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Abstract—The article discusses the emerging non-von Neumann computer architectures and
their integration in the computing continuum for supporting modern distributed applications,
including artificial intelligence, big data, and scientific computing. It provides a detailed
summary of the available and emerging non-von Neumann architectures, which range from
power-efficient single-board accelerators to quantum and neuromorphic computers.
Furthermore, it explores their potential benefits for revolutionizing data processing and analysis
in various societal, science, and industry fields. The paper provides a detailed analysis of the
most widely used class of distributed applications and discusses the difficulties in their
execution over the computing continuum, including communication, interoperability,
orchestration, and sustainability issues.
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1. Introduction
Computing technologies have profoundly

impacted society, fundamentally transforming
how people communicate and interact with
their environment. With the rise of the Internet
of Things (IoT) and the continuous evolu-
tion of modern communication technologies,
digital integration has become an essential
aspect of our lives. Despite these advance-
ments, the fundamental principles of com-
puter architecture did not change since the
introduction of John von Neumann’s stored-
program concept for the IAS machine in 1952.

Therefore, the traditional computing ar-
chitectures primarily based on the stored-
program concept are colloquially referred to
as von Neumann architecture. In the von
Neumann architecture, programs and data
are stored in a single operating memory
and treated as the same unit. When intro-
duced, this novel idea allowed simple hard-
ware abstraction, making computer program-
ming flexible and straightforward.

However, the physical separation of the
processing units from memory through lim-
ited shared communication buses leads to in-
creased communication latency and reduced
throughput. The single communication bus
between the processing unit and the shared
instructions and data memory causes the so-
called memory wall problem that limits pro-
cessing efficiency. The memory wall appears
due to the limited data transfer capacity and
low transfer scalability between the process-
ing unit and memory. As the communication
bus can only access either the shared data
or instruction memory at each point in time,
for most application classes, the data transfer
rate is inherently lower than the rate at which
the processing units work. Therefore, the pro-
cessing units constantly wait for the data to
be read or stored in the memory.

To mitigate this problem, most modern
computers differ to some degree from the
von Neumann architecture by separating the
data and instruction memory and introduc-
ing parallel data processing concepts, such
as instruction pipelining and separate cache
for data and instructions. Therefore, today’s

most common computer architectures are not
strictly based on the von Neumann model.
They provide the illusion of using a von Neu-
mann programmer’s model implemented over
a separate execution pipeline and a modified
memory management system.

As modern applications increasingly rely
on data-intensive artificial intelligence (AI)
algorithms, the limitations of traditional von
Neumann architectures have become a crit-
ical barrier to further improvements in com-
putational time, memory performance, and
energy efficiency. Specifically, these AI algo-
rithms require a large amount of fast mem-
ory, aggravating the memory wall bottleneck
further. To illustrate this issue, consider the
rapid evolution of the Generative Pre-trained
Transformer (GPT) model. In just four years,
the state-of-the-art GPT-2 model with 1.5
billion parameters has evolved to over 175
billion parameters for GPT-3, and in March
2023, to over 100 trillion parameters for GPT-
4 [1]. This highlights the urgent need for new
computing architectures to support modern
AI applications’ demands regarding memory,
low-latency computation and sustainable ex-
ecution.

To address the issues of memory, high
latency, and energy usage, many novel com-
puting architectures beyond the traditional
von Neumann model have been proposed
in recent years. These new architectures,
known as non-von Neumann architectures,
range from power-efficient single-board AI
accelerators to quantum and neuromorphic
computers. These novel architectures have
great potential for revolutionizing how we pro-
cess and analyze data, leading to significant
advancements in healthcare, transportation,
and entertainment.

Despite their potential benefits, it is dif-
ficult to integrate non-von Neumann archi-
tectures with the concurrent well-established
distributed computing paradigms, including
cloud and edge computing and their amal-
gamation in the computing continuum [2].
Their integration in the computing continuum
remains challenging due to significant archi-
tectural heterogeneity, data representation,
communication, and instructions execution.
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Therefore, in this work, we provide (i) a
summary of the modern non-von Neumann
architectures, (ii) a classification of the most
established application classes and their suit-
ability for deployment on non-von Neumann
architectures, and (iii) a discussion of the
main research directions towards overcom-
ing the limiting factors for integrating non-
von Neumann architectures in the computing
continuum.

