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Abstract. Adversarial attacks on convolutional neural networks (CNNs)
have been a serious concern in recent years, as they can cause CNNs to
produce inaccurate predictions. Through our analysis of training CNNs
with adversarial examples, we discovered that this was primarily caused
by näıvely selecting ReLU as the default choice for activation functions.
In contrast to the focus of recent works on proposing adversarial train-
ing methods, we study the feasibility of an innovative alternative: learn-
ing novel activation functions to make CNNs more resilient to adversar-
ial attacks. In this paper, we propose a search framework that combines
simulated annealing and late acceptance hill-climbing to find activation
functions that are more robust against adversarial attacks in CNN archi-
tectures. The proposed search method has superior search convergence
compared to commonly used baselines. The proposed method improves
the resilience to adversarial attacks by achieving up to 17.1%, 22.8%, and
16.6% higher accuracy against BIM, FGSM, and PGD attacks, respec-
tively, over ResNet-18 trained on the CIFAR-10 dataset.

Keywords: Convolutional Neural Network · Robustness · Adversarial
Attack · Activation Function

1 Introduction

In an adversarial attack, malicious inputs are deliberately introduced into a
machine learning model to make incorrect predictions [32]. Recent studies
demonstrate that adversarial attacks can present a significant threat to vari-
ous applications, such as computer vision [24], cyber-physical systems [16,39],
medical machine learning models [9], and wireless communication [1]. Convolu-
tional Neural Networks (CNNs) have shown their great ability to solve problems
in various artificial intelligence fields. However, the vulnerability of CNNs to
adversarial attacks has been shown in many studies [16,33,41]. This can be
attributed to the activation functions (AFs) of a CNN with adversarial exam-
ples as they are never optimized, with the ReLU [34] being the default choice
due to its simplicity and mitigating the vanishing gradient problem.

There have been efforts to improve the robustness of CNNs, either by using
architecture search [8,13] or adversarial training [7,38]. Nevertheless, no system-
atic study has been conducted on the impact of learning novel network AFs
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over the robustness of CNNs against perturbed examples. Note that, despite the
success of adversarial training methods, they require extensive input datasets,
which necessitates resource-intensive data augmentation processes [47].

A natural step, thus, is to ask how the AFs impact the learning process
for CNNs against adversarial examples. Our analysis of training CNNs with
adversarial examples demonstrated that ReLU reduces trainability due to block-
ing the gradient flow (Sect. 2). A promising research direction in the field
of Automated Machine Learning (AutoML) [17] is to optimize network AFs
[2,3,6,10,18,27,37]. However, most of the proposed AF tweaking methods have
huge computing demands (up to 2000 GPU hours [2]), resulting in a lack of
interest in searching for AFs for various deep learning problems.

In this paper, we introduce an AutoML method that discovers robust AFs
against adversarial examples by considering robustness accuracy as the search
objective. We leverage a novel search algorithm that employs an ordered sequence
of Simulated Annealing (SA) [19] and Late Acceptance Hill-Climbing (LAHC)
[5] as the optimization stages. The intuition behind the efficiency of the proposed
search method is that SA, as a global search method, practically traps in a local
optimum after some search iterations. The LAHC method, on the other hand,
starts with a solution augmented by SA and exploits the search space to find
the global optimum as quickly as possible.

Unlike [7], our proposed method is a generic optimization approach that does
not require data augmentation or adversarial training. Inspired by [27,28], we
rely on lower fidelity estimations by training each candidate during the search
iterations with fewer epochs, leading to expediting the search procedure.

We demonstrate the effectiveness of our proposed method by achieving up
to 17.1%, 22.8%, and 16.6% higher accuracy against BIM, FGSM, and PGD
adversarial attacks, respectively, over ResNet-18 trained on CIFAR-10 [20] with
ReLU AFs. Additionally, our proposed method improves search efficiency by
requiring up to 8.3 GPU days for learning new AFs, which is 9.3× faster than [2].
The proposed method generates similar results with a 4.8% standard deviation,
demonstrating the reproducibility of our results.

