
Comparing Ext4 and ZFS for Onboard Data Processing: A
Systematic Mapping and Experimental Evaluation

Stephanie Liza Johansson
Div. of Intelligent Future Technologies

Mälardalen University
Västerås, Sweden

ljn18009@student.mdu.se

Hassan Omer Said
Div. of Intelligent Future Technologies

Mälardalen University
Västerås, Sweden

hsd18001@student.mdu.se

Håkan Forsberg
Div. of Intelligent Future Technologies

Mälardalen University
Västerås, Sweden

hakan.forsberg@mdu.se

Nandinbaatar Tsog
Div. of Intelligent Future Technologies

Mälardalen University
Västerås, Sweden

nandinbaatar.tsog@mdu.se

Oskar Flordal
Chief Technology Officer

Unibap AB
Uppsala, Sweden

oskar.flordal@unibap.com

Abstract—Selecting the correct file system is critical for space
applications where risks are present. This study systematically
maps and tests Ext4 versus ZFS for onboard data processing on
the iX10-100 and iX5-100 payload processors. The test sets are
presented along with results on several performance metrics. The
conclusion is that both ZFS and Ext4 are useful, but based on
certain considerations of onboard data processing, Ext4 is better
than the other.

Index Terms—File System Performance, Ext4, ZFS, Systematic
Mapping Study, Benchmarking, Onboard Data Processing

I. INTRODUCTION

Onboard processing of data in satellites requires data to be
processed and stored correctly to achieve mission objectives.
This is true for space-cloud payload processors, where the
objective is to handle the onboard processing of a satellite’s
payload data through a cloud network. To support a space
mission, it is critical that the underlying mechanisms, such
as the type of operating system and file system used in a
satellite, are carefully chosen. In fact, according to Karim et
al. [1] the topic of a file system is always neglected in storage
unless significant demands are present. Selecting the correct
file system is necessary since it is responsible for handling data
smoothly and without errors in a storage device such as Solid
State Drive (SSD) and Hard Disk Drive (HDD). However,
selecting the correct file system for space application is not
an easy task due to the harsh space environment.

Since 2006, many research articles have been published
in which several disadvantages and advantages of commonly
used file systems are discussed. Some of the published re-
search articles that compare the performance between two or
more file systems include Karim et al. [1], Heger [2], and
Promchana et al. [3]. To the best of our knowledge, there
is currently no state-of-the-art that systematically maps the
differences between the Extended 4 (Ext4) file system and
the Zettabyte File System (ZFS) in various feature categories

other than performance and reliability. Due to the lack of such
a study, commercial space firms can find it harder to choose
the best option for their clients when deciding between Ext4
and ZFS. This offered an incentive for undertaking a thorough
comparison study and an experimental evaluation of Ext4 and
ZFS. Thus, the objective of this research contains two aspects:

1) to present a systematic mapping of the state-of-the-art
knowledge of Ext4 versus ZFS for onboard data process-
ing by studying relevant literature from 2006 and onwards

2) to test Ext4 and ZFS in a next-generation space-cloud
payload processor called iX10-100 [4] and using iX5-
100 [5] as the space heritage reference by conducting
the same tests on it as well. Both payload processors are
from the Swedish space company Unibap AB [6].

The former aspect offers a logical approach to a theoretical
study, whereas the latter aspect offers an experimental eval-
uation. Furthermore, the aforementioned tests contribute to
research that does not entail such a test environment.

This paper is organised in the following manner: Section
II will give an overview of the background including related
work. Section III will describe the process applied to conduct
the systematic mapping. In section IV, the gathered results of
the systematic comparison study are illustrated and described.
Section V describes the setup for conducting the experiments.
This is followed by an illustration of the gathered experiment
results in section VI. Finally, a conclusion is drawn based on
the presented results in section VII.1

II. BACKGROUND

As mentioned, an efficient and secure way to access and
manipulate the data stored on computer storage devices is
through the use of a file system. File systems organise and

1This work is supported by the Swedish Knowledge Foundation within
the project Dependable Platforms for Autonomous systems and Control
(DPAC) and Vinnova within the project SafeDeep.



manage data on computer storage devices to offer the desired
data reliability, scalability, performance, storage capacity, and
more. This is important for a space mission operation; storage
in space is impacted negatively due to radiation, limited
storage capacity, high power consumption, limited bandwidth,
and poor robustness. Therefore, it is crucial to consider these
factors when designing or selecting a file system for space
applications. Nowadays, Ext4 and ZFS are some of the popular
file systems that are commonly used by users (e.g., data
storage companies and space community). ZFS is designed to
provide redundancy and data integrity, i.e., ZFS supports not
losing data when a drive fails. It also ensures data integrity in
the event of system failures [7]. On the other hand, the Ext4
is designed to handle large storage capacities and offer high
performance unlike its predecessors (e.g., Ext2 and Ext3) [8].

