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Abstract. Essential for the next generation of production are intricate systems that integrate virtualization and 
simulation platforms with real-time data from industrial processes. Among these systems, digital twins stand out as 
they offer numerous advantages, particularly in the realm of manufacturing where they can enhance productivity 
across the entire production life cycle. By leveraging cognitive digital twins, enterprises gain the ability to extract 
valuable implicit insights from ongoing production operations in a creative, efficient, and effective manner. Over time, 
the advancement of various technologies has greatly enhanced the capabilities and sophistication of the digital twin 
concept. In this study, we propose a heuristic approach for advancing cognitive digital twin technology, representing 
the next stride in digital twin development crucial for realizing the objectives of Industry 4.0. To infuse cognitive 
functionalities, we advocate for the adoption of a heuristic approach in the creation of cognitive digital twins. 
Specifically, we introduce heuristic optimization as a feature selection tool, aimed at augmenting the cognitive 
capabilities of a digital twin throughout the product design phase of production. The efficacy of this proposed approach 
is demonstrated through a practical application in Power Transfer Unit (PTU) production. This validation resulted in 
a noteworthy 8.83% enhancement in classification accuracy for identifying faulty PTUs on the assembly line. This 
translates to a considerable improvement in throughput for the PTU assembly line, while also conserving resources 
that would have otherwise been expended on faulty units. 
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1. Introduction 

This project delves into the transformative potential of Industry 4.0, often referred to as the fourth industrial 
revolution [1]. Industry 4.0 encompasses a spectrum of cutting-edge technologies, including cloud 
computing, cybersecurity, IoT, advanced robotics, and machine learning, all converging to revolutionize 
manufacturing processes [2]. Among the key technologies driving this wave of innovation are Digital Twins 
(DTs), a fusion of digital simulations and real-world production systems. DTs facilitate seamless 
communication between the digital and physical realms, offering a paradigm shift in manufacturing 
operations [3], [4]. 

Building upon the foundation of DTs, this project takes a significant step forward by introducing Heuristic 
Cognitive Digital Twins (HCDTs). By integrating cognitive processes such as perception, reasoning, and 
problem-solving, CDTs elevate the capabilities of DTs [5]. They empower real-time tracking, anomaly 
detection, root cause analysis, and informed decision-making for manufacturing components. Further, these 
CDT are integrated with the heuristic optimization and this integration of cognitive functionalities with 
optimization marks a pivotal advancement in the realm of digital twin technology. 

The project's primary focus is on the Power Transfer Unit (PTU) manufacturing industry. The PTU, a critical 
component in automobiles, plays a pivotal role in distributing power to all four wheels. However, the 
production of faulty PTUs can result in substantial economic losses. To address this challenge, a heuristic 
optimization approach is introduced within the digital twin framework. Specifically, the project leverages 
the Jumping Particle Swarm Optimization (PSO) method [6], [7] to refine the fault detection process in 
PTU manufacturing. The Jumping PSO is an extension of the classical PSO algorithm [8], [9] which 
enhances its ability to skip the local optimum solution with the jumping search strategy. The results of this 
optimization effort are striking, showcasing a remarkable enhancement in the accuracy of fault detection. 

In summation, this project stands at the forefront of digital twin technology, demonstrating the profound 
impact of integrating cognitive capabilities. Focused on the PTU manufacturing industry, this endeavor not 
only refines fault detection processes but also serves as a testament to the potential of cognitive digital twins 
in enhancing manufacturing operations. Through this innovative approach, the project propels us further 
into the era of Industry 4.0, promising more efficient, accurate, and resilient manufacturing practices. 

2. Proposed Approach 

The comprehensive concept of the proposed Cognitive Digital Twin (CDT) for Power Transfer Unit (PTU) 
manufacturing is illustrated in Figure 1. Data sourced from both the lapping and assembly lines serve as the 
foundation for predicting faulty PTUs in future scenarios. The abundance of sensor data from these lines 
encompasses various manufacturing parameters, each defined by distinct sensor values. While human 
experts affirm that most of these parameters bear no relevance to the prediction of faulty PTUs, a subset is 
deemed influential in this regard. 



 

Fig. 1. Overall concept for the proposed CDT for PTU manufacturing. 

To systematically analyze the full spectrum of manufacturing parameters, the Jumping Particle Swarm 
Optimization (PSO) method is integrated with machine learning algorithms. This amalgamation facilitates 
the optimization of the feature space, ultimately leading to the selection of the most effective combination 
of parameters for accurate faulty PTU predictions. The PSO process encompasses three fundamental 
optimization steps: 

1. Assessing particles based on fitness function. 
2. Maintaining a record of the best position and associated fitness values. 
3. Updating particle velocity and position. 

