
Automating Test Generation of Industrial Control
Software through a PLC-to-Python Translation

Framework and Pynguin
Mikael Ebrahimi Salari∗, Eduard Paul Enoiu∗, Cristina Seceleanu∗, Wasif Afzal∗, and Filip Sebek†

∗ School of Innovation, Design and Engineering, Mälardalen University, Västerås, Sweden
† ABB Marine and Ports, Västerås, Sweden

Email: ∗ {mikael.salari, eduard.enoiu, cristina.seleceleanu, wasif.afzal}@mdu.se, † filip.sebek@se.abb.com

Abstract— Numerous industrial sectors employ Programmable
Logic Controllers (PLC) software to control safety-critical sys-
tems. These systems necessitate extensive testing and stringent
coverage measurements, which can be facilitated by automated
test-generation techniques. Existing such techniques have not
been applied to PLC programs, and therefore do not directly
support the latter regarding automated test-case generation.
To address this deficit, in this work, we introduce PyLC, a
tool designed to automate the conversion of PLC programs
to Python code, assisted by an existing test generator called
Pynguin. Our framework is capable of handling PLC programs
written in the Function Block Diagram language. To demonstrate
its capabilities, we employ PyLC to transform safety-critical
programs from industry and illustrate how our approach can
facilitate the manual and automatic creation of tests. Our study
highlights the efficacy of leveraging Python as an intermediary
language to bridge the gap between PLC development tools,
Python-based unit testing, and automated test generation.

Index Terms—PyLC, PLC, Python, Testing, Code translation,
automated testing

I. INTRODUCTION

PROGRAMMABLE Logic Controllers (PLC) are exten-
sively utilized in safety-critical systems due to their

ability to control and monitor various physical processes.
PLC programs, developed using the IEC 61131-3 standard
programming languages [1], are responsible for ensuring the
correct and safe operation of these systems. Creating a PLC
program necessitates the use of an Integrated Development
Environment (IDE). Among the various options available,
CODESYS IDE stands out as one of the most extensively
utilized IDEs for PLC programming [2]. It supports the devel-
opment, testing, and deployment of PLC programs compliant
with the IEC 61131-3 standard 1.

Despite the importance of safety-critical systems, testing
for industrial PLC programs in these domain-specific IDEs
is predominantly manual. These manual testing methods are
time-consuming, error-prone, and lack systematic test cov-
erage [3]. Moreover, the involved test engineers executing
test cases manually often face challenges in comprehensively
covering the entire program’s functionality and potential edge
cases. Consequently, undetected defects or vulnerabilities may
persist, posing significant risks to the system’s safety, security
and reliability [4].To address the shortcomings of manual

1https://www.codesys.com/

testing, there is an increasing push towards automated test-
ing techniques in PLC development, for enhanced efficiency,
broader test coverage, and consistent reproducibility of test
results.

Automated testing techniques, such as search-based testing,
hold the promise of enhancing the effectiveness and reliability
of testing safety-critical PLC programs [5] [6]. Search-based
testing employs meta-heuristic search algorithms to automat-
ically generate test cases, exploring a vast search space to
uncover hidden defects and ensure adequate coverage. Limited
research has been conducted regarding the rigorous application
of automated test-generation approaches for PLC programs
in industrial settings. The integration of PLC programs with
dynamic high-level languages, such as Python, poses sig-
nificant challenges in terms of implementing/simulating the
behaviour of PLC-specific functions, cyclic execution, building
the network between the graphical elements, and data type
conversions.

In order to facilitate the integration of state-of-the-art au-
tomated testing techniques with PLC programs, this work
presents a tool-supported PLC to Python translation frame-
work, which adds a new methodology and provides automation
on our previous work [7]. Our contribution, called PyLC,
is capable of filling the gap between PLC development and
automated test generation using the Pynguin tool [8], by
automating the “PLC program to Python” transformation. To
achieve the goal of our research, we address the following
research questions (RQ):

• RQ1 - How to translate a PLC program developed in
Function Block Diagram (FBD) language into Python
code, fully automatically?

• RQ2 - How can we validate the correctness of the
proposed automated translation framework, and evaluate
its applicability through automated test generation in a
real-world industrial context?

The choice of Python in this work is important, as Python’s
simplicity, vast libraries, compatibility with CODESYS IDE,
and rich ecosystem make it more suited for automatic test case
generation compared to other high-level languages. The trans-
formation is, therefore, a sine qua non-condition for bringing
automated test case generation for Python to CODESYS,

Fig. 1. A snippet of an FBD program for controlling the temperature in a
nuclear plant (PRG9)

hence enabling automated verification of correct functionality
of FBD PLC programs.
The paper is organized as follows. Section 2 briefly overviews
the preliminaries on PLC, IEC 61131-3 standard, and Python.
Section 3 describes how the proposed automated translation
framework works. Section 4 explains the procedure of auto-
mated validation of the translated code using meta-heuristic
algorithms. Section 5 overviews the results of this study.
Section 6 presents related work, whereas Section 7 concludes
the paper and outlines future research directions.

II. PRELIMINARIES

In this section, we overview PLC and the IEC61131-3
standard for programming PLC devices, as well as Python
and the Pynguin test generator.

A. Programmable Logic Controllers, IEC61131-3, and
CODESYS IDE

PLCs, crucial for industrial automation, particularly in
power plants [9], are programmed using IEC 61131-3 lan-
guages [10]. This includes textual languages like Structured
Text (ST) resembling C, and graphical languages like FBD,
widely favoured in industry [11]. FBD offers modularity,
reusability, and efficiency [12]. PLC programs follow IEC
61131-3’s cyclic operation with three stages: input reading,
computation, and output updating. This ensures consistent
process control. An illustrative FBD program for nuclear plant
temperature control is shown in Figure 1. The widely accepted
CODESYS IDE, aligned with IEC61131-3, incorporates the
CODESYS Test Manager for efficient testing, including au-
tomated regression testing and Python integration [2]. These
attributes prompt its selection as the PLC testing tool for this
study.

