
Component-based Software Engineering for Embedded
Systems
Ivica Crnkovic

Mälardalen University, Department of Computer Science and Electronics
Box 883, 721 23 Västerås, Sweden

+46 21 1031 83

ivica.crnkovic@mdh.se, http://www.idt.mdh.se/~icc

ABSTRACT
Although attractive, CBD has not been widely adopted in domains
of embedded systems. The main reason is inability of these
technologies to cope with the important concerns of embedded
systems, such as resource constraints, real-time or dependability
requirements. However an increasing understanding of principles
of CBD makes it possible to utilize these principles in
implementation of different component-based models more
appropriate for embedded systems. The aim of this tutorial is to
point to the opportunity of applying this approach for
development and maintenance of embedded systems. The tutorial
gives insights into basic principles of CBD, the main concerns
and characteristics of embedded systems and possible directions
of adaptation of component-based approach for these systems.
Different types of embedded systems and approaches for applying
CBD are presented and illustrated by examples from research and
practices. Also, challenges and research directions of CBD for
embedded systems are discussed.

Categories and Subject Descriptors
D.2.2[Software Engineering]: Design Tools and Techniques

General Terms: Design, Reliability.

Keywords
Component-based software engineering, embedded systems.

1. INTRODUCTION
Component-based development (CBD) is of great interest to the
software engineering community and has achieved considerable
success in many engineering and application domains. CBD has
been extensively used for several years in desktop environments,
office applications, e-business and in general in Internet- and
web-based distributed applications. In many other domains, for
example embedded and real-time systems, CBD is utilized to a
lesser degree. It has been experienced that it is difficult to use the
same component technology in different domains because of
different system requirements and constraints. The latest trends
show that different component technologies are being developed
for different domains. Similarly to object-oriented paradigm that
is exploited in different OO languages, a component-based
paradigm based on certain common principles is slowly built and
used in different component technologies [1,2,3].

The aim of this tutorial is give an overview of principles of
component-based software engineering and their utilization in
development of embedded systems. The intention is to show that
the component-based approach can successfully be used in
development of embedded systems although the different
concerns, requirements and limitations are valid then for systems
that successfully have used CBD. Direct use of general-purpose
component-based technologies is usually not feasible; rather
specific adoptions are required, or new component models that
explicitly address the main concerns of embedded systems must
be developed.

2. EMBEDDED SYSTEMS
Embedded systems are computer systems that are part of larger
systems and they perform some of the requirements of these
systems. Some examples of such systems are automobile control
systems, industrial processes control systems, mobile phones, or
small sensor controllers. Embedded systems cover a large range of
computer systems from ultra small computer-based devices to
large systems monitoring and controlling complex processes. The
overwhelming number of computer systems belongs to embedded
systems: 99% of all computing units belong to embedded systems
today [4].
Most of such embedded systems are also characterized as real-
time systems, which means that the real-time properties such as
response time, worse case execution time, etc., are important
design concerns. These systems usually must meet stringent
specifications for safety, reliability, availability and other
attributes of dependability. Due to small size and requirements for
mobility, but also extremely low production costs these systems
require small and controlled resource consumption, and have
limited hardware capacity [5]. The increased complexity of
embedded real-time systems leads to increasing demands with
respect to requirements engineering, high-level design, early error
detection, productivity, integration, verification and maintenance,
which increases the importance of an efficient management of
life-cycle properties such as maintainability, portability, and
adaptability.

3. BASIC CONCEPTS FOR COMPONENT-
BASED EMBEDDED SYSTEMS
In classic engineering disciplines a component is a self-contained
part or subsystem that can be used as a building block in the
design of a larger system. In CBSE, there are many different
suggestions for a definition of components. The best
understanding of component in the software industry world is
based on Szyperski’s definition [2]. From this definition it can be

Copyright is held by the author/owner(s).
ICSE’05, May 15–21, 2005, St. Louis, Missouri, USA.
ACM 1-58113-963-2/05/0005.

712

assumed that a component is an executable unit, and that
deployment and composition can be performed at run-time. In the
domains of embedded systems this definition is largely followed;
this is in particular true for the separation between component
implementation and component interface. However the demands
on the binary or executable from is not directly followed. A
component can be delivered in a form of a source code written in
a high-level language, and allows build-time (or design-time)
composition.
The component interface summarizes the properties of the
component that are externally visible to the other parts of the
system. As for embedded systems extra-functional properties are
as important as functional there is a tendency to include
specification of extra-functional properties in the component
interface (for example timing properties). This allows more
system properties to be determined when the system is designed,
i.e. such interface enables verification of system requirements and
prediction of system properties from properties of components.
In general-purpose component technologies, the interfaces are
usually implemented as object interfaces supporting
polymorphism by late binding. While late binding allows
connecting of components that are completely unaware of each
other beside the connecting interface, this flexibility comes with a
performance penalty and increased risk for system failure. Also
the predictability of the system’s performance or other properties
decreases since the composition of the components occurs at run-
time. Therefore the dynamic component deployment is not
feasible for small embedded systems.
Due to the constraints for real-time and limited resources there are
several reasons to perform component deployment and
composition at design time rather than run-time: This allows
composition tools to generate a monolithic firmware for the
device from the component-based design and by this achieve
better performance and better predictability of the system
behavior. This also enables global optimizations of a static
component composition, connections between components could
be translated into direct function calls instead of using dynamic
event notifications and verification and prediction of system
requirements can be done statically from the given component
properties. A characteristic example of a component model fro
embedded systems is Koala developed and used at Philips [3].
For large embedded systems the resource constraints are not the
primary concerns. The complexity and interoperability play much
more important role. Also due complexity the development of
such system is very expensive and cutting the development costs
is highly prioritized. For this reason general-purpose component
technologies are more interesting than in a case for small systems.
The systems using these technologies belong to the category of
soft-real time systems. Often a component technology is used as a
basis for additional abstraction level support, which is specified
either as set of standards or proprietary solutions. One successful
example of adoption of a component-based technology is the
initiative OPC Foundation (OLE process control Foundation), an
organization responsible for a specification that defines a set of
standard interfaces for process automation based upon OLE/COM
and recently .NET technology. Another example of a component-
based approach is development and use of the standard IEC
61131 [7]. IEC 61131 defines a family of languages in which

function blocks can be viewed as components and interfaces
between blocks are released by connecting in-ports and out-ports.
Large embedded systems that must fulfill hard real-time
requirements usually do not use general-purpose component-
based technologies. However in some cases, a reduced version of
a component model is used on a top of a real-time operating
system.

4. THE NEEDS AND PRIORITIES IN
RESEARCH
In order to fully utilize advantages of CBD for the embedded
systems, there are needs for a number of issues that must be
solved or improved [4]. Today there is a lack of widely adopted
component technology standards which are suitable for embedded
systems. For smaller-size embedded systems, it is important that a
system composed of components can be optimized for
performance and memory consumption, and such a support is still
missing in most of the component technologies available today.
Most current component technologies do not support specification
and analysis of extra-functional properties important for
embedded systems. In particular composition theories of certain
extra-functional properties and predictability of system properties
from component properties must be developed [6]. Further, in
order to support more advanced features in component-based
embedded systems, the run-time platform must provide certain
services, which however must use only limited resources. There
are a number of other issues such as platform and vendor
independence, component certification, component
noninterference and similar, which must be solved for a successful
adoption of component technologies. Finally, tools that support
all the features lists above must be implemented.

5. REFERENCES
[1] Ivica Crnkovic and Magnus Larsson (editors), Building

Reliable Component-Based Software Systems, Artech House
Publishers, ISBN 1-58053-327-2

[2] C. Szyperski. Component Software: Beyond Object-Oriented
Programming. Second edition, ACM, Press and Addison-
Wesley, New York, N.Y., 2002.

[3] R. van Ommering, F. van der Linden, and J. Kramer. The
Koala component model for consumer electronics software.
IEEE Computer, 33(3):78–85, March 2000.

[4] Roadmaps on Selected topics in Embedded Systems Design
from the EU IST ARTIST project, http://www.artist-
embedded.org/Roadmaps/index.html

[5] Ivica Crnkovic, Component-based approach for Embedded
Systems, Ninth International Workshop on Component-
Oriented Programming, Oslo, June 2004.

[6] Ivica Crnkovic, Magnus Larson, Classification of quality
attributes for predictability in component-based systems,
DSN 2004 Workshop on Architecting Dependable Systems
Florence, Italy, June 2004. IEEE

[7] IEC. Application and implementation of IEC 61131-3.
Technical report, IEC, Geneva, 1995.

713

