E2C).
An application can offload part of its computation toward
the E2C. The allocation of applications to a set of available
computing nodes is a challenging problem, as the allocation
needs to take into account several factors, including the appli-
cation requirements and demands as well as the optimization
of the resource utilization in the E2C infrastructure and the
minimization the CO2 footprint of the executed applications.
Control and optimization techniques provide a vast array of
tools for optimizing the Edge-to-Cloud continuum’s manage-
ment. This paper provides a mathematical formulation for
the application offloading with specific requirements in the
cloud computing domain. The problem is modeled as integer
linear programming and constraint programming models and
implemented in commercially available software. Finally, we
provide the results of performed comparison between the two
models.

I. INTRODUCTION

The number of connected devices that extensively use data
is increasing exponentially, and Internet of Things (IoT) de-
vices are expected to reach 34.7 billion by 2028 [2]. To sup-
port such an increasing demand for data-intensive application
processing, new computational models have been developed,
building and extending the cloud computing paradigm. In
particular, in the last few years, we are experiencing a shift
of the computation toward the devices closer to the edge
of the network, leading to the emergence of an Edge-to-
Cloud computing Continuum (E2C) [12], [6]. Application
offloading from end devices to the Edge-to-Cloud (E2C)
continuum became a necessity [31], [10], especially when
considering advanced and distributed control [27], [26],
[28], [7] or Machine Learning [19] applications. Different
applications have different requirements in terms of low
latency and real-time responses. In conjunction with large-
scale geographical distribution and heterogeneity of E2C
computational nodes, these requirements make application
offloading in such infrastructure a challenging issue [32].
Diversity of user expectations and IoT device characteristics
also complexify the offloading problem. In addition, cloud
providers often have limited resources, such as computing
power, storage capacity, and network bandwidth, and need
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to allocate these resources to satisfy the application demands
optimally.

In an ideal scenario, all end devices can perform the nec-
essary computation without offloading the work to another
system. Since that is not often possible, the computational
offloading approach transfers the computational load to a
device capable of performing such work. Most research
assumes a homogeneous set of nodes [32], [10] in terms
of architectures. Still, the advent of new computing archi-
tectures, such as Graphical Processing Units (GPUs), Tensor
Processing Units (TPUs), and quantum technologies, does
not allow for the seamless execution of applications on any
generic node, thus calling for more flexible approaches. In
this paper, we propose an approach that allows an application
to require specific capabilities from the nodes where it
runs, e.g., access to a camera or sensors, the possibility of
performing AI computations on GPUs, etc.

What complicates offloading is the latency requirement
of applications, i.e., some applications have time-critical
components, and the latency constraint is a factor that must
be considered when performing an offloading operation. This
is the typical case for control applications that require strict
timing to guarantee certain Quality of Control metrics [31].

These are the requirements from the device (user); on the
other hand, we have requirements from the service providers.
In recent years, there has been a lot of attention towards the
green transition, and E2C infrastructures can make use of
so-called “green nodes” [3], i.e., nodes that are powered by
green energy in contrast to fossil-fueled energy. This means
that whenever possible, the usage of such nodes should be
a priority to reduce the carbon footprint [19]. In addition,
the requirement is to increase the utilization of the nodes in
general, which would minimize the total number of nodes
used, lowering the overall cost. This problem can be seen as
a generalization of the bin packing problem, which is NP-
hard. In this paper, we introduce a multi-criteria optimization
approach to account for the several stakeholders involved
in the application offloading to capture the applications’
needs and requirements while minimizing the usage and
environmental impact of the E2C infrastructure.

To this end, we proposed a mathematical model to for-
mally describe the problem, which has been implemented
and verified in two commercially available solvers. In par-
ticular, the contribution of this paper is threefold:

• a mathematical model of the offline application offload-
ing problem;

• implementation of the mathematical model both as an
Integer Linear Constraint (ILP) model in CPLEX and as



a Constraint Programming (CP) model in CP Optimizer;
• analysis of the performance of two different solvers on

a series of test instances.

