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Abstract—The edge computing paradigm extends the architec-
tural space of real-time systems by bringing the capabilities of the
cloud to the edge. Unlike cloud-native systems designed for mean
response times, real-time industrial embedded systems are de-
signed to control a single physical system, such as a manipulator
arm or a mobile robot, that requires temporal predictability. We
consider the problem of dispatching and scheduling of jobs with
deadlines that can be offloaded to the edge and propose DAL, a
deadline-aware load balancing and scheduling framework that
leverages the availability of on-demand computing resources
along with an on-arrival dispatching scheme to manage temporal
requirements of such offloaded applications. The evaluation
indicates that DAL can achieve reasonably good performance
even when execution times, arrival times, and deadlines vary.

I. INTRODUCTION

Complex real-time systems such as mobile robots and
industrial robots traditionally follow an embedded deployment
model with software functions running on a shared hardware
platform to control a single physical system such as the
robot [1]. Several studies have investigated the benefits of a
cloud-oriented design that depends on the elastic availability
of resources for real-time applications [2], [3], [4], [5]. One
approach to realize a cloud-oriented design is to package much
of the application software, including the operating system,
as a Virtual Machine (VM) or container and deploy it to
the cloud or edge infrastructure [6], [7] where each VM
or container is responsible for a single physical system. An
alternative model is a microservice design, where individual
functions have their own resources, such as CPU and memory,
and handle requests from multiple physical systems rather
than a single system. Several approaches have been proposed
for scheduling microservices requests in such a deployment
model, which take into account latency requirements but have
limited consideration for issues such as satisfying deadline
constraints [8], [9], [10]. Within queuing theory, several
works have addressed deadline-based scheduling policies such
as Earliest-Deadline-First (EDF) for systems with a single
queue [11], [12], [13] and for the scenario where the number
of available processors is fixed [14], [15], [16].

Additionally, several algorithms that can be offloaded ex-
hibit variability in execution times [17], inter-arrival times [18]
as well as in terms of their relative deadlines [19]. For
example, while most real-time task models assume that the
relative deadline of a real-time task is fixed, for some tasks
this deadline may also vary per job [20] as well as during
the execution of a job [19]. The inter-arrival time between

successive jobs can also vary significantly [18], [21]. For
systems such as mobile robots, the inter-arrival time can be
a function of the current velocity and the distance they are
expected to cover before new data is needed [22].

To address this, we consider an edge architecture that
relies on the concept of on-demand processing commonly
used in cloud-computing designs [23] and uses existing
low-complexity dispatching and scheduling policies. Specif-
ically, we present DAL, a deadline-aware load balancing and
scheduling framework that integrates an on-arrival dispatcher
along with an EDF scheduling policy by considering the
availability of a processor pool with reserved processors and
on-demand processors to reduce the number of jobs that miss
their deadlines even with variable execution times, arrival
times, and deadlines. To keep the design simple, each DAL
instance manages a single microservice and assumes that the
computing infrastructure can be viewed as a processor pool
with a set of reserved processors and a set of on-demand
processors. In the context of controlling real-time physical
systems, if we consider the physical system as a client that
makes a request for the service offered by the microservice
task, a response must be sent to this client within a certain
time duration. DAL uses an on-arrival dispatcher that assigns
incoming requests to the processor that most likely meets
their timing requirements. The dispatcher estimates the time a
request will take on a processor before dispatching it. Based
on recent work related to redundant designs [24], and overload
management in data centers [25], for requests that are deemed
to miss their timing requirements, DAL includes a feedback
mechanism that notifies the requester of a possible violation
of its timing requirement so that it can take remedial action
locally. Concretely, we show via simulations that using on-
demand processors and a low-complexity admission policy can
provide significantly improved performance compared to using
only reserved processors for jobs with deadline constraints and
variable execution and inter-arrival times.