Section I mentioned some of the existing research papers
which are relevant to this study. Karim et al. [1] compares
the I/O performance, flexibility, and ease of use of Linux file
systems Ext4, Extents File System (XFS), and B-tree File
System (BtrFS). These file systems are running on storage
stack systems such as Logical Volume Manager (LVM) and
ZFS with Rados Block Devices (RBDs), replacing physi-
cal drives. The experiments are conducted to evaluate the
performance of selected file systems. In addition, the paper
highlights the limitations of LVM and ZFS on physical drives
and provides a detailed analysis. The analysis is related to the
hardware, software and network configurations of the testing
environment.

The objective of the research conducted by Djordjevic and
Timcenko [8] is to identify and compare the new features
that are added to Ext4 compared to its predecessors. Features
related to storage, performance, and reliability are discussed
where simulation results showed that Ext4 is indeed superior
to its predecessors.

Heger [2] compares BtrFS to ZFS in his paper, although a
comparison to an Ext4 setup is also presented. In addition to
the comparison, Heger offers sufficient details on ZFS charac-
teristics that relate to reliability, performance, and scalability.
This information is a useful addition to the research done by
Djordjevic and Timcenko [8] since it makes it simpler to draw
comparisons between Ext4 and ZFS.

In their study, Widianto et al. [7] focus on a distinct file
system, namely ZFS. Similar to this research, their work
revolves around the design of a storage system, albeit one
built upon the ZFS framework. This particular approach holds
relevance for the current study on two fronts. Firstly, the
chosen system configuration becomes noteworthy, particularly
due to its insights into software RAID within ZFS, known
as RAIDZ. Secondly, Widianto et al. delve into an analysis
of the reliability of their ZFS-based storage solution by inte-
grating compression algorithms. This assessment serves as an
indicator of the reliability support inherent to ZFS. Both of
these vantage points carry significance as they align with the
objectives of the comparative analysis conducted in this study.

Based on studies of related work, it is observed that Ext4
and ZFS are currently not compared against each other in a

systematic way in more than two or three file system feature
categories. In this regard and as discussed, a file system
organises and manages data in such a way that it offers data
reliability, scalability, performance, and storage capacity to a
desired degree. The four feature categories mentioned are not
only crucial in the context of file systems but are also essential
to the systematic mapping conducted in this research. By using
the four feature categories to perform a systematic comparison
study, this research can contribute to a better understanding
of the state of research in the field of file systems related
to Ext4 and ZFS. Another contribution is apparent in the
tests that will be performed on Ext4 and ZFS based on the
chosen workload as well as hardware setup. The tests involve
benchmarking operations where several performance metrics
(e.g., throughput, latency, CPU usage, and IOPS) are deemed
sufficient indicators of Ext4 and ZFS performance behaviour
within the context of this research. In addition, a third test
on disc performance is made to aid in understanding the file
system performance results better.

III. SYSTEMATIC COMPARISON STUDY PROCESS

The process of the systematic comparison study is sim-
ilar to a systematic literature review. As a matter of fact,
Kitchenham [9] clarifies that a systematic literature review
entails researchers gathering data by examining and eval-
uating research that is relevant to the respective research
problem. In this context, the research problem is related to
mapping, extracting, and evaluating Ext4 versus ZFS using
an organisational scheme, classification scheme, and graphical
visualisation. Note that the experimental evaluation is another
process with its own setup. However, the results from the
comparison study and experimental evaluation are equally
crucial to: 1) drawing a conclusion on Ext4 versus ZFS and
2) contributing to research. Nonetheless, the process of the
systematic comparison study is summarised in four activities
(see Fig. 1). Fig. 1 shows the process begins by selecting
appropriate related work. To select appropriate related work,
a search strategy needs to be applied. To achieve the latter,
Kitchenham [9] recommends some of the following parame-
ters:

1) several databases
2) search string
3) inclusion-, and exclusion criteria
4) amount of search hits.