II. RELATED WORK

In recent years, there have been numerous survey papers
on computation offloading in the cloud [1], [14], edge com-
puting [20], [25], [33], taxonomy and open issues [16]. There
have been so many surveys in the past couple of years that we
have a study on surveys [8] regarding computation offloading
in the E2C continuum. The said paper also provides a survey
on optimization techniques used for offloading, which will
be the scope of this section. More precisely, following the
taxonomy described in [8], we will be focusing on Device
- Edge-to-Cloud hybrid offloading, as the offloading can
be done in both vertical and horizontal manner, depending
on the network architecture. In particular, we allow the
horizontal offloading to be performed as a federation of
upward and downward offloading (e.g., from the edge node
to the cloud node and down to a different edge node) in cases
when there is no direct link between the nodes in the same
level of abstraction.

There are different techniques used for application offload-
ing optimization. However, the most prominent is Machine
Learning (ML) [21], traditional optimization techniques that
include ILP [9], different suboptimal heuristics [11], [15],
and optimal algorithms [5], [13]. Mouradian et al. [17]
provide a survey on optimization techniques in cloud-based
offloading.

In the literature, application placement or service alloca-
tion has also been used to refer to the offloading of jobs from
end devices to a node in the cloud domain. Recent surveys
covering this topic have been done by Smolka and Zolt [29]
and Aı̈t-Salaht et al. [22]. Souze et al. [30] present a paper
on service allocation in fog-cloud scenarios. They modeled
service allocation as an ILP problem and use off-the-shelf
solvers PuLP and Gurobi to optimize a problem consisting
of 30–90 services. Nishio et al. [18] present heterogeneous
resource sharing for optimizing service latency in the cloud.
The problem is a convex optimization problem that maxi-
mizes utilization and minimizes the system’s latency. Finally,
Aı̈t-Salaht et al. [23] model the computation offloading
problem as a Constraint Programming (CP) problem.

However, most of the proposed solutions do not consider
the complexity emerging from the heterogeneity of tech-
nologies and application requirements. They usually assume
homogeneous infrastructures, where an application can be
offloaded on any computing node with enough cores and
memory. In this paper, we propose a model that can account
for (i) a heterogeneous set of nodes, such as different
platforms and technologies, e.g., CPUs, GPUs, and TPUs,
(ii) the presence of green nodes in the infrastructure that can
be used to minimize the carbon footprint of the computation,
and (iii) multiple objectives that can influence the placement,
such as the latency of an application, the utilization of nodes,
and the environmental impact of the computation offloading.

III. APPLICATION OFFLOADING PROBLEM: MODEL AND
FORMULATION

In this section, we will describe, in detail, the model
and the problem formulation of application offloading in the
Edge-to-Cloud Continuum. Before describing the optimiza-
tion problem, the system model will be presented.

A. E2C model

The system can be divided into two subgroups. The first
one is the infrastructure of the Edge-to-Cloud model, where
the applications are deployed. The second is the application
requirements.

1) Infrastructure: The E2C model is an undirected graph
G = (N , E), consisting of a set of n nodes N and a set of e
edges E . The nodes represent the processing/computational
components of the E2C infrastructure, and the edges rep-
resent possible communication routes between the nodes.
Depending on their hierarchical level, the nodes can be
further segregated into edge, fog, and cloud nodes. These
types of nodes mainly differ in the capacity to handle of-
floaded applications. For example, edge nodes are envisioned
as resources that provide computational power in the range
of routers, mobile phones, tablets, IoT devices, etc. Fog
nodes have more computational capacity and may include
different types of personal computers. Finally, cloud nodes
are data centers. The other difference between edge nodes
on one side and fog and cloud nodes on the other is that the
applications are always first communicated to edge nodes.
The part of the optimization problem is then to decide
if and where to offload the application, depending on the
objective function. A certain metric characterizes each node.
These metrics include the number of cores, available RAM,
special capability (e.g., certain sensors, ability to perform
GPU computations, the required level of security, etc.), and
the type of energy they use for running. To simplify things,
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Fig. 1. E2C infrastructure overview.



all nodes are binary in this metric, meaning we assume a
node is either fully running on green energy or fossil fuels.