2 Research Motivation

In this section, we validate the need for new AFs for a CNN under attack,
and therefore, propose a robust activation function learning regime. Figure 1
shows the gradient flow for training ResNet-18 with ReLU AFs and new AFs
learned by our method. In training ResNet-18 with ReLU, gradient flow is poor,
indicating that ReLU potentially increases the information loss during forward
propagation when adversarial attacks are present. Additionally, AF optimization
is more appropriate for the early layers of the network since the gradient flow
for optimized AFs is higher in those layers.
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Fig. 1. Showing the gradient flow of the output of the Residual blocks in ResNet-18
with ReLU AF (red) and optimized AFs (blue). (Color figure online)

3 Proposed Method

In general, searching for new AFs is an NP-hard problem with exponential time
complexity [27]. Thus, in a reasonable time, polynomial optimization cannot find
the optimal solution. In addition, using exhaustive search methods is infeasible
in practice, e.g., to exhaustively search an 8000-solution design space, [30] needs
334 GPU days. To this end, we utilize a meta-heuristic search method to deal
with the exponential complexity of the AF search problem.

3.1 Search Space

Let us assume we have a CNN model with l hidden layers. The search space is
represented by vectors which we call chromosomes. Chromosomes are divided
into three parts, each with a length of l. Figure 2 shows an example of a chro-
mosome for a CNN with four hidden layers. The first part of each chromosome
is Switch which selects the corresponding operation between two AFs. For the
sake of simplicity, every possible option for Switch is coded into the numbers,
as listed in Table 1. As the second and third part of the chromosome, a set of
potential candidate AFs is selected where different operations could be applied
to them. We consider ReLU, LeakyReLU, Sigmoid, SELU, CELU, Mish, and
GELU as the candidate AFs.

The size of the search space depends on various parameters, including the
number of layers in the CNN and the number of candidate AFs being considered.
The search space size is calculated by the following formula:

Search Space Size = α × (1 + β + (α × θ))l (1)

where l is the number of layers, α is the number of candidate AFs, β is the
number of possible values for the constant coefficient ({0.25, 0.5, 0.75}), and θ is
the number of possible mathematical operations. According to Table 1, the size
of the search space is equal to 7 × 327 for AlexNet with seven hidden layers.
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Fig. 2. A chromosome example for a CNN with four hidden layers.

Table 1. Possible values for the Switch part of the chromosome and corresponding
operations.

Code Switch Description

0 f(x) = g(x) Replacing the current AF with another AF selected from the list of

candidates

1 f(x) = g(x) + h(x) Accumulating selected AFs, where g(x) comes from AF #1 and

h(x) comes from AF #2

2 f(x) = g(x) − h(x) A minus operation is performed on the selected AFs, g(x) and h(x)

3 f(x) = g(x) × h(x) Multiplication of selected AFs, g(x) and h(x)

4 f(x) = g(h(x)) Composition of selected AFs

5 f(x) = 0.25 × g(x) A constant value of 0.25 is multiplied by the selected AF g(x) from

AF #1

6 f(x) = 0.5 × g(x) A constant value of 0.5 is multiplied by the selected AF g(x) from

AF #1

7 f(x) = 0.75 × g(x) A constant value of 0.75 is multiplied by the selected AF g(x) from

AF #1

Results of applying different operations on two examples AFs, Sigmoid and
Tanh, are shown in Fig. 3. Results demonstrate that by applying different opera-
tions, newly generated AFs significantly differ from the original ones, indicating
the proposed search space is flexible to generate very different outputs.

3.2 Search Strategy

In order to solve different AutoML problems, several studies examined various
meta-heuristic search methods, e.g., genetic algorithm [27], Late Acceptance
Hill-Climbing (LAHC) and Simulated Annealing (SA) [28], and Particle Swarm
Optimization [15]. In this paper, we leverage a multi-stage optimization method
comprised of SA [19] and LAHC [5] algorithms.

Simulated Annealing. SA is a meta-heuristic search method that pro-
vides LAHC with initial solutions. SA iteratively explores solutions with bet-
ter Energy function values. If a solution with a better Energy function is
found, the current solution is replaced with the newly generated neighbor, oth-
erwise, the current solution remains unchanged. To avoid becoming trapped in
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Fig. 3. Generating different mathematical operations using Sigmoid and Tanh.

a local optimum, SA sometimes accepts a bad solution with a probability of
exp(−Δ/(k ×T )). k is the Boltzmann’s constant and T is the cooling parameter
which is decreased with a logarithmic shape based on the predefined maximum
(TMax) and minimum temperatures (TMin). SA starts with a high TMax for
preventing being prematurely trapped in a local optimum. By approaching T
toward TMin, most uphill moves will be rejected. The SA process continues until
no further improvements can be made or it will be terminated after a specified
number of iterations. Finally, it is worth mentioning that the convergence of SA
to global results is guaranteed [12].