B. Python and Pynguin Test Automation Tool

Python, known for its simplicity and readability, is a high-
level programming language with a diverse library ecosystem
including NumPy, Pandas, TensorFlow, and PyTorch. Pyn-
guin is a specialized Python test automation tool that uses
Genetic Algorithms (GA) to autonomously generate effective
test cases, improving code coverage and test suite quality.
It also integrates advanced algorithms like Dynamic Search-
Based Software Testing (DSBST) and Evolutionary Testing
(ET). Additionally, Pynguin employs DYNAMOSA for multi-
objective optimization and dynamic analysis, along with mu-
tation analysis to assess test case effectiveness by introducing
controlled changes to evaluate detection capability. This pro-
vides an evaluation of the test suite’s effectiveness.

C. Logical Operators in IEC61131-3

Each language of IEC61131-3 has a set of operators that can
be used to manipulate data types and values. These operators
are classified into four categories: Arithmetic, Relational, Log-
ical and Bitwise 2. Arithmetic operators perform mathematical
operations on numerical data types, such as addition, and
subtraction. Relational operators compare two operands and
return a Boolean value (TRUE or FALSE) based on the result
of the comparison. Logical operators as one of the most-used
operators in PLC programs, operate on Boolean operands and
return a Boolean value based on the logical operation (e.g.
AND, OR). Finally, Bitwise operators operate on bit strings
or integers and return a bit string or an integer based on the
Bitwise operation (e.g. XOR, NOT).
D. PLCopen XML Tree

The PLCopen XML tree is an industry-standard file format
widely used in the field of PLCs for the exchange of program-
ming data. This XML-based format provides a hierarchical
representation of the PLC program structure, including the
organization of tasks, programs, and function blocks, as well
as the associated variables and their data types. Notably, the
CODESYS IDE, which has been selected as the preferred IDE
for this study, fully embraces and accommodates the PLCopen
XML format [13]. The PLCopen XML file consists of four
main parts, which typically require separate processing. These
parts include A) the file and project data, B) user-defined
data types, C) the POUs (consisting of interface and code
body), and D) the configurations. The text-based languages
are stored as a single text string, sometimes utilizing HTML
to indicate line breaks, while the graphic-based languages are
represented as a traversable syntax tree [14]. A snippet of part
of a PLCopen XML tree for the PRG9 FBD program is shown
in Listing 3.
E. Cyclic Execution

One of the key features of PLCs is the cyclic execution
of the program. This means that the PLC repeatedly scans
the inputs, executes the program logic, performs diagnostics
and communication tasks, and updates the outputs in a loop.
The time it takes to complete one scan cycle is called the
scan time, which typically ranges from 10 microseconds to
10 milliseconds 3. The scan time depends on the complexity
of the program, the number of inputs and outputs, and the
speed of the CPU. The cyclic execution feature ensures that
the PLC can respond to changes in the input signals and
control the output devices in a timely and consistent manner
[15]. However, it also poses some challenges for testing
and debugging PLC programs, as data flow relationships and
reachable states need to be considered4.
F. Data Types in IEC61131-3 and Python

Programming languages use diverse data types, shaped
by their design goals and paradigms. This section contrasts

2https://bit.ly/44uSUYz
3https://bit.ly/3OYxb5p
4https://bit.ly/47UO2Pf

IEC 61131-3’s and Python’s data types. IEC 61131-3 defines
elementary types like boolean, integer, real, byte, word, date,
time-of-day, and string. Users can create derived types based
on these or other types (arrays, structures, enums, subranges).
Python supports object-oriented, imperative, functional, and
procedural styles. Built-in types include str, int, float, list,
tuple, dict, set, bool, bytes, etc. User-defined types use classes
and modules 5.

Comparing IEC 61131-3 and Python reveals distinctions.
IEC 61131-3 has strong typing, requiring explicit type declara-
tion, while Python is dynamically typed. Numeric differences
include IEC 61131-3’s intricate spectrum (SINT, INT, DINT,
LINT, etc.), while Python uses ’int’ and ’float’. IEC 61131-3
intricately categorizes date and time types, while Python uses
the ’DateTime’ module. Character types vary; IEC 61131-3
has size and encoding variations (CHAR, WCHAR, STRING,
WSTRING), and Python uses ’str’. IEC 61131-3 offers func-
tion blocks, and Python uses functions, classes, and modules.

III. PYLC: AN AUTOMATED PLC TO PYTHON
TRANSLATION FRAMEWORK

In this work, we propose an automated translation frame-
work from PLC to Python, based on the translation rules
proposed in our earlier work [7]. The proposed automated
translation framework, PyLC, operates based on the automated
parsing and analysis of a PLC program developed in the FBD
language, represented as an PLCopen XML tree. Specifically,
PyLC takes a POU as input, automatically extracts all the nec-
essary information about the PLC program being translated,
and stores it within a dictionary data structure in Python. This
stored information is then utilized when PyLC automatically
generates the executable Python code.

The overall translation process of PyLC is depicted in Fig-
ure 2. As illustrated, the initial step involves importing a PLC
program developed in the FBD language as an PLCopen XML
file. This is followed by automated parsing and analyzing of
the XML tree to extract information about each POU and the
blocks contained within (Step 1 in Figure 2). Subsequently,
PyLC uses this extracted information to automatically generate
executable Python code. This involves defining the required
main and sub-functions and establishing the network between
the existing Blocks from the imported PLC program (Step 2 in
Figure 2). Next, PyLC employs the meta-heuristic automated
unit testing techniques from Pynguin tool [8] to validate the
translation (Step 3 in Figure 2). Lastly, the test cases generated
by Pynguin are imported into the CODESYS IDE to be
executed on the original PLC program using the CODESYS
Test Manager tool. The PLC program’s translation into Python
is deemed valid if the generated test cases yield consistent
results (Step 4 in Figure 2).

The detailed step-by-step PyLC workflow follows.
A. PyLC Translation Workflow

The translation workflow of PyLC, as demonstrated in
Figure 3, consists of five main stages spanning both the PLC

5https://bit.ly/3YYk1tL

PLC Program
(PLCopen XML)

Automated
XML Analysis

Automated
Python Code
Generation

Automated
Meta‐heuristic
Validation

Validated PLC
Program in
Python

1

2

3

4

Fig. 2. An Overview of the PyLC Framework, the Proposed Automated
Translation Mechanism for Translating a PLC Program into Python Code and
Validating the Translation Automatically.