2) Applications: Applications, similarly to nodes, are also
characterized by certain metrics. Each application has a
requirement on the number of nodes, size of RAM, capability
a node needs to possess, maximum latency allowed, and
information on which edge node it was initially offloaded.
It should be noted that it is assumed that applications
are atomic, i.e., an application cannot be decomposed and
offloaded to multiple nodes.

In Fig. 1, an infrastructure of the E2C model is presented.
The polyhedrons represent the nodes in the system, while
their color shows if they are running on green energy. They
also have a half circle attached with different colors. These
colors represent the special equipment the node posses. The
tetrahedrons at the bottom are applications to be offloaded.
Their color should match the color of a half circle of
the nodes to be able to be offloaded to that node. The
lines connecting different parts of the E2C are possible
communication routes.

B. Problem description and Terminology

In this work, offloading is defined as transferring the
execution of applications from a system that cannot perform
them to nodes in the E2C continuum that can. In other
words, offloading is a mapping between the set of appli-
cations A and a set of node N in the E2C infrastructure
G. The graph G is assumed to be a connected graph, and
this allows for application offloading to any node in the
network, independently of the 1-hop connection that the
application establishes with the E2C infrastructure. The link
ei,j connecting nodes i and j is associated with a latency
metric, and we can calculate the latency between any two
nodes in the network. In this work, we used the Dijkstra
algorithm to calculate the shortest path (latency) between
every pair of nodes and populate the cumulative latency
matrix Ω = [ωi,j ]n×n, however, other algorithms can be
used in this context, e.g., A*, Bellman-Ford, Floyd–Warshall,
etc. It is assumed that the network topology is known a
priori; thus, it is enough to do this calculation only once.
The complexity of the Dijkstra algorithm using binary heap
implementation is O((n + e) log n) for a pair of nodes. In
this work, we do not take link bandwidth into account, as
the bandwidth is not considered the limiting resource in
this work problem. We focus on the special capabilities of
nodes to process certain requests from offloaded applications,
which are not necessarily bandwidth-demanding.

For example, a mobile application can offload an image
processing task to a cloud-based service if it does not have
enough computation power to perform it in a reasonable
amount of time. The offloading, in return, entails a certain
latency, which we take into account in this paper. We assume
that in the system, latency between nodes is known for each
pair of nodes.

The problem addressed in this paper is the offloading of a
set of applications A := {a1, a2, . . . , am} to a set of nodes
N . This set consists of three subsets; the subset D consisting

of p number of edge nodes; the subset F consisting of
q number of fog nodes; and the subset C consisting of w
number of cloud nodes. The set containing all nodes in the
network is defined as N := D ∪ F ∪ C. The total number
of nodes in the network is n = p+ q +w. Each node has a
location, and the set denoting all nodes’ locations is L.

Since the network is not only heterogeneous in terms of
computation power but also in terms of special equipment,
we can also define a set containing k number of different
equipment in the system as Ξ := {ξ1, ξ2, . . . , ξk}.

a) Definition 1 (Node): A node n ∈ N is a collection
n = ⟨cn,mn, ξn, γn, ln⟩, where

• cn ∈ Z+ is the number of cores available on the node
n.

• mn ∈ Z+ is the amount of RAM memory available on
the node n.

• κnode(n) : N 7→ Ξ is a function that gives the set of
equipment elements ξi available on a node n.

• γn ∈ {0, 1} denotes whether the node is running on
green energy.

• ln ∈ L is the location of node n.
b) Definition 2 (Application): An application a ∈ A is

a collection a = ⟨ca,ma, ξa, la, ℓa⟩, where
• ca ∈ Z+ is the number of cores required by the

application a.
• ma ∈ Z+ is the amount of RAM memory required by

application a.
• κapp(a) : A 7→ Ξ is a function that gives the set of

equipment elements ξi necessary to run a.
• la ∈ LD is the node location where the application has

been initially offloaded, and LD is the set containing
locations of edge nodes D ⊆ N .

• ℓa ∈ Z+ denotes the maximum allowed latency by
application a.

For the sake of simplicity and without loss of generality,
we assume that the frequency of all cores is identical. The
same applies to the RAM.

C. Problem formulation

This section presents the problem formulation of appli-
cation offloading in the E2C continuum using the set of
variables, their domains, and a set of constraints.