2. Summary of non-von Neumann
Architectures

This section describes a detailed sum-
mary of the non-von Neumann architectures
based on their architectural specifics. The
differences between the presented architec-
tures are summarized in Table 1, consid-
ering the computational models, processing
paradigms, data representation and preci-
sion, and scalability.

We first define the non-von Neumann ar-
chitecture as computer architecture that dif-
fers from the traditional von Neumann, which
relies on a single shared memory for in-
structions and data. In non-von Neumann
architectures, the memory model is usually
distributed, divided into hierarchies, or even
implements shared memory and processing
components.

2.1. Classical non-von Neumann architectures
The classical non-von Neumann architec-

tures encompass various digital computers
that rely on binary data representation. These
architectures provide a simple programming
and memory model that mimics the classical
von Neumann shared memory abstraction.
It is important to note that the following ar-
chitectures can be implemented both as von
Neumann and non-von Neumann; however,
we will refer in the following text to the non-
von Neumann implementations. We can gen-
erally divide these architectures based on
their field of application, namely (i) general
purpose and (ii) application specific.

The most common architectures are
general-purpose, which are the core of vari-
ous daily used computing devices. We can,
therefore, highlight the following architec-

tures, classified by the Instruction Set Archi-
tecture (ISA) and their memory organizations:

• RISC-V is a load-store ISA and core ar-
chitecture provided under open-source li-
censes. It can be implemented as either
von Neumann or the so-called modified
Harvard architectural [3] style, using sep-
arate Level 1 (L1) caches for instructions
and data. Therefore, multiple companies
offer variations of RISC-V hardware to-
gether with open-source operating sys-
tems, and the instruction set is supported
in several popular software toolchains.

• ARM is one of the most popular intellectual
property core architectures, based on the
ARM load-store ISA. It is most commonly
used for energy-efficient mobile comput-
ing devices, with over 100 billion systems
produced over the last five years [4]. Re-
cently, version 8 of the ARM instruction
set architecture was introduced, the first to
be implemented as a non-von Neumann.
It introduced the concept of separate in-
struction and data memory following the
Harvard architectural style. The L1 cache
is divided into instructions and data and
supports larger Level 2 (L2) and Level 3
(L3) caches with a memory controller on
the processor die.

• SPARC64 is a load-store microprocessor
architecture introduced by Sun Microsys-
tems [5]. SPARC follows the reduced
SPARC V9 ISA. The latest SPARC64
XII processor architecture introduces a
complex inter-core communication network
with superscalar implementation.

• x86 is the most widely used load-store ISA
for personal computers. Although the initial
ISA and corresponding implementations
were entirely based on the von Neumann
style (for example, the x86-16 variant), the
recent implementations, starting even from
the x86-32 variant, differ significantly and
utilize modified Harvard architecture. With
their last extension, such as the x86-64,
the architecture supports the Level 0 (L0)
operations cache.

• POWER is a RISC-based ISA devel-
oped by IBM and has been widely
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used for designing superscalar multi-
threading processors for supercomputers
and servers [6]. The latest POWER archi-
tecture iteration, POWER10, is an open-
source ISA, and introduces asymmetrical
instruction and data L1 caches.

In the last decade, many specialized non-
von Neumann architectures have been intro-
duced. Usually, these architectures are op-
timized for specific classes of applications,
including machine learning, video encoding,
and real-time rendering. The architectures
are combined as accelerators with classical
von Neumann and non-von Neumann sys-
tems.

• Artificial Intelligence (AI) accelerators,
such as the Tensor Processing Units
(TPU), are domain-specific computer ar-
chitectures designed to train deep neural
networks with lower precision [7]. The AI
accelerators are usually modular and uti-
lize a systolic array to interconnect multi-
ple devices in complex three-dimensional
topologies. In the case of the TPUs, they
include large 28 to 144 MB register files,
specialized scratchpad memory, and a hi-
erarchical set of cache memory.

