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Abstract—The increasing complexity of modern automotive
software systems has prompted the development and adoption
of various model-based methodologies. One such methodology
is MoVES, which provides automated support for identifying
design solutions that meet timing requirements, thus enhancing
the cost-efficiency of automotive software development.

To further enhance the cost-efficiency of the automotive
software development process, we propose the integration of a
continuous integration and delivery pipeline into MoVES. In
addition to reduce manual tasks, this extension offers several
improvements over traditional continuous integration and deliv-
ery pipelines with respect to the performance, parallel execution
and distribution of the pipeline.

We begin by discussing the overarching design of the pipeline,
followed by its practical implementation using GitHub Actions.
Subsequently, we validate the effectiveness of our pipeline
through a use case involving brake-by-wire and wiper motor
functionalities in automotive systems. Finally, we describe the
research challenges encountered during this process and provide
an outline of future research aimed at further enhancing the
pipeline.

Index Terms—Model-based development, automotive software,
DevOps.

I. INTRODUCTION

Over the past few decades, the automotive industry has
experienced a significant rise in the complexity of embedded
automotive software. Nowadays, vehicles can be equipped
with over 150 million lines of code [1]. To tackle this
growing complexity and facilitate the development of embed-
ded software, the automotive industry has embraced various
advancements in software engineering, including model-driven
engineering (MDE) [2]. MDE enables the automatic transition
from abstract models [3] to more concrete representations,
eventually leading to code generation [4]. Model transfor-
mations play a crucial role in automating the manipulation
of these models [5]. Several studies have explored the use
of models and model transformations to create model-based
development methodologies and frameworks [6]–[8]. How-
ever, most existing model-based methodologies exhibit poor
integration with software development life cycle processes [9].
This limitation becomes particularly significant when adopting
agile processes like DevOps [10], [11], as the lack of full-
fledged integration can undermine the advantages offered by
both model-based methodologies and agile practices. Conse-
quently, the development of embedded automotive software
may incorporate manual steps due to the absence of seamless
integration.

In this research, we design and implement a continuous
integration and delivery (CI/CD) pipeline to bridge the gap

between model-based methodologies and DevOps processes.
A CI/CD pipeline automates various manual interventions
typically involved in transitioning new code from a commit
into production, spanning the build, test, and deploy phases.
We build upon the MoVES methodology, which is a model-
based approach that facilitates the development and architec-
tural exploration of automotive system designs with temporal
awareness [12]. Following the engineering method outlined
by Basil [13], we extend MoVES by integrating a CI/CD
pipeline. This extension incorporates parallel execution of jobs
and the establishment of a distributed pipeline, with each job
serving as a system node. Hence, besides reducing the need of
manual tasks, it provides several improvements over traditional
CI/CD pipelines with respect to performance and compatibility
requirements. In addition, we validate the introduced CI/CD
pipeline by means of two use cases mimicking the brake-by-
wire and the wiper motor automotive functionalities. Eventu-
ally, we discuss the research challenges encountered during
the design and development of the pipeline and outline future
directions for further enhancements.

The remainder of this work is as follows. Section II provides
the background information for this research. Section III out-
lines the design and implementation of the pipeline. Section IV
presents the application of the pipeline to the brake-by-wire
and wiper motor functionalities in the automotive domain. Sec-
tion V explores alternative approaches to the proposed pipeline
implementation. Section VI discusses relevant work conducted
in the field. Section VII concludes the paper, offering final
remarks and suggestions for future research endeavours.

II. BACKGROUND AND MOTIVATION

In this section, we provide an overview of MoVES and
describe the gasps motivating this research. In addition, we
delve into CI/CD practices and the technologies used for the
implementation of the proposed pipeline. In a

A. MoVES

MoVES is a model-based methodology for the development
and architectural exploration of automotive software designs
with temporal awareness that are identified using analytical
as well as trace-based timing analysis [12], [14]. Figure 1
provides a simplified graphical representation of MoVES1.
MoVES uses the EAST-ADL automotive modelling language

1It is worth remarking that the comprehensive description of MoVES it is
outside the scope of this work. The interested reader may refer to the following
publications [12], [14]



Fig. 1: Simplified representation of MoVES.

to represent software functionalities [15]. The EAST-ADL
models comprehensively capture various aspects of automotive
functionalities, including functional aspects, timing, verifica-
tion, and validation concerns. The timing information also
encompasses the timing constraints that require verification. To
achieve this, two distinct processes are employed, as illustrated
in Figure 1. In the first process, a set of model transforma-
tions automatically generate Rubus Component Model (RCM)
models from the EAST-ADL models [12]. These RCM models
are verified using pre run-time, high-precision schedulability
analyses2 available through the Rubus Integrated Component
Model Development Environment [15] (Rubus ICE). The
results obtained from the schedulability analyses are auto-
matically back-annotated to the EAST-ADL models using an
additional set of model transformations [12]. In the second
process, the EAST-ADL models are combined with a log
file that captures the simulation or actual execution of the
modelled functionality [14]. The log file contains information
such as the values of the modelled signals and corresponding
timestamps. The models and the log file are fed to the trace
analyser that analyses the traced data and generates results that
are subsequently back-annotated to the EAST-ADL model, as
described earlier [14].