First, we define the following:
• δ : A 7→ N is a function that maps the applications to

the nodes to which they are offloaded. Each application
is mapped to exactly one node.

• η : N 7→ Z+ is a function that gives the number of
utilized cores on a given node. It is upper bounded by
the number of cores on the considered node n, i.e.,

η(n) ≤ cn, ∀n ∈ N

• µ : N 7→ Z+ is a function that gives the amount of
memory utilized on a given node. It is upper bounded
by the amount of memory on node n, i.e.,

µ(n) ≤ mn, ∀n ∈ N



• ν : N 7→ {0, 1} represents if a node is used or not and
is defined as

ν(n) =

{
1, if η(n) > 0 ∨ µ(n) > 0,

0, otherwise.
(1)

In Eq. (1), we make the connection between variables η(n)
and ν(n) such that whenever a node n is in use, its core
usage has to be larger than 0. This constraint would also
work on memory instead of the core since the lower bound
on the application requirement for cores and memory is never
smaller than 1.

Now that decision variables have been defined, we can
introduce constraints. The first constraint type we are going
to use is known as bin packing [24]. In our work, the bin
packing constraint ensures that the physical limitations of
nodes are not exceeded during the application offloading
process. Let An = {a ∈ A|δ(a) = n}, then the sum of
the required number of cores ca and memory ma of all
applications a ∈ An offloaded to node n must not exceed
the node core and memory capacity, i.e.,∑

a∈An

ca ≤ cn, ∀n ∈ N , (2)∑
a∈An

ma ≤ mn, ∀n ∈ N , (3)

where δ(a) represents the node where the application a is
offloaded. To make sure that the selected node for offloading
has the required equipment required by the offloaded appli-
cation, we introduce the following constraint

κapp(a) ⊆ κnode(δ(a)), ∀a ∈ A. (4)

Finally, we formulate the constraint on the latency require-
ments of applications. If an application a has a requirement
on the maximum latency ℓa that the application must expe-
rience, then

ωla,δ(a) ≤ ℓa, ∀a ∈ A. (5)

Now that the decision variables and constraints have been
introduced and explained, defining the optimization criteria
is the only missing part of the problem formulation. In these
types of problems, there can be many different optimization
criteria [22]. In this work, we focus on three different criteria.
The first one is the minimization of the use of fossil-fueled
nodes. The second one is to minimize the overall latency in
the system. Finally, the third criterion minimizes the total
number of nodes used. This specific order of importance is
chosen because our goal is to minimize the carbon footprint
while keeping a good response time in the system.

f1 =
∑
i∈N

γi · ν(i). (6)

f2 =
∑
i∈A

ωli,δ(i) · νδ(i). (7)

f3 =
∑
i∈N

ν(i). (8)

The way we combine these criteria is lexicographic optimiza-
tion [4], i.e., their ranking is in the order they are mentioned
in the text.

lex min
δ,η,µ,ν

f1, f2, f3

subject to Constraints (1)–(5)

This concludes the problem formulation. In the next section,
we will present the results of our benchmarks.

IV. RESULTS

This section presents the evaluation of the proposed for-
mulation. After describing the used experimental setup, we
present a benchmark of different problem instances used in
the assessment of the proposed method. The experimental
platform is an i9-9980XE @3.8GHz (18 cores) CPU with
128 GB of DDR4 RAM.

A. Benchmark

The benchmark consists of 10 randomly generated test
instances, shown in Table I. The table shows the number
of edge, fog, and cloud nodes, the number of green nodes,
the percentage of green nodes out of total nodes, and the
total number of nodes and applications to be offloaded.
The instances gradually increase in the number of nodes
and applications to assess the scalability of the considered
approaches. All of the test instances have feasible solutions.
As defined in problem formulation (Sect. III-C), attributes of
nodes are the number of cores available, amount of RAM,
special equipment available, and energy type used to run
the node. When creating the test instances, we bounded the
randomness of the variables. More specifically, edge nodes
can have 1-8 cores and 4-32 GB of RAM. This is increased to
8-32 cores and 32-128 GB of memory for fog nodes. Finally,
cloud nodes have 32-128 cores and 256-512 GB of memory.
Nodes can have none or one of three specialized equipment.
Finally, a node can be run by green energy or fossil fuels.
All of these values are acquired randomly, using a uniform
distribution.

