
Symmetric Cardinality Constraint with Costs

Waldemar Kocjan1, Per Kreuger2, Björn Lisper1

1 Mälardalen University, Väster̊as, Sweden
{waldemar.kocjan,bjorn.lisper}@mdh.se

2 Swedish Institute Of Computer Science, Kista, Sweden
piak@sics.se

Abstract. The symmetric cardinality constraint is described in terms
of a set of variables X = {x1, . . . , xk}, which take their values as subsets
of V = {v1, . . . , vn}. It constraints the cardinality of the set assigned
to each variable to be in an interval [lxi , uxi] and at the same time it
restricts the number of occurrences of each value vj ∈ V in the sets
assigned to variables in X to be in an other interval [lvj , uvj]. In this
paper we extend the symmetric cardinality constraint with a function
which associate with each value of each variable a cost and constraints
the global cost of the constraint to the sum of costs associated with
assigned values. We also give an algorithm for computing the consistency
of a symmetric cardinality constraint with costs and describe filtering
methods for this constraint.

1 Introduction

The symmetric cardinality constraint, introduced in [1], is specified in terms of
a set of variables X = {x1, . . . , xk}, which take their values as subsets of V =
{v1, . . . , vn}. The cardinality of the set assigned to each variable is constrained
by an interval [lxi

, uxi
], where lxi

and uxi
are non–negative integers. In addition,

it constraints the number of occurrences of each value vj ∈ V in the sets assigned
to variables in X to be an interval [lvj , uvj]. Both lvj and uvj are non–negative
integers.

The symmetric cardinality constraint is an extension of the global cardinality
constraint [2] on sets. While global cardinality constraint allows us to model
instances of matching problems where one variable can be matched with only
one value, but the number of values in matching must be in a given interval, the
symmetric cardinality constraint enables to assign to a variable a set of values
with a cardinality described by an interval. The global cardinality constraint can
be modeled using symmetric cardinality constraint by restraining the cardinality
of a set assigned to any variable to 1.

Later the global cardinality constraint was extended with a cost function
([3, 4]), which makes possible to model some assignments problems. Nevertheless,
assignment problems, where a (possibly empty) set of values needs to be assigned
to a variable in the problem, can not be handled easily.

Consider the following instance of a project management problem, which
consists of a task of assigning a number of workers, with possibly multiple com-
petences, to a set of activities, each requiring a number of workers (possibly
none) with specified competences. Due to former experience of the members
of the project we can approximate an amount of time necessary for respective
worker to accomplish given activity. Moreover, a total amount of time which can
be spent on the project is given.

The goal is to produce an assignment, which satisfies the following con-
straints:

– every member of a project must be assigned to a minimum and a maximum
number of activities in the project

– every activity must be performed by a minimum and a maximum number of
persons

– each person can be assigned to an activity he/she is qualified to perform and,
by symmetry, each activity must be performed by a qualified personnel.

– the total time spend on accomplishing the project must not be exceeded.

Clearly, due to the fact that global cardinality constraint require exactly one
value to be assigned to a variable, it can not be used to solve such a problem
without introducing auxiliary constraints. On the other hand, we can easily
model this problem by extending the symmetric cardinality constraint with a
cost function.

In this paper we show how the symmetric cardinality constraint can be ex-
tended with a cost function and investigate if the filtering algorithms for the
global cardinality constraint with costs can be applied to the symmetric cardi-
nality constraint with cost.

The rest of the paper is organized as follow. The next section, 2, gives some
preliminaries on graphs, flows and set constraint satisfaction problem. Section
3 briefly describes the symmetric cardinality constraint. Then, in Section 4 we
give a formal definition of the symmetric cardinality constraint with costs and
describe the method for achieving its consistency. In the following section, 5,
we describe an algorithm for computing a minimum cost flow in a network of
the constraint. The following Section 6 describes the filtering method for this
constraint. Finally, Section 7 conclude this work.

2 Preliminaries

2.1 Graph

Definitions in this section follows the presentation in [5].
A directed graph G = (N,E) consists of a set of nodes (vertices) N and arcs

(edges) E, where every arc (i, j) ∈ E is an ordered pair of distinct nodes. An
oriented graph is a directed graph having no symmetric pair of arcs.

A graph G = (N,E) is a bipartite graph if we can partition its node set into
two subsets N1 and N2 so that for each arc (i, j) ∈ E either i ∈ N1 and j ∈ N2

or i ∈ N2 and j ∈ N1.