• Stream multiprocessor architectures are
implemented for general-purpose graph-
ics processors. While originally designed
for processing graphics, as their name
implies, today, they are implemented al-
most as a general purpose [8]. These ar-
chitectures rely on the single instruction,
multiple threads (SIMT) approach, which
allows for limiting the instruction fetching
overhead. The most common architectures
using this paradigm are Nvidia Ampere
and AMD RDNA3. These architectures use
specific caches, usually three levels (from
L1 to L3), per streaming multiprocessor
(Ampere), or compute unit (RDNA2) to
overcome the memory wall and the limited
processing performance.

2.1.1. Barriers to integration in the com-
puting continuum: Currently, the von Neu-
mann and the classical non-von Neumann

architectures represent the backbone of the
computing continuum. This is due to their
significant proliferation in the market, high
availability, simple memory and programming
models, and low purchasing price. However,
due to the difference in architecture, network
technologies and protocols, and various oper-
ating systems, there are still multiple barriers
to their integration, including interoperability
issues, application orchestration difficulties,
and performance prediction instability, which
we further discuss in Section 4.

2.2. Non-classical non-von Neumann
architectures

Several factors limit classical computing
architectures. These factors include power
limitations, memory bandwidth, high heat
dissipation, and non-sustainable manufac-
turing processes. Due to these limitations,
academia and industry recently introduced
numerous novel architectures based on tech-
nologies other than traditional semiconduc-
tors. These novel architectures explore sig-
nificantly different approaches, such as using
analogue data representation or even con-
cepts from quantum mechanics, to encode
and process information.

• Neuromorphic computing [9] refers to ar-
chitectures that imitate human neuro-
biological processes through massively
parallelized electronic circuits. Neuromor-
phic hardware is not based on the von
Neumann memory model. Instead, it com-
prises neurons and synapses responsi-
ble for both processing and memory. In-
put neurons are charged with incoming
analogue inputs (spikes) and eventually
fire further spikes through the outgoing
synapses, which in turn, charge other
neurons. The timing and strength of the
spikes can be modulated via synaptic
weights. Neuromorphic computing facili-
tates massively parallel event-driven pro-
cessing since each neuron and synapse
is independent, and spikes are asyn-
chronous. Moreover, due to event-driven
design, a part of the hardware is inac-
tive when the corresponding input signal
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Table 1: Qualitative differences between classical von Neumann and non-classical non-von
Neumann architectures.

Architecture Computational Model Processing Paradigm Representation and Precision Scalability

Von Neumann Based on stored-program computer design Sequential processing Digital representation, high precision Memory and processing bottlenecks

Classical non-von Neumann Splitted memory Parallel/Concurrent processing Digital representation, high precision Memory and processing bottlenecks

Neuromorphic Computing Emulates biological neural networks Highly parallel and event-driven Analog representation, lower precision Networks with over a 100M neurons

Quantum Computing Exploits principles of quantum mechanics Quantum parallelism and entanglement Quantum states, high precision
(with errors and noise)

Dependent on the number of qubits
(over 1k as of 2023)

Digital annealer Exploits simulated annealing principles Highly parallelized exploration of
solutions space

Binary representation,
finite adjustable precision

Scalable to large optimization problems
(max problem scale of 100k bits)

is inactive. Considering sparse analogue
signals, this results in immense energy
savings.

• Quantum computer architectures repre-
sent a novel approach to computing that
utilizes phenomena from quantum me-
chanics, such as superposition and en-
tanglement, to encode, store, and process
information [10]. Therefore, the memory
model in quantum computers is also repre-
sented using the different quantum states.
Furthermore, unlike classical binary states,
quantum computers use qubits that can
exist simultaneously in 0 and 1 states,
enabling quantum computers to perform
certain computations exponentially faster
than classical computers.
One of the most widely used ISA is the
Quil architecture which first introduced a
shared quantum and von Neumann mem-
ory model. Quil utilizes an abstract quan-
tum machine (QAM), which is similar to
the classical Turing machine but allows
for practically solving real-world tasks. The
Quil architecture provides a high-level pro-
gramming language for quantum comput-
ing that allows for the description of quan-
tum circuits and the integration of classical
computing instructions.