Applications have attributes such as the number of cores
required, the amount of RAM required, special equipment
required, and the location where a 1-hop connection was
first established with E2C infrastructure. As is the case with
nodes, application variables are also bound. Specifically, the
number of cores required is 1-8, and the amount of memory

TABLE I
INFORMATION ABOUT TEST INSTANCES USED IN THE BENCHMARK.

Inst. # Edge # Fog # Cloud Total # Green Green/Total # Apps

1 4 4 2 10 6 60 % 25
2 8 8 4 20 11 55 % 50
3 12 12 6 30 12 40 % 100
4 18 18 9 45 23 27 % 150
5 22 22 11 55 29 53 % 200
6 24 24 12 60 32 53 % 300
7 26 26 13 65 33 51 % 400
8 34 51 17 85 51 60 % 450
9 36 36 18 90 47 52 % 500

10 48 48 24 120 58 48 % 600



is between 1-8 GB. There is a 40 % chance an app will need
one of 3 special pieces of equipment. The E2C node used in
1-hop connections is chosen randomly from the set of edge
nodes. Finally, there is a 10% chance that an application will
have a latency constraint, i.e., an upper bound.

The full set of test instances we created for this benchmark
can be found online1. The benchmark consists of solving 10
test instances generated in the previously described way and
comparing the results gathered from the two solvers used.
The first solver is CPLEX, used for solving ILP problems.
The second one is the CP optimizer, used for constraint
programming problems. We compare the results for each
optimization criterion and the time taken to obtain those
results. The search time limit is set to 1 hour for both solvers.

B. CP Solver

Constraint programming involves modeling the problem
in terms of variables, domains, and constraints and then
searching for a solution that satisfies all the constraints.
It has applications in various fields, including scheduling,
planning, optimization, and artificial intelligence. The key
advantages of CP include its ability to handle complex
problems with many interrelated constraints, find optimal
or near-optimal solutions, and its flexibility in allowing
for different types of constraints and objectives. There are
many off-the-shelf solvers available to solve CP models,
e.g., MiniZinc, Google’s OR-Tools, IBM’s CP optimizer, etc.
The goal is not to compare the performance of different
solvers, any of these solvers is a reasonably good choice, and
our choice in this work is IBM’s CP Optimizer. Regarding
the optimization parameters, we use IloSearchPhase to
specify which decision variable the solver should instantiate
first in the search process. For our problem, we instantiate
first the vector of decision variable {δ(a1), . . . , δ(am)} as it
has been shown that in similar problems, fixing the allocation
part first yields better overall results. This has been proven
to be the case here as well.

C. ILP Solver

As is the case with CP solvers, many ILP solvers are
available. We decided to use the one also developed by
IBM called CPLEX. It is a state-of-the-art optimization tool
capable of solving various ILP problems. As a tool that has
been under development for decades, it incorporates a wide
selection of algorithms with tunable parameters. In this work,
we use CPLEX with its default settings.

D. Performance Analysis

Before moving to performance analysis and benchmarks,
we will first give an example of a simple application of-
floading problem that consists of 5 nodes and 7 applications
(Fig. 2). Nodes are enumerated from 1 to 5, and for the sake
of this example, let’s assume that nodes 1 and 2 are in the
edge layer, nodes 3 and 4 are in the fog layer, and node 5
is in the cloud layer. Out of 7 applications, 1-3 require GPU

1https://github.com/mdh-planner/Application-Offloading-in-E2C-
Continuum
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Fig. 2. An example of a solution to a simple application offloading problem.
Nodes are represented as circles, while applications have a triangular shape
and are at the bottom of the figure.