A directed network is a directed graph whose nodes and/or arcs have associ-
ated numerical values. In this paper we do not make distinction between terms
“network” and “directed network”.

An arc (i, j) connects node i with node j, i.e. in directed graph it is an arc
oriented from node i to node j. A path in a graph G from v1 to vk is a sequence
of nodes [v1, . . . , vk] such that each (vi, vi+1) is an arc for i ∈ [1, . . . , k− 1]. The
path is simple if all its nodes are distinct. A path is a cycle if k > 1 and v1 = vk.

2.2 Flows

Let G = {N,E} be a directed network in which each arc (i, j) ∈ E is associated
with two non–negative integers lij and uij representing lower and upper bound
on a capacity of a flow through (i, j). A flow f(i, j) on arc (i, j) represents the
amount of commodity that the arc accommodates. More formally:

Definition 1. A flow in a network G is a function that assigns to each arc (i, j)
of the network a value f(i, j) in such way that

1. lij ≤ f(i, j) ≤ uij, where lij and uij are lower and upper bounds on a capacity
of (i, j)

2. for each node i in the network G it is true that
∑

k f(k, i) =
∑

j f(i, j)

The second property is known as a conservation law and states that the
amount of flow of some commodity incoming to each node in G is equal the
amount of that commodity leaving each node.

In this paper we refer to the feasible flow problem which resolves if there
exists a flow in G which satisfies capacity constraint for all arcs in G.

Moreover, we refer here to the minimum cost flow problem in which each arc
(i, j) ∈ E has an associated cost denoted as cij . For any flow f in G

cost(f) =
∑

(i,j)∈E

cij × f(i, j) (1)

It is a well known fact that if the capacity bounds of a flow problem are
integral and there exists a feasible flow for the network, then the maximum and
minimum flows between any two nodes flows are also integral on all arcs in the
network. Hence, if there exists a feasible flow in a network there also exists an
integral feasible flow. Moreover, if there exists an integral feasible flow in G and
all costs are integral then by Equation (1) the cost of f is also integral. In this
paper when we refer to a feasible flow or a minimum cost flow we always mean
an integral feasible flow and an integral minimum cost flow.

2.3 Set Constraint Satisfaction Problem

A set constraint satisfaction problem [1] is defined as a triple (X, D, Cs) where

– X = {x1, . . . , xn} is a finite set of variables.

– D = {D1, . . . , Dn} is a set of finite sets of elements such that for each i, xi

takes as value a subset of Di.
– Cs is a set of constraints on the values particular subsets of the variables in

X can simultaneously take. Each constraint C ∈ Cs constrains the values of
a subset X(C) = {xC1 , . . . , xCk

} of the variables in X and may be thought
of as a subset T (C) of the Cartesian product = CC1 × . . . ,×CCk

where each
CCi

= {C | C ⊆ DCi
}.

The set constraint satisfaction problem differs from the constraint satisfaction
problem as described in [6] by the fact that the value, which can be assigned to
any xi ∈ X, is in the powerset of Di.

Definition 2. A set constraint satisfaction problem is consistent if and only if
there exists an assignment P with the following properties:

1. For each variable xi ∈ X with domain Di, the value P (xi) assigned to xi by
P must be a subset of Di.

2. For each constraint C ∈ Cs and each variable in X(C) = {xC1 , . . . , xCk
} the

tuple 〈P (xC1), . . . , P (xCk
)〉 ∈ T (C).

Let X(C) be the set of constraint variables and D(X(C)) their domains. A
value v ∈ D(xi) for xi is consistent with C iff ∃P (P (X(C)) ∈ T (C)) such that
v is an element in the value P (xi).

A value graph [7] of a constraint C is a bipartite graph GV (C) = (X(C) ∪
D(X(C)), E), where (x, v) ∈ E if and only if v ∈ Dx.

3 Symmetric Cardinality Constraint

The symmetric cardinality constraint is specified in terms of a set of variables
X = {x1, . . . , xk}, which take their values as subsets of V = {v1, . . . , vn}. The
cardinality of the set assigned to each variable is constrained by the interval
[lxi , uxi], where lxi and uxi are non–negative integers. In addition, it constraints
the number of occurrences of each value vj ∈ V in the sets assigned to variables
in X to be an interval [lvj

, uvj
]. Both lvj

and uvj
are non–negative integers.