• Digital annealer is a computing architec-
ture inspired by quantum concepts such as
superposition and entanglement [11]. Al-
though the digital annealer is implemented
using classical computing technologies,
it uses a similar logical-level representa-
tion of information as quantum comput-
ers. The architecture can perform parallel,
real-time combinatorial optimization calcu-
lations with much higher precision and
scale than the classical non-von Neumann

architectures cannot. While the digital an-
nealer is not a quantum computer, it shares
some of the advantages of quantum com-
puting, such as the ability to evaluate many
potential options simultaneously. Related
to the memory model, the specificity of the
digital annealers is that their memory is
non-volatile. It is organized as a matrix for
the input data storage, and an array repre-
sentation is used to store the output, thus
efficiently supporting combinatorial prob-
lems. Fujitsu is currently the only commer-
cial provider of digital annealer technology
integrated within the DAU series comput-
ers.

2.2.1. Barriers to integration in the
computing continuum: Most non-classical
non-von Neumann architectures are still in
the experimental or early industry adaptation
stage, which can lead to interoperability
issues and the impossibility of porting or
even adapting source codes between them.
From a programmer’s point of view, they
all rely on different programming concepts,
processing, and memory models, which
require additional overhead. Besides, they
still lack mature enough networking and
resource-sharing possibilities, which are
discussed in Section 4.

3. Summary of modern application
classes

The non-von Neumann architecture in
the computing continuum provides a suit-
able foundation particularly for handling the
computational requirements of data-intensive
tasks, enabling efficient and effective execu-
tion of data-driven applications. This section
explores the three most widespread classes
of modern data-driven applications. It dis-
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cusses their relation to the non-von Neumann
architectures in terms of computational per-
formance and fields of application. We also
summarize the relationship between the ap-
plication classes and their characteristic re-
quirements, with classical non-von Neumann
architectures in Table 2 and non-classical in
Table 3.

3.1. Machine learning
In Machine Learning (ML), models are

trained to recognize features of input data,
e.g., image classification and object recog-
nition. They have been a key application
for specialized architectures, such as stream
multiprocessors, for years due to their in-
creased processing power over general-
purpose processing units [12]. To increase
the processing speed of machine learning ap-
plications on stream processors, general 32
and 64-bit floating point processing units are
swapped to lower precision 16 and 8-bit units,
such as TPUs. These compute optimizations
have shifted the performance bottleneck fur-
ther to the data path, a traditional problem
for von Neumann architectures. More radical
non-von Neumann architectures such as neu-
romorphic computing and quantum comput-
ing [9] can revolutionize the way we process
and store information for machine learning.
The former class of architectures can process
artificial neural networks highly efficiently. No-
tably, deep learning in the form of spiking
neural networks [13] is particularly suitable for
neuromorphic hardware. The latter class, i.e.,
quantum computing, can also offer significant
speedup thanks to quantum parallelism [14].

3.2. Scientific computing
Scientific computing is applied in various

domains, including linear algebra, molecular
dynamics, material sciences, and drug de-
sign. Emerging non-von Neumann architec-
tures can accelerate such scientific applica-
tions with high-end computational and per-
formance requirements. SPARC and RISC-V
processors can enable optimizing data move-
ment and computation, minimize latency and
maximize throughput for complex numerical
simulations. Similarly, TPUs can be used in

scientific applications to accelerate matrix op-
erations in deep learning and train large neu-
ral networks.

Non-classical quantum-based non-von
Neumann architectures also find their usage
in scientific applications, thanks to the
proven theoretical speedup for different
scientific problems and the native modeling
of many scientific phenomena in quantum
programs [15]. Quantum techniques such
as quantum matrix inversion [16] can be
used to solve linear systems of equations
and perform linear algebra operations much
faster than classical computers. Quantum
computing has also shown its potential utility
in the form of an accelerator and for modeling
complex processes in molecular dynamics
and material science. Examples include
accelerating eigenvalue and Euclidean
distance matrices calculation in target
molecular dynamic workflows, modeling of
quantum properties of microscopic particles,
molecular simulation, and speeding up the
discovery process in drug design [17].