computing, 4-5 need a camera, and 6-7 have a high-security
level requirement. For the sake of simplicity, we did not put
explicit information on the core/memory in the figure. For
the same reason, latency is excluded from the figure. The
1-hop connection for applications 1-4 to E2C is node 1, and
for applications, 5-7 is node 2. Since nodes 1 and 2 are
edge nodes, they are assumed to have low computational
capacity. Therefore, application 4 is allocated to node 1
and application 5 to node 2, since neither can perform both
applications. If, for example, node 2 could, then application
4 would be allocated to node 1 through other nodes in the
network since we do not have a direct link between nodes
1 and 2. Node 1 cannot perform applications 1-3, which are
further offloaded to fog node 3. Node 3 does not have enough
computation power for all three applications, and 1 and 2 are
further offloaded to cloud node 5. Both nodes 3 and 5 are
powered by green energy, as indicated by a green symbol.
Applications 6 and 7 require a high level of security, which
only node 5 posses, and their 1-hop connection to E2C is
through node 2, so they are offloaded to node 3 through
node 2. Each link has a latency metric assigned to it. This
was just a simple example of the application offloading. Now
we will focus on the performance analysis of solvers solving
test instances of a size up to 120 nodes and 600 applications.

The results gathered from the multi-criteria benchmark
have been summarized in Table II. First, we define the
solution quality difference metric as

σi =
f cplex
i − f cp

i

f cplex
i

, i ∈ 1, 2, 3 (9)



TABLE II
BENCHMARK RESULTS FOR MULTI-CRITERIA OPTIMIZATION, CPLEX VS. CP.

Instance CP Time
[s]

CPLEX Time
[s]

σi

f1 f2 f3 f1 f2 f3 f1 f2 f3

1 2 10834 6 0.5 2 10834 6 0.2 0 0 0
2 1 22872 9 1.3 1 22872 9 0.3 0 0 0
3 3 31354 21 573 3 31354 21 1.8 0 0 0
4 4 49073 26 2288 4 48168 26 13.8 0 1.9 % 0
5 4 66334 30 2526 4 65276 30 18.1 0 1.6 % 0
6 7 68548 34 3090 7 64804 34 103 0 5.8 % 0
7 19 178847 49 81.5 13 89430 45 135 32% 50 % 8.2 %
8 42 189774 76 200 41 92926 75 2191 2.4 % 51 % 1.3 %
9 16 93837 59 3344 16 81658 59 315 0 13 % 0
10 26 257401 77 650 17 102553 69 1761 35 % 60 % 10.4 %

TABLE III
BENCHMARK RESULTS FOR SINGLE-CRITERIA OPTIMIZATION, CPLEX VS. CP.

Instance CPLEX
f1

Time
[s]

CP
f1

Time
[s]

CPLEX
f2

Time
[s]

CP
f2

Time
[s]

CPLEX
f3

Time
[s]

CP
f3

Time
[s]

1 2 0.04 2 0.05 9610 0.06 9610 0.5 5 0.1 5 0.2
2 1 0.1 1 0.06 17138 0.11 17138 72.2 3 0.1 3 0.4
3 3 0.5 3 0.6 21870 0.37 21870 464 13 0.6 13 1.5
4 4 1 4 2.8 30136 0.8 30371 1868 11 0.7 11 3.6
5 4 4.6 4 4.6 44808 11.3 46534 764 17 2.3 17 43.8
6 7 46.9 7 66.2 53688 22.7 55159 3123 27 15.4 27 12.1
7 13 41.8 13 29.6 77572 154 82144 3600 37 51.9 37 613
8 41 217 41 64.9 90247 3600 99204 3552 73 88.7 73 60.1
9 16 87.4 16 94 69492 3600 75486 3231 45 62.9 45 233
10 17 230 17 1891 76090 34.5 127002 837 48 201 49 2282

where f cplex
i represents the solution that is being compared

from the CPLEX solver (e.g., f1, f2, or f3), and f cp
i rep-

resents the solution obtained from CP optimizer. For the
smaller instances (1–3), both of the solvers were able to find
the optimal solution. However, CPLEX can reach optimality
in significantly less time for Instance 3. Looking at instances
4–6, it can be noticed that CP is being outperformed when it
comes to objective f2. The difference is in the range of 1.6–
5.8% depending on the instance. The values of objectives
f2 and f3 were optimized to optimality. However, the time
solvers take differs by 2 orders of magnitude. At this point,
it becomes obvious that CPLEX is a clear winner. This is
even more exaggerated in instances 7–10, where CP cannot
keep up with CPLEX in terms of f1 and f3, except Instance
9, where the difference in performance goes up to 60%.