FBD
Program

XML
Analyzer

1

Name

Inputs

Outputs

Local Vars

POU

Type Position

POU Local ID

Inputs Net ID

Outputs Connection

Block

Python
Code

Generator

Functions Network

I/O Type
Conversion

Meta‐heuristic
Test Generation

Pynguin
TAF

CODESYS
Test

Manager

2

3

4

Valid
Translated
Program

5

Translation
Validation

PL
C

Py
th
on

Test Execution

Fig. 3. The Automated Translation Work Flow (TWF) Used in PyLC
Framework for Translating a PLC Program into Python with the assistance of
the Pynguin Test Automation Framework (TAF).

and Python environments. In this section, we describe each
step of the PyLC translation process.

1) Step 1 - XML Analyzer: The XML Analyzer module of
PyLC (Step 1 in Figure 3) imports an FBD program in the
form of a PLC Open XML tree. It then analyzes this tree to
extract useful information, specifically concerning the POU
and FBD blocks. Subsequently, this extracted information is
stored in a Python file. The primary elements analyzed include
PLC Open XML Tree, POU and FBD blocks.

A snippet of the abstracted pseudo-code that we use for
developing the PyLC XML Analyzer algorithm is shown in
Listing 1. This module leverages the ElementTree XML 6

module of Python and classifies all the extracted information
into two main categories including POU and Block(s). The
results of this Python script are exported as a Dictionary data
structure in Python which facilitates the next step of the PyLC
process.

As seen in Listing 1, the XML analyzer module of PyLC
extracts several useful information from the PLC Open XML
tree regarding each existing FBD Block which includes POU
Name, Block Local ID, Block Type (e.g. XOR, AND, etc),
Block Position, Block Input Variables, Block Formal Param-

6https://docs.python.org/3/library/xml.etree.elementtree.html

eters, Block Connection Point In Status, and Connection
Referral Local ID. In terms of extracting information regarding
POU, PyLC collects POU Name, POU Type, Input Variables,
Input IDs, Output Variables, Output IDs, and Local Variables.

All the extracted information about the POU and Blocks in
the XML Analyzer module of PyLC are to be used in the next
translation step, to implement the functions and FBD network.

Listing 1. The Abstracted Pseudo-Code for PyLC XML Analyzer Module to
Extract Useful Info from a PLCopen XML Tree

1 Load XML f i l e ’ FBD Program . xml ’
2 Get r o o t e l e m e n t ’ r o o t ’
3 D ef in e namespaces ’ ns ’ a s { ’ p l c o p e n ’ : ’PLC Namespace ’ , ’

xh tml ’ : ’PLC Namespace ’}
4 Open ’ f i l e . py ’ f o r w r i t i n g
5 Wri te ” i m p o r t xml . e t r e e . E lemen tTree as ET\n\n ”
6 @For{each ’ pou ’ i n r o o t . f i n d a l l (’ . / /\{PLC Namespace\}pou ’)

} :@
7 Get ’ pou name ’ from ’ name ’ a t t r i b u t e o f ’ pou ’
8 Get ’ pou type ’ from ’ pouType ’ a t t r i b u t e o f ’ pou ’
9 I n i t i a l i z e empty l i s t ’ i n p u t v a r s ’

10 @For{each ’ v a r ’ i n pou . f i n d a l l (’ . / /\{PLC Namespace\}
i n p u t V a r s /\{PLC Namespace\} v a r i a b l e ’) } :@

11 Get ’ inpu t name ’ from ’ name ’ a t t r i b u t e o f ’ v a r ’
12 Get ’ i n p u t t y p e ’ from ’ t y p e ’ t a g w i t h i n ’ v a r ’
13 Append ”{ inpu t name } :{ i n p u t t y p e}” t o ’ i n p u t v a r s ’
14 @EndFor@
15 I n i t i a l i z e empty l i s t ’ i n p u t i d s ’
16 @For{each ’ v a r ’ i n pou . f i n d a l l (” . / / { PLC Namespace}

i n V a r i a b l e ”) } :@
17 Get ’ e x p r e s s i o n ’ from ’ e x p r e s s i o n ’ t a g w i t h i n ’ v a r ’
18 Get ’ l o c a l i d ’ from ’ l o c a l I d ’ a t t r i b u t e o f ’ v a r ’
19 Append { ’ E x p r e s s i o n ’ : e x p r e s s i o n , ’ I n V a r i a b l e ’ : ’

l o c a l i d ’} t o ’ i n p u t i d s ’
20 @EndFor@
21 % . . . (s i m i l a r s t e p s f o r ’ o u t p u t v a r s ’ , ’ o u t p u t i d s ’ , ’

l o c a l v a r s ’)
22 @For{each ’ b l o c k ’ i n r o o t . f i n d a l l (’ . / / p l c o p e n : b l o c k ’ ,

ns) } :@
23 Get ’ B l o c a l i d ’ from ’ l o c a l I d ’ a t t r i b u t e o f ’ b l o c k

’
24 G e n e r a t e ’ B dic t name ’ l i k e ”B1” , ”B2” , e t c .
25 Get ’ B type name ’ from ’ typeName ’ a t t r i b u t e o f ’

b l o c k ’
26 % . . . (s i m i l a r s t e p s f o r ’ B p o s i t i o n ’)
27 I n i t i a l i z e empty l i s t ’ B i n p u t v a r s ’
28 @For{each ’ i n p u t v a r ’ i n b l o c k . f i n d a l l (’ . / / p l c o p e n :

i n p u t V a r i a b l e s / p l c o p e n : v a r i a b l e ’ , ns) } :@
29 Get ’ i n p u t l o c a l i d ’ from ’ r e f L o c a l I d ’

a t t r i b u t e o f ’ i n p u t v a r ’
30 Append ’ i n p u t l o c a l i d ’ t o ’ B i n p u t v a r s ’
31 @EndFor@
32 % . . . (s i m i l a r s t e p s f o r ’ B var fo rmal param ’ , ’