Despite its capability to support the automated exploration
of temporal-aware automotive software designs, MoVES lacks
seamless integration with agile processes like DevOps, which
involve frequent transitions of new artefacts from commits to,
e.g., build and deployment phases. As a result, the verification
processes required by MoVES must be manually executed
each time the EAST-ADL model or the log file undergo mod-
ification. To address this limitation, we design and implement
a CI/CD pipeline and include the pipeline in MoVES.

B. DevOps and CI/CD

DevOps is an agile software process that aims to bridge
the gap between software development (dev) and operations
(ops). While there is no universally standardised definition
of DevOps, it is widely recognised as a methodology that
strives to minimise the time between making a system change

2The interested reader may refer to the work by Mubeen et al. for further
information on the supported schedulability analyses [16]

and deploying it into production [17]. In recent years, there
has been a significant increase in the number of companies
adopting DevOps. According to a recent report [18], approx-
imately 61% of the surveyed companies claim to utilise this
approach. The DevOps life-cycle involves a range of activities
that are executed iteratively and repetitively. These activities
encompass code development, planning, monitoring, opera-
tions, deployment, release management, testing, and building.
While CI/CD shares the same goal as DevOps, it can be
viewed as a specific tactic within the broader DevOps process.
CI/CD is characterised by a set of development practices that
enable the seamless integration and continuous delivery of
software. A CI/CD pipeline comprises a series of steps that
must be executed to successfully deliver a new version of the
software. Typical steps in a general CI/CS pipeline are commit
change, trigger build, build, notify of build outcome, run tests,
notify of tests outcome, deliver build to staging, deploy to
production.

III. THE PIPELINE

In this section, we discuss the design and implementation
of the proposed pipeline. The interested reader can access the
full implementation at https://github.com/MarcusM94/dev-env

A. Designing the pipeline

During the development of the CI/CD pipeline, we had
to consider several key aspects to ensure its compatibility
with best practices while enable continuous integration and
continuous deployment to MoVES.

The first aspect we addressed was the handling of test
failures. In a conventional CI/CD pipeline, the failure of a
test would halt the entire pipeline and notify the developers
of the failure. However, this approach could not be directly
applied to MoVES. In fact, within MoVES it is essential to
retain the timing analyses outputs and store them back into
the EAST-ADL model. As a result, the only stages in the
pipeline that could lead to its failure are the building stages
of the two timing analysis processes. An example of a build
error entails encountering an incorrect file path or having a
dependency on outdated software. However, our objective was
to avoid deploying a modified EAST-ADL model that would
fail specific timing requirements. To achieve this, we decided
to consistently deploy the modified EAST-ADL model to a
development branch. Nevertheless, we proceed with deploying
it to a production branch only if none of the timing analyses
produce a failure.

Another aspect we addressed was the parallel execution of
the pipeline’s jobs. In a typical CI/CD pipeline, the tests, also
referred to as jobs, are executed sequentially. However, this
approach has certain drawbacks. Firstly, if the first job fails to
build, the second job will not be executed, resulting in a failure
to notify the developer. In the context of MoVES case, this is
sub-optimal as MoVES involves two distinct timing analysis
processes. Considering this, we decided to build a pipeline
capable of parallel execution.

https://github.com/MarcusM94/dev-env


The last aspect that we addressed pertains the distribution
of the pipeline. MoVES uses Rubus ICE that in turns re-
quires a Windows machine. However, the use of a Windows
machine imposes certain limitations. For instance, certain
software can not be installed via a command-line interface.
Many software tools with Windows dependencies mandate
installation through an installation wizard, thereby requiring
user interaction with a graphical interface. Even the installation
of Git on a Windows machine can prove cumbersome without
graphical user interaction. If one aims to leverage the benefits
of Docker in adopting a more DevOps-oriented approach to
development, the installation of software must occur within a
text-based interface, as specified in a dockerfile. To solve this
drawback, we decided to construct the pipeline as a distributed
system, employing distinct nodes, each capable of running
various operating systems or different versions of a specific
operating system.

Fig. 2: Proposed pipeline

Considering the aforementioned aspects, Figure 2 illustrates
a UML activity diagram that outlines the sequential steps of
the proposed pipeline, which are executed whenever updates
are made to the initial EAST-ADL model. We developed
this pipeline using two nodes: one designated for a Linux
machine (green in Figure 2) and another for a Windows
machine (yellow in Figure 2). The latter node is responsible
for the Rubus ICE build, which ensures analytical timing
analysis. The former node handles the build of the trace
analyser, guaranteeing trace-based analysis. If either of the
builds encounters an error, the pipeline notifies the failure
and halts further execution. Conversely, if the builds succeed,
the pipeline proceeds with both the analytical and trace-based
timing analyses, as described in Section II. Upon obtaining
positive results from these analyses, the pipeline proceeds to
the deployment to the production and development branches.
However, if any of the analyses yield unsatisfactory results,
the pipeline restricts the deployment only to the development
branch.

B. Implementing the pipeline using GitHub Actions

We implemented the pipeline using GitHub Actions. To this
end, we created a dedicated directory within our repository
named “workflows” that contains the YAML file. This
file defines the GitHub Actions pipeline and incorporates all
the necessary scripting for individual job execution. GitHub
Actions encompasses a feature known as “runners”, which

essentially comprises operating system images. These images
typically come equipped with pre-installed software and de-
termine the specific operating system and software utilised for
each job [19]. It is worth noticing that while runners eliminate
the need for Docker images, developers still retain the option
to employ Docker images if required.

Fig. 3: YAML file and example of a runner
Figure 3 exemplifies a job named “trace-test” utilising

a runner named “ubuntu-latest”. By specifying this
runner, we ensure that the job executes on the most up-to-
date version of the Ubuntu operating system. To overcome
the challenge posed by the need for graphical user interaction
in Rubus ICE, we leveraged a GitHub Actions feature known
as “self-hosted runners” This feature allowed us to
manually install Rubus ICE on a Windows machine and
integrate it into our existing pipeline as a node. After manually
installing Rubus ICE using a self-hosted runner, we were
able to utilise its functionality through a text-based interface,
eliminating the need for graphical user interaction.

IV. APPLYING THE PIPELINE TO AUTOMOTIVE
FUNCTIONALITIES

This section highlights the utilisation of our proposed
pipeline on two automotive functionalities: brake-by-wire
(BBW) and wiper motor (WM). The BBW system revo-
lutionises traditional mechanical linkages by introducing an
independent braking system that enables electronic control of
the brakes. The WM system is responsible for activating the
mechanisms that operate the windshield wipers in a vehicle.
It is worth noting that there exist various implementations of
these systems. However, for this study, we have collaborated
with an internationally renowned Swedish automotive Original
Equipment Manufacturer (OEM). Hence, we have utilised the
specific implementation provided by our OEM partner. Fig-
ure 4 visually depicts the configuration of the BBW and WW
systems. The BBW system consists of 11 periodic tasks, each
activated at five distinct periods. These tasks are responsible
for executing the necessary actions whenever the brake pedal
is pressed, ensuring prompt and precise activation of the brakes
within a defined time frame. To achieve this, the architecture
specifies four data chains, each subject to specific reaction
timing constraints. The first three tasks (pBrakePedalLDM,
pGlobalBrakeController, and pBrakeTorqueMap)
are shared among all data chains. From there, each data chain
continues independently for each wheel, e.g., ABS_FL_Pt
and pLDM_Brake_FL for the front left wheel. Similarly,
the WM system consists of six periodic tasks activated at
three distinct periods. To achieve the correct functionality, the
architecture specified three data chains (marked with green,
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(a) Periodic activation and timing constraints of the BW system.

(b) Periodic activation and timing constraints of the WM system.

Fig. 4: Block diagram of the BBW and WW systems. Different
tasks and their communication pattern are shown. Task period
and reaction time constraints are annotated.

blue and red lines in Figure 4b) subject to age, delay and re-
action constraints. Below we present the successful execution
of the proposed pipeline on the two systems using the MoVES
methodology. We use the BBW system to validate the Rubus
ICE testing and the WW system for the trace analyser. To
initiate the pipeline, the EAXML file of the BBW and WM
systems were uploaded to a designated GitHub repository.
Figure 5 showcases the interface of GitHub Actions, where
all the triggered jobs are displayed upon any changes made to
the repository. In our pipeline setup, we explicitly define that
a push event to the Git repository will activate the pipeline.
The jobs within the pipeline are responsible for both executing
the tests and configuring the testing environment.

In the proposed pipeline, the Rubus ICE job operates
differently from the other jobs, as it runs on a self-hosted
runner hosted on a private Windows machine instead of
GitHub Actions’ own cloud. This dedicated Windows machine
already has Rubus ICE pre-installed, enabling the utilization
of a text-based interface for testing purposes. To ensure the
proper functioning of Rubus ICE, the installation of Visual
C++ Redistributable is required, as it installs the necessary C
and C++ run-time libraries. During the execution of the Rubus
ICE job within this pipeline, two essential steps are performed.
Firstly, a tool called Rubus Compiler, which is a component

Fig. 5: Interface of GitHub Actions.

of the Rubus ICE tool suite, is utilised. This tool plays a
crucial role in creating an intermediate representation of an
XML file. It verifies the correctness of the XML syntax and
ensures that all entries adhere to C code naming conventions.
The result of this compilation process is a binary file that
will serve as the input for testing purposes. The second and
final step in this job involves using the Rubus Test tool to
conduct testing on the previously compiled file. This tool
enables comprehensive testing of the binary file, ensuring the
reliability and functionality of the system.

Unlike the Rubus ICE job, the trace analysis job in the
pipeline does not require the use of a Windows machine.
Therefore we can leverage GitHub Actions runners available in
their cloud infrastructure to perform the necessary testing. This
allows us to fully embrace DevOps practices and configure
the testing environment through a text-based interface. To set
up the environment for the trace analysis job, the following
steps are executed. The job begins by downloading the trace
analyser from its repository. This ensures that the latest version
of the trace analyser is obtained for testing purposes. Next, the
job downloads and installs .NET Core (specifically version
3.1 as it corresponds to the one used during the development
of the trace analyser). This step ensures that the appropriate
version of .NET Core is available for building and running the
trace analyser. With .NET Core successfully installed, the job
proceeds to build the trace analyser using the framework. This
process involves compiling the project and its dependencies
into a set of binaries. These binaries form the executable
that will be used to run the trace analyser. Finally, the job
conducts the necessary testing using the built trace analyser.
This step ensures the thorough examination and analysis of the
trace data, enabling the identification of any potential issues
or anomalies.

Figure 6 visually represents the output obtained from the
trace testing job within our pipeline. The trace analysis is
conducted successfully and its results highlight that the current
design of the WW system does not meet the specified timing
requirements. Specifically, the delay constraint of 0.25 mil-
liseconds and the reaction constraint of 0.2 milliseconds are
not satisfied. This outcome is consistent with the explanation
provided in Section II, where it was clarified that the failure
to meet these timing requirements does not indicate a pipeline
failure. Rather, it indicates that the current design does not



adhere to the specified timing constraints. As per the MoVES
methodology, the results obtained from the trace analysis are
propagated back to the EAXML file. This iterative process
allows for refinement and improvement of the system’s design,
incorporating the findings from the trace analysis to optimise
the timing behaviour of the WW system.

V. DISCUSSION

In this study, we have successfully integrated a CI/CD
pipeline into the MoVES methodology. This integration in-
volved multiple iterations of the engineering method, extensive
research, and thorough testing of various products and tools
that aid in streamlining the creation and management of CI/CD
pipelines.

Initially, we attempted to create the pipeline using Jenkins,
an open-source product that offers numerous advantages over
other alternatives. While Jenkins emerged as the most bene-
ficial choice due to its open-source license, we encountered
a limitation during our work that necessitated the use of
an alternative product to complete the automation process.
Specifically, Rubus ICE required a Windows machine, which
posed challenges in configuring Jenkins to accommodate this
requirement. As our research goal focused on creating a CI/CD
pipeline aligned with the DevOps methodology, attempting to
tailor Jenkins to our needs gradually deviated from DevOps
best practices. Notably, containerising each job in the pipeline
and fully utilising a text-based interface for configuration
became challenging on a Windows machine.

Additionally, we desired to host our pipeline in the cloud,
enabling its utilisation across multiple machines. However,
when attempting to migrate the Jenkins pipeline to cloud
services like AWS, Azure, and Google, we encountered an-
other limitation. The free-tier cloud services offered by these
providers, such as AWS EC2, were insufficient for hosting
the Jenkins pipeline due to limited resources. For instance,
the AWS free-tier EC2 instance only provided 1GB of RAM,
with a portion already allocated to the operating system [20].
We deemed a minimum of 2GB of dedicated RAM necessary
for the Jenkins pipeline. Consequently, this further motivated
us to switch to an alternative CI/CD pipeline creation tool.

Various approaches can be adopted to fulfil our research
goal, and our work has resulted in the creation of a CI/CD
pipeline with several notable improvements compared to
conventional pipelines. One significant enhancement is the
parallel execution of all jobs, as well as the distribution of
the pipeline across multiple nodes. Although we implemented
our final pipeline using GitHub Actions, it is important to
note that other products such as Jenkins, GitHub Actions, and
GitLab can also support parallel execution and the creation of
distributed pipelines. These products are designed with similar
principles since CI/CD pipelines are a fundamental part of
the DevOps methodology, adhering to specific standards. It
is worth highlighting that researchers and practitioners are
not limited to using GitHub Actions alone if they wish to
replicate our pipeline. The options we researched, such as
Jenkins, GitHub Actions, and GitLab, provide comparable

functionalities in terms of parallel execution and distributed
pipeline creation. Ultimately, the choice of tool depends on
individual project needs, time constraints, and the level of
customisation desired.

VI. RELATED WORK

The adoption of DevOps processes has experienced a sig-
nificant increase in software development, especially in the
context of CI/CD pipelines. In this section, we discuss the
importance of various studies conducted in the domains of
MDE, automotive software, and CI/CD, highlighting their
relevance to our own research.

Lwakatare et al. conducted a comprehensive study on the
challenges of implementing DevOps practices in the embed-
ded systems domain, including the automotive industry [21].
Lwakatare et al. found that DevOps, being predominantly
associated with System as a Service (SaaS) applications, lacks
considerations that make it directly applicable to the embedded
systems domain, specifically within the automotive industry.
Their study involved an in-depth analysis of four different
enterprises including an automotive company. They found that
testing embedded systems posed significant difficulties due to
the intricate nature of these systems that involve software,
optics, electronics, and other components. Furthermore, the
research highlighted another challenge related to the engineers
knowledge. Typically, automotive software engineers rarely
possess a comprehensive understanding of the entire system,
and face the challenge of dealing with numerous intercon-
nected parts, diverse technologies, and the need to ensure
compatibility with legacy software.

Düllmann et al. proposed the use of a model-driven domain-
specific language (DSL) framework to facilitate the definition
and analysis of CI/CD pipelines [22]. Their approach employs
a model-based language, notably Business Process Model
and Notation (BPMN), for creating visual representations of
the pipeline outcomes. Nevertheless, the applicability of their
framework is constrained to Jenkinsfile, the designated file
format utilised for constructing and evaluating CI/CD pipelines
within the Jenkins tool. Our experience has revealed a notable
challenge when configuring Jenkins to operate seamlessly
across diverse operating systems, including Windows.

Zampetti et al. conducted a comprehensive study on 8,000
non-forked projects sourced from GitHub, which employed
at least one CI/CD pipeline [23]. They analysed the commits
made to these projects, aiming to identify the restructuring
or refactoring patterns performed on the pipelines. To achieve
this, they employed a metric extractor capable of extracting
16 types of metrics, including total number of jobs, number
of jobs permitted to fail, etc. The study by Zampetti et al.
serves as a valuable complementary resource to our work. By
leveraging their findings, we could further enhance automation
and reduce manual development efforts by creating a pipeline
that automatically adapts its structure based on those metrics.

Düllmann et al. presented a study that proposes the ap-
plication of DevOps practices to the engineering of CD
pipelines [11]. The authors emphasised that although CD



Fig. 6: Output from GitHub Actions pipeline.

pipelines are an integral part of DevOps practices, there
is a lack of researches focusing on the engineering of the
pipelines themselves. They argued that eliciting best practices
could yield significant benefits for the CD pipelines, such as
enhanced security and reliability.

VII. CONCLUSION AND FUTURE WORK

We discussed the inclusion of a CI/CD pipeline to a
model-based methodology that facilitates the development and
architectural exploration of automotive system designs with
temporal awareness. The proposed CI/CD pipeline included
several improvements over traditional pipelines. These im-
provements include the use of parallel execution of jobs and a
distributed build (where each job in the pipeline act as a unique
node in the system) to satisfy performance and heterogeneous
platforms requirements, respectively. We validated our work
using two use cases namely break-by-wire and wiper motor
automotive functionalities. Eventually, we discussed the chal-
lenges encountered during the design and development of the
pipeline.

Future work may encompass several directions. One possi-
ble direction is to enhance the proposed pipeline using the
metrics elicited by Zampetti et al. [23]. Another possible
direction could focus on the quantitative validation of the
CI/CD pipeline employing further use cases from the auto-
motive domain. Eventually, future work may investigates how
to containerise the different tools composing MoVES with, for
instance, Docker technology.
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