Table III compares CPLEX and CP in the single objective
optimization. We used the same instances from the previous
benchmark, but we used a single criterion instead of multi-
criteria optimization this time. The benchmark is done three
times, once for each criterion. The results from CPLEX and
CP, for the objective function f1, where the goal is to mini-
mize the total number of nodes used, are the same in terms
of solution quality. Both solvers found an optimal solution in
a comparable amount of time, except, for instance, 10, where
CP took significantly more time than CPLEX to reach the
optimal solution. However, in other instances, e.g., 2, 7, and
8, CP can get the optimal solution faster than CP. This has
never been the case in the multi-criteria benchmark. When
it comes to f2, where the goal is to minimize the overall

latency of the system, CPLEX outperforms CP by a large
margin, both in terms of solution quality and convergence
time, except in the first three test instances. Finally, in the
case of optimization of f3, it is similar to f1. Both solvers
can find the optimal solutions, except CP, in instance 10.
However, in most cases, CPLEX performs better in terms of
convergence time, except in instances 6 and 8.

From these two benchmarks, it can be concluded that when
it comes to optimizing latency in this problem, the CPLEX
is a clear winner. On the other hand, when it comes to
maximizing the number of green nodes used or the total
number of used nodes, both CP and CPLEX can be a
reasonable choice, even though CPLEX does converge faster
on average. It is also interesting that even though in multi-
criteria optimization, CP performed worse than CPLEX,
in single-criterion optimization, CP can still come ahead
in some instances. Both approaches proved usable for this
problem on a reasonably large scale since the largest instance
had 600 applications to be offloaded to 120 nodes.

In addition, it can be observed that even though in our test
instances the number of green nodes is between 27 and 60
% (Table I), the results in Table II, for CPLEX solver, show
that the usage of green nodes, calculated as (f3− f1)/f3, in
the solutions, is maximized and is in the range of 67 - 89
%, except for instance 8, where the equipment required by
the applications is mostly provided by fossil-fueled nodes, in
which case only 45% of the used nodes are green. Averaged
over all 10 instances, CPLEX solutions include around 76%
of green nodes, while CP has a lower average of around



73.7%. Depending on the nodes’ consumption, the difference
of 2.3% can greatly impact reducing the CO2 footprint by
having a better-optimized application offloading.

V. CONCLUSION

Application offloading is an important problem in the
Cloud-based domain. It allows end devices to offload some or
all of the computational load to an Edge-to-Cloud continuum
while maintaining the required latency. However, for the
offloading to be effective, it is necessary to have a model of
the problem and good solvers that can solve a given problem
in a reasonable time. To meet both demands from users and
service providers, it is necessary to optimize more than one
criterion. Also, some regulations might need to be followed,
e.g., the allowed CO2 footprint per node.

To address the issues above, we have proposed a math-
ematical model that describes the problem. In addition, we
have implemented said model in two commercially available
solvers, CPLEX and CP Optimizer, to understand if they
might be applicable in this scenario. We also compared them
to understand their benefits and shortcomings and determine
which is more suitable for this specific application. We
performed a benchmark on the series of randomly generated
test instances, which shows the superiority of CPLEX in
minimizing the overall latency of the system and in multi-
criteria optimization. However, both CP and CPLEX solvers
were effective in optimizing the total number of nodes and
the number of fossil-fueled nodes used in the E2C continuum
in single-objective optimization.
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[26] P. Skarin, J. Eker, and K.-E. Årzén. A cloud-enabled rate-switching
mpc architecture. In 2020 59th IEEE Conference on Decision and
Control (CDC), pages 3151–3158, 2020.

[27] P. Skarin, J. Eker, M. Kihl, and K.-E. Årzén. Cloud-assisted model
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[28] P. Skarin, W. Tärneberg, K.-E. Årzén, and M. Kihl. Control-over-the-
cloud: A performance study for cloud-native, critical control systems.
In 2020 IEEE/ACM 13th International Conference on Utility and
Cloud Computing (UCC), pages 57–66, 2020.
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