B c o n n p o i n t i n ’ , ’ B c o n n r e f l o c a l i d ’)
33 Wri te i n f o r m a t i o n a b o u t b l o c k i n t o ’ f i l e . py ’ u s i n g

t h e g e n e r a t e d v a r i a b l e s
34 @EndFor@
35 @EndFor@
36 Wri te i n f o r m a t i o n a b o u t POU i n t o ’ f i l e . py ’
37 Close ’ f i l e . py ’

2) Step 2 - Python Code Generator: The Python Code
Generator unit of the PyLC workflow (Step 2 in Figure 3)
parses the extracted POU/Block information in the last step
to transform the FBD code into an executable Python code
by generating the required Python functions. These functions
call each other based on the existing block execution order in
the FBD network of the original PLC program. This process
demands considering numerous details including supporting
different Block types in FBD, analyzing the network between
the elements using their network ID, converting the PLC
data types to the equivalent or similar data types in Python,
and finally, implementing Inputs/Outputs (I/O) in their right
position. A snippet of the pseudo-code that we used for

No. Block Category FBD Block

1 Logic Blocks
(LOG)

AND, OR, XOR, NOT,
NAND, NOR

2 Comparator Blocks
(COMP) EQ, NE, GT, GE, LT, LE

3 Timers and Counter Blocks
(TIM) TON, TOF, TP, CTU, CTD

4 Mathematical Blocks
(MATH)

ADD, SUB, MUL, DIV,
MOD,EXP, SQRT

5 Function Blocks
(FB) SR, RS, MUX, DEMUX

6 Special Blocks
(SPC)

AND/OR Selector, OSR, Edge Detection,
Latch, and Unlatch.

TABLE I
THE LIST OF THE SUPPORTED FBD BLOCKS IN THE PYLC AUTOMATED

TRANSLATION FRAMEWORK

developing the PyLC Code Generator Module is shown in
Listing 2.

Based on our proposed PLC to Python translation rules
and translation workflow [7], PyLC automatically generates
one main function for the POU with POU inputs as input
arguments (Lines 17-21 in Listing 2). Then, inside this main
function, it generates one or several Python sub-functions that
correspond to each Block type in the FBD program under
translation (e.g. TON, AND, XOR) (Lines 22-59 in Listing 2).
Next, these main and sub-functions are connected to each
other based on the existing FBD network in the original FBD
program. It is worth mentioning that PyLC leverages Python’s
Abstract Syntax Tree (AST) module to parse and manipulate
Python code as a tree-like data structure which allows us to
perform various dynamic transformations and modifications
on the generated code such as modifying the function body
of the TON block (Lines 22-46 in Listing 2) and converting
the variable data types from PLC to Python (Lines 60-62 in
Listing 2).

PyLC automated translation framework supports all four
main operators of the IEC 61131-3 standard based on their
definition in the standard handbook [1]. In other words,
we consider several default templates for the IEC 61131-3
operators in the Python code generator module of PyLC (Lines
22-57 in Listing 2). In case PyLC identifies a specific type of
operator in the PLC program under translation, it automatically
generates a corresponding Python sub-function for it in the
generated Python code (Step 2 in Figure 3). The list of the
supported IEC61131-3 standard FBD Blocks based on their
category in the PyLC framework is shown in Table I.

The network of PLC program blocks, according to
IEC61131-3, is a way of structuring the software development
for industrial control systems, aiming to improve the software
code’s quality, reusability, maintainability and documentation
[1]. Correct identification of the existing network between
the Blocks in the PLC program being translated is crucial
when converting a PLC program to Python. This information
serves two main purposes: establishing the execution order
of the blocks in the translated PLC program in Python, and
implementing the inter-block connections. To address this,
PyLC features an FBD network analyzer that extracts the
Position, Local ID, Network ID, and Connection information
of each block in the PLC program being translated (refer to
Step 1 - Block section in Figure 3). With this FBD network
information at its disposal, PyLC can recreate the network
among various elements from the original PLC program in its
Python translation.

In the process of translating an FBD program into Python,
connecting the Inputs/Outputs (I/O) to the correct units is a

must. To implement this properly, PyLC tags each I/O with
their corresponding ID in the PLC program being translated
(refer to Step 1 - Block section in Figure 3) and stores this
information in the shape of a Python dictionary during the
translation process. Finally, PyLC renames all the I/O elements
to their correct name in the original PLC program by mapping
their ID to the related name using the stored information in
the previously mentioned Python dictionary.

Considering the different data type expressions in PLC
and Python and having some non-existing PLC data types in
Python (e.g. TIME), proper type conversion is a crucial task
in the FBD to Python translation process. To this end, the
Type Conversion unit of PyLC identifies each I/O type based
on the extracted information from the PLC open XML tree
(refer to Step 1 - Block section in Figure 3) and converts it
to either equivalent or similar data type in Python (Lines 60-
61 in Listing 2). In the case of common data types in both
languages such as BOOL or INT, PyLC transforms them to
the equivalent data type in Python which are bool and int
in this example respectively. In the case of facing a non-
existing PLC data type in Python, PyLC does the automatic
data type transformation by transforming the PLC-specific data
type to the most similar data type in Python (e.g. TIME to int).
This attribute greatly benefits tools like Pynguin, an automated
Python test generator, by preventing the creation of incorrect
data types for inputs. This, in turn, reduces the potential for
Python compilation errors.

To simulate the cyclic execution behaviour of the PLC
programs in the translated code, the PyLC Code Generator
module generates a separated Python function that executes
the code cyclically for a certain number of times by using the
assistance of Python’s time module. both the execution cycle
time and the number of executions are editable by the user.
Moreover, this cyclic execution function receives new inputs
from the user for each execution cycle and transforms the re-
ceived inputs from string to their right data type automatically
(e.g. str-to-bool, str-to-int). This function is excluded from the
pseudo-code to save space but it is visible in the translation
example in Section III-B (Lines 12-28 in Listing 5).