3.3. Big Data Analytics
Big data analytics involves collecting, stor-

ing, processing, and analyzing large volumes
of data to extract valuable insights, identify
patterns, and make data-driven decisions in
various industries.

Big Data applications can benefit from
using non-von Neumann architectures for ac-
celerated data analytics. Recently, novel con-
cepts have been proposed for supporting Big
Data analytics for robotic systems that uti-
lize neuromorphic processors to support the
decision-making process of the robots while
performing the data-heavy analysis in the
cloud. In general, neuromorphic computing is
being explored to enhance Big Data analysis
for time-sensitive operations, particularly in
medicine and industry. Specifically, analogue-
based analytics significantly reduces the
computation complexity of big data applica-
tions by reducing algorithms’ space and time
dimensions. Furthermore, streaming multi-
processors and general-purpose graphical
units have been widely used since the be-
ginning of the century, especially in High-
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Table 2: Summary of the identified application classes and their suitability for efficiently
exploiting the available classical non-von Neumann architectures in the computing continuum.

Architecture →
Application class↓

x86-32/64 RISC-V Sparc ARM v9 Power TPU Ampere

Machine Learning X X X X X X X

Vectorization AVX instruction set RVV instruction set VIS instruction set SVE instruction set VSX instruction set MXU Cuda/Tensor cores

High Parallelism Hyper-threading Multi-core Multi-core Multi-core Simultaneous multithreading TPU cores Multi-streaming processors

Quantization Low-precision SIMD Low-precision SIMD Low-precision SIMD Low-precision SIMD Low-precision SIMD Low-precision SIMD Low-precision SIMD

Scientific Computing X X X X X X X

Floating-Point Performance High-performance floating point units (FPUs) Customizable FPU Flexible ARM SVE2 support Wider vector units Multiples of 8 (memory ops), 128 (matrix ops) floating point Strong

Mixed-precision Computing Single(32-bit), double(64-bit) Flexible precision support Single, double, extended (128-bit) Single, half (16-bit), bfloat16 (16-bit) Single, double Single, bfloat16 Single, double, half, brain (BF16)

Big Data Analytics X X X X X X X

Data-parallel operations SIMD support RVV vector extensions Advanced vector processing SIMD support SIMD support Tensor-based SIMD support (AVX-512)

In-memory computing Possible Possible Possible Possible Possible High bandwidth memory leverage Possible

Data locality Caching Load/store instructions Advanced caching Advanced caching Advanced caching Advanced caching Advanced caching

Table 3: Summary of the identified applica-
tion classes and their suitability for efficiently
exploiting the available non-classical non-von
Neumann architectures in the computing con-
tinuum.

Architecture →
Application class↓

Quantum/Hybrid Digital Annealer Neuromorphic

Machine Learning X X X

Vectorization Qubits DAU SNN

High Parallelism Superposition Array of Qubits Spike-based

Quantization - - -

Scientific Computing X - -

Floating-Point Performance Quantum parallelism - -

Mixed-precision Computing - - -

Big Data Analytics - - X

Data-parallel operations - - SNN-based

In-memory computing - - Memory-compute coupling

Data locality - - Localised memory access

Performance Computing Centers, to enable
fast analysis of Big Data streams [18]. In ad-
dition, classical and specialized architectures,
such as SPARC, TPU, and other application-
specific matrix-based programmable logic,
have been used to support Big Data analytics
by optimizing the hardware concerning the
specifics of the input data streams [19].

4. Future research directions for
adopting non-von Neumann
architectures in the computing
continuum

The following section discusses the barri-
ers to adopting non-von Neumann architec-
tures and possible future research directions.

4.1. Device heterogeneity
The heterogeneity of the non-von Neu-

mann architectures hinders their transparent
integration in the computing continuum. As
described in Section 2, due to the specific
implementation of the most common non-
von Neumann architectures, the computa-
tional performance is highly affected by the
exact technical implementation and the na-
ture of the utilized algorithms. For example,

neuromorphic is well suited for a class of ma-
chine learning applications. However, clas-
sical non-von Neumann architectures, such
as general purpose ARM and x86, can sup-
port a much larger set of applications, al-
beit with lower computational performance.
Therefore, managing complex distributed ap-
plications over computing continuum infras-
tructures containing various non-von Neu-
mann computing nodes requires re-writing
the source code and compilation for the set of
suitable architectures. In practice, this could
be difficult to achieve for a vast set of ap-
plications. Therefore, it is relevant to explore
novel approaches to research for analyzing
the similarities between the architectures in
the computing continuum based on the pro-
gramming and data models.

