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Abstract—We consider the problem of on-arrival dispatching
and scheduling jobs with stochastic execution times, inter-arrival
times, and deadlines in multi-server fog and edge computing plat-
forms. In terms of mean response times, it has been shown that
size-based scheduling policies, when combined with dispatching
policies such as join-shortest-queue, provide better performance
over policies such as first-in-first-out. Since job sizes may not
always be known apriori, prediction-based policies have been
shown to perform reasonably well. However, little is known about
the performance of prediction-based policies for jobs with firm
deadlines. In this paper, we address this issue by considering the
number of jobs that complete within their deadlines as a perfor-
mance metric and investigate, using simulations, the performance
of a prediction-based shortest-job-first scheduling policy for the
considered metric and compare it against scheduling policies that
prioritize based on deadlines (EDF) and arrival times (FIFO).
The evaluation indicates that in under-loaded conditions, the
prediction-based policy is outperformed by both FIFO and EDF
policies. However, in overloaded scenarios, the prediction-based
policy offers slightly better performance.

I. INTRODUCTION

Edge computing architectures allow real-time system de-
signers to deploy algorithms on high-performance edge com-
puting servers to improve response times and reduce energy
consumption in embedded devices [1]–[3]. In addition, these
edge deployments may need to support several different de-
vices necessitating a multi-server system design. For such
multi-server systems, dispatching and scheduling algorithms
are important in satisfying response time requirements [4].
Specifically, when the objective is mean response times and the
processing times of individual jobs are known apriori, multi-
server variants of shortest-remaining-processing-time (SRPT)
and preemptive shortest job first (SJF) are optimal under a cen-
tral queue assumption [5]. Similarly, when jobs are dispatched
on arrival, Mitzenmacher et al. [6] showed that SRPT and
SJF outperformed the FIFO policy when combined with the
join-shortest-queue (JSQ) dispatching policy. A limitation of
these policies is that they require the knowledge of processing
times of each job before its completion, which may not always
be possible [7]. As an alternative, usage of predicted values
has been investigated to achieve improved performance in
terms of mean response times compared to size-oblivious
policies such as first-in-first-out (FIFO) ordering [6], [8]. In
a large-scale queuing system, Mitzenmacher [8] studied the
impact of single-bit predictors that can indicate whether a
job’s processing time is above or below some threshold. They
found that such predictors can provide benefits similar to

those achievable with knowledge of exact processing times
for Poisson arrivals and certain processing time distributions.
While mean response time can be a useful measure for certain
applications, some real-time applications impose constraints
in terms of deadlines, where the output is only valid if it
is generated before its deadlines. However, they can tolerate
some missed deadlines [9]. Additionally, some of these algo-
rithms may exhibit stochastic behavior in terms of processing
times as well as inter-arrival times(For example, See [10],
[11]) The performance evaluation of scheduling policies based
on predicted processing times for such workloads with firm
deadline requirements has received limited attention.

We address this by first considering the presence of a dual-
bit job size predictor that can classify an incoming job into
one of the four job size classes: small, medium, large, and
very large. We choose a dual-bit prediction approach based
on the intuition that the accuracy of such predictors may be
better than the accuracy of predictors estimating individual job
processing times. Secondly, we use the information the dual-
bit predictor provides with a preemptive shortest-job-class-first
(PSJF) scheduling policy. This policy orders jobs according to
their job size classes, and jobs in each class are in FIFO order.
Furthermore, we consider an on-arrival dispatching policy and
leave evaluation of central queue approaches for future work.

Concretely, we formulate the following questions and ad-
dress them using simulations.

1) What is the impact of on-arrival job acceptance and
rejection based on response-time estimation of pending
jobs on achievable throughput under various load con-
ditions?

2) How does a dual-bit prediction-based PSJF scheduling
policy compare against EDF, FIFO, and SRPT schedul-
ing policies in terms of achievable throughput under
various load conditions?

3) What is the impact of on-arrival server selection policy
on achievable throughput under various load conditions
when using dual-bit prediction-based PSJF scheduling
policy?

Our evaluation indicates that prediction-based PSJF pro-
vides no significant advantage over FIFO and EDF scheduling
policy for the considered settings and under-loaded scenarios.
However, under fully loaded and sustained overload condi-
tions, it performs better than FIFO and EDF when used with
an estimation-based admission policy.



II. RELATED WORK

In on-arrival dispatching systems, dispatching policies de-
termine the server on which an incoming job will be executed.
Dispatching policies such as JSQ and its variants that require
the knowledge of the number of pending jobs in each server
is optimal with respect to mean response times [4]. However,
gathering this information may introduce overheads depending
on the number of servers and the network traffic. Alternatively,
policies such as round-robin (RR) that do not require knowl-
edge of pending jobs dispatch incoming jobs in a cyclic order.
Consequently, they do not have the overhead associated with
policies that require information about the pending jobs on
each server. Several other policies, such as join-the-idle-queue
and join-below-threshold, have been proposed to balance the
trade-off between overheads and response times [12], [13].

Many studies have explored the potential for enhancing
algorithm performance through machine-learned advice or
predictions, including classical algorithms for online schedul-
ing and load-balancing [14]. These prediction-augmented al-
gorithms have been evaluated through competitive analysis
under both accurate and possibly incorrect predictions [6],
[8], [13], [15]. In online scheduling, some researchers have
considered predicting job execution times [13], [16] and the
ordering of jobs [15]. Mitzenmacher et al. [6] demonstrated
via simulations that the benefits of using predictions in large
distributed systems were retained if the predictions were
reasonably precise. Based on the evaluations, they proposed
selecting servers with the least number of pending jobs and
using the predicted shorted processing job first policy for
use in actual systems. Zhao et al. [13] extended the RMLF
algorithm to use predicted job execution times. The prediction
enhanced algorithm achieved performance close to that of
SRPT when the prediction error was small and better than
RMLF when the error was large. However, designing highly
accurate predictors that predict the exact size of a job may be
difficult. Consequently, we consider dual-bit predictors that
coarsely classify an incoming job into one of the four distinct
job classes.

In single-server settings, Gao et al. [17] developed schedul-
ing strategies for firm semi-periodic real-time tasks. They
introduced three control parameters to decide at run-time
whether to interrupt a job before its deadline and considered
four admission policies. Our work differs in that we consider a
multi-server setting and estimate response times using the job
execution time distribution and the number of pending jobs on
a specific server on job arrival and allowing admitted jobs to
stay in the queue until completion or reaching their deadline.

Several works within queuing theory analyzed the perfor-
mance of EDF under different scenarios. Abhaya et al. solve
a set of linear equations to calculate the mean delay for
M/G/1/./EDF [18]. Kargahi et al. [19] provide bounds for es-
timating the deadline miss probabilities for M/M/k/./NEDF+G
and M/M/1./EDF+G assuming a single queue system, unlike
the dispatch on arrival policy we considered. Kargahi provided
an analytical method in [20] to show the performance of

parallel EDF queues for JSQ, the minimal expected value
of unfinished work(MED), and threshold-based dispatching
strategy but without any arrival time acceptance or rejection.

We previously evaluated the performance of a dispatching
policy that relies on single-bit predictions of job processing
times in conjunction with a non-preemptive FIFO scheduling
policy where all jobs had a fixed relative deadline. [21]. Sim-
ilarly, we evaluated the percentage of missed deadlines when
jobs have individual deadlines using preemptive EDF policy
in [22]. The work in the paper differs from our previous work
in that we consider a prediction-based policy and compare it
with EDF and FIFO ordering.

III. SYSTEM MODEL

A. Job Model

Jobs arrive online following a Poisson process with an
arrival rate λ adjusted accordingly to generate desired system
load. We assume a Poisson process since this has been
extensively used in the literature in analyzing queuing systems
and models quite well the use case we consider. i.e., requests
for job executions can arrive from several users, and each such
user may have different inter-arrival times. The processing
time of each job is drawn from a trimmed and discretized
exponential distribution with a mean of 10 and lower bounded
with value 1 and upper bounded by value 100. (i.e., ten times
the mean value). While this may not be a realistic represen-
tation of many real-world workloads, it has been widely used
in the literature in queuing systems, and the loss of accuracy
compared to true exponential distribution may be acceptable
since we only consider the average throughput rather than
numerically precise response times. Additionally, each job’s
relative deadline di is drawn from a uniform distribution D
with a range between five to ten times the mean value of the
execution time distribution. We choose the considered ranges
due to negative results associated with low laxity systems [15].
The relative deadline is revealed when the job arrives. Each
job is assigned an absolute deadline on its arrival.

B. Server Model

We consider a network of homogeneous servers. Each server
has its own queue and executes jobs assigned to it according
to the considered scheduling policy. When a job arrives, a
dispatching policy selects a server and accepts or rejects the
job based on the pending workload on the selected server. Each
accepted job is added to the queue of the selected server. The
jobs in the queue are ordered based on the scheduling policy.
If a new job has a shorter deadline than the currently executing
job, the scheduler preempts that job, adds it to its own queue,
and starts executing the new job.

Server Selection Policy: We evaluate JSQ and RR server
selection policies. Under JSQ, whenever a new job arrives,
the server with the least number of pending jobs is selected,
while in RR, the server is selected cyclically. We combine
these policies with an online schedulability test to enable
admission time control. If a job is deemed to be schedulable,



it is immediately sent to the selected server and is rejected
otherwise.

Admission Policy: A schedulability test decides whether
a job can be successfully scheduled on a server, given a
scheduling policy and information about the pending jobs on
the server. As jobs in our system are bound by a deadline,
we must determine whether the job can meet its deadline on
the selected server. Utilization-based schedulability tests that
rely on worst-case processing time values can be used if the
service cannot tolerate any deadline miss. However, if over-
provisioning is a problem and deadline misses are tolerated, a
low-overhead but less accurate test may be useful. If the jobs
satisfy such a schedulability test, they are accepted into the
system.

We now describe the policies used to admit or reject the
jobs. We consider three policies based on how the job pro-
cessing times are considered, (i) mean-approximation policy
and (ii) clairvoyant policy, and (iii) admit-all policy.

Mean-approximation policy: In this policy, we use mean
µ of the processing time distribution to estimate the response
time fi of a newly arrived job on the selected server i. If the
number of pending jobs on this server is given by Ni, the
estimated response time is given by

fi = (Ni + 1) · µ. (1)

Clairvoyant policy: In this policy, we assume the knowl-
edge of exact processing times. The response time fi on any
server i is given by

fi = xj +

Ni∑
k=0

xk, (2)

where xk is the exact processing time of each job k assigned
to server i and xj is the processing time of the newly arrived
job.

For both the estimation methods, the admission test returns
true if the following condition is satisfied:

fi ≤ di. (3)

Admit-all policy: This policy dispatches each incoming
job to a selected server and does not reject any job.

Scheduling Policies: We consider four different policies
depending on the workload parameters, (i) FIFO policy, prior-
itizing jobs based on their arrival times, (ii) EDF, prioritizing
jobs based on their deadlines (iii) PSJF, prioritizing jobs based
on their predicted processing times and (iv) SRPT, prioritizing
jobs based on their true remaining processing time.

• FIFO policy prioritizes jobs according to their arrival
times, with ties broken arbitrarily. It executes jobs in a
non-preemptive manner.

• EDF policy prioritizes jobs according to their absolute
deadlines with preemptions. i.e., a newly added job can
preempt a running job if its absolute deadline is lower
than that of the running job.

• SRPT policy prioritizes jobs according to their remaining
processing times with preemptions. Although this policy

requires the exact processing time to be known, we use
this policy as a baseline to compare against the size-aware
prediction-based PSJF policy.