II. MOTIVATION

To further motivate DAL’s design choices, we consider path
planning [26] and trajectory generation [27] as examples of a
microservice and highlight the challenges imposed by such
services.

a) Variable Arrival Times: In a multi-user scenario,
requests may come from different clients. Even for periodic
requests coming from the same clients, each client may have



different periods. For example, if the service computes a
trajectory for a robot, a robot moving at a higher velocity
can send requests at a higher frequency. To address this
issue, we designed DAL to manage variable arrivals with
an incoming request dispatcher that can decide whether the
incoming request can be processed within its deadline given
the pending requests and the constraints on available resources.

b) Variable Execution Times: Similar to varying arrival
times, the execution time for each request can also vary,
even for a service that provides the same functionality for
all requests. For instance, a path planning service needs to
compute paths where execution times vary depending on the
required accuracy, segment lengths, and number of collision
checks. For example, Alcon et al. [17] analyzed the variability
in execution times of prediction and planning modules of
an autonomous driving stack, and found that the variations
ranged from a minimum of 25 milliseconds to a maximum
of 350 milliseconds, and between 175 and 250 milliseconds
respectively. To manage such variability, we design DAL to
take advantage of the on-demand availability of resources.

c) Variable Deadlines: For a service like trajectory
planning, each request can have its own deadline. For example,
a request may have a shorter deadline if the current velocity
of the client robot is higher for the same distance when
compared to another request where the client robot is moving
slowly. Gog et al. [20] highlighted this in the context of an
autonomous driving system while Shih et al. [19] considered
such state-dependent deadlines. DAL addresses deadline vari-
ability by considering EDF as its scheduling policy as it sorts
jobs according to their deadlines.

d) Latency Violation Feedback: Many real-time systems
can tolerate missing deadlines [28], [29], [30] and services
like the path planner are no different. If a request misses its
deadline, a local planner running on the robot can take over
and take corrective action, such as running a local instance
of the planner [24], or it can reduce its speed and send a
new request with a relaxed deadline. For this reason, DAL is
designed to notify a requester if its request cannot be satisfied
as estimated by the dispatcher, and subsequently, if it misses
the deadline while waiting in the queue. Additionally, DAL
deletes the requests that have missed their deadlines to service
pending requests and possibly new requests from the same
client robot, similar to the analysis in [15].

III. RELATED WORK

Kargahi [31] provided an analytical method to show the per-
formance of parallel EDF queues for join-shortest-queue(JSQ)
dispatching and a threshold-based dispatching strategy but
without any arrival time acceptance or rejection. Wang et
al. [23] considered the problem of dispatching and scheduling
requests with heterogeneous reserved and on-demand pro-
cessors where individual requests have maximum waiting
time described by an exponential distribution. They provided
a mathematical model as well as the multi-queue request
scheduling framework that assigns incoming jobs to different
queues depending on the type of the processors, followed

by the allocation of jobs in queues to specific processors.
They also provide a mechanism to decide the number of on-
demand processors to be provisioned. Here the on-demand
processors are utilized when the queue is full or when the
waiting time exceeds the maximum waiting time.Similarly,
Meng et al.[32] considered the problem of dispatching and
scheduling jobs with arbitrary deadlines and bounded worst-
case execution time on a set of reserved processors along with
network transmission delays. However, these algorithms may
be unsuitable for applications with low latency requirements
due to their complexity.

Gao et al. [33] proposed strategies for scheduling firm semi-
periodic real-time jobs in single-processor environments. The
jobs are released periodically and share the same relative dead-
line, but their execution times can have arbitrary probability
distributions. The researchers explored several optimization
criteria, including the Deadline Miss Ratio (DMR). To deter-
mine whether a job should be interrupted before its deadline,
they introduced three new control parameters at runtime. These
parameters include an upper bound on completion times,
which is used to drop a job if it cannot be completed by a
certain time between periodic inter-arrival time and relative
deadline; an upper bound on job execution times, which is
used to reject jobs with execution times exceeding a certain
value; and an upper bound on waiting time, which is used to
drop a job that has waited until a certain bound. They also
considered four admission policies, which involve admitting
all jobs, admitting jobs until a fixed number of jobs are in the
queue, admitting jobs with a fixed probability, and admitting
jobs following a repeating pattern. The evaluation of their work
revealed that the most critical control parameter for achieving
the best DMR is the upper bound on the waiting time of each
job. In contrast to this work, our research utilizes admission
policies that estimate the response times based on the job
execution time distribution and the number of pending jobs
on a particular server. Admitted jobs are allowed to remain in
the queue until they are completed or until their deadline.