4.2. Communication and data movement
The unprecedented and sudden improve-

ment in computational power at the net-
work’s edge due to the integration of non-
von Neumann architectures might require
significant data transfer between the differ-
ent systems. This can result in high latency
and data transfer costs, particularly for real-
time applications. Consequently, the applica-
tion providers might prefer task partitioning
and utilization of both cloud and edge de-
ployments to mitigate these issues. Further-
more, non-von Neumann architectures re-
quire adaptive communication protocols that
can accommodate drastically different sys-
tems. This is particularly true for architectures
capable of processing analogue or mixed
signals internally, including neuromorphic and
quantum computers. The currently available
protocols are static and use limited rules to
enable communication. They are inefficient
or even incapable of data transmissions in
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the form of spikes or qubits. The fragility
of such data, especially quantum information
that environmental factors can easily disrupt,
would also limit the communication range,
at least in early implementations. Therefore,
exploring novel adaptive protocols that utilize
AI approaches to accommodate highly het-
erogeneous systems is an essential research
track.

4.3. Interoperability
With von Neumann and non-von Neu-

mann architectures offering highly variable
performance for different application classes,
different applications can be better optimized
for a specific architecture, reducing the need
for strict interoperability between architec-
tures. However, with the variety in modern
architectures increasing, application develop-
ers might still want to support multiple archi-
tectures in case users cannot access spe-
cific sparsely available resources. For exam-
ple, although quantum computing supports
machine learning very efficiently, the current
scarcity of quantum computing machinery
might push the application developers to sup-
port an x86 source to ensure that the ap-
plication can be executed when no quantum
computer is available or the waiting times are
long. Moreover, the optimal target architec-
ture might differ depending on conditions; for
example, with machine learning, deployment
on general-purpose ISA (ARM, x86, SPARC,
RISC-V) might be preferable to stream pro-
cessors (RDNA, AMPERE) because of their
significant memory capacity, even though the
computing capacity is generally superior for
the given type of applications.

Furthermore, when fitting the computing
continuum with various architectures, these
devices need to be managed by shared soft-
ware components such as resource man-
agers and operating services, adding a need
for interoperability. This shared management
requires applications, their data, and possi-
ble isolation mechanisms (containers, virtual
machines) to be uniform to allow manage-
ment services to operate each application’s
lifecycle similarly, independent of the target
architecture. The alternative would be to de-

ploy management software for each specific
architecture. However, this would remove any
opportunity for interoperability, which is es-
pecially important for workloads consisting
of multiple services deployed across multiple
architectures.

4.4. Application orchestration and systems
adaptation

Applications scheduling and orchestration
across the computing continuum is a process
that requires identifying proper resources and
considering the requirements of each applica-
tion in terms of computational performance,
available memory, and network bandwidth,
among others. Many of the non-von Neu-
mann computers have fundamentally different
computational models, memory structures,
and communication patterns. This results in
challenges in developing efficient and effec-
tive scheduling algorithms to handle these
systems’ constraints and limitations. For in-
stance, in a neuromorphic computer, the data
processing occurs massively parallel, with
many neurons simultaneously computing on
a large dataset. This makes it difficult to
schedule tasks and allocate resources, as
there is no clear separation between compu-
tation and communication. In quantum com-
puters, the scheduling problem is exacer-
bated by the probabilistic nature of quantum
states and quantum gates, which requires
careful consideration of the order and timing
of operations to ensure that the computation
is correct.

Furthermore, the reliance on the orches-
tration approaches on real-time monitoring
data aggravates the problem further. There
is a multitude of monitoring platforms avail-
able; however, none of those supports the
monitoring of quantum or neuromorphic com-
puters. Besides, defining unified monitoring
metrics can be difficult [10]. For example, it
is challenging to cross-quantify the resource
utilization rate for TPU devices, ARM devices,
or digital annealers.

Related to monitoring, it is also essen-
tial to discuss how the computing continuum
infrastructure can be adapted if the appli-
cation’s performance is insufficient. Multiple
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approaches for adaptation, such as the Free
Energy Principle and Markov Blanket Ap-
proach [20], can be used to adapt the system
based on the monitoring data.

In conclusion, scheduling applications on
non-von Neumann computers is a challeng-
ing task that requires specialized algorithms
and monitoring approaches that can handle
the unique characteristics of these systems.
As these emerging computing paradigms
become more prevalent, developing new
scheduling techniques to utilise available re-
sources effectively is essential.

4.5. Performance predictability
The performance prediction of a system

implemented on top of a non-von Neumann
architecture requires understanding which
phases can be executed in parallel and which
can be executed seriallyThis is a necessary
step in performance prediction because of the
heterogeneous nature of deployments.

Whether a phase that must be executed
serially on a given architecture has compo-
nents that might be parallelizable when de-
ployed on different architectures depends on
the nature of the algorithm within the phase.
When such possibilities have been identified,
we wish to predict the performance of the
sequential baseline and the various options
for parallelization and deployment.

Consider a computation that can be de-
composed into a set of serial phases. On
a Gantt chart, each phase corresponds to
a horizontal bar whose length represents
the anticipated phase duration. If the phases
must be executed one after the other, the
Gantt chart will look like a staircase descend-
ing from left to right with steps of unequal
lengths. We can visualize the performance
benefits of different non-von Neumann ar-
chitectures by looking at bars with reduced
lengths. The benefits of decomposition into
parallel phases are visualized by looking at
how overlaps reduce the length of the span
time from the leftmost endpoint to the right-
most endpoint.

The execution times could be calculated
via mathematical models or obtained by run-
ning benchmarks of calculations on platforms

with different architectures. This is especially
desirable when the characteristics of the pro-
gram or the platform make it difficult to build
an analytic model of how the phase will be-
have. Predictions might be aided by using
a library of benchmark programs compiled
differently for different target platforms.

4.6. Sustainability
The high power usage in computing

caused by the von Neumann bottleneck
is a significant sustainability issue, espe-
cially when accessing memory through low-
bandwidth buses. Therefore, it is crucial to
enhance energy efficiency in computing to
ensure sustainability. Using specialized mem-
ory in non-von Neumann architectures elim-
inates the need for data transfer between
memory and processing units. Their design
to perform tasks in parallel reduces the time
needed to complete tasks, thereby reducing
energy consumption.

However, implementing non-von Neu-
mann architectures in the computing con-
tinuum faces challenges, particularly at the
edge layer, where devices have restricted
compute electrical power and limited battery
capacity compared to devices in the cloud.
Even with non-von Neumann architectures,
there are still technical challenges due to
the heterogeneity of nodes in the continuum
layers. For example, neuromorphic comput-
ers are very power efficient; however, due to
their size and production cost, they can not
be distributed in large quantities at the net-
work’s edge. Therefore, other architectures
with lower power requirements could be more
suitable as a compromise, such as ARM or
TPU.

Despite these challenges, non-von Neu-
mann architectures offer promising solutions
for sustainable and energy-efficient nodes,
especially at the edge layer. However, to
make them feasible for devices in the contin-
uum, there are various aspects to consider,
such as integrating and implementing these
architectures into complex continuum sys-
tems, optimizing their energy consumption,
and addressing the technical issues associ-
ated with the heterogeneity of nodes. By over-
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coming these challenges, non-von Neumann
architectures could significantly contribute to
future computing sustainability.

5. Conclusion
This article provides a detailed summary

of the available and emerging non-von Neu-
mann architectures and their specific char-
acteristics regarding memory and computa-
tional management. We formulate the most
commonly used application classes, explor-
ing their particular characteristics and current
efforts to execute them on non-von Neu-
mann architectures. In addition, we discuss
the current barriers to adopting the computing
non-von Neumann architectures and explore
new research tracks in terms of architec-
ture heterogeneity, communication, interoper-
ability, orchestration, performance prediction,
and sustainability.
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