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Abstract—Multi-agent systems can be prone to failures during
the execution of a mission, depending on different circumstances,
such as the harshness of the environment they are deployed in. As
a result, initially devised plans for completing a mission may no
longer be feasible, and a re-planning process needs to take place
to re-allocate any pending tasks. There are two main approaches
to solve the re-planning problem (i) global re-planning techniques
using a centralized planner that will redo the task allocation with
the updated world state and (ii) decentralized approaches that
will focus on the local plan reparation, i.e., the re-allocation of
those tasks initially assigned to the failed robots, better suited
to a dynamic environment and less computationally expensive.
In this paper, we propose a hybrid approach, named GLocal,
that combines both strategies to exploit the benefits of both,
while limiting their respective drawbacks. GLocal was compared
to a planner-only, and an agent-only approach, under different
conditions. We show that GLocal produces shorter mission make-
spans as the number of tasks and failed agents increases, while
also balancing the trade-off between the number of messages
exchanged and the number of requests to the planner.

Index Terms—Multi-Agent Systems, Autonomous Agents, Cen-
tralized Planning, Decentralized Planning

I. INTRODUCTION

Multi-Agent Systems (MASs) usually consist of a large
number of agents assigned to perform certain tasks, that
ultimately lead to the fulfillment of several competitive goals,
or in the case of this paper, one common goal [16], otherwise
referred to as a mission [11]. Should agents be embodied, the
system is referred to as Multi-Robot System (MRS). In order
for a MAS/MRS to achieve a given goal, a plan should be
devised that prescribes what should be done and by whom.
Such a plan should be optimal, or close to optimal, and to this
end automated planning techniques can be used [6]. However,
the search for optimality remains the main challenge, and is
an NP-hard problem when dealing with MAS. While this is
not problematic for the creation of an initial plan for a mission
with a small number of tasks, for larger task-sets only sub-
optimal solutions may exist.

It is common in certain applications for agents to be
deployed in dynamic environments where they operate with
limited amounts of information, and are prone to partial or full
failures. When this is the case, the initial plan is no longer a
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viable option, and in order to adapt to the new circumstances
a new plan (a re-plan) should be created. Re-planning is an
activity that takes place online, during mission execution, thus
the time it takes to produce it is crucial, even if only sub-
optimal solutions are feasible. In other words, when it comes to
re-planning time-limitations outweigh the need for optimality.

In general, mission planning techniques are either central-
ized or distributed. Centralized approaches make use of all of
the information, thus leading to higher quality solution at the
expense of being more computationally demanding compared
to distributed algorithms. In dynamic environments, where
changes are bound to happen often, a centralized planner
would have to re-plan every time there is a change, thus
amassing the time delays required for every single re-plan.
Additionally, should the communication between robots and
planner be obstructed, the re-plan cannot be delivered, poten-
tially leaving said robots idle for indefinite amounts of time.
In such circumstances, distributed approaches can be useful to
mitigate time delays, by allowing agents to collaborate locally
with each other in order to repair the plan.

The trade-off between the optimality of centralized ap-
proaches, and the flexibility and robustness to potential failures
of distributed approaches, is the main focus of this paper. To
this end we propose a hybrid approach for multi-agent mission
planning called GLocal, that aims to exploit the advantages of
both approaches, i.e., solution quality and robustness while
limiting their inherent disadvantages. We assume agents that
are either fully operational or fully broken, and enable agents
to repair the plan locally through negotiation in case of an
agent(s) failure. Should this fail, the centralized planner will
be invoked, thus the system will switch from a local to a global
strategy.

The main contribution of this paper is a comprehensive
analysis of the impact of the number of re-plan calls to the
centralized planner by agents on the overhead and the overall
quality of the solution. This is done through simulations
implemented in the Gama platform [15] where GLocal was
compared to centralized and distributed planning approaches
for a different number of failures, and problem sizes.

The rest of this paper is organised as follows. Section II
provides the background, with the problem formulation given
in Section III. The centralized and distributed approaches are
described in Sections IV and V respectively. Sections VI
and VII contain a detailed account on the simulation design
and obtained results. A brief account on related work is given
in Section VIII, with the paper concluding in Section IX.