Late Acceptance Hill-Climbing. This is a heuristic search method that
starts with a near-optimal solution provided by the SA algorithm. LAHC is
an extension of the simple hill-climbing algorithm [36], in which a limited num-
ber of worse solutions are accepted in hopes of finding a better one later. The
Energy function of both LAHC and SA algorithms is defined by Eq. 2. In this
paper, the Energy function and the objective function are used interchangeably.

Energy = 100 − Robustness Accuracy(%) (2)

Our proposed method has a fast convergence which is due to the single-solution
nature of LAHC and SA, while for example, the genetic algorithms are relatively
slow due to a population-based optimization [29]. Our experimental results show
that our proposed method requires ≈8.3 GPU days on a single NVIDIA R© RTX
A4000 for finding the best-performing AF for ResNet-18 trained on CIFAR-10.

4 Experiments

4.1 Experimental Setup

To verify the effectiveness of our proposed method, we use MNIST [23] and
CIFAR-10 [20] classification datasets. Our evaluations have been performed on
AlexNet and ResNet-18, a variation of ResNet [14], network architectures. To test
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Table 2. Summarizing experimental setup.

Search Configuration

Parameter MNIST CIFAR-10 CIFAR-10

(AlexNet) (AlexNet) (ResNet-18)

Search Epoch (#) 30 100 50

Optimizer Adam Adam Adam

Learning Rate 0.001 0.001 0.001

Train Batch Size 500 512 200

Test Batch Size 250 256 100

Hardware Specification

GPU NVIDIA R© RTX A4000

GPU Compiler NVIDIA R© NVCC v. 10.1

CO2 Emission/Day† 1.45 Kg

Training System Memory 64 GB

CPU Intel R© Xeon R© W-2245 CPU @ 3.90GHz

† Calculated using the ML CO2 impact framework: https://mlco2.github.io/impact/ [22]

Fig. 4. AlexNet accuracy trained on MNIST with ��� ReLU AFs and AFs searched
by © our proposed method against (a) BIM, (b) FGSM, and (c) PGD. (Color figure
online)

the robustness, we consider three popular adversarial attacks, including FGSM
[11], PGD [32] and BIM [21]. Table 2 presents the search configuration. Inspired
by [27], we trained each candidate with fewer epochs to expedite the search
process. The search step takes up to ≈8.3 GPU days on a single NVIDIA R©
RTX A4000 for ResNet-18 trained on the CIFAR-10 dataset.

4.2 Results on MNIST

Figure 4 shows the results of learning AlexNet AFs on MNIST using our proposed
method against three different adversarial attacks including BIM, FGSM, and
PGD. AlexNet with ReLU AF is selected as the compression baseline (���). Our
proposed method (©) significantly outperforms the default configuration by
providing up to 37.3%, 21.8%, and 69.0% higher accuracy over BIM, FGSM,
and PGD attacks, respectively.

https://mlco2.github.io/impact/
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Fig. 5. AlexNet accuracy trained on CIFAR-10 with ��� ReLU AFs and AFs searched
by © our proposed method against (a) BIM, (b) FGSM, and (c) PGD. (Color figure
online)

Fig. 6. ResNet-18 accuracy trained on CIFAR-10 with ��� ReLU AFs and AFs searched
by © our proposed method against (a) BIM, (b) FGSM, and (c) PGD. (Color figure
online)

4.3 Results on CIFAR-10

Figure 5 shows the results of learning AlexNet AFs trained on CIFAR-10 using
our proposed method against three different adversarial attacks including BIM,
FGSM, and PGD. AlexNet with ReLU AF is selected as the compression baseline
(���). Our proposed method (©) remarkably outperforms the default configura-
tion by providing up to 7.4%, 10.1%, and 15.9% higher accuracy over BIM,
FGSM, and PGD attacks, respectively.

Figure 6 shows the results of learning ResNet-18 AFs on CIFAR-10 using
our proposed method against three different adversarial attacks including BIM,
FGSM, and PGD. ResNet-18 with ReLU AF is selected as the compression
baseline (���). Our proposed method (©) significantly outperforms the default
configuration by providing up to 18.0%, 23.8%, and 17.3% higher accuracy over
BIM, FGSM, and PGD attacks, respectively.
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Fig. 7. Comparing the convergence of the proposed method with random search.

4.4 Results of Search Convergence

Figure 7 depicts the Energy function (Eq. 2) across search iterations for ResNet-
18 trained on CIFAR-10 against the FGSM attack. Our proposed search method
finds AFs with a monotonic increase in Energy, indicating our proposed method
leads to a higher accuracy with fewer search iterations. We also present an empir-
ical evaluation of our method, compared to a random search to show its superior
performance. Random search is able to find the optimal architecture in many
applications [25,45]. However, as shown in Fig. 7, our method reached the high-
est values compared to the random search for the Energy function (Eq. 2). Thus,
the approach succeeds to find a feasible solution in a reasonable time.

4.5 Analyzing the Discrimination Power of Our Proposed Method

We use the t-distributed stochastic neighbor embedding (t-SNE) method [31] for
visualizing the decision boundaries of the original ResNet-18, ResNet-18 with
perturbation, and our proposed method for the FGSM attack (ε = 10/255) on
the CIFAR-10 dataset. Figure 8 illustrates the decision boundaries of classifi-
cation for each scenario. According to the results, our proposed method has a
higher discrimination power than ResNet-18 with perturbation, and our pro-
posed method behaves similarly to the original ResNet-18.

4.6 Reproducibility Statement

Several AutoML papers have problems reproducing their results [26]. We re-ran
our proposed method search procedure three more times with different random
seeds to verify the reproducibility of our method. Results show that the average
of multiple runs converges to AFs with similar results with a standard deviation
(STD) of 4.8%. The open-source code is available on GitHub through: https://
github.com/RobustInsight/AdversarialAttackResilience.

https://github.com/RobustInsight/AdversarialAttackResilience
https://github.com/RobustInsight/AdversarialAttackResilience
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Fig. 8. Visualizing the decision boundary with t-SNE embedding method for (a) origi-
nal ResNet-18 without perturbation, (b) perturbed ResNet-18, and (c) ResNet-18 with
our proposed method optimization.

5 Related Work

To the best of our knowledge, our proposed method is the first automated frame-
work that rapidly learns robust AFs using a multi-stage optimization method.
In the past, extensive research has been conducted on improving CNN accuracy.
Prior studies are mainly categorized as (i) adversarial training [7,38], (ii) robust
optimization [4,40], (iii) architecture modification [8,13], and (iv) AF optimiza-
tion for adversarial attack resilience in CNNs [42]. In the rest of this section, we
briefly discuss state-of-the-art research on AF optimization and compare them
with our proposed method.

Studies indicate that AFs are a significant contributor to the vulnerability of
neural networks to adversarial examples [46]. Since ReLU is a non-smooth AF,
[44] proposed replacing ReLU with its smooth approximations to find harder
adversarial examples. A new AF is suggested by [43] that relies on the data and
demonstrated its resistance to adversarial attacks. Since ReLU is not smooth
and inputs close to zero cause its gradient to abruptly change, the Softplus AF
is proposed by [44] whose derivative is continuous and n-times differentiable.
Another approach examined the resilience of various layer types within CNNs
against adversarial attacks, by considering each layer as a separate nonlinear
system and assessing its robustness, utilizing Lyapunov theory. Instead of using
non-linear AFs, SPLASH uses piece-wise linear AFs which boosts the robustness
of CNNs against adversarial attacks and accuracy as well [42]. The authors in [7]
investigated the influence of the shape of AFs on the accuracy and robustness of
CNNs by parameterizing various AFs. The approach achieved this by introducing
an α parameter to different AFs and examining the effects of altering the α
parameter. However, the performance improvement observed is limited as the
study only used a restricted set of values and the effect of the α parameter is
linear.

These methods have been quite effective, but they suffer from huge computa-
tional costs due to the use of reinforcement learning or evolutionary algorithms
[27,35,37]. To expedite the learning process of AFs, this work proposes using
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simulated annealing and late acceptance hill climbing, which can lead to up to
9.3× faster search than [2]. Finally, we make no assumptions about the input
dataset, which makes it a more generalized method.

6 Conclusion

The purpose of this study was to investigate how learning activation functions
impact the robustness of CNNs against adversarial attacks. Experimental results
demonstrate that ReLU is not robust against adversarial attacks, whereas learn-
ing network AFs greatly enhances robustness. Overall, our work contributes to
the growing body of research on adversarial attack resilience in CNNs and pro-
vides a promising approach for designing more robust CNNs.
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