This optimization process operates iteratively, and over successive iterations, the swarm of particles 
gradually converges. Once convergence is achieved, either by reaching a maximum number of successive 
iterations or a specific fitness value, the global best position of the algorithm identifies the optimal 
combination of features (manufacturing parameters) for prediction. 

 

This iterative process is visually explained in Figure 2, where binary digits within a row signify a particle's 
position. '0' denotes unselected features, while '1' indicates selected features. The collective arrangement of 
particles (rows) forms a swarm, with each particle subjected to performance evaluation against various 
machine learning algorithms. The personal best position (p(t)) of a particle corresponds to the combination 
of features (represented by '1's) at which the machine learning algorithm attained the highest classification 
accuracy at the particle level. The global best position (g(t)) encompasses the combination of features across 
the entire swarm, achieving the highest classification accuracy. The rest of the details are provided in [6], 
[7], [10] 



 

Fig. 2. Proposed process of selecting best manufacturing parameters for the prediction of faulty PTUs. 

3. Validation and Results 

To assess the efficacy of the proposed heuristic digital twin architecture, a range of standard machine 
learning algorithms are evaluated within a wrapper framework. The evaluations are conducted under two 
distinct scenarios: (i) employing important variables identified by human experts, and (ii) utilizing an 
optimized feature space as per the proposed architecture. All results are obtained through 5-fold cross-
validation. 

Table 1 presents the performance of various machine learning algorithms using the parameters deemed 
significant by human experts. Notably, the results indicate a rather limited performance in predicting 
faulty PTUs when employing all the features designated by human experts. The highest performance 
recorded is 66.17% using the K-Nearest Neighbors (KNN) model with Euclidean distance and 3 nearest 
neighbors. These results in Table 1 represent the most optimized outcomes following hyperparameter 
tuning across all machine learning models. 

In contrast, Table 2 showcases the results achieved through the proposed heuristic digital twin model. It is 
evident from these findings that the proposed framework exhibits notably enhanced performance. 
Achieving the highest accuracy of 75.00% with an optimized subset of the feature space, it demonstrates a 
significant improvement compared to the accuracy obtained using all features without optimization. This 
underscores the crucial importance of optimizing the expansive feature space and discerning the vital 
manufacturing parameters for preemptively identifying faulty PTUs. 

 
 
 
 
 
 
 
 



Table 1. Performance of different algorithms with all the parameters. 
 

Model Accuracy (%) 
SVM (RBF) 57.35 
Random Forest 55.88 
KNN 66.17 
Nåive Bayes 50.00 
Discriminant Analysis 53.63 
Generalized additive model 58.08 
Decision Tree 55.14 

 

Table 2. Performance of different algorithms with optimized feature space. 

Model #Features Features Accuracy (%) 
SVM (RBF) 12 3,4,5,18,26,28,29,30,33,39,43,46 75.00 
Random Forest 10 4,7,11,16,20,22,27,45,46,47 72.79 
KNN (k=1, cosine) 11 3,4,9,11,18,29,34,38,39,41,44 75.00 
Nåive Bayes 6 4,5,9,21,27,45 66.18 
Discriminant Analysis 8 4,11,15,18,26,28,36,37,38 68.38 
Generalized additive model 12 5,9,11,16,19,20,30,33,40,41,42,43 69.85 
Decision Tree 12 3,5,8,11,13,14,16,19,21,29,42,47 73.53 

 

The proposed framework brings forth two substantial advantages: (i) the capacity to elevate prediction 
accuracy, and (ii) the proficiency to pinpoint pivotal prediction parameters. Table 2 further presents 
different subsets of features, representing the most effective combinations for prediction using the 
specified model. 

To assess the impact of swarm size, the experiment replicated with varying swarm sizes of Jumping PSO. 
Table 3 details the results for two of the best-performing classifiers. Noticeably, differing results for the 
same model highlight the influence of swarm size.  

Table 3. Influence of Jumping PSO’s swarm size. 
 

Model swarm size 
#Features 

Features Accuracy(%) 

SVM 150 12 3,4,5,18,26,28,29,30,33,39,43,46 75.00 
SVM 100 12 4,5,6,12,15,18,21,23,39,43,44,45 71.32 
SVM 50 8 5,10,18,22,29,30,39,47 69.85 
SVM 150 9 3,5,11,18,23,29,30,41,47 72.05 
SVM 100 8 10,11,14,22,23,31,34,39 71.32 
KNN 150 11 3,4,9,11,18,29,34,38,39,41,44 75.00 
KNN 100 14 5,10,11,14,18,19,21,27,29,30,31,32,39,41 69.85 
KNN 50 2 35,47 66.17 
KNN 150 13 3,8,13,18,19,22,27,36,38,39,41,43,44 71.32 
KNN 100 13 2,3,4,5,7,18,24,29,30,35,36,39,44 68.38 

 



4. User Interface Design 

The User Interface (UI) designed to test the data from industry in quite simple, yet it contains all the options 
to test the new data. The options available for simulation include data balancing, feature selection using 
PSO, option to select the classifier, re-optimizing the feature space using PSO, and display options for data 
and results. 

The UI starts with a ‘RUN’ button, and depending on the selected settings it displays the results. The users 
can define the path/name of the data to load in the system. Once the data path/name is provided, the 
simulation starts with the selected options. The options provided in the user interface are shown in Fig. 3. 
Some of the results of designed UI are also provided here in Fig 4. In this figure, the results depict the 
running condition with selected options of the UI designed.  

 

Fig 3: User Interface Options. 

 

Fig 4: User Interface to import data. 



 

 
Fig 5: User Interface for class balancing (left) and feature selection (right). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: UI simulation results with selected options. 

 



5. Discussion 

The outcomes are subjected to a comprehensive analysis employing established evaluation metrics, 
including Sensitivity, Specificity, Precision, False Positive Rate, F1 score, Matthews Correlation 
Coefficient, Kappa, and Receiver Operating Characteristic (ROC) curve. The findings across these 
evaluation metrics are presented in Table 4 and depicted in Fig. 5. Table 4 notably highlights a relatively 
low sensitivity in the models, indicating instances where faulty PTU samples are misclassified as standard 
PTU samples. Additionally, the machine learning models exhibit a maximum accuracy of 75% in 
classifying faulty PTUs. 

These results may be attributed to the inherent complexity and challenging nature of the data, which 
possesses limited discriminatory power. Moreover, the scarcity of available data samples for faulty PTUs 
in real-world scenarios may constrain the adequacy of training samples for effective model training. To 
ensure optimal performance, it is imperative to provide an ample supply of training samples for faulty 
PTUs. Given that the current study is based on a limited dataset, enhanced model performance could be 
achieved with an expanded pool of training samples. 

The chosen subset of optimized features is further scrutinized to ascertain the frequency of selection for 
each feature across various experiments. Features that exhibit a higher frequency of selection hold greater 
significance, as they are consistently prioritized in different experiments. Notably, 'Cover Dimension D2 
mm' emerges as the most frequently selected feature, followed by 'Press Ball Bering To Housing Force kN' 
and 'Press Shim Head Outer Race To Housing Force kN.' Several other parameters also exhibit a notable 
frequency of selection, underscoring their importance in constructing a Cognitive Digital Twin (CDT) 
model for the PTU manufacturing process. 

 

Fig.7. ROC curves for Machine Learning Models. 
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Table 4. Performance evaluation on different metrics. 

Evaluation SVM  RF   KNN   NB  DA  GAM  
DT 

Accuracy 0.75 0.72 0.75 0.66 0.68 0.69 0.73 
Error 0.25 0.27 0.25 0.33 0.31 0.30 0.26 
Sensitivity 0.58 0.65 0.68 0.63 0.51 0.66 0.60 
Specificity 0.88 0.78 0.80 0.68 0.81 0.72 0.84 
Precision 0.79 0.70 0.73 0.61 0.68 0.65 0.75 
False Positive Rate 0.11 0.21 0.19 0.31 0.18 0.27 0.15 
F1 score   0.67 0.67 0.70 0.62 0.59 0.66 0.66 
Matthews Correlation Coef.   0.49 0.44 0.49 0.31 0.35 0.38 0.45 
Kappa 0.47 0.44 0.48 0.31 0.34 0.38 0.45 

 

6. Conclusion 

The significance of incorporating a heuristic approach in crafting a Cognitive Digital Twin (CDT) for 
manufacturing processes is assessed and endorsed in this project. A practical case study involving Power 
Transfer Unit (PTU) manufacturing serves as the testing ground for the proposed heuristic CDT model. The 
outcomes clearly underscore the crucial role of heuristic optimization in refining the feature space for CDTs. 
This optimization not only amplifies the efficacy of machine learning models but also furnishes valuable 
insights into critical parameters. 

In addition to augmenting decision-making capabilities and control autonomy, the proposed model exhibits 
the potential to elevate enterprise performance on a substantial scale. Hence, it is strongly advised to employ 
such frameworks in the development of CDT models within the manufacturing industry. Future endeavors 
will focus on augmenting the pool of available faulty PTU samples, thereby further refining the 
classification accuracy of the system. 

Furthermore, a user-friendly interface has been meticulously designed in MATLAB, tailored to cater to 
industrial personnel. This interface is poised for future testing on real-world data, positioning it as an asset 
for practical implementation in industrial settings. 
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