II. BACKGROUND

In real world applications, the operation of agents or robots
can be disrupted by environment changes, which occur regard-
less of the agent’s activities. Disruption can also occur due
to unforeseen events such as faulty sensors or actuators, thus
making an agent incapable of performing certain tasks. Addi-
tionally, the goals, toward which such agents are working for,
can themselves be subject to change. To cope in such complex
situations, distributed and continual planning approaches have
been proposed, that (i) distribute the planning process among a
group of agents, (ii) allow for an incremental planning process,
happening continuously during the operation of agents, and
(iii) combined approaches for distributed continual planning
(DCP) [3]. Multi-agent planning (MAP) has been defined as
the problem of creating a plan for and by a group of agents [2].
Furthermore, five stages of MAP have been identified such
as goal allocation to agents, refinement of goals into sub-
tasks, sub-task scheduling by considering other constraints,
communication of planning decisions, and plan execution.

Depending on the perspective, distributed planning can refer
to either cooperative distributed planning (CDP), also known
as cooperative and distributed multi-agent planning (MAP),
or to negotiated distributed planning (NDP) [16]. A recent
survey on cooperative and distributed MAP, also referred
to as multi-agent coordination of actions in decentralized
systems, provides a taxonomy of existing approaches in the
literature based on how they deal with issues such as agent
distribution, computational process, plan synthesis schemes,
communication mechanisms, heuristic search, and privacy
preservation [16]. In the MAP view, the goal is to create
a global plan, whereas in the NDP the emphasis is on the
agents’ ability to fulfil their own local objectives. While a CDP
focuses on issues of plan representation and generation, task
allocation, communication and coordination, in the scope of an
NDP, the focus is on collaboration and cooperation between
agents. Continual planning on the other hand allows agents
to revise their plans during operation as unforeseen events
occur. Examples include (i) reactive planning systems, where
an agent considers only the next step and does not look ahead
further in the future, (ii) flexible plan execution systems, which
allow for some look ahead, and (iii) delaying sketching out the
detailed plan as much as possible.

Centralized planning implies that decisions are not made
independently and locally, but rather at a global level. Utilizing
centralized planning to solve multi-agent planning problems
is a widely accepted approach. Landa-Torres et al. [9] used
a centralized planner, based on evolutionary algorithms, to
solve an underwater multi-agent mission planning problem for
a swarm of autonomous underwater vehicles. Similarly, the
solution to the problem of mission planning for a swarm of
unmanned aerial vehicles was presented by Ramirez-Atencia
et al. [14].

This paper describes a method to combine centralized
and negotiated distributed planning approaches in order to
optimize the execution of plans in a failure prone context (we

consider total agent breakdown), simultaneously increasing the
robustness of the system by allowing agents to perform a local
plan reparation at runtime.

III. PROBLEM FORMULATION

The problem that is being addressed in this paper is a
relaxed version of the Extended Colored Traveling Salesperson
Problem (ECTSP) [11], [12]. The original problem is simpli-
fied by the removal of the precedence constraints among tasks.

Assume a set of n tasks, v ∈ V := {v1, v2, . . . , vn}, m
agents, s ∈ S := {s1, s2, . . . , sm}, and k capabilities, c ∈
C := {c1, c2, . . . , ck} where m,n, k ∈ N. Each agent s ∈ S
has a set of capabilities Cs ⊆ C assigned to it. Each task v ∈ V
requires one capability in order to be successfully completed.
A capability matrix of an agent s, As ∈ {0, 1}n×n, defines
which cities allow visits from a salesperson s, and is defined
as As := [aijs], with

aijs =

{
1, fc(vi) ∈ Cs ∧ fc(vj) ∈ Cs
0, otherwise,

The problem consists in allocating n tasks to m agents with
respect to given constraints in the form of agent capabilities
and task requirements for such capabilities in order to mini-
mize the make-span of a mission.

Objective function: The goal is to complete all the tasks
in the environment while minimizing the mission’s duration,
even in the presence of one or more agent failures. In MASs,
a mission can involve optimization of different parameters.
Commonly, mission makespan is minimized, however, the
duration of a mission can be defined in various ways [10].
The objective function used in this work aims to minimize the
makespan, i.e., the duration between the starting time of the
first task and end time of the last task, over all agents in the
mission. This objective function is also known as “minMax”,
as it minimizes the maximum duration of an agent’s make-
span over all agents.