In this research, IEEE, Semantic Scholar, and Scopus are
the three databases that are used. The search string will be
used in each database to generate an initial number of hits.
In addition, to obtain papers that are relevant to the theme
of the comparison study, i.e., Ext4 versus ZFS, the search
string is selected based on keywords related to the theme.
Therefore, the search string is constructed using the keywords
”File systems”, ”ext4”, and ”zfs”. Also, Boolean operators
OR and AND are included in the search string to refine the



search [9]. Hence, the following search string is used:

(”File systems” AND (zfs AND ext4)) OR (”File systems”
AND (”ext4” OR ”zfs”)).

Fig. 1: An illustration of the systematic comparison study
process.

To scale down the initial number of hits received by the
search string, inclusion-, and exclusion criteria are applied
on two levels. The first level entails applying criteria to the
title and abstract of each research paper. After the first level,
the second level entails exposing the remaining papers to a
new set of criteria, this time applied to the entirety of each
paper’s content. The inclusion-, and exclusion criteria are the
following:

1) Inclusion Criteria:
a) Papers are between the years 2006 and 2023 (IC 1).
b) Papers are written in English (IC 2).
c) Papers must address one or more feature categories in

relation to Ext4 and/or ZFS (IC 3).
d) Papers must be peer-reviewed (IC 4).

2) Exclusion Criteria:
a) Papers mention the same aspects with the same bench-

mark environment implementation (EC 1).
b) Papers that do not illustrate I/O implementation of Ext4

and/or ZFS (EC 2).
c) Papers requiring payment (outside normal institutional

sign-in) and/or request of access from authors (EC 3).
d) Papers that are not published in journals and confer-

ences (EC 4).
The remaining papers from the second level are gathered

and input to the second activity in the systematic process
which is ”Analyse and extract”, as depicted in Fig. 1. Here, a
”classification scheme” (see Fig. 2) is applied when analysing
each of the gathered papers. This makes it easier to group each
paper into one or more categories for file system features. As
a result, it is now evident what can be extracted from each
document that is crucial to this research; providing guidance
for each researcher when they reread the papers helps solidify
the findings. Moreover, Fig. 2 shows an improved version of
the ”classification scheme” since extracted information makes
each feature category more detailed. In turn, the researchers
can easier map the differences and/or similarities between
ZFS and Ext4 within each feature category. From here, a
visualisation and summary of what has been extracted are
made in the third activity. To achieve this, an organisational
scheme called ”point-by-point” and histograms are used. A
”point-by-point” organisational scheme refers to alternating

points about Ext4 with comparable points about ZFS, or vice
versa. Finally, a conclusion based on the outcomes of the third
activity is reached.

Fig. 2: A detailed classification scheme of the file system
categories and their features in relation to Ext4 and ZFS.

IV. SYSTEMATIC COMPARISON STUDY RESULTS

Inserting the search string (mentioned in section III) into
the three chosen databases yields an initial total of 781 search
hits (see TABLE I). After the implementation of inclusion
criterion IC 1, the initial count of research findings is reduced
to 766. All these 766 articles present in both IEEE and Scopus
conform to inclusion criterion IC 4, as well as exclusion
criterion EC 4. Among the 396 papers on Semantic Scholar,
six papers do not appear in English, in accordance with
inclusion criterion IC 2. This adjustment revises the total
count from 766 papers down to 760.

At this stage, it is not possible to ascertain whether any of
the 760 papers necessitate payment. Consequently, exclusion
criterion EC 3 will be employed subsequently to confirm the
full accessibility of the final papers under the MDU license.

Before applying inclusion criterion IC 3 and exclusion
criterion EC 2 to the title and abstract of each paper, any
duplicates must be eliminated. To facilitate the application
of exclusion criterion EC 1, the results from each database
are compiled into an Excel sheet for manual review. A
total of 28 duplicate papers are identified in Scopus, two
duplicates in IEEE, and 20 duplicates in Semantic Scholar.
After eliminating these duplicates, the remaining paper count
becomes 710. Further refinement involves filtering out papers
that lack relevance to the comparative study theme based on
their titles and abstracts, leading to a subset of 70 papers. A
second round of the same criteria (IC 3 and EC 2) is then
applied to the full text of these 70 papers. For efficiency, the
workload is divided between researchers, with one handling 35
papers and the other tackling the rest. Ultimately, four papers
are identified ([1], [2], [7], [8]), and it is also established that
none of them require additional payment to be accessed. The
four papers are discussed previously in section II as relevant
related work.