• PSJF policy prioritizes jobs according to their predicted
job classes, with jobs from the shortest class executed first
with preemptions enabled. Jobs within each class are in
FIFO order.

IV. SIMULATION METHODOLOGY

We compare the performance of the scheduling policies for
(trimmed) exponentially distributed job processing times, Pois-
son inter-arrival times, and uniformly distributed deadlines. We
simulate 10000 time units and measure throughput as the ratio
of the number of jobs completed within their deadlines and the
total number of jobs released during this simulation interval.
We repeat the simulation over ten runs and present the average
throughput calculated over these ten runs.

Load generation: We generate jobs based on the load
following Eq. (4), where ρ is the load, µ is the mean processing
time, and λ is Poisson arrival rate per server, and n is the
number of servers. Specifically for the results presented in
this paper, we fix µ to 10, set n to 2 and 4, and calculate λ
for fixed values of load ρ. Specifically, we set ρ between 0.5
and 1.2 and incremented in steps of 0.1.

ρ =
µ

n · λ
(4)

Assigning processing times: For each job, we first assign
the true processing time generated according to the trimmed
exponential distribution with µ set to ten. The lower bound is
set to one, and the upper bound is set to one hundred. As we
use integer time units for stepping through the simulation, we
use the ceil function to convert the generated floating point
value to an integer. We note that this discretization changes the
mean of the distribution and deviates from the true exponential
distribution. However, considering a large sample size, i.e.,
a hundred thousand samples, this deviation can be ignored
without significantly impacting the observed results.

Assigning predicted processing times: As we assume
a dual-bit predictor, which classifies jobs into four distinct
classes, defining the thresholds that can guide the classification
is necessary. As a first approach, we consider quartile values of
the exponential distribution and use them as threshold values.
Once the true processing time has been assigned, we assign
the predicted processing time equal to the discrete version of
the quartile values. Specifically, we use values 3, 7, 17, and
47, the rounded quartile values of the trimmed exponential
distribution with a mean of 10.

Assigning deadlines: To assign the relative deadline, we
first generate a random number from a uniform distribution
of a range of 5 to 10. This generated random number is
multiplied by the mean of the processing time distribution, and
the result is assigned as the deadline. If the true processing
time value is greater than the assigned deadline, we reset
the processing time to the mean of the distribution while
retaining the deadline. We do this since this allows us to
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Fig. 1. Comparison of throughput under three different admission policies for round-robin dispatching and various scheduling policies
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Fig. 2. Comparison of throughput under different scheduling and admission policies for RR dispatching
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Fig. 3. Comparison of throughput under different scheduling and admission policies for JSQ dispatching

keep the generated jobs, as it eliminates the problem of having
unschedulable jobs even before they are released.

V. EVALUATION

A. Performance of Admission Policies

We compared the performance of the scheduling policies
with and without admission control policies. As a baseline, we
considered a clairvoyant policy that knows the exact size of
each pending job on a chosen server. The estimated response
time of an incoming job is then calculated using eq.(2). We
also considered a low complexity mean approximation policy
where the response time is estimated using eq.(1). In addition
to this, we considered the scenario where all incoming jobs
are admitted and dispatched to specific servers depending
on the dispatching policy. The achieved throughput with RR

dispatching when using two servers is shown in Fig. 1. When
using EDF as the scheduling policy, rejecting jobs using the
admission control policies has a limited impact on achievable
throughput when the load is below 0.9. However, the benefits
of admission control are seen when the load is increased
to 1.0, with even the mean-approximation policy achieving
a six percent higher average throughput than the admit-all
policy. The difference, however, is reduced under the FIFO
scheduling policy. Similarly, when considering SRPT and the
prediction-based PSJF policy, the impact of the admission
control policies remains negligible until a load value of 0.9.
When the load increases to 1.0 and above, admitting all
jobs and mean-approximation policy-based admission control
provide slightly better throughput than the clairvoyant policy.
Based on these observations, we can conclude that on-arrival
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Fig. 4. Comparison of throughput under different dispatching schemes for PSJF scheduling policy

admission control policies provide no significant advantage
when the system load is below 0.9 when combined with any of
the considered scheduling policies. If the system load is above
0.9, admission control policies perform better when combined
with size-oblivious EDF and FIFO scheduling policies. When
combined with size-aware PSJF and SRPT, it is better to admit
all jobs rather than reject some jobs to achieve a slightly better
average throughput.

B. Impact of Scheduling Policy

Fig. 2 and Fig. 3 provide a comparison of the achieved
throughput of the considered scheduling policies when com-
bined with different admission control policies for RR and
JSQ dispatching, respectively. When using the mean approx-
imation policy and admit-all policy, we can observe that as
load increases, the throughput reduces for all the schedul-
ing algorithms. When the load is below 0.9, size-oblivious
scheduling policies perform slightly better than the baseline
SRPT policy, while the prediction-based PSJF performs the
worst. However, when the load is close to 1.0, all the policies
perform similarly. Under overload conditions, PSJF performs
better than both EDF and FIFO, while SRPT performs the best.
The performance of EDF is worst under the admit-all policy.
When using the clairvoyant policy, PSJF performs worst at
high loads, with EDF and FIFO performing better than SRPT.

C. Performance of Dispatching Policies

We compared the impact of JSQ and RR dispatching poli-
cies on the performance of various scheduling and admission
control policies. Fig. 4 shows the throughput achieved with
PSJF scheduling and various admission control policies. We
observe that the difference in performance due to the dis-
patching policy is almost negligible, with JSQ only slightly
outperforming RR. This is seen consistently across all load
values. This behavior is also consistent for size-aware and size-
oblivious scheduling policies, irrespective of the admission
policy.

D. Discussion

We compared the performance of various combinations
of admission control and scheduling policies, including a

coarse prediction-based shortest job policy for applications
whose jobs exhibit variability in inter-arrival times, processing
times, and deadlines. The results show that for non-asymptotic
conditions, i.e., when the number of servers is limited to two
and four, PSJF and SRPT provide no advantage over EDF
and FIFO policies when the load is below 0.9. However, size-
aware policies provide better throughput under overloaded
conditions, with even the coarse-grained PSJF performing
better than both FIFO and EDF when combined with mean
approximation and the admit-all admission policies. Addition-
ally, JSQ and RR perform similarly for all combinations with
no significant difference in performance. This indicates that
the overheads of JSQ can be avoided with very little loss
by choosing RR. Moreover, suppose it can be established
that the load in the system will stay below 0.9. In that
case, the simple FIFO policy with an admit-all policy can
be used instead of the other policies with relatively higher
computational complexities. Another interesting observation
is that using size-aware policies for admission control and
scheduling provides worse performance. However, it must be
noted that we only considered the exponential distribution
for processing time distribution, and the observations may
not apply to a different distribution. In addition to this, we
assumed an ideal predictor that is fully accurate with zero
inaccurate job size classifications. This may not be realizable
in practice, and further investigation is needed to study the
impact of inaccuracies. Another missing parameter is network
communication and the lack of consideration of end-to-end
deadlines, which may be important in practical systems.

VI. CONCLUSION

We considered the problem of on-arrival dispatching and
scheduling firm real-time jobs in multi-server settings. We
evaluated the performance of the predicted job scheduling
policy using coarse-grained predictions in terms of average
throughput using simulations under non-asymptotic condi-
tions. Our evaluation shows that the prediction-based size-
aware policy does not offer significant benefits compared to
policies that prioritize based on deadlines or arrival times in
under-loaded conditions. However, in overloaded scenarios, it
performs slightly better than other policies. In summary, our



study provides valuable insights into selecting dispatching and
scheduling policies for edge computing systems to meet the
needs of firm real-time applications.
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