IV. CENTRALISED GLOBAL PLANNER

In a real-world scenario, the process of mission planning
starts with a human operator defining the mission parameters,
e.g., tasks to be performed, goal of the mission, etc. The infor-
mation about available robots – or more generally, vehicles –
and the environment would then be fetched from the database.
After this step, the mission is sent to the planner, which solves
the mission and produces the necessary set of actions (plan)
for mission execution. For simplicity, in this work, this step
is skipped, as we have a set of predefined missions, thus in
this section the focus will be solely on the process of plan
creation.

Algorithms used to solve these kinds of problems are usu-
ally divided into two groups, exact and meta-heuristic. While
exact algorithms can guarantee that the produced solution is
optimal, meta-heuristics usually have no guarantees at all.
However, meta-heuristic algorithms can produce a reasonably
good solution within a short period of time. This is sometimes
more important than having an optimal plan, especially in



time-limited situations where re-planning might be necessary.
Although the initial plan making is not bounded by time, the
re-planning usually is. Re-planning can be seen as planning
again with new initial conditions. Since multi-agent missions
are usually costly and agents have limited energy available, the
re-planning process should be very fast. For this reason, the
algorithm behind the global planner is a Genetic Algorithm
(GA), which is adapted for mission planning problems.

a) Chromosome encoding: Chromosomes are encoded as
a set of arrays, where each array encodes an agent plan. A
graphical representation of a single chromosome is given in
Fig. 1. The size of each array is equal to the sum of the number
of agents and tasks, i.e., n+m. The elements of the array are
integer task IDs. The agent’s route can be extracted from the
encoding by following the task chain. For example, in Fig. 1
if we look at Agent 1, we can see that the first task in its plan
is 5, and the next task ID is then stored in column 5, which
is task 7. This continues until a destination depot is reached,
that has the ID of n+m, which is 10 in this example.

b) Initial population.: The initial population is randomly
created with respect to given constraints, hence, initial candi-
date solutions are in the feasible region of the search space.

c) Variation operators: The crossover operator used is
a modified version of Edge Recombination Crossover (ERX)
[17]. The first step is to select two parents for crossover
from the mating pool. The mating pool is created based on
the crossover probability and ranking, which is based on the
individual’s fitness. The second step is to create the adjacency
matrix. In the matrix, the information of the neighboring tasks
for each task in the plan is created based on the two selected
parents. The information of tasks that the plan starts with and
ends with is also kept. Finally, we randomly select a starting
task, and the chain of selection continues by always randomly
picking a task from a neighboring list of a previously allocated
task. In the case all neighboring tasks are already allocated,
we select a new task randomly. The whole process keeps in
check that the required equipment of allocated tasks match the
capabilities of the agent they have been allocated to.

We have two types of mutation operators. The first one is the
jump mutation, where a task is randomly selected and moved
to a new randomly selected location. The second one is a swap
mutation where two tasks are randomly selected, and their
location in the plan is swapped. Both jump and swap mutation
are invoked 2 times. One time to perform the mutation within a
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Fig. 1: Graphical representation of chromosome encoding.

single agent plan, which is also randomly selected. The other
time to perform the same mutations, but with the mutation
happening between different agents. In a way, we have both a
local mutation operation and a global mutation operation.

d) Local refinement: There are two local refinement
methods implemented. The first one is Greedy Search (GS)
based on nearest neighbor heuristics, and the second one is
based on 2-opt heuristics. While the GA performs allocation
of cities to salespersons, the GS and 2-opt only reorder cities
within the agent’s plan. In other words, local refinement
methods perform exploitation of the candidate solution, by
reordering the list of cities, governed by nearest-neighbor or
2-opt heuristics. There are no guarantees that local refinement
methods will be able to improve the candidate solution. That
is why the changes in the plan that do not improve the overall
fitness are being rejected.

V. DECENTRALISED AGENT-BASED PLANNER

The agent design consists of three core aspects: (i) the archi-
tecture comprising of a finite state machine which captures the
different behaviours of an agent, (ii) the willingness to interact
abstraction and its role in shaping collaborative behaviour, and
(iii) the interaction protocols used in any collaboration.

A. Architecture

The behaviour of each agent is captured by a finite state
machine composed of four states, idle, interact, execute,
interact & execute (Fig. 2). All agents start their operation
in idle, where as the name suggests they are not committed
to any task, but are rather waiting for a request to come. In
principle, it is possible to make the agent engage in some
activity, e.g., a random walk, while waiting in idle.

Idle

Execute

Interact

Interact
& Execute

New request

Does not help

Finished
all tasks

New request

Updated task set

Updated task set

Fig. 2: Agent operation state machine.

Upon receiving a help request by another peer, an agent
shifts to the interact state, where it evaluates the request. Such
requests are of the form of “What is your willingness to per-
form task ti?”, and denote the start of a new negotiation round.



The request is broadcast to all agents within a given range, and
all responses are collected. Should the agent receiving such
requests not be impeded by the lack of equipment needed
for performing ti, it will respond with a positive willingness.
Thereafter, if selected to perform the task, the agent will switch
to execute, otherwise it will return to idle. At the end of each
negotiation round, the task might be re-assigned to a new
agent. If not, the agent handling the task, i.e., sending the
help request, will attempt to re-assign it in future rounds.

The execution of any task is composed of two parts as
follows: (i) reaching the location of the task, and (ii) its actual
execution. A request to perform a task can also be received
while the agent is already in execute. In this case, the agent will
switch to interact &execute, and perform similar calculations
as in interact. If selected to perform the new task, the agent
will add said task to its list of tasks to execute.

Agents are also able to receive requests from other entities,
such as a planner. In this paper, such requests override the
existing task allocations that agents might have, thereafter
providing new assignments. It would be possible in principle
for agents to evaluate such requests in a similar way as they
do requests from one another, as well as consider aspects such
as trust. However, these are considered out-of-scope for the
purpose of this paper.

B. Willingness to Interact

The collaborative behaviour of an agent ai is determined by
its willingness to interact wi(t) ∈ [−1, 1], i.e., the likelihood
of asking and giving help to other agents at time t. A positive
willingness indicates that ai is able to help others wi(t) >
0, whilst a negative willingness indicates that ai needs help
performing its tasks wi(t) < 0. Where wi(t) = −1 indicates
that an agent must ask for help at time t, and wi(t) = 0 denotes
a neutral disposition. The willingness is affected by both the
state of an agent, which captures the general attitude towards
potential collaboration with others [5], and by the properties
of the specific task considered during any negotiation, namely
the utility of performing such task.

In this paper, the focus is on how the utility of performing
a particular task τj affects the willingness to interact (wi(t) =
0). Two factors are considered, the equipment required by τj
and the distance d to the task. The case, in which agent ai
does not have the necessary equipment required by task τj ,
will reflect in a negative willingness to interact, specifically
wi(t) = −1. It is possible to distinguish two circumstances in
which an agent ai considers the allocation of τj , (i) ai has no
previous allocation, and (ii) ai is already allocated to a set of
tasks. In case (i), d is the distance between the agent’s location
and τj’s location, with utility calculated as uτj (t) = 1/d. In
case (ii), d is the minimum distance to τj considering the
ai’s location, and the location of the other tasks allocated to
ai, given by d = min({dkj ,∀k ∈ L}), where L is the set
containing the locations of agent ai and its tasks, and dkj is
the distance between the kth element in L and task τj . The
final value of the willingness to interact with respect to task
τj is expressed by

wiτj (t) = wi(t) + uτj (t). (1)

Although the willingness to interact is itself an expression
of utility, in this paper its notion and that of task utility are
separated. This is done in order to have a clear distinction
between what affects the general disposition to collaborate,
and what affects the utility of a performing a single task. Note
that, a negative willingness where wi(t) ∈] − 1, 0[, can be
used to express the confidence an agent has to completing
a task τj , where the more negative the willingness, the less
confidence in succeeding. When wi(t) = −1 then the agent is
absolutely sure it will fail, e.g., the required equipment is not
functional any longer or is not present (the case studied in this
paper). These aspects of negative willingness where wi(t) ∈
] − 1, 0[ are not explored in this paper, as aforementioned, it
is assumed that wi(t) = 0, thus agents are neutrally disposed
to collaboration.

C. Interaction Protocols

Several assumptions hold concerning the interaction be-
tween agents. Firstly, no two agents can start the negotiation
for a unique task at the same time. Secondly, agents can
have the knowledge of each other’s allocations, and the tasks
that are completed. Thirdly, this knowledge is not necessarily
available for every time-step, and can become available to an
agent after a delay. As a result of the last two assumptions, it
can happen that a task is repeated more than once.

The interaction protocol defines how agents negotiate with
one another over the assignment of tasks which are to be
completed (Fig. 3). Requests for help can be initiated by any
agent in the event of the detection of a full failure of an agenta.
The first agent to detect the failure of another agent initiates a
negotiation with others to re-allocate the failed agent’s tasks.

Define
own
wi(t),
uτj (t)

Broadcast
help

request

Collect
answers

Order by
wi(t) +
uτj (t)

Select
agent
with

highest
wiτj (t)

Notify
assigned

agent

Fig. 3: Interaction Protocol.

For each task to be assigned, a request for help is broadcast.
Afterwards, the responses of other agents, consisting of the
respective willingness and utility values, are collected. Note
that, replies from agents with negative willingness are ignored.
Thereafter, the rest of the responses are ordered based on the
combined value of willingness and utility, and the agent with
the highest willingness will be allocated to the task.

aSuch detection mechanisms are outside the scope of this paper.



VI. SIMULATION DESIGN

In this section, we describe in detail the implementation of
the MAS, as well as that of the planner. Given that these two
are not contained within the same simulation environment, we
also describe how their interaction is set up considering three
strategies to tackle agent failures, namely planner-only, agent-
only, and hybrid, focusing as well on time synchronisation.

A. MAS Implementation

The implementation of the MAS is done in the Gama
platform [15] b. Gama is a simulation development environ-
ment, that allows users to quickly implement agents through
a high-level agent-based language, as well as run large scale
simulations of said agents. Additionally, in Gama the spatial
component of an agent is part of the design from the get go,
with the platform offering many macros for simulating the
motion of agents, e.g., goto(Point(x,y)). It is possible
to specify for a Gama agent a set of reflexes and actions.
Reflexes are behaviours that get executed each tick of the
clock (cycle), whereas actions are functions that can be
called to perform some calculation at specific times. The
communication between agents is also taken care by the
platform. It is possible to broadcast messages to all agents
by using ask agentSpeciesName, as well as to a group
of agents within a defined range that can be returned us-
ing agentSpeciesName at_distance(range). Ad-
ditionally, it is possible to randomly select an agent from a
group using ask one_of(agentSpeciesName).

At the start of the simulation agents receive a plan (details to
follow in the next subsection) that contains a list of allocations,
mapping agents to tasks. This means that each agent gets a list
of tasks it has to complete, but has as well knowledge about
tasks assigned to other agents. In order to complete a task τj ,
and agent ai is required to have the equipment needed for
completing τj . More formally we can characterise an agent ai
by the equipment it holds, either one or two out of three given
types, say A,B,C. Equipment is overlapping, i.e., more than
one agent has the equipment of any type. Whereas, a task τj is
defined by its location given as (xτj , yτj ), and the equipment
necessary (one of three given types) for its completion.

At every cycle, agent ai will check if there is a task in its
task set. If so, ai checks whether it is on location, i.e., if within
0.5m distance to task τj . If on location, ai proceeds with
the execution of the task, simulated in one cycle. Otherwise,
ai moves towards the task using goto(Point(xτj , yτj)).
When τj is complete, ai removes it from the list, and continues
in the same manner with the next task. Upon the completion
of all tasks in the set, ai proceeds towards a fixed depot point,
which is the same for all agents (located at (0, 0)).

In every cycle, all agents engage in a gossip round, where
they exchange relevant information with one agent picked
randomly of the ones found within a defined range R. Such in-
formation includes: completed tasks, discovered failed agents,

bThe code and instructions to reproduce the results in Section VII are
publicly available at https://github.com/gitting-around/glocal

and pending tasks which have to still be assigned. When all
tasks have been completed, and perceived as such by at least
one operating agent, then the simulation ends.

B. Planner Settings

The planner is implemented in C++ programming language,
as a single threaded application. The algorithm behind the
planner is described in Section IV. The algorithm parameters
used in this paper are as follows. The population size is set
to 200, mutation rate is 15%, while the crossover rate is at
70%. Only 5% of the population is kept and copied to the
next generation. The stopping criterion of the algorithm is set
to be 1000 generations.

C. Interaction between Planner and MAS

At the start of a simulation, agents receive a plan from the
planner, irrespective of which strategy is adopted. Specifically,
a server agent is setup able to communicate with entities
external to Gama via TCP. The server does not perform any
tasks, its only job is to serve as a bridge between the Gama
MAS and planner. The cycle corresponding to when this first
plan is received marks the beginning of the mission, and
is used later on to determine the duration of the mission
execution. Upon receiving the first plan, the server asks all
agents to initialise their state (1 cycle), consisting in the initial
location, equipment, and assigned tasks. Already in the next
cycle, agents proceed with executing the assigned tasks. Every
simulation cycle during execution is run faster than real-time,
as fast as it can run in Gama. Assuming no agent failures, this
process will continue smoothly until all tasks are completed.

In order to test the three strategies, we inject failures in
the simulation by failing {1...n} agents at random during
the execution of the mission. Note that, should there still
be tasks requiring equipment of some type X, but no agents
left that has X, then the mission will become infeasible, thus
remain incomplete, and the simulation will end. Failures are
injected in the system at specific times, calculated based on the
progress made with completed tasks. In this paper we define
the progress based on the number of failures to be injected
(f ) and the number of tasks (τ ), specifically a fail will occur
every time the MAS has progressed by ⌊τ/(f + 2)⌋ tasks.
This choice is made such that there is enough space between
failures to inject all desired failures while there are still tasks
to be completed. When an agent ai fails, the next step depends
on the adopted strategy, each of which is described below.

a) Planner approach: Assume agent ai fails at cycle tk.
The operation of the MAS will proceed as usual until ai is
detected as failed – here we assume full failures, where the
robot is out. ai can be detected as out of order during a gossip
round, should it be picked by some other agent ad in order to
exchange information. It is assumed that the agent requesting
the gossip is able to make this detection. As soon as ai’s failure
is detected by ad, the latter will initiate a call to the planner
and request a re-plan. In such a request, ad includes the list of
tasks it knows to be complete (his own, and from others), as
well as the list of active agents. Note that, if ai has completed

https://github.com/gitting-around/glocal


some of its tasks before failing, but was not able to spread
this information through gossip, then those tasks will be re-
assigned by the planner, and as such their execution will be
duplicated. Additionally, the list of completed tasks depends
on ad’s knowledge on what other agents have achieved by
tk. When a call to the planner is made, the execution of a
simulation cycle is slowed down to real-time, i.e., 1 cycle takes
1 second to execute, as the agents are waiting for a new plan.
During this time, all agents are in wait mode, and clear up
their task lists. This process will continue until there are no
more failures in the MAS, and the mission can either become
infeasible, or complete. It might happen that the failure of ai is
never discovered, as other agents fail to go near it during their
operation. To tackle these instances, a watchdog timer becomes
active for every agent, once they complete all their tasks and
move to the depot. When the timer expires, the first agent (the
execution in Gama is set to sequential) that evaluates it will
try to reassign all the tasks for which the status is unknown.

b) Agent approach: Assume that agent ai fails at cycle
tk. As in the planner case the operation of the MAS will
proceed as usual until ai is detected as failed. When an agent
ad detects the failure of ai then ad starts a negotiation round
with all agents within range R for each of ai’s tasks separately.
Note that as before, if ai has completed tasks, but failed to
spread this information, or this information never reached ad
then the latter will include these tasks in the negotiation. All
(not failed) agents in R will respond with their willingness
to perform ai’s tasks. When all responses for task τj are
collected, ad will select the agent with the highest willingness
and assign τj . Note that if the assigned agent knows τj to
be complete, then it will drop the task, otherwise it will add
it to its task list in the position with the highest utility. It
can happen that no agent in R (including ad itself) is able to
perform τj . Should this happen, ad places τj in a separate list
with tasks to be dealt with after it has completed all its other
tasks, and started moving toward the depot. As mentioned,
the information on such tasks is shared during the gossip, in
the eventuality that ad fails itself. This ensures that ad will
eventually be able to assign an agent to τj , if there is one
still with the necessary equipment. In case the failures are
not discovered, the watchdog will ensure that the tasks with
unknown status are assigned.

c) Hybrid approach: Assume that agent ai fails at cycle
tk. Similarly to the other two cases, the operation of the
MAS will proceed as usual until ai is detected as failed. The
hybrid strategy is similar to the agent approach up to the
point whereupon detection of the ai’s failure, agent ad will
attempt to reallocate its tasks to those within R. Should this
reallocation fail on at least one task, then ad will initiate a call
to the planner and request a global re-plan. If the reallocation
succeeds for all tasks, then the MAS proceeds as usual. Note
that for infinite communication range, the hybrid and agent
approaches will produce the exact same results. In case ai’s
failure is never discovered, then the watchdog will trigger a
round of negotiation. If at least one task fails to be reallocated,
then a new plan is requested from the planner.

VII. RESULTS

The evaluation of the three strategies, planner-only, agent-
only, and hybrid, is performed by running simulations with
Gama under different conditions with a population of 10
agents. In order to visualize the results, we plot 3D graphs
for each metric over the number of fails and the task set sizes
(Fig. 4). These metrics include: the size of the task set ψ, and
the number of failures ϕ. Tasks are distributed over a 2D space
of size 200× 200[m]. In this paper, we run experiments over
all combinations of values for the aforementioned parameters,
where each takes values as following: ψ ∈ {50, 100, 150},
ϕ ∈ {0, 1, 2, 3, 4, 5, 6, 7}, all with r = 100[m] c. Each distinct
configuration is repeated 30 times, with a different seed value
generated using the random number generator function in
Gama. Note that the planner and Gama simulation use the
same seed per run. For each seed value, and for each failure
case, we generate beforehand the list of agents to fail. This is
to ensure that across the different approaches, the same agents
fail, and should this lead to an infeasible mission, it will be the
case for all three approaches. However, this means that in some
cases during a re-plan, the agents that are planned to fail do
not get any tasks allocated to them. If so, these agents will still
fail, but there will be no impact on the simulation as a whole,
i.e., there will be no need to re-plan since there are no tasks
that need to be re-allocated. The watchdog trigger is equal
to the longest execution over all agents, and is recalculated
each time tasks are re-allocated (by the planner or through
agent negotiation). Each simulation has a time limit, after
which the mission is counted as failed. For every simulation,
we use the recorded logs to calculate the following metrics:
mission duration, number of exchanged messages between
agents (counting both gossip and negotiation), relevant in cases
of limited bandwidth, and number of requests to the planner.

Fig. 4a describes the mission duration in different mission
conditions and settings. It can be noticed that for the case
of 0 fails, all three approaches, for all three problem sizes,
have the same mission duration. The reason behind this is that
when there are no fails, the agents simply execute the initial
plan provided from the centralized planner, thus there are no
differences between the approaches. This changes as soon as
agents fails are introduced, giving advantage to the planner
approach when the number of fails is low (1–2 fails). In this
range, the planner approach is able to outperform the other
approaches, as the quality of the produced plan outweighs the
time lost producing it. As the number of the fails increases,
it can be observed that the hybrid approach starts performing
the best. The planner approach performance keeps degrading
until it becomes the worst approach in the scenario with 7
fails for problem sizes of 100 and 150 tasks, as the quality
of the solution does not provide any benefits due to the time
spent on re-planning. The agent approach suffers less from
the increased number of fails, and that ultimately leads to

cDue to the page limit, the results we show in this paper correspond to
one value of r. However, at https://gitting-around.github.io/glocal/ results for
r ∈ {20, 50,∞} are reported, as well as an extensive list of metrics.

https://gitting-around.github.io/glocal/
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Fig. 4: Results for (a) mission duration, (b) average number
of messages exchanged, and (c) average number of requests
to the planner, over number of failures and task set sizes.

outperforming the planner approach in the case of 7 fails. The
decentralized re-planning is not as computationally heavy as
centralized re-planning, and that is the main reason for the
agent approach performing better as the number of tasks and
fails increases. The success of the hybrid approach can be
better understood if we observe Fig. 4c. It can be noted that
the number of requests to the planner in the hybrid approach
is between 1 and 3.5 on average. That corresponds to the good
performance of the planner approach in the cases of 1 and 2
fails shown in Fig. 4a. The hybrid approach is able to keep
the number of re-plans relatively low, while not sacrificing
too much of the overall solution quality. This is particularly
apparent in the most complex cases with numerous fails,
where the proposed hybrid approach outperforms the other
two approaches, and the gap is widening with the increase in
complexity.