It is established that none of the four papers achieve full
coverage of all feature categories. However, in combination,
they are most relevant to achieving full coverage which is one



of this paper’s objectives. Thus, the theoretical findings from
evaluating the four papers with respect to each feature category
are:

1) ZFS triumphs over Ext4 in reliability aspects. This is due
to the higher degree of reliability that it offers within
checksumming, RAID support, resilvering, and Copy-On-
Write (COW).

2) ZFS and Ext4 are uniform when it comes to offering
scalability. This is the result of both file systems offering
resize capabilities and extents with identical benefits.

3) ZFS offers greater storage capacity than Ext4 with respect
to its storage design and persistent preallocation. How-
ever, regarding architecture size, the benefits for storage
capacity outweigh each other in both filesystems.

4) Ext4 has an overall better performance in read-, and
write IO that are sequential. For mixed workloads, the
results tend to lead to Ext4 outputting better performance
in terms of throughput. ZFS has a better throughput in
regard to random workloads.

Note that these results are still theoretical results and thus,
to conclude anything about ZFS versus Ext4 in relation to
onboard data processing, experimental testing is required. In
specific, clause 4) is examined further in this study.

TABLE I: Illustrates the number of hits of papers by search.

Database Amounts of hits After IC 1 Date of search
IEEE 83 82 2023-03-09

Scopus 291 288 2023-03-09
Semantic Scholar 407 396 2023-03-09

Total 781 766

V. EXPERIMENTAL SETUP

For the experimental evaluation, the test environment con-
sisted of the following: iX10-100 capable of having up to 8
Streaming Multiprocessors (SMs) [4] and equipped with an
M.2 1TB NVMe SSD drive, iX5-100 which uses ”Qseven
e20xx/e21xx compute modules” [5] and equipped with an M.2
128GB SATA SSD drive. Also, a network router was needed
to configure Ext4 and ZFS. To evaluate the performance of the
file systems, Test 1 and Test 2 are conducted on both hardware
modules (see tables III and IV). As for a disc performance
evaluation, Test 3 is conducted (see Table V). All three tests
required the use of a standardised benchmarking tool known
as Fio [10]. The chosen operating system version was Ubuntu
20.04 and this was installed on each hardware module using
a bootable USB drive.

After each installation, mounting partitions with Ext4 and
ZFS on each hardware respectively were ensured for Test 1
and Test 2. On the iX10-100, a single drive setup was used
where Ext4 was created on an SSD partition of 100GB, i.e.,
/dev/nvme0n1p5. The mount point for Ext4 was /mnt/disk5.
For ZFS, a pool called ”new-pool”, containing a single
partition of 100GB, i.e., /dev/nvme0n1p4 was created. The
mount point for ZFS was /mnt/disk6. Setting up the iX5-100
entailed a similar approach. However, for Ext4 a partition of
40GB, i.e., /dev/sda6 was created and the mount point for

Ext4 was /mnt/disk1. For ZFS, the pool was instead named
”mypool” and it contained the partition /dev/sda7 of size
40GB. Furthermore, its mount point was /mnt/temp. Test 3
was conducted last since it needed to be done on raw disks
that were not mounted, i.e., /dev/sda and /dev/nvme0n1. See
Table II for the exact software versions with respect to Linux
kernel, Fio, file systems, and operating system.

TABLE II: Software versions.

Software Version
OS Ubuntu 20.04 LTS Focal

Linux kernel 5.15.32
Benchmarking FIO 3.16 -1

File system
ZFS 0.8.3-1 ubuntu 12.15
Ext4 1.45.5-2ubuntu1

Table III shows the first Fio benchmark that was conducted.
In Test 1, the throughput of Ext4 and ZFS is measured using
random writes and reads with block sizes ranging from 1 kB
to 100000 kB. The IOdepth in iX5-100 was set to 16 and for
the iX10-100, IOdepth was set to 128. The increase in IOdepth
value is due to the parallelism of the NVMe drive. The runtime
in each case was 60s.

TABLE III: Illustrates the initial Fio benchmark.

Test 1
Hardware iX5-100, iX10-100

Fio setup

⋄ Random Read and Write
⋄ Block Size: 1kB - 100000kB
⋄ File Size: 1GB
⋄ Jobs: 1
⋄ Focus: Throughput IO

Table IV shows the second Fio benchmark that was conducted.
In comparison to Test 1, Test 2 contains file size ranges from
2GB to 10GB with a fixed block size of 128kB. For instance,
the first script would run by creating a test file of 2GB on top
of each respective file system. Finally, the last script would run
by creating a test file of 10GB on top of each file system. The
IOdepth was set to 256 and runtime in each case was 60s. The
number of jobs was set to 16 and the addition of sequential
testing serves as a further difference from Test 1. The focus of
this benchmark is related to IOPS versus the number of jobs,
latency numbers as well as the total CPU utilisation versus file
size.

TABLE IV: Illustrates the second Fio benchmark.

Test 2
Hardware iX5-100, iX10-100

Fio setup

⋄ Random, Sequential Read and
Write
⋄ Block Size: 128kB
⋄ File Size: 2 - 10GB
⋄ Jobs: 16
⋄ Focus: IOPS, Latency,
CPU usage

Table V illustrates the last conducted experiment for the sake
of capturing disc performance. Since the iX5-100 does not



come with support for an M.2 NVMe SSD drive, Test 3
was deemed a necessary benchmark to add. This benchmark
consists of a mixed IO workload that uses the default values
of Fio for amounts of reads and writes. Both sequential-,
and random testing are made, and the number of jobs is set
to 5. The focus of this benchmark is to gather results on
throughput performance, latency numbers, and CPU utilisation
of how many IO operations are made per CPU percentage. The
runtime is first 60s and later increased to 20 minutes.

TABLE V: Illustrates the last conducted Fio benchmark.

Test 3
Hardware iX5-100, iX10-100

Fio setup

⋄ Mixed Random, Sequential
Read and Write
⋄ Block Size: 1kB - 100000kB
⋄ Jobs: 5
⋄ Focus: Latency, Throughput IO,
CPU usage

VI. EXPERIMENTAL RESULTS

The experimental results of conducting Test 1 indicate that
ZFS achieves an overall higher total throughput for the job
than Ext4 (see Fig. 3). This is clear when running tests on
the iX10-100. In Fig. 3, however, the results differ between
hardware. When running on the iX5-100, which is the space
heritage component, it is clear that Ext4 is actually outputting
a closer or better behaviour to that of ZFS; Ext4 achieves
better throughput in random writes. The overall throughput for
Ext4 in random reads is 202MB/s and for ZFS it is 267MB/s.
Whereas in random writes, the overall throughput for Ext4
is 132MB/s and ZFS has a throughput value of 50MB/s.
Nonetheless, the expectation of ZFS performing better or close
to Ext4 in a single drive setup for random testing is accurate
against the indications of past research [2].

Read iX5-100 Write iX5-100 Read iX10-100 Write iX10-100
0

500

1000

1500

2000

2500

3000

3500

4000

Ra
nd

om
 T

hr
ou

gh
pu

t (
M

B/
s)

Random IO
Ext4
ZFS

Fig. 3: Random throughput results of Test 1.

Figures 4-7 show the result of conducting Test 2 with
respect to IOPS. Almost all figures illustrate linear behaviours
of each random and sequential IOPS depending on whether
it is a read or write operation. In Fig. 4 and Fig. 5, ZFS

has higher slopes than Ext4 with respect to the number of
IOPS per thread size. These results are conducted on the
iX10-100. For 16 threads, the generated amount of random
read operations per second is 20799 whereas the amount of
sequential read operations per second at 16 threads is 25777,
seen in Fig. 5. For random write operations, the IOPS value at
16 threads is 10893 and 15989 for sequential write operations.
In Fig. 4, it should be noted that ”IOPS Read Ext4” and
”IOPS Write Ext4” are not overlapping. In comparison to
ZFS, the Ext4 file system does not reach the high amounts of
IOPS per thread size in both random and sequential cases of
testing on the iX10-100. Fig. 4 indicates that Ext4 has an IOPS
value of 4115 at thread size 16 for random read operations.
For the same thread size and sequential read operations, this
value increases to 6931 IOPS, as seen in Fig. 5. At the same
thread size, the IOPS for random write operations with respect
to Ext4 is 4316 (see Fig. 4) and it increases to 4682 during
sequential write operations (see Fig. 5). Conducting the same
test on the iX5-100 (seen in figures 6 and 7) yields interesting
results; ”IOPS Read ZFS” has the highest slope in both cases
of sequential tests when comparing Fig. 5 and Fig. 7.

On the iX5-100, the IOPS values reached per thread size are

2 4 6 8 10 12 14 16
Threads

0

5000

10000

15000

20000

IO
PS

Random IOPS Performance
IOPS_Read_Ext4
IOPS_Write_Ext4
IOPS_Read_ZFS
IOPS_Write_ZFS

Fig. 4: Random IOPS versus thread size results of Test 2 on
iX10-100.

not as high as in the case of the iX10-100. An underlying factor
for this could be the benefits of having an NVMe SSD that can
process IO requests faster than the SATA SSD. Specifically,
the achieved IOPS values in both sequential-, and random
cases at 16 threads for Ext4 (seen in figures 6 and 7) are
still low similar to the ones from testing on the iX10-100.
Even if ”IOPS Read Ext4” has the highest slope in Fig. 6,
its behaviour is still within the ranges of the Ext4 lines seen
in Fig. 4. Interestingly, when >12 threads are running, the
generated number of random IOPS by Ext4 increases rapidly
until it drops at 14 threads, and finally continues linearly from
15-16 threads. This behaviour might be due to an unexpected
increase/decrease in read latency. In all the discussed figures
with respect to IOPS, one can see that there is a higher slope
of read operations than there are write operations. This makes



sense since writing a file entails the creation of metadata
whereas reading a file is less expensive.

2 4 6 8 10 12 14 16
Threads

0

5000

10000

15000

20000

25000

IO
PS

Sequential IOPS Performance
IOPS_Read_Ext4
IOPS_Write_Ext4
IOPS_Read_ZFS
IOPS_Write_ZFS

Fig. 5: Sequential IOPS versus thread size results of Test 2 on
iX10-100.

2 4 6 8 10 12 14 16
Threads

0

250

500

750

1000

1250

1500

1750

2000

IO
PS

Random IOPS Performance
IOPS_Read_Ext4
IOPS_Write_Ext4
IOPS_Read_ZFS
IOPS_Write_ZFS

Fig. 6: Random IOPS versus thread size results of Test 2 on
iX5-100.

The CPU utilisation on the iX10-100 with respect to each
file size created on top of the file systems, respectively, exhibit
similar outputs in random-, and sequential cases (see figures
8 and 9). For instance, in Fig. 8 and Fig. 9, reading files
up to 10GB using ZFS requires a steady value of roughly
40% of the processor’s resources. This is quite ideal and it
does not increase towards 100% CPU utilisation which is
positively viewed as these tests portray smaller onboard data
processing operations. Furthermore, no other user applications
were running while conducting the tests. Hence, it is expected
that CPU utilisation should not be greatly affected. In Fig. 8
and Fig. 9, Ext4 does not require much of the CPU to carry out
sequential-, and random read and write operations. There is a
very notable behaviour of the ”Write ZFS” during sequential
testing. Fig. 9 shows that the CPU is utilised at 30% and as
the file size increases from 6Gb to 8GB, there is a significant
drop. To write an 8GB file, ZFS requires roughly 10% of

2 4 6 8 10 12 14 16
Threads

0

500

1000

1500

2000

2500

3000

3500

4000

IO
PS

Sequential IOPS Performance
IOPS_Read_Ext4
IOPS_Write_Ext4
IOPS_Read_ZFS
IOPS_Write_ZFS

Fig. 7: Sequential IOPS versus thread size results of Test 2 on
iX5-100. The number of generated IOPS follows a somewhat
linear slope for both file systems per increasing thread size.

CPU resources and this is almost constant even when writing
a 10GB file. Conducting these tests on the iX5-100 shows some
similar characteristics, however, much lower CPU utilisation is
required for all operations (see figures 10 and 11). Both Fig. 10
and Fig. 11 indicate that ZFS achieves higher CPU utilisation
values, just like in figures 8 and 9. The lower values of CPU
utilisation, in this case, could be connected to the fact that the
iX5-100 has a slow SATA SSD in comparison to the much
faster NVMe SSD on the iX10-100. It is worth mentioning that
lower CPU usage means the significance of a continuous time
processing task like a low power mode task could then pull the
CPU down to low power consumption during these processes
to save power resources on space missions. In reality, though,
there will be many other applications going while onboard
data processing is happening.

2 3 4 5 6 7 8 9 10
File Size (GB)

0

10

20

30

40

CP
U 

Ut
ilis

at
io

n 
(%

)

Random CPU Performance
Write_Ext4
Read_Ext4
Read_ZFS
Write_ZFS

Fig. 8: Random CPU usage results of Test 2 on iX10-100.