Listing 2. The Abstracted Pseudo-code for Python Code Generation Module
of PyLC

1 i m p o r t Python modules (sys , t ime , i n s p e c t , a s t)
2 s y s . p a t h . append (’ . ’)
3 i m p o r t generated code from XML
4 b l o c k s = [o b j f o r name , o b j i n v a r s (generated code from XML

) . i t e m s () i f name . s t a r t s w i t h (’B ’)]
5 POU = generated code from XML .POU
6 t y p e c o u n t = {}
7 @for{b l o c k i n b l o c k s } :@
8 type name = b l o c k [’ typeName ’]
9 @if{ type name i n t y p e c o u n t } :@

10 t y p e c o u n t [type name] += 1
11 @else@ :
12 t y p e c o u n t [type name] = 1
13 i n p u t v a r t y p e s = POU[’ i n p u t v a r s ’]
14 e x p r e s s i o n t o t y p e = {}
15 @for{ i n p u t i d i n POU[’ i n p u t i d s ’]} :@
16 e x p r e s s i o n t o t y p e [i n p u t i d [’ E x p r e s s i o n ’]] =

i n p u t v a r t y p e s . s p l i t (’ : ’) [1]
17 genera ted code f rom XML st r = ”””
18 i m p o r t t ime
19 i m p o r t s y s

20 d e f {POU[’ pou name ’]} ({ ’ , ’ . j o i n [i n p u t i d [’ I n V a r i a b l e ’] .
s t r i p () + ’ : ’ + e x p r e s s i o n t o t y p e [i n p u t i d [’ E x p r e s s i o n
’]] i f i n p u t i d [’ E x p r e s s i o n ’] i n e x p r e s s i o n t o t y p e
e l s e i n p u t i d [’ I n V a r i a b l e ’] . s t r i p () f o r i n p u t i d i n POU
[’ i n p u t i d s ’]]}) :

21 ”””
22 @for{b l o c k i n b l o c k s } :@
23 @if{b l o c k [’ typeName ’] == ’TON’ } :@
24 g e n e r a t e d c o d e s t r += ”””
25 i m p o r t t ime
26 s t a t e = { ’Q ’ : F a l s e , ’ET ’ : 0 , ’ i s a c t i v e ’ : F a l s e , ’

l a s t u p d a t e t i m e ’ : t ime . t ime () }
27 d e f u p d a t e () :
28 c u r r e n t t i m e = t ime . t ime ()
29 e l a p s e d t i m e = c u r r e n t t i m e − s t a t e [’

l a s t u p d a t e t i m e ’]
30 i f V {b l o c k [’ i n p u t V a r i a b l e s ’] [0]} :
31 i f n o t s t a t e [’ i s a c t i v e ’] :
32 s t a t e [’ i s a c t i v e ’] = True
33 s t a t e [’ ET ’] = 0
34 s t a t e [’ l a s t u p d a t e t i m e ’] =

c u r r e n t t i m e
35 s t a t e [’ ET ’] += e l a p s e d t i m e
36 i f s t a t e [’ ET ’] >= V 20000000003 :
37 s t a t e [’Q ’] = True
38 e l s e :
39 s t a t e [’Q ’] = F a l s e
40 s t a t e [’ ET ’] = 0
41 s t a t e [’ i s a c t i v e ’] = F a l s e
42 u p d a t e ()
43 V {b l o c k [’ b l o c k l o c a l I d ’]} = s t a t e [’Q ’]
44 r e t u r n V {b l o c k [’ b l o c k l o c a l I d ’]}
45 ”””
46 @endif@
47 @else@ :
48 # Handle o t h e r Time b l o c k s s i m i l a r l y (e . g . TOF , TP)
49 @endif@
50 @else@ :
51 @if{b l o c k [’ typeName ’] == ’XOR’ } :@
52 i n p u t v a r i a b l e s = [f ”V {v a r . r e p l a c e (’ ’ , ’ ’)}”

f o r v a r i n b l o c k [’ i n p u t V a r i a b l e s ’]]
53 g e n e r a t e d c o d e s t r += f ”V { r e s u l t v a r } = { ’ ˆ

’ . j o i n (i n p u t v a r i a b l e s)}\n ”
54 @endif@
55 @else@ :
56 # Handle o t h e r b l o c k t y p e s s i m i l a r l y (e . g . AND)
57 @endif@
58 g e n e r a t e d c o d e s t r += f ”V {b l o c k [’ b l o c k l o c a l I d ’]}

= {subfunc name }(V { ’ , V ’ . j o i n ([v a r . r e p l a c e (’
’ , ’ ’) f o r v a r i n b l o c k [’ i n p u t V a r i a b l e s ’]]) }) ”

59 @endfor@
60 # Using AST t o c o n v e r t t h e d a t a t y p e s i n g e n e r a t e d code
61 g e n e r a t e d c o d e s t r = g e n e r a t e d c o d e s t r . r e p l a c e (’BOOL’ , ’

boo l ’) . r e p l a c e (’TIME ’ , ’ i n t ’) . r e p l a c e (’ INT ’ , ’ i n t ’) .
r e p l a c e (’STRING ’ , ’ s t r ’) . r e p l a c e (’CHAR’ , ’ s t r ’) . r e p l a c e
(’WCHAR’ , ’ s t r ’) . r e p l a c e (’WSTRING ’ , ’ s t r ’)

62 # Wr i t e t h e g e n e r a t e d code t o a f i l e
63 wi th open (’ g e n e r a t e d c o d e 1 . py ’ , ’w’) a s f i l e :
64 f i l e . w r i t e (g e n e r a t e d c o d e s t r)
65 # Using AST t o s i m p l i f y and o p t i m i z e code
66 i n p u t f i l e = ’ g e n e r a t e d c o d e 2 . py ’
67 o u t p u t f i l e = ’ g e n e r a t e d c o d e 3 . py ’
68 r e m o v e r e d u n d a n t i n p u t a r g s (i n p u t f i l e , o u t p u t f i l e)
69 t r e e = a s t . p a r s e (open (o u t p u t f i l e) . r e a d ())
70 f o r node i n a s t . walk (t r e e) :
71 r e m o v e r e d u n d a n t l o o p v a r i a b l e s (node)
72 u p d a t e d c o d e = a s t . u n p a r s e (t r e e)
73 wi th open (o u t p u t f i l e , ’w’) a s o u t p u t f i l e :
74 o u t p u t f i l e . w r i t e (u p d a t e d c o d e)

3) Step 3 - Meta-heuristic Test Generation: Validating the
correctness of the translated FBD code into Python using
the PyLC framework is essential to guarantee the correct
behaviour of the translated code. To this end, PyLC leverages
automated meta-heuristic testing with the assistance of the
Pynguin test generator (step 3 in Figure 3). To be more
specific, the translated PLC code in Python in the previous step
is imported to the Pynguin test generator to apply both search-
based testing and mutation analysis on the code using the

Fig. 4. A Snippet of The Pynguin Test Generator Processing a Translated
PLC program into Python using the PyLC Automated Translation Framework

DYNAMOSA algorithm with an up limit testing time of 1200
seconds. After generating and executing the meta-heuristic test
cases on the translated PLC program into Python, we investi-
gate the test result metrics such as branch coverage, generated
mutants, survived mutants, instantiated fitness function and so
on to measure the applicability and efficiency of using Pynguin
in terms of validating the translated PLC programs using the
PyLC tool. The generated test cases in this phase are saved to
be used in the next stages of PyLC translation. A snippet of
the Pynguin live log while generating test cases for a translated
PLC program is shown in Figure 4.

4) Step 4 - Test Execution: To ensure that the translated
PLC program behaves as its original PLC program twin, we
need to execute the same test cases on the original PLC
program to investigate if they produce the same outputs or
not (step 4 in Figure 3). To this end, we import the generated
meta-heuristic test cases of the last step into the CODESYS
Test Manager tool to be automatically executed on the original
PLC program in the PLC development environment. Then we
collect and store the test execution results for the next step of
the PyLC translation framework.

5) Step 5 - Translation Validation: To validate the cor-
rectness of the translated FBD program into Python in the
PyLC tool, we need to compare the test execution results on
both PLC and Python versions of the PLC program under
translation to see whether they correspond to each other or
not (step 5 in Figure 3). In case the test execution results on
the translated code into Python using PyLC generate the same
test execution results on the PLC version of the program, the
PLC program is successfully translated and validated using the
proposed translation framework, otherwise, the translation is
considered not valid.
B. PyLC Translation Example

To provide a clearer picture of how PyLC automated PLC
to Python translation framework works, we provide a running
example in this section which is shown in Figure 1. To prepare
the target PLC program (PRG9) for translation, first, we need
to export it as a PLC Open XML file. A snippet of part of the
XML file for PRG9 is shown in listing 3.

Listing 3. Part of the PLC Open XML Tree of PRG9 PLC Program
1 <?xml version="1.0" encoding="utf-8"?>
2 <project xmlns="http://www.plcopen.org/xml/tc6_0200">
3 <fileHeader companyName="" productName="CODESYS"

productVersion=
4 "CODESYS V3.5 SP16" creationDateTime="2023-08-14T13

:43:53.0957274" />
5 <contentHeader name="" modificationDateTime="2023-08-14

T13:43:13.5176598...">
6 <types>
7 <dataTypes />

8 <pous>
9 <pou name="PRG9" pouType="functionBlock">

10 <interface>
11 <inputVars>
12 <variable name="f_X">
13 <type>
14 <INT />
15 </type>
16 </variable>
17 <variable name="f_Module_Error">
18 <type>
19 <BOOL />
20 </type>
21 </variable>
22 <variable name="f_Channel_Error">

The first step toward translation is to import the PLC
open XML file of the FBD program into the PyLC XML
analyzer module to automatically extract the information about
the existing POU(s) and Blocks in the PLC program under
translation (Step 1 in Figure 3). Part of the results of applying
the PyLC XML Analyzer module on PRG9 is shown in Listing
4. As shown in the Listing 4, the extracted information from
the XML tree using the PyLC XML analyzer module is
classified based on the Blocks (B1-B7) and POU.
Listing 4. Part of Extracted Information from PRG9 FBD Program using
PyLC XML Analzer Module

1 POU = {’pou_name’: ’PRG9’,
2 ’pou_type’: ’functionBlock’,
3 ’input_vars’: [’f_X:INT’, ’f_Module_Error:BOOL’, ’

f_Channel_Error:BOOL’, ’th_X_Logic_Trip:BOOL’],
4 ’input_ids’: [{’Expression’: ’f_X’, ’InVariable’: ’

10000000001’}, {’Expression’: ’k_X_Min’, ’
InVariable’: ’ 10000000002’}, {’Expression’: ’f_X’,
’InVariable’: ’ 10000000004’}, {’Expression’: ’

k_X_Max’, ’InVariable’: ’ 10000000005’}, {’
Expression’: ’f_Module_Error’, ’InVariable’: ’
10000000009’}, {’Expression’: ’f_Channel_Error’, ’
InVariable’: ’ 10000000011’}, {’Expression’: ’
th_X_Logic_Trip’, ’InVariable’: ’ 10000000012’}],

5 ’output_vars’: [’th_X_Trip:BOOL’],
6 ’output_ids’: [{’Expression’: ’th_X_Trip’, ’OutVariable

’: ’ 10000000015’}],
7 ’local_vars’: [’k_X_Min:BOOL’, ’k_X_Max:BOOL’]}
8 B1 = {’pou_name’: ’Nuclear_plant’,
9 ’block_localId’: ’10000000003’,

10 ’typeName’: ’GE’,
11 ’position’: {’x’: ’0’, ’y’: ’0’},
12 ’inputVariables’: [’10000000001’, ’10000000002’],
13 ’variableFormalParameter’: [’In1’, ’In2’, ’Out1’],
14 ’connectionPointIn’: [’connectionPointIn’, ’

connectionPointIn’],
15 ’connectionRefLocalId’: [’10000000001’, ’10000000002’]}
16 #Similar information is extracted for Blocks B2-B7

The second step in the PyLC translation workflow is to im-
port the extracted information from the PRG9 XML tree into
the PyLC Code Generator module to automatically generate
an executable translated Python code out of it (step 2 in Figure
3). We show part of the resulting generated Python code for
PRG9 using the PyLC translation framework in Listing 5.
Listing 5. Part of Generated Translated Python Code for PRG9 using the
PyLC framework

1 import time
2 def PRG9(f_X: int, k_X_Min: int, k_X_Max: int,

f_Module_Error: bool, f_Channel_Error: bool,
th_X_Logic_Trip: bool):

3 def GE(f_X, k_X_Min):
4 V_10000000003 = f_X >= k_X_Min
5 return V_10000000003
6 V_10000000003 = GE(f_X, k_X_Min)
7 def LE(f_X, k_X_Max):
8 V_10000000006 = f_X <= k_X_Max
9 return V_10000000006

10 #Similar sub-functions for other existing FBD Blocks
11 return f’10000000015:{V_10000000015}’
12 def run_cyclically():

13 def str_to_bool(s):
14 return s.lower() in (’true’, ’t’, ’1’)
15 def str_to_int(s):
16 try:
17 return int(s)
18 except ValueError:
19 print(’Invalid input. enter a valid integer.’)
20 return None
21 for i in range(5):
22 print(f’Iteration {i + 1}’)
23 f_X = str_to_int(input(f’Value for f_X? (bool): ’))
24 #Similar steps for all other inputs (e.g. k_X_Min)
25 result = PRG9(f_X, k_X_Min, k_X_Max, f_Module_Error

, f_Channel_Error, th_X_Logic_Trip)
26 print(’Result:’, result)
27 time.sleep(3)
28 run_cyclically()

As it can be observed in Listing 5, PyLC generates a main
Python function for the main POU which includes the main
inputs of the FBD program as function arguments (Line 2 in
Listing 5). Moreover, PyLC includes several sub-functions in
this code, based on their order of execution in the original FBD
program (Lines 3-10 in Listing 5). Each of these sub-functions
represents the behaviour of the corresponding Block inside the
original PLC program. The FBD network is also realized by
tagging the I/O with their corresponding Network ID and is
indicated with a prefix of ’V ’ (e.g. V 10000000003). Finally,
PyLC returns the final output of the FBD program as the return
value of the main Python function (Line 11 in Listing 5).

To implement the cyclic behaviour of the PLC program,
PyLC’s cyclic execution simulator feature executes the PRG9
5 times every 3 seconds and for each iteration it receives new
input values from the user (Lines 12-28 in Listing 5).
IV. AUTOMATED VALIDATION OF THE TRANSLATED CODE

USING META-HEURISTIC ALGORITHMS

In this study, we use the DYNAMOSA algorithm [16] as the
selected meta-heuristic algorithm for validating the correctness
of the translated PLC program into Python.

1) DYNAMOSA Algorithm: The integration of DY-
NAMOSA in Pynguin enables diverse and effective test-case
generation, enhancing software fault detection and quality.
DYNAMOSA merges genetic algorithms and local search, by
iteratively exploring the software’s search space for optimal
test cases. In this work, we adopt Pynguin’s DYNAMOSA
due to its multi-objective optimization, while also considering
goals like code coverage, execution time, and fault detec-
tion [16]. This empowers Pynguin to efficiently create well-
balanced test cases.

2) Translation Validation Procedure in PyLC: To ensure
the accurate translation of PLC programs to Python, we
employ the Pynguin test generator tool [8]. Specifically, once
a PLC program is converted into executable Python code, this
translated code is then input into Pynguin. The tool serves
two primary purposes: (i) it generates and executes meta-
heuristic test cases, and (ii) it performs mutation analysis on
the translated PLC program into Python (as depicted in Step
3 of Figure 3).

Following this, the test execution results for each translated
PLC program are recorded from the Pynguin tool. As a
next step, we manually create identical test cases for the
corresponding original PLC programs using the CODESYS

Test Manager tool within the PLC environment. Subsequently,
we compare the outcomes from executing these test cases
in both the PLC and Python environments. This is done to
ascertain whether they yield consistent expected outputs. In
the PyLC translation framework, a PLC program’s translation
into Python is deemed valid only if it successfully clears this
validation stage (as illustrated in Step 4 of Figure 3).

V. RESULTS

A. Experimental Setup
In our experimental setup, we primarily focus on two main

programming environments. Firstly, in the PLC environment,
we employ the CODESYS V3.5 SP16 as our IDE and utilize
the CODESYS Test Manager for automation testing. Secondly,
for the Python environment, we turn to Pycharm V17.0.6 as
our chosen IDE. To facilitate automated testing, we make use
of the Pynguin v0.32.0 tool. For our meta-heuristic testing
strategy within this setup, we’ve adopted the DYNAMOSA
algorithm. The tests run with a maximum time budget of 20
minutes. To refine our approach further, we use the Tourna-
ment Selection as our selection function, Single Point Relative
Crossover for crossover, and Rank-Based Preference Sorting
for ranking.

B. RQ1-Automated Translation from PLC to Python

To demonstrate the applicability and efficiency of the pro-
posed translation framework, we translate ten different real-
world PLC programs using the PyLC framework. The detailed
list of the included FBD programs in this study is shown
in Table II. Most of these PLC programs are used in the
context of supervising industrial control systems developed by
an automation company in Sweden. In contrast, the remaining
ones are implemented in a nuclear plant. As depicted in Table
II, all the considered PLC programs are developed in the FBD
language and vary in size and complexity.

After applying the PyLC framework to these PLC programs
and examining the information provided in Table II, we can
draw several conclusions. First, the FBD programs selected
for translation encompass a variety of FBD block types, as
detailed in Section II. This diversity highlights the extensive
block support offered by PyLC. Second, the PyLC translation
process is swift, with an average translation time of just 0.74
seconds. We conclude that the size of the FBD program being
translated, specifically the number of blocks, can influence the
translation efficiency. Larger PLC programs, like PRG4 and
PRG7, tend to have marginally longer translation times.

Results-RQ1: The PyLC framework demonstrates the
capability for translating efficiently an array of industrial
FBD programs, characterized by diverse block types, into
Python code.

Overall, the collected results underline the potential and ef-
fectiveness of the PyLC translation framework in converting
FBD-based PLC programs into executable Python code. This
not only opens avenues for utilizing Python’s capabilities

PRG
Name

No. of
Branches

No. of
Blocks

Included
Block Types

LOC in
Python

Translation
Time (s)

PRG1 12 4 LOG/TIM 80 0.7
PRG2 14 5 LOG/TIM/FB/SPEC 91 0.8
PRG3 6 3 LOG 50 0.5
PRG4 16 13 LOG/COMP 132 1.1
PRG5 3 1 MATH 22 0.4
PRG6 3 1 MATH 20 0.5
PRG7 16 13 LOG/COMP 100 1
PRG8 4 2 COMP 80 0.7
PRG9 8 7 LOG/COMP 77 0.6

PRG10 10 1 LOG 51 0.5
TABLE II

INFORMATION REGARDING THE TRANSLATED PLC PROGRAMS (PRG) IN
FBD LANGUAGE INTO PYTHON USING PYLC

within industrial automation but also offers a systematic ap-
proach to bridge the gap between PLC programming languages
and general-purpose languages like Python.
C. RQ2-Evaluation and Validation of Translation in an Indus-
trial Context

To assess the correctness and validity of the PyLC trans-
lation framework within an industrial setting, we translate
ten real-world industrial PLC programs into Python, as de-
tailed in the previous section. Subsequently, we utilize the
Pynguin meta-heuristic test generator [8] to generate search-
based test cases for the PLC programs translated using the
PyLC framework. After collecting the test generation and
execution results from Pynguin, we introduce the same test
cases into the PLC environment for execution on the original
PLC program within the CODESYS IDE. We then compare
the test execution outcomes in both environments to determine
the validity of the code translation from PLC to Python.
The results of the automated meta-heuristic testing for the
included PLC programs using Pynguin are presented in Table
III. The evaluation of the translated Python code involved the
instantiation of fitness functions, iteration counts, search time,
mutant generation, and mutant survival rates. These metrics
collectively provide insights into the efficiency, effectiveness,
and coverage of the translation and testing processes.

Based on the results of the automated meta-heuristic testing
of PLC programs translated into Python using the PyLC
framework, as detailed in Table III, several conclusions can
be drawn. First, PLC programs that incorporate Timer blocks,
such as PRG1 and PRG2, require more mutants, iterations, and
increased search time due to the complexity that they intro-
duce. Second, Pynguin managed to achieve complete branch
coverage for eight out of ten evaluated PLC programs. The
average branch coverage for all the PLC programs assessed in
this study is 98.84%, suggesting strong compatibility between
the Pynguin test generator and the proposed PyLC translation
framework. Third, when examining PLC programs without
Timer blocks, like PRG3 to PRG10, Pynguin’s performance is
notably swift, with an average search time of 1.6 seconds. In
contrast, with PLC programs containing Timer blocks, there
is a significant surge in search time, causing the test generator
to reach its predefined search time limit of 1200 seconds.

The results indicate a diverse spectrum of outcomes across
the different PLC programs. Notably, the number of instanti-
ated fitness functions varies, suggesting the complexity of each
program’s behavior. Iteration counts varies as well, implying
differing degrees of convergence in the optimization process.
Search time, representing the duration of test generation,
shows a consistent time allocation of 1200 seconds per pro-
gram, which facilitates a controlled evaluation environment.

Mutant generation and survival rates reveal intriguing pat-
terns. While the number of generated mutants varies, in-
dicating the diversity of test scenarios explored, the count
of surviving mutants sheds light on the robustness of the
translated Python code. The variations in the surviving mutants
might be attributed to the specifics of each program’s logic and
the efficacy of the translation framework.

The assessment of test cases and verdicts provides insights
into the quality of the translated Python code’s behaviour.
Verdicts, ranging from 1 to 6, denote the number of tests
that have passed, highlighting the correctness of the translated
code. Coverage metrics, including overall coverage, covered
branches, and covered branchless code objects, showcase the
comprehensiveness of the test suite in exercising different
aspects of the translated code.

The experimental results demonstrate the viability and ef-
fectiveness of the PyLC translation framework in transforming
FBD programs into executable Python code. The subsequent
testing using the Pynguin test generator enables the generation
of diverse test scenarios and the evaluation of the translated
code’s behaviour. The varying outcomes across different PLC
programs underscore the significance of program-specific char-
acteristics in the translation and testing processes. The insights
garnered from this study contribute to the advancement of
automated PLC testing methodologies, via the PLC-to-Python
translation.

In our goal to ascertain the accuracy of the translation,
we test the generated Python code, by utilizing meta-heuristic
testing, and record the test execution outcomes for each trans-
lated program using the Pynguin tool. Subsequently, we import
these test cases into the PLC environment to execute them on
the original PLC programs, aiming to discern congruence in
their results. Upon automated execution of the acquired test
cases on the original PLC programs (ranging from PRG1 to
PRG10) via the CODESYS Test Manager, we observe that the
test cases generated in the Python environment yield identical
results when executed on the original PLC programs within
the CODESYS IDE. This consistency shows the efficacy and
correctness of the PLC-to-Python translations facilitated by
our proposed PyLC framework.

Results-RQ2: The PyLC translation framework, aided
by Pynguin, generates test cases efficiently, attaining an
average branch coverage of 98% across ten distinct real-
world industrial PLC programs.

D. Limitations, Threats to Validity, and Discussion

Our PyLC method effectively automates the transformation
and validation of PLC programs. However, the selected pro-
grams might not be fully representative, potentially affecting
our experiment’s validity, even though they differ in charac-
teristics and sizes. In terms of datatype transformations from
PLC to Python, as discussed in Section II-F, some PLC data
types in the IEC61131-3 standard lack equivalents in Python.
We have mapped these to the closest Python counterparts,
potentially affecting validity in certain instances. In terms of

PLC
Program

Instantiated
Fitness

functