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Abstract. Electrical and mechanical equipment such as gearboxes in an
industrial robot or electronic circuits in an industrial printer sometimes
fail to operate as intended. The faulty component can be hard to locate
and replace and it might take a long time to get an enough experienced
technician to the spot. In the meantime thousands of dollars may be lost
due to a delayed production. Systems based on case-based reasoning are
well suited to prevent this kind of hold in the production. Their abil-
ity to reason from past cases and to learn from new ones is a powerful
method to use when a failure in a machine occurs. This enables a less
experienced technician to use the proposed solution from the system and
quickly repair the machine.

Keywords: Case-Based Reasoning, Fault Diagnosis, Artificial Intelli-
gence, Machine Learning, Neural Networks.

1 Introduction

This paper addresses case-based reasoning (CBR) (Aamodt, Plaza. 1994) sys-
tems used for diagnosis of machines. The paper is intended to give the reader a
survey of CBR systems in this area. The particular systems in this survey were
chosen because of their well-documented CBR-part [1] and their application in
the area of machine diagnosis. All systems in this survey were created or reported
after about 1999 and are published in major Proceedings and Journals such as
the ECCBR and ICCBR Proceedings and Journal of Intelligent and Fuzzy Sys-
tems.

The paper is structured as follows: Section 2 gives an overview of five CBR
diagnostic systems for machines. Section 3 discusses and compares features of
the systems. Section 4 gives a brief conclusion of the systems.

2 The Systems

This section describes five CBR systems for diagnostics of machines. The first
system is a diagnostic system for locomotives. It collects fault codes from loco-
motives and uses them for off-board locomotive diagnosis. The second system



diagnoses electric circuits. It uses measurement data from the circuit as features
and matches them with similar cases. The proposed solution is then adapted to
the new case. The third system monitors the health of satellites by looking for
anomalies in the down linked data from the satellite. The fourth system diag-
noses industrial robots with the aid of acoustic signals. The fifth system uses a
combination of a neural network and CBR to diagnose induction motors.

2.1 ICARUS A Diagnostic System for Locomotives

Locomotives are large and complex machines that are very difficult and expen-
sive to repair. Due to their complexity, they are often best served and repaired
by their manufacturer. The manufacturer often have a long time service contract
with their customers and it is important for the manufacturer to reduce the ser-
vice costs as much as possible.

ICARUS [2] is a case-based reasoning tool for off-board locomotive diagnosis.
Locomotives are equipped with many sensors that can monitor their state and
generate fault messages. ICARUS is designed to handle the fault codes that are
generated by the locomotives.

Each fault code is saved in a fault database. Connected to each fault is a
repair log taken from a repair database. The fault log combined with the repair
log is a case in ICARUS.

Most repair logs contains a fault cluster. This means that many small faults
occur before a repair is performed. The cluster of faults is used as features for
case matching. Each cluster is assigned a weight between 1 and 0. The value of
the weight is set to represent a clusters ability to isolate a specific repair code.
If a cluster is connected to only one repair code its weight will be 1. If a cluster
is connected to evenly distributed repair codes in the case base its weight will
be lower. Clusters below a certain weight threshold will be assigned zero weights.

The weights are used in the matching formula. The degree of likeness between
a new case and as stored case is calculated as:
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where

wc = weights in common clusters between stored and new case
ws = weights of clusters in stored case
wn = weights of clusters in new case



The repair code associated with the case with the highest degree of likeness
is the retrieved case.

The system vas validated with a case base consisting of 50 repair codes. Each
repair code was associated with 3-70 cases. Each case was removed from the case
base and matched to all other cases in the case base. If the repair code of the
case was in the top three nearest neighboring cases, the match was considered
as a success. As a result the overall accuracy of the system was 80%.

2.2 Diagnosis of Electronic Circuits

Diagnosis of electronic circuits is based on the analysis of the circuit response
to a certain input stimuli. Input signals are generated and measurements are
acquired in certain nodes of the circuit. A traditional way of doing this is to
use fault dictionaries. Fault dictionaries are based on selected measurements on
faulty systems. The comparison is performed by a nearest neighbor calculation
and the closest case is taken as a diagnosis. The problem with fault dictionaries
occurs when a new fault is found that cannot be matched with the ones already
stored in the dictionary. To deal with this a case-based approach is suitable to
be able to automatically extend the dictionary with new faults as they occur [1].

The case consists of two parts. Part one is the numeric part that contains
the case identification number and the measurements taken from the circuit. The
second part contains information about the fault diagnosis.

Table 1. Case Structure. The Measurement Part.

Case id Measure1 Measure2 ... MeasureN

Case i M1 M2 ... MN

Table 2. Case Structure Fault Part

Class Comp. Deviation Hierarchy

Class Comp. X% MiLi

The class corresponds to the class of component that is diagnosed. The com-
ponents are divided into different classes if they have different accepted devia-
tions from their normal value. E. g. +/-10% can be an accepted deviation for a
class of components. The component field contains the component location. The
deviation field contains the measured deviation of the component. The hierarchy



field contains a description of witch level in the circuit hierarchy the components
is.

A normalized Euclidian distance function is used to retrieve the cases from
the case base and the k nearest neighbors where k=3 is retrieved. The solution
is adapted to the new case by transformational reuse [3]. A learning algorithm
is then applied to decide whether the case should be saved as a new case in the
case base or not. E.g. if the diagnosis is correct there is no need to retain the
new case in the library. But if the retrieved cases produce a misclassification of
the new case, the case might be added to the case base according to the results
of the learning algorithm.

The system has been tested with the DROP4 [4]and the All-KNN learning
algorithms. All cases are also equipped with weights to improve the classification.

A measurement on a circuit is performed resulting in the k=3 nearest neigh-
bors in table 3.

Table 3. An Example of Case Retrieval.

M1 M2 M3 Comp Devi

New Case 0.6 0.7 0.2 C1 75
Neighbor1 0.6 0.7 1.1 C1 23
Neighbor2 0.7 0.4 1.3 C1 24
Neighbor3 0.7 0.4 1.3 C2 11

Neighbor 1 and 2 has the same component as the new case but the deviation
is smaller in both cases. Neighbor 3 has a different component. The new case will
be selected as a component C1 because of its similarity in the measurements.
The deviation is far from normal so the case will be introduces in the case base.

The system has been tested on a filter circuit that is commonly used as a
benchmark for electronic circuits. The filter consists of several capacitors and
resistors. The average result with the All-KNN retain algorithm was 89% and
the average result with the DROP4 retain algorithm was 88%.

2.3 Satellite Diagnosis

Satellites are monitored from the ground using down linked data (telemetry).
The case-based diagnosis program can be resembled as an expert apprentice.
The program remembers the human experts actions along with the context that
is defined by the down linked data. It then attempts to make its own diagnosis
when similar data appears in another occasion [5].



The features in the case are not state values taken at a certain point of time.
Because of the telemetrys streaming values the features are instead trends ex-
tracted from the streaming data flow. The length of the trend is different for
different parameters. The table below shows a sample case with two parameters:

Table 4. structure of a satellite case (problem part).

Case Length of Sampling Lower Upper
id time series rate bound bound

1234 1000 45 -3 10
2345 2000 60 0 10

A case is constructed from the streaming data at a time called the case point.
A case is constructed looking back from the case point a certain length of time.
The attribute values are picked using a window of the same length as the sam-
pling rate. For each window only one average value is saved as representing that
window. The length of the time series corresponding to an attribute is l/s were
l is the length specified in the case schema and s is the sampling rate.

The distance between two time series R, W is calculated by dividing the time
series into smaller sequences Ri, Wi. An Euclidian distance calculation between
each Ri, Wi is performed and a global distance dg is calculated from all the
obtained distances between the time series sequences:

dg (R, W ) =
1
k

k∑

i=1

di (Ri,Wi) (2)

The system notifies the user if a new case is considered interesting. The new
case is considered interesting it two ways:

1. A similarity threshold determines if the new case should be considered as an
anomaly. If the similarity of all the retrieved cases is below that threshold the
case is considered to be an anomaly and the user is automatically notified.

2. If some of the retrieved cases are above the first threshold. Another threshold
determines if the new case is similar enough to some other case in the case
base that is previously diagnosed as an anomaly. If so the system will notify
the user of the type of anomaly. In both situations the user is able to give
feedback to the system.



2.4 Diagnosis of Industrial Robots

Mechanical fault in industrial robots often show their presence through abnor-
mal acoustic signals.

At the factory end test of industrial robots a correct classification of the ro-
bot is very critical. An incorrect classification of a faulty robot may end up in
the factory delivering a faulty robot to the customer.

The industrial robot diagnosis system uses case-based reasoning and acoustic
signals as a proposed solution of recognizing audidable deviations in the sound
of an industrial robot [6].

The sound is recorded by a microphone and compared with previously made
recordings; similar cases are retrieved and a diagnosis of the robot can be made.

Features are extracted from the sound using wavelet analysis [7]. A feature
in the case is a normalized peak value at a certain frequency. The case contains
peak values from many frequencies. The case also contains fields for information
of the robot model and type of fault (if any). There is also room to enter how
the fault was repaired. Table 5. displays a part of the case structure.

Table 5. A part of the case structure for robot diagnosis.

Serial Type Fault Diagnosis Features
Number and Repair 1-n

45634 4500 2 ... ...

Cases are retrieved using a nearest neighbor function that calculates the
Euclidian distance between the new case and the cases stored in the case library.
A list with the k nearest neighbors is retrieved based on the distance calcula-
tions. The system learns by adding new cases to the case base. A technician
enters the diagnosis and repair action manually in each case.

The system has been evaluated on recordings from axis 4 on an industrial
robot. Sounds from 24 healthy robots and 6 faulty robots were collected to enable
case-based classification of the condition of the robots. The prototype system
demonstrated quite good performance by making right judgments in 91% of all
tests.

2.5 Induction Motor Fault Diagnosis

Induction motors are very common within industry as prime movers in machines.
Induction motors has a simple construction and are very reliable. But working



in a tough environment driving heavy loads can introduce various faults in the
motors. A system for fault diagnosis of induction motors is presented here. The
system has interesting features such as a neural network combined with a case-
based reasoning system [8].

A case consists of 6 categories of features and 20 variables. Among the vari-
ables are measurement positions, rotating frequency components and charac-
teristic bearing frequencies. The case also includes the type of machine to be
measured, the symptom, the corrective action etc.

The system uses an ART-Kohonen neural network [9]) (ART-KNN) to guide
the search for similar cases in the case base.

CBR is used to select the most similar match for a given problem. The ad-
vantage with the ART-KNN compared to other neural networks such as the
Kohonen Self Organizing Map [10] is that it can learn new knowledge without
losing old knowledge. When a new case is presented to the system the ART-KNN
learns the new case in one of two ways:

1. If the similarity of the new case compared to the cases already learned by the
network is below a certain threshold; the similarity coefficient. The network
learns the case by adding new nodes to its layers.

2. If the similarity of the case is above the threshold, the network learns the
case by adjusting its old nodes to resemble the new case.

Cases are then indexed in the case base by clusters of features in the ART-
KNN. The indexed cases are then matched against the new case with a standard
similarity calculation.

The system has been tested with measurements from an AC motor in a plant.
The motor had a rotor fault witch resulted in high levels of noise and vibration.
The system was trained with 60 cases containing different motor defects such as
bearing faults, rotor damages and component looseness.

The system retrieved two previous cases from the case base together with
results from a modified cosine matching function. The retrieved cases both in-
dicated a bearing fault. The average result of a test of all cases in the case base
was 96,88%.

3 Discussion

When comparing different case-based reasoning systems with each other one
must focus on the features that are shared by all case-based reasoners.



Below is a comparative discussion of five common problems that has to be
faced when implementing a case-based reasoner and how they are solved in each
system. The problems are as follows:

1. Feature extraction and case representation.
2. Case retrieval and indexing.
3. Case reuse.
4. Case revision and retain.
5. Case base maintenance.

1. ICARUS uses combinations of fault codes as features because that is the
way a locomotive signals its faults. A repair action on a locomotive is also very
expensive, thus several faults must be combined before a repair action can be
executed. Often machines cannot provide such fault codes. Instead features such
as filtered measurements from different kinds of sensors are used. This is the
situation for the electronic circuit diagnosis system, the induction motor diag-
nosis system, the satellite diagnosis system and the industrial robot diagnosis
system. They all collect single measurements or time series measurements, e.g.
current, vibration, acoustic signals, streaming telemetry data etc. The data col-
lecting sensors can be an integrated part of the object or an external portable
measurement device.

The basic case representation is similar for the systems in this survey. The
three basic components of the case are the features, the problem description and
the repair action. Sometimes the repair action is implicit in the fault descrip-
tion. As in the electronic circuit diagnosis system, the repair action is equal as
to replacing the faulty component.

2. The case retrieval process most commonly uses some kind of distance cal-
culation combined with weights to calculate a distance between the new and
stored cases. The k nearest neighbours to the new case is then retrieved. This
kind of retrieval is used in all systems except the induction motor diagnosis
system and the satellite health diagnosis system. The satellite health diagnosis
system uses two similarity thresholds; one for anomaly detection and one for
event detection. The induction motor diagnosis system uses a neural network to
first index relevant cases in the case base. After that a straightforward k nearest
neighbour distance calculation is performed to calculate the distance between
the indexed cases and the new case.

3. All systems in this survey implements the reuse phase by suggesting the
diagnosis extracted from the retrieved k nearest neighboring cases. The satel-
lite diagnosis system also has a threshold for sorting out irrelevant cases not to
be considered for reuse. In addition to this form of reuse the circuit diagnosis
system uses adaptation [3] by transforming the past solution of the k=3 nearest
neighbors to an appropriate solution for the new case. The new solution is then



inserted into the new case as the proposed solution.

4. The simplest form of retaining is to just add the new case in the case base.
The industrial robot diagnosis system uses this kind of retaining (the robot di-
agnosis case base is then manually investigated by an experienced technician in
order to remove irrelevant cases and provide relevant cases with more diagnostic
information). To few removals of cases can in time cause problems with an over-
filled case base making the system perform less well. Most system implements
some kind of user interaction before a case is retained. This is performed in the
satellite diagnosis system and in ICARUS by letting an experienced technician
decide whether the case is relevant or not. The retaining process can be extended
by calculating if the new case has any ability to improve the future diagnosis of
the system. The simplest form is to look if a similar case already exists in the
case base. If it does, there is no need to retain the case. The circuit diagnostic
system also incorporates a machine-learning algorithm that calculates the ability
of the case to improve the performance of the system.

5. Most systems in this survey are only prototypes and have not yet im-
plemented any automatic maintenance process of the case memory. The circuit
diagnosis system implements a confidence factor [11] to prevent bad cases from
spoiling the performance of the system. The case base is maintained by removing
cases when the performance of the case drops below a certain confidence index.

4 Conclusions and Further Work

This paper has briefly described five intelligent machine diagnostic systems that
use case-based reasoning as their primary approach to problem solving. Case-
based reasoning is still new in the area of fault diagnosis of machines and most
systems in this survey are still prototypes. Some parts of the CBR process seem
to be implemented to a higher extent than others in the systems. E.g. feature
extraction and case retrieval seems to be fully implemented but adaptation is
not widely implemented. Also, automatic maintenance of the case memory seems
not to be implemented in the majority of the systems in this survey.
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