2 3 4 5 6 7 8 9 10
File Size (GB)

0

10

20

30

40

CP
U 

Ut
ilis

at
io

n 
(%

)
Sequential CPU Performance

Write_Ext4
Read_Ext4
Read_ZFS
Write_ZFS

Fig. 9: Sequential CPU usage results of Test 2 on iX10-100.

2 3 4 5 6 7 8 9 10
File Size (GB)

1

2

3

4

5

6

CP
U 

Ut
ilis

at
io

n 
(%

)

Random CPU Performance
Write_Ext4
Read_Ext4

Read_ZFS
Write_ZFS

Fig. 10: Random CPU usage results of Test 2 on iX5-100.

2 3 4 5 6 7 8 9 10
File Size (GB)

0

5

10

15

20

CP
U 

Ut
ilis

at
io

n 
(%

)

Sequential CPU Performance
Write_Ext4
Read_Ext4
Read_ZFS
Write_ZFS

Fig. 11: Sequential CPU usage results of Test 2 on iX5-100.

Finally, the disc performance test results are seen in Fig.
12 and Fig. 13. Fig. 12 shows the throughput results when
running towards the raw SATA SSD of iX5-100 versus the
raw NVMe SSD of iX10-100. Here, the NVMe SSD shows a
dominant performance in both random-, and sequential mixed
workloads. This comes as no surprise given the characteristics
of NVMe SSDs versus SATA SSDs [11]. As for the efficiency,
Fig. 13 must not be misleading when viewing it. The number
of mixed workload operations per CPU percentage is greater
when running the benchmark towards the SATA SSD, how-
ever, this is with a runtime of 60s. When increasing the runtime
to 20 minutes, the SATA SSD could not keep up and the task
was aborted. Hence, it lacks bars for a runtime of 20 minutes.
The authors believe this to be due to a high queue depth
and increasing the runtime may have stressed the SATA SSD
enough to its performance limits. With an increased runtime,
the true efficiency of the NVMe SSD could be analysed. Its
efficiency shot up quite rapidly as was expected from the
beginning. The number of operations per CPU % for a mixed
workload of reads is 22262. For a mixed workload of writes,
the value is 23096 Ops/%CPU.

Random Mix Sequential Mix
0

200

400

600

800

Th
ro

ug
hp

ut
 (M

B/
s)

Mixed IO
SATA SSD
NVME SSD

Fig. 12: Throughput results of random-, and sequential mixed
IO of Test 3.

A. Latency Results Test 2

Total latency results (from when Fio created the IO to its
completion) for Test 2 on iX10-100 with respect to Ext4 and
file size of 10GB showed the following:

1) The sequential IO that took the longest to complete had
a maximum latency time of 420ms.

2) The random IO that took the longest to complete had a
latency of ≈ 1221ms.

With respect to ZFS, the results were the following:
1) The sequential IO that took the longest to complete had

a maximum latency time of ≈ 35ms.
2) The random IO that took the longest to complete had a

maximum latency time of ≈ 38ms.



Read Write Read_20 Write_20
0

5000

10000

15000

20000

Op
s/

%
CP

U
Efficiency Mixed IO

SATA_SSD
NVMe_SSD

Fig. 13: Efficiency performance of disc types with respect to
mixed workload of Test 3, where the NVMe SSD is more
efficient than the SATA SSD.

Total latency results (from when Fio created the IO to its
completion) for Test 2 on iX5-100 with respect to Ext4 and
same file size as above showed:

1) The sequential IO that took the longest to complete had
a maximum latency time of ≈ 3655ms.

2) The random IO that took the longest to complete had a
maximum latency time of 6182ms.

With respect to ZFS, the results were the following:
1) The sequential IO that took the longest to complete had

a maximum latency time of ≈ 287ms.
2) The random IO that took the longest to complete had a

maximum latency time of 583ms.

B. Latency Results Test 3

Total latency results (from when Fio created the IO to its
completion) for Test 3 on iX10-100 showed the following: the
sequential mixed IO that took the longest to complete had a
maximum latency time of ≈ 1365ms. As for the random mixed
IO that took the longest to complete, its maximum latency time
is ≈ 1240ms. The results from testing on iX5-100 showed the
following: the sequential mixed IO that took the longest to
complete had a maximum latency time of 6600ms. Whereas
the random mixed IO that took the longest to complete had a
maximum latency time of ≈ 4845ms.