In terms of messages exchanged (Fig. 4b), the planner-only
approach is—as expected—more efficient, bearing only the
cost of the gossip, and no negotiation overhead, and remains
relatively low among all failures cases. The agent approach
is consistently the worst, with the exception of 0–1 failure
cases, where it is quite close to the hybrid approach. For
a higher number of failures, the hybrid approach provides
a middle-ground between the planner-only and agent-only.
Additionally, we can observe that for 6–7 failures, there are
dips in the number of messages exchanged even for the agent-
only approach. We reason that, since there are fewer agents
in the system taking part in the negotiation (and gossip),
then it is normal to observe such decline, which remains
consistently higher as compared to the other two approaches.
Finally, with respect to the number of requests to the planner
(Fig. 4c), the hybrid approach as expected results in lower
values than the planner approach, given that plan reparation
is performed locally. Comparing the number of exchanged
messages we can observe that, for smaller task sets, there
are more calls to the planner, which corresponds to fewer
messages exchanged due to negotiation (hybrid approach),
whereas for larger task sets the opposite holds. It is important
to note that, the communication range has a non-negligible
impact on these metrics. Low communication range would
lead to less successful negotiation rounds, and therefore to
more requests to the planner (in the hybrid approach).

VIII. RELATED WORK

A recent survey on robotic systems in the domain of logis-
tics [1], investigates the problem of task planning, and provides
a historical overview, from the early days of PDDL [7],
to current types of planners, from those employing exact
methods to find optimal solutions, to those using heuristics
and meta-heuristics, providing quickly good enough solutions
but with no guarantees of optimality. The combination of such
planners with mechanisms deployed at the agent level for
plan reparation, are, to the best of our knowledge, not widely
discussed in the literature. The need of combining what can
be considered static approaches, i.e., approaches that compute
solutions offline, with dynamic ones is relevant in other aspects



of MASs/MRSs, e.g., for coordination and decision-making,
bringing forth a need to explore hybrid mechanisms [4], [18].
Mohalik et al. [13] propose an approach for online plan repair
in hierarchical MAS, while assuming only small local failures
that do not affect the global situation, and allow managing
agents to trigger re-planning for their underlings, thus adapting
fragments of the plan. In our approach, we do not consider
hierarchy, in fact any agent can try to fix the initial plan, only
turning to the planner should the attempt fail.

Yang et al. [19] proposed the AutoRobot framework built
on top of the JADE platform and ROS. They combine adaptive
and reactive control strategies to create a hybrid architecture.
The planner, which is in the adaptive layer of control, creates
an initial plan that the robots execute. In case there is a
deviation, re-planning is triggered. The reactive layer monitors
and informs the planner of an impending danger. In this case,
the planner picks one of the pre-planned strategies depending
on the system state and executes it. That strategy has the
highest priority until the danger is averted. The downside of
this approach is that in case of a communication problem, the
robot has no way of reacting. Our approach does not depend
on pre-planned strategies to deploy, rather, agents attempt to
fix the issue locally before requesting a new plan.

Hrabia et al. [8] proposed a ROS Hybrid Behaviour Planner
that combines the advantages of a reactive and adaptive
control with a symbolic planner. Their results show that the
combination of a behaviour network with a centralized planner
leads to more efficient solutions. In contrast to our work, the
uncertainty comes from obstacles and not robot failures.

IX. CONCLUSION

In order to mitigate the effects of possible failures in
Multi-Agent Systems, which may lead to prolonged mission
execution time or in some cases complete mission failure, we
have proposed a hybrid approach called GLocal. The common
2-approach (centralized vs. decentralized) paradigm to dealing
with the planning in MASs does not always provide acceptable
results. The centralized approach is computationally expensive
and does not offer much flexibility, on the other hand, the
decentralized approach offers more flexibility but at the cost
of solution quality and communication bandwidth.

The proposed GLocal approach aims at exploiting the
benefits of the two approaches while trying to minimize the
drawbacks. This is done by incorporating both centralized and
decentralized approaches into one framework, where in the
case of system failure the system decides which action to
take, i.e., should global re-planning be done, or the problem
can be resolved locally. In addition to presenting the proposed
architecture of the GLocal framework, we have devised a set of
experiments to confirm the usability of the proposed approach.
The results show that for a small number of the system
fails, the centralized planner outperforms the other approaches.
However, as the number of fails increases, GLocal is the top
performer in terms of overall mission duration. Considering
the number of messages that have to be exchanged in the
system, GLocal sits in between decentralized and centralized

approach. Meaning that the increased performance comes with
a certain drawback of increased communication within the
system.

In future work, we will investigate approaches able to fur-
ther exploit the trade-off between local and global approaches.
Specifically, we will study agents with learning capabilities
and on-board decision mechanisms, able to choose whether to
rely on local or global coordination.
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