IV. SYSTEM MODEL

a) Task Model: We consider a microservice as a task, and
each task releases a job of that task when a request arrives.
A task is specified by its execution time distribution1 E, a
poisson arrival process with rate λ, and a deadline distribution
D. Each job i of the task takes an unknown amount of time Ei

from the distribution E and is expected to be completed before
a relative deadline di drawn from a uniform distribution. The
relative deadline di is revealed when the request arrives at
the dispatcher (Fig.1). We assume that the time to decode
the deadline information is zero2. Each request is assigned
an absolute deadline Da

i by the request decoder at the time it
arrives according to eq.(1).

Da
i = tc + di, (1)

1Same as service time distribution in queuing theory.
2In practice, a request arriving at the NIC is processed in FIFO order and

may take a non-negligible amount of time before its relative deadline is known.



where tc is the time at which the request is decoded.
b) Processor Pool: We assume that an arbitrary but fixed

number of processors are reserved to execute requests of the
microservice task. Each job of the task can be executed on
any reserved processor. Each of the reserved processors has
its own queue with pending jobs ordered according to the
EDF scheduling policy. In addition to reserved processors, we
also assume that a microservice is deployed on a set of on-
demand processors. An on-demand processor can be released
if it has no pending jobs of the considered task in its queue.
Furthermore, we assume that there is no setup cost associated
with on-demand processors, i.e., when the dispatcher sends
a job to an idle on-demand processor, it immediately starts
executing the dispatched job.

c) Dispatch-on-Arrival and Scheduling Policy: Once a
request is processed, it is immediately dispatched to the queue
of a reserved processor. The processor selection strategy is
described in Section V. The jobs in a processor queue are
ordered by their absolute deadlines which are calculated using
Eq. (1). If a new job has a shorter deadline than the currently
executing job, the scheduler preempts that job, adds it to its
own queue, and starts executing the new job.

V. DAL

Scheduling jobs with stochastic parameters with static re-
source reservations may not provide useful performance unless
the reservations are made based on worst-case behavior. For
instance, when we evaluated join the shortest queue dispatch
policy for exponential arrival and service times with only
reserved processors and no on-demand processors, 20 percent
of requests missed their deadlines even when another 20
percent of requests were discarded by the dispatcher (see
Table V and Table I). We designed DAL to achieve the
goal of successfully completing jobs before their deadlines for
microservices with stochastic arrival times, execution times,
and deadlines by considering the availability of on-demand
resources consistent with the computing model of fog and
cloud architectures. DAL’s architecture is shown in Fig. 1.
In the following sections, we describe the various components
and policies that DAL employs to achieve this goal.

A. Processor Pool

DAL’s design relies on the concept of a processor pool,
which is based on the idea of on-demand availability of pro-
cessors as supported by cloud and fog computing paradigms
but can also work at the edge layer where the number
of available processors may be limited. DAL assumes that
it has access to fixed number of homogeneous processors
at any given time in its processor pool including reserved
and on-demand processors. Among these processors, reserved
processors are available for DAL’s exclusive use, while on-
demand processors may or may not be always available. An
on-demand processor is considered available if it is idle when
a request is received by DAL’s dispatcher, or if it has pending
jobs belonging to DAL’s jobs and is unavailable when it is
executing jobs of a different microservice of lower priority.