VII. CONCLUSION

From the theoretical aspect of this paper, the authors can
draw a conclusion on the performance of the two file systems.
This conclusion is that in terms of throughput, both ZFS and
Ext4 are recommended as great candidates for onboard data
processing. However, it is not enough to draw a conclusion
on the performance of the two file systems based solely on
the conducted systematic comparison study and one metric.
Thus, from the experimental results, several solid conclusions
are made; solid in terms of the degree of technical evidence
that has been presented.

Firstly, on the latency and IOPS, in Fig.4 and Fig.5 together
with the discussions from section VI-A, Ext4 generates a lower
amount of IOPS and the latency for this is higher than what is
experienced with ZFS. This is true for random and sequential
IO. The number of operations per second is much higher using
ZFS and the overall experienced latency is fairly low compared
to Ext4. The writers consider that this benefit comes from ZFS
being a full storage stack solution and not just a traditional
file system such as Ext4. Furthermore, the latency results
for sequential IO outperform the latency results of random
IO regardless of the file system. Another conclusion drawn
is related to throughput. For small onboard data processing
operations, ZFS outputs greater throughput during runtime for
random IO. Hence, if one has a lot of random data then ZFS is
a better candidate. On average, ZFS uses more CPU resources
than Ext4 for random-, and sequential IO per file size whereas
Ext4 maintains a low CPU usage throughout runs. Opting for
a resource-constrained perspective, Ext4 is the recommended
choice for onboard data processing of similar workloads in
combination with other running tasks. In addition, the iX10-
100 with its updated processor architecture, in comparison
to the iX5-100, provides a better foundation for testing the
file systems against each other in terms of the presented
results related to throughput, CPU usage, efficiency, and IOPS.
Lastly, based on the results of running the disc performance
test, i.e., Test 3, the authors conclude that NVMe SSDs are
more efficient and output better throughput in terms of mixed
workloads.

REFERENCES

[1] M. B. Ab Karim, J.-Y. Luke, M.-T. Wong, P.-Y. Sian, and O. Hong,
“Ext4, xfs, btrfs and zfs linux file systems on rados block devices (rbd):
I/o performance, flexibility and ease of use comparisons,” in 2016 IEEE
Conference on Open Systems (ICOS), Langkawi, pp. 18–23.

[2] D. A. Heger, “Workload dependent performance evaluation of the btrfs
and zfs filesystems,” in 35. International Computer Measurement Group
Conference, Dallas, TX, 2009.

[3] V. Phromchana, N. Nupairoj, and K. Piromsopa, “Performance eval-
uation of zfs and lvm (with ext4) for scalable storage system,” in
2011 Eighth International Joint Conference on Computer Science and
Software Engineering (JCSSE), Bangkok, BKK, pp. 250–253.

[4] ”Unibap”, “iX10-100 SpaceCloud solution,” https://unibap.com/en/our-
offer/space/spacecloud-solutions/ix10100/, (Last accessed: Aug 25,
2023).

[5] ——, “iX5-100 SpaceCloud solution,” https://unibap.com/en/our-
offer/space/spacecloud-solutions/ix5100/, (Last accessed: Aug 25, 2023).

[6] Unibap AB, “Rymd Industri Innovation,” https://www.unibap.com/,
(Last accessed: Aug 25, 2023).

[7] W. Eko D, P. Agung B, and G. Ahmed, “On the implementation
of zfs (zettabyte file system) storage system,” in Proc. of 2016 3:rd
Int. Conf. on Information Tech, Computer, and Electrical Engineering
(ICITACEE), Semarang, pp. 408–413.

[8] B. Djordjevic and V. Timcenko, “Ext4 file system in linux environment:
features and performance,” in International Journal of Computers, 2012,
pp. 37–45.

[9] B. Kitchenham, “Procedures for Performing Systematic Reviews,” De-
partment of Computer Science Keele University, Keele, UK, Tech. Rep.
ISSN:1353-7776, 2004.

[10] J. Axboe, “Flexible I/O Tester,” 2022, (Last accessed: Aug 25, 2023).
[Online]. Available: https://github.com/axboe/fio

[11] Y. Son, H. Kang, H. Y. Yeom, and H. Han, “An empirical evaluation
and analysis of the performance of nvm express solid state drive,” in
Cluster Computing, 2016, p. 1541–1553.