More formally, the symmetric cardinality constraint is defined as follows.

Definition 3. A symmetric cardinality constraint is a constraint C over a set of
variables X(C) which associates with each variable xi ∈ X(C) two non-negative
integers lxi

and uxi
, and with each value vj ∈ D(X(C)) two other non-negative

integers lvj
and uvj

such that a restriction of an assignment P to the variables
in X(C) is an element in T (C) iff
∀i (lxi ≤ #(xi, P) ≤ uxi) and ∀j

(
lvj ≤ #(vj , C, P) ≤ uvj

)
.

Consistency of a symmetric cardinality constraint C is achieved by computing
a feasible flow in a particular value network N(C) obtained from a value graph
of C by

– orienting each edge of N(C) from values to variables. Since each value can
occur in a subset assigned to a variable at least 0 and at most 1 time for
each arc (v, x) : l(v, x) = 0, u(v, x) = 1

– adding a source node s and connecting it which each value. For every arc
(s, vi) : l(s, vi) = lvi

, u(s, vi) = uvi

– adding a sink node t and an arc from each variable to t. For each such arc
(xi, t) : l(xi, t) = lxi

, u(xi, t) = uxi

– adding an arc (t, s) with l(t, s) = 0 and u(t, s) = ∞

The complexity of computing the consistency of a symmetric cardinality
constraint is the same as the complexity of computing a feasible flow in N(C),
which in worst case is the same as for computing a maximum flow in N(C).
Computing a maximum flow in a network depends on used algorithm (see [9] for
comparison of different maximum flow algorithms), but it can be approximated
to O(n3), where n is a number of nodes in a network. This gives a complexity
relative to the number of constraint variables, |X|, and the size of their domains
|D(X(C))|, of O((|X|+ |D(X(C))|)3) time.

Given a flow f in N(C) we can obtain the residual graph for f , i.e. the network
representing utilization and remaining capacity in the network with respect to
f , as follows.

Let N(C) be a value network of C, the residual graph of N(C) with respect
to a flow f , denoted by R(f), is a graph with the same set of nodes as N(C).
The arc set of R(f) is defined as follows.

– if f(i, j) < uij then (i, j) ∈ R(f), rij = uij − f(i, j)
– if f(i, j) > lij then (j, i) ∈ R(f), rji = f(i, j)− li,j

rij denotes the residual capacity of (i, j) The residual capacity of a path p,
denoted by r(p), is a minimum value rij for all (i, j) ∈ p.

A value vj of a variable xi is not consistent with C if and only if there is no
feasible flow in N(C) which contains a flow on arc (vj , xi). Given a feasible flow
f , a flow on (vj , xi) is the same in any feasible flow f ′ if and only if neither (vj , xi)
nor (xi, vj) is contained in a strongly connected component in R(f) involving
at least three nodes (see Theorem 1 in [1]). Thus, if a flow on (vj , xi) is equal
to 0, and (vj , xi) is not contained in a strongly connected component in R(f)
involving at least three nodes, then, the value vj of xi is not consistent with C.

Generally, there exist a number of algorithms for computing strongly con-
nected components in a graph (see [10] p. 560 for references). The algorithm
given in [11] computes strongly connected components in O(n + m) time, where
n is a number of nodes and m is a number of edges in a graph. In terms of
symmetric cardinality constraint n = |X(C)| + |X(D(C))| and m = |X(C)| +
2 ∗ |X(D(C))|+ 2, thus, the complexity of filtering the domains of the variables
in C is O(|X|+ |X(D(C))|) time.

4 Consistency of Symmetric Cardinality Constraint with
Costs

The symmetric cardinality constraint with costs extends the symmetric cardi-
nality constraint with a cost function.

Definition 4. A cost function on a variable set X is a function which associates
with each element vj ∈ D(x) a non–negative integer denoted by cost(xi, vj).

The following gives a definition of symmetric cardinality constraint with cost
as a conjunction of a symmetric cardinality constraint and a sum constraint.

Definition 5. A symmetric cardinality constraint with cost is a constraint C
over a set of variables X(C) which associates with each variable xi ∈ X(C) two
non-negative integers lxi and uxi , with each value vj ∈ D(X(C)) two other non-
negative integers lvj and uvj a cost function on each xi ∈ X(C) and an integer
H such that a restriction of an assignment P to the variables in X(C) is an
element in T (C) iff

– ∀i (lxi
≤ #(xi, P) ≤ uxi

)
– ∀j

(
lvj

≤ #(vj , C, P) ≤ uvj

)
.

–
∑|X(C)|

i=1 cost(xi, P) ≤ H

where #(xi, P) is the cardinality of the set assigned to xi by P , #(vj , C, P)
is the number of variables to which vj is assigned by P and cost(xi, P) =∑

vj∈D(xi)
cost(xi, vj) for each vj assigned to xi by P .

To achieve consistency of a symmetric cardinality constraint with costs we
extend the value network of symmetric cardinality constraint, N(C), with the
cost function by

– associating with each arc (vj , xi) ∈ N(C) a cost cvj ,xi = cost(xi, vj)
– associating with every arc (s, vj) csvj = 0
– associating with every arc (xi, t) cxit = 0
– associating with (t, s) cts = 0

Note that the value network of a symmetric cardinality constraint with costs
is independent of H.

The following proposition defines consistency of a symmetric cardinality con-
straint with costs.

Proposition 1. Let C be a symmetric cardinality constraint with cost and N(C)
be a value network of C. The following properties are equivalent.

– C is consistent
– there exists a flow from s to t in N(C) which satisfies lower and upper bounds

of capacities on the arcs in N(C) and which cost is less than or equal to H.

Proof. Assume that C is consistent, thus T (C) 6= ∅. Consider P ∈ T (C). We
can build a function f in N(C) such that:

1. ∀xi ∈ X(C), f(xi, t) = #(xi, P)
2. ∀xi ∈ X(C), f(vj , xi) = 1 if vj appears in the subset P (xi), otherwise

f(vj , xi) = 0
3. ∀vj ∈ D(X(C)), f(s, vj) = #(vj , C, P)
4. cost(f) =

∑|X(C)|
i=1 cost(xi, P) ≤ H

Properties (1) – (3) are the feasibility properties of a symmetric cardinality
constraint and are proved in [1]. By these properties, if C is consistent then
there exists a feasible flow f in N(C). Recall from Equation (1) that the cost of
a flow is a sum of products of costs associated with an arc and an amount of flow
on respective arc. Since the cost associated with arcs other then arcs between
xi ∈ X and vj ∈ D(X(C)) is equal to 0 and, by Property 2, flow f from any vj

to any xi is equal to 1 if vj is in a subset P (xi) then the cost of such flow f is
equal to the sum of cost of all xi ∈ X in P . Consequently, if C is consistent then∑|X(C)|

i=1 cost(xi, P) ≤ H and cost(f) ≤ H, which proves Property 4.
On the other hand, assume that there exists a feasible flow f from s to t in

N(C) with cost lower than or equal to H. Since f is feasible then ∀x ∈ X(C)lxi
≤

#(xCi
, P) ≤ uxi

, f(xi, t) = #(xi, P) and ∀v ∈ D(X(C))lvj
≤ #(vj , C, P) ≤

uvj
∧f(s, vj) = #(vj , C, P), and the set of arcs such that f(i, j) = 1 corresponds

to the set of edges of value graph of symmetric cardinality constraint with costs,
which is proved in [1]. Since the arc cost for any arc (s, i) and (i, t), which
includes direct arcs between s and t, is equal to 0 and the flow between any i
and j can be at most 1, then cost(f) is equal to the sum of costs of arcs between
i and j where f(i, j) = 1. Since the set of such arcs corresponds to the set of
arcs in value graph of C thus cost(f) =

∑|X(C)|
i=1 cost(xi, P). Consequently, if

cost(f) ≤ H so is
∑|X(C)|

i=1 cost(xi, P), which proves Proposition 1. ut

This proposition gives a way of computing consistency of symmetric cardi-
nality constraint with costs by computing a feasible flow f in N(C) and checking
if cost(f) ≤ H. Since H is independent of N(C) every time this equality does
not hold we would need to verify if there exists an other feasible flow f ′ in N(C)
such that cost(f ′) < cost(f) and cost(f ′) ≤ H.

On the other hand, if a feasible flow f in N(C) is a minimum cost flow we
can verify that C is consistent if cost(f) ≤ H, otherwise C is inconsistent.

5 Minimum Cost Flow

There exists several methods of obtaining minimum cost flow in a network. A
survey of such methods is given in [5]. Here we describe a simple variant of
successive shortest path algorithm from [5].

Given a value network for a symmetric cardinality constraint with costs and
a flow f , we can build the residual graph R(f) in the same way as for the
symmetric cardinality constraint and extend it with arc costs by

– associating with each arc (i, j) with free capacity its residual cost rc(i, j) =
cost(i, j)

– associating with each arc (j, i) representing a flow which exceeds the lower
bound of (i, j) a residual cost rc(j, i) = −cost(i, j).

For any path p the residual cost of p, denoted rc(p) is a sum of residual costs
of all arcs (i, j) ∈ p.

Algorithm 1 Minimum Cost Flow
1: Start with the zero flow f .
2: Pick an arc (i, j) such that f(i, j) violates the lower bound for the flow from i to j.
3: Find p a shortest path from j to i in R(f)− {(i, j)}.
4: Obtain a new flow f ′ from f by sending a flow along p and set f = f ′

5: Goto 2

The algorithm, listed here as Algorithm 1, computes a minimum cost flow
in N by repeatedly choosing an arc (i, j) with a flow, which violates the lower
bound constraint, and computes a shortest path p from j to i with respect the
costs of an arc. After a path p is found a new flow f ′ is obtained by sending a
flow along p. If, at some point, there is no path for the current flow then there
is no feasible flow in N . Otherwise, obtained flow is feasible and is a minimum
cost flow.

The complexity of the algorithm is dependent on the complexity of imple-
mented shortest path algorithm. However, the most powerful shortest path al-
gorithms require that the costs on all arcs in a graph are non-negative.

The standard method for transforming all arcs costs to non-negative values
is to use costs relative to “imputed” costs associated with incident nodes of an
arc. These costs are usually referred to as reduced costs and the costs associated
with incident nodes are referred to as node potentials. More formally,

Definition 6.

– a potential function is a function π which associates with each node i ∈ N a
number π(i), which is referred to as a node potential

– with respect to the node potentials, the reduced cost cπ
ij of an arc (i, j) in

R(f) is defined by cπ
ij = rc(ij)− π(i) + π(j)

Given a minimum cost flow f the potential function πf (i) = df
j (i), where

df
j (i) represents the shortest path distance in R(f) from node j to every node

i ∈ N . Starting with the zero flow,f0, all πf0
(i) = 0 and consequently all cπ

ij =
rc(i, j). After each iteration of the algorithm, which computes shortest paths
from given node j to every other node in the graph, the potential of each node i
is updated with π′(i) = π(i)−d(i). Then, the cost of each arc in the residual graph
can be converted to non-negative reduce cost as in Definition 6. For justification
of this method see [5].

The fastest algorithm for computing shortest path in a graph with non-
negative arc lengths is Dijkstra algorithm implemented with Fibonacci heaps
(see [12, 5] for comparison). The algorithm requires O(m+n log n) time, where
m is the number of arcs and n is the number of nodes in a graph. The number
of iterations is bounded by the number of lower bounds on the flow on each arc,
which is

∑
l(i, j). Thus, the complexity of the shortest paths algorithm can be

bounded by O(
∑

l(i, j)× (m + n log n)) time.
In terms of the symmetric cardinality constraint n = |X(C)|+ |D(X(C))|+2

and m =
∑|X(C)|

i=1 D(xi) + |X(C)|+ |D(X(C))|+ 2. The number of iterations is
bounded by

∑|X(C)|
i=1 lxi +

∑|D(X(C))|
j=1 lvj .

6 Filtering of Symmetric Cardinality Constraint with
Costs

By Proposition 1, a symmetric cardinality constraint with costs C is consistent
if and only if there is a feasible flow in the value network of C, N(C), which
cost is less than or equal to H. Thus, if there is a feasible flow in N(C) with an
overall cost less than or equal to H which contains a flow along (vi, xi) then the
value vi of xi is consistent with C. Assuming that C is a consistent symmetric
cardinality constraint with costs and f is a minimum cost flow in N(C) we can
formulate the following proposition.

Proposition 2. A value vj of a variable xi is not consistent with C if and only
if

1. for all feasible flows f in N(C) f(vj , xi) = 0
2. dR(f)−{(xi,vj)}(xi, vj) > H − cost(f)− rc(vj , xi)

Proof. Property 1 states that the value vj of the variable xi is inconsistent with
C if there is no feasible flow in N(C) containing (vj , xi) which is proved in
Proposition 1

Furthermore, it is proved (see [8], p. 130) that if there exists a path p from
node j to node i in R(f)−{(j, i)} then the flow f ′ obtained from f by sending k
units of flow along p has a cost cost(f ′) = cost(f)+k(rc(i, j)+dR(f)−{(j,i)}(j, i)).
Since the maximum amount of flow which can be pushed through any (i, j)
is equal to 1 we obtain cost(f ′) = cost(f) + rc(i, j) + dR(f)−{(j,i)}(j, i). By
Proposition 1 C is consistent if cost of a feasible flow is lower than or equal to
H, thus if cost(f ′) > H than C is inconsistent. By substituting cost(f ′) we obtain
cost(f) + rc(i, j) + dR(f)−{(j,i)}(j, i) > H, which gives dR(f)−{(xi,vi)}(xi, vj) >
H − cost(f)− rc(vj , xi). This proves the second property. ut

By Proposition 6, given an arc (vj , xi) such that fvjxi
= 0, if there exists a

path from xi to vj in R(f)− {(xi, vj)} then there exists a feasible flow in N(C)
containing (vj , xi). Moreover, if dR(f)−{(xi,vi)}(xi, vi) ≤ H − cost(f)− rc(vi, xi)
then such a flow has a cost less than or equal to H. Thus, a value vj of a variable
xi is consistent with C.

Note that due to a special structure of the residual graph obtained from a
flow in N(C), if f(vjxi) = 0 then R(f) does not contain (xi, vj). Thus, no mod-
ification of R(f) is required in order to perform this computation. The special
structure of the residual graph will also insure that a simple path from xi to vj

will contain at least tree nodes.
Given a minimum cost flow f in a value network of a symmetric cardinal-

ity constraint N(C), the consistency of each value vj ∈ D(xi) is verified in
O(|X(C)| × (m + n log n)) time, which is the same as for filtering the global
cardinality constraint with costs ([2, 4]).

7 Conclusion

In this paper we introduce the symmetric cardinality constraint with cost. More-
over, we present methods for computing its consistency and methods for filtering
domains of its variables. We show that the time complexity for verifying consis-
tency of a symmetric cardinality constraint with costs and for filtering domains
of constraint variables is the same as for the global cardinality constraint with
costs.

Other variants of the symmetric cardinality constraint with cost, like those
constraining the cost associated with the values assigned to individual variables
etc., can be easily derived from the constraint described here.

Acknowledgment

References

[1] Kocjan, W., Kreuger, P.: Filtering Methods for Symmetric Cardinality Constraint.
Proceedings of 1th Int. Conf. CPAIOR (2004)

[2] Régin, J.-Ch.: Generalized Arc Consistency for Global Cardinality Constraint.
Proc. of the Fourteenth National Conference on Artificial Intelligence (AAAI-96)
(1996)

[3] Régin, J.-Ch.: Arc Consistency for Global Cardinality Constraints with Costs. Prin-
ciples and Practice of Constraint Programming —CP’99, Conference Proceedings,
(1999) 390–404

[4] Régin, J.-Ch.: Cost–Based Arc Consistency for Global Cardinality Constraints.
Constraints, 7 (2002) 387–405

[5] Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows. Theory, algorithms and
applications. Prentice–Hall Inc., (1993)

[6] Tsang, E.: Foundation of Constraint Satisfaction Academic Press (1993)
[7] Laurière, J.-L.: A language and a program for stating and solving combinatorial

problems. Artificial Intelligence, 10 (1978) 29–127
[8] Lawler, E.: Combinatorial Optimization: Network and Matroids, Holt, Rinehart

and Winston (1976)
[9] Ahuja, R.K., Kodialam, A., Mishra, A.K., Orlin, J.B.: Computational Investiga-

tions of Maximum Flow Algorithms. European Journal of Operational Research,
97 (1997) 509–542

[10] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
Second Edition, The MIT Press (2001)

[11] Tarjan, R.E.: Depth–First Search and Linear Graph Algorithms. SIAM J. Com-
puting, 1 (1972) 146–160

[12] Cherkassky, B.V., Goldberg, A.V., Radzik, T.: Shortest Paths Algorithms: Theory
and Experimental Evaluation. Mathematical Programming 73 (1996) 129–174