Request
decoder Dispatcher

Scheduler

Latency
Feedback 

Scheduler

Processor

Processor

Fig. 1: System architecture of DAL.

a) Processor Allocation: When a request arrives at
DAL’s dispatcher, DAL first attempts to send the request
to one of the reserved processors. If the dispatcher decides
that the request cannot meet its deadline on one of the
reserved processors, it searches for an available on-demand
processor within the group of on-demand processors. If it
finds an available processor, the job is immediately sent to
that processor.

b) Processor Deallocation: Once a request executing
on an on-demand processor completes, DAL is expected to
release the processor for use by other services. However,
instead of releasing the on-demand processor after the re-
quest completes, DAL holds the on-demand processor for a
configurable duration by speculating on the arrival of another
request within the configured duration. If no job is assigned
to the processor within this period, it is released back to the
processor pool.

B. Dispatcher

Several dispatch-on-arrival load balancing strategies aim
to minimize expected response times for different types of
job distributions and assume a fixed number of processors.
Common dispatching strategies include join random queue,
join shortest queue, and the power-of-d strategy, where d
processors are randomly selected and the job is distributed to
the processor with the fewest jobs [34], [35]. Since it is known
that the performance of the power-of-d policy [34] improves
the average response times under different scheduling policies
such as first-in-first-out and shortest remaining processing
time, DAL combines this policy with a configurable schedula-
bility test to dispatch the jobs. DAL’s dispatcher first looks for
the reserved processor with the least number of pending jobs
and checks whether the incoming job is schedulable. If the
job is deemed to be schedulable, it is immediately sent to that
processor. If the job fails the schedulability test, the dispatcher
searches for an available processor from the set of on-demand
processors, and if it finds one, it assigns the request to that
processor. If no such processor is found, it signals the latency
feedback component to send a response to the request sender
about a potential deadline miss and adds the request to the
queue of the processor with the least number of pending jobs
among the reserved processors.



Online Schedulability Test: A schedulability test decides
whether a job can be successfully scheduled on a processor
given a scheduling policy and information about the pending
jobs on the processor. As jobs in our system are bound by
a deadline, we must determine whether the job can meet its
deadline on the selected processor. Utilization-based schedu-
lability tests that rely on worst-case execution time values
can be used if the service cannot tolerate any deadline miss.
Such a test requires us to keep track of all deadlines of
pending requests in the queue. However, if over-provisioning
is a problem and deadline misses are tolerated, a low-overhead
but less accurate test may be useful. DAL dispatches jobs to a
processor if the jobs satisfy such a schedulability test. DAL’s
schedulability test estimates the response time of an incoming
job. If the estimated response time is shorter than its deadline,
the incoming job is assumed to pass the schedulability test.
Estimating the response time requires information about job
execution times and the number of pending jobs in the queue.
when using EDF policy, the accuracy of the response time
estimation depends on how many pending jobs have a lower
absolute deadline on the processor and the probability that
future jobs will be assigned to that particular processor and
that those future jobs will have a lower absolute deadline
than the current job. While information about the deadlines
of pending requests can be obtained, the information about
the number of future jobs that jump ahead of the incoming
job is difficult to predict. Moreover, even if such knowledge
is available, as the exact execution time is assumed to be
unknown, but only its distribution is known, the estimation
depends on which value is chosen as representative of this
distribution. To be useful under different distributions, DAL’s
configurable schedulability test introduces a parameter α that
decides the proportion of pending jobs that it considers to
have deadlines lower than that of the incoming job. Baldwin
et al. show in [36] how such a value can be determined. The
influence of α becomes relevant as the size of the pending
jobs in the queue increases. To account for the dependence
on the distribution of execution time, another parameter β
decides which execution time value is used to estimate the
response time. This can be derived by applying the central
limit theorem [35]. The estimated response time R of the
incoming job is given by

R = β ∗ k ∗ Em, (2)

where k is the number of pending requests with a shorter
deadline than the incoming job, and Em is the expected value
of the execution time distribution. This is similar to Theorem
4 in [37]. k can be determined either by tracking the deadlines
of the pending jobs or from

k = α ∗N, (3)

where N is the number of pending jobs in the queue. If R
is less than its relative deadline di, the dispatcher assigns an
absolute deadline value to the job according to Eq. (1) and
adds it to the processor’s queue.

C. Scheduler

DAL instantiates the preemptive EDF scheduling policy on
all processors in its processor pool as DAL is designed to
manage requests with deadlines. Whenever a reserved proces-
sor receives a request from the dispatcher, it starts executing
the job if it has no pending requests. If it is currently executing
a job, it checks whether the new job has a lower absolute
deadline than the job being executed. If it does, the executing
job is preempted and the new job is scheduled. otherwise,
it sorts the pending requests including the newly arrived job
according to their absolute deadlines. Additionally, DAL’s per-
processor scheduler keeps track of the waiting times of jobs
queued in its queue. Whenever a new job arrives or a job is
completed, it checks if any of the pending jobs have waiting
times that exceed their deadlines. If such jobs exist, it notifies
DAL’s latency feedback component and deletes the jobs from
its queue.

D. Latency Feedback

As DAL is designed for request-response communication,
the requester expects a response from the server. Instead of
holding requests that could not be dispatched until a processor
is available, DAL notifies the requestor if the request could
not be dispatched. It also notifies the requestor when jobs
assigned to processors do not complete their execution within
the deadline. In the first case, the advantage of early latency
violation notification is that it allows the requester to take
remedial actions such as locally computing the result on
possibly slower computers, while still managing to get the
result before the deadline, which would not be possible if it
received the notification after the deadline. In addition, such
early notification may also allow the requester to modify its
requested deadline and send a new request. For example, if
the requestor is a system such as a mobile robot, it can reduce
its velocity and send an updated request with a new relaxed
deadline. The significance of such a feedback mechanism
becomes even more apparent when DAL cannot access any
of the on-demand processors.

VI. EVALUATION

We conducted simulations in various scenarios to evaluate
the performance of DAL. The assessment criteria were missed
deadlines, dropped jobs, slowdown ratio, and the number of
processors utilized during the simulation period. A job is
deemed to have missed its deadline if the sum of its waiting
time and executed time exceeds the deadline, including jobs
deleted before receiving any processing time. We consider a
job to be dropped if the dispatcher anticipates that it cannot
meet its deadline on any processor in its processor pool upon
arrival. We define slowdown as the ratio of a job’s actual
execution time to its response time, considering only jobs
that meet their deadlines. The percentage of missed deadlines
and dropped jobs was evaluated as the ratio of the number
of jobs that missed their deadlines or were dropped over the
total number of jobs released during the simulation time. For
the evaluation, we assume that all on-demand processors are



TABLE I: Performance of different on-arrival dispatch policies
without on-demand processors.

Dispatch Policy Missed Deadlines % Dropped Jobs%
JSQ, load =90 percent 19.6209 19.6047
FF, load =90 percent 63.2401 0.0133305
JSQ, load = 50 percent 3.52308 3.50832
FF , load = 50 percent 49.13 0

always available. This assumption enables us to compare the
best possible result achievable against the scenario where only
reserved processors are utilized.

A. Simulation Methodology

To generate job execution times, we utilized the exponential
distribution class template of the C++ library. The generated
float values were rounded off to the nearest largest integer
using the CEIL function of the C++ standard library. The
release times of the jobs were generated following a Poisson
process. For most experiments, we adjusted the arrival rate to
90 percent of the service rate, i.e., the inverse of the expected
value of the execution time distribution, for different numbers
of reserved processors. We set the mean of the execution time
distribution to 40 and set α to 1, resulting in all pending
requests being treated as those with shorter deadlines. We
also let β equal 1, setting the estimated execution time of
each job equal to the mean of its execution time distribution.
We assigned deadlines to each job by multiplying its actual
execution time with a value from a uniform distribution in the
range [2, 10]. We note that this approach may not be practical
since the actual execution time is typically unknown. However,
it avoids jobs with deadlines shorter than their execution
times. While we varied the number of reserved processors
between one and eight, we present the results only for the
case where the number of reserved processors was set to four,
unless otherwise specified, as the results had similar trends
for different numbers of processors. The simulation proceeded
step-wise with a tick value of 1 for a duration of 1 million
ticks and the execution and arrival times were set as multiples
of the tick value. We assumed that the overhead of DAL’s
implementation was zero, although this assumption was ideal,
allowing us to evaluate the approaches under consideration
without considering implementation-specific details.

B. Performance with Reserved Processors

We evaluated the performance of DAL’s dispatching and
scheduling policy by only considering the reserved proces-
sors with exponentially distributed execution times and four
reserved processors. Using the dispatcher’s shortest queue
approach, we found that approximately 20 percent of the total
released jobs missed their deadline after being admitted, while
an additional 20 percent of the jobs were dropped on-arrival by
the admission control policy when the system was 90 percent
loaded.

As an alternative dispatching solution, we considered a
First-Fit (FF) dispatching approach that uses an arbitrary but
static processor ordering and assigns jobs to the first processor
on which an incoming job is deemed schedulable. With the FF

TABLE II: Performance of DAL under low load conditions.

Dispatch Policy Missed Deadlines% Dropped Jobs%
JSQ with Release 0.181869 0
JSQ without Release 0.00184169 0

TABLE III: Performance of DAL with and without release of
on-demand processors under high load conditions.

Dispatch Policy Missed Deadlines% Dropped Jobs%
JSQ without Release 0.0028588 0
JSQ with Release Period = 1 0.00954372 0
JSQ with Release Period = 10 0.00475217 0
JSQ with Release Period = 100 0.00190391 0

policy, we observed that only 0.01 percent of the jobs were
deemed unschedulable by the admission control policy, but
about 63 percent of the jobs missed their deadlines, as shown
in Table I. Although the JSQ dispatch policy is better than the
FF approach, just over 60 percent of the released jobs managed
to complete before their deadlines.

For lower loads, i.e., 50 percent load, about 92 percent of
the requests managed to meet their deadlines with JSQ policy,
while the FF policy achieved a success rate of less than 50
percent. These observations indicate that using only reserved
processors may not be sufficient for deploying microservices
with real-time requirements at higher load values.

C. Performance with On-Demand Processors

We evaluated the performance of DAL’s dispatching and
scheduling policy with on-demand processors for exponen-
tially distributed execution times with four reserved proces-
sors.

a) Low Load Scenario: With the system load set to 50
percent, we observe that up to 99.92 percent of the jobs
are able to meet their deadlines when idle processors are
released if they do not have any pending jobs. This is further
improved to 99.99 percent when on-demand processors are
not released. Table II shows the percentage of deadlines
missed when on-demand processors are released if they do not
have any pending requests and when on-demand processors
are not released back to the processor pool. However, this
improvement comes at a cost of increased resource usage
as more than four on-demand processors are retained for 90
percent of the simulation duration, as seen in Fig. 4. If idle
processors are released, on-demand processors are used for
only 20 percent of the simulation time.

Based on these observations, we can conclude that releasing
on-demand processors as soon as they become idle can provide
reasonable performance in terms of slowdown as well as in
successfully completing up to 99.92 percent of the jobs before
deadlines, with lower resource usage.

b) High Load Scenario: Under high loads, up to 10 on-
demand processors were retained for 80 percent of the time in
addition to the 4 reserved processors without release. When
processors are released, only 3 additional processors are used
for about 80 percent of the time. The slowdown ratio of
the successful requests is 1 for more than 50 percent of the
requests even when processors are released and can be seen
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Fig. 2: Comparison of processor usage and slowdown ratio
when using approximated execution time values versus exact
execution time values in a high load scenario.
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Fig. 3: Comparison of processor usage and slowdown ratio
when on-demand processors are not released and when re-
leased as soon as they are idle in a high load scenario.
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Fig. 4: Comparison of processor usage and slowdown ratio
when on-demand processors are not released and when re-
leased as soon as they are idle in a low load scenario.
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Fig. 5: Comparison of processor usage and slowdown ratio
when on-demand processors are released with various periods
in a high load scenario.



TABLE IV: Performance of DAL with and without reserved
processor provisioning.

Available Processors Missed Deadlines% Dropped Jobs%
No reserved processors 0.0243591 0
Four reserved processors 0.00954372 0

TABLE V: Performance of DAL when using using exact and
mean execution time values to estimate response times.

Estimation Type Missed Deadlines% Dropped Jobs%
Distribution Mean with no on-demand Processors 19.6209 19.6047
Exact Value with no on-demand Processors 16.3863 16.3805
Distribution Mean with on-demand Processors 0.0058254 0
Exact Value with on-demand Processors 0.00232582 0

in Fig. 3. Additionally, the percentage of deadlines missed is
highly reduced (see Table III).

c) No Reserved Processors: We also considered the
scenario where an application is deployed only on-demand
processors and no reserved processors are provisioned when
the system load is set to 90 percent. The percentage of missed
deadlines remains low while relatively higher compared to
when 4 processors are reserved (Table IV).

d) Impact of Delayed Release: We evaluated DAL’s
performance by periodically releasing idle on-demand pro-
cessors. We observed that releasing on-demand processors as
soon as they become idle provides similar performance to not
releasing them at all. Even with a delay in releasing them, the
improvement is insignificant. A success rate of almost 99.99
percent is achieved in all cases, as shown in Table III. We note
that there is no statistically significant difference between JSQ
with and without release, where the release period is set to 100.
In terms of resource usage, Fig. 5 shows the different number
of processors held by DAL during the simulation time. We
observe that up to 13 processors are utilized for a relatively
shorter duration of time even when processors are released as
soon as they become idle. However, the average number of
processors is significantly lower than the no release scenario
while achieving almost identical performance in terms of
successful completions. With respect to slowdown, we observe
that the performance when processors are released periodically
remains quite similar, with a slower release period having a
slightly better value.

e) Impact of Execution Time Approximation: We evalu-
ated the performance difference between using approximated
execution times and exact execution times for scenarios where
only reserved processors are utilized and for scenarios where
on-demand processors are released as soon as they become
idle. We found that in the former scenario, using approximated
execution times results in approximately 6 percent higher
deadline misses compared to using exact execution times,
as seen in the first two rows of Table V. However, this
difference is almost insignificant when on-demand processors
are utilized, with almost 99.99 percent of the jobs successfully
meeting their deadlines.

Regarding processor usage, we observed that the use of
approximation results in a slight increase in the average
number of processors being used compared to the usage of
exact execution times, as shown in Fig. 2. We also noticed

an almost indiscernible difference in the slowdown ratio, with
more than 85 percent of the jobs having a slowdown ratio of
one for both cases. Furthermore, we found that using exact
execution times of pending jobs to estimate response times
only marginally improves performance.

VII. CONCLUSION

We considered the problem of dispatching and scheduling
jobs that have variable execution times, arrival times as well
as deadlines in an edge computing architecture. By assuming
the availability of on-demand processors, we showed that
DAL’s dispatch-on-arrival policy along with per processor
EDF scheduling policy, can achieve significantly better per-
formance in terms of jobs that complete by their deadlines
when jobs that miss deadlines are deleted from the queue.
In terms of slowdown ratio, a significant percentage of the
requests have a minimum achievable slowdown of 1. When
on-demand processors are released periodically, both low and
relatively high periods achieve similar performance in terms
of missed deadlines although the slower release periods hold
onto on-demand processors for a longer duration providing
very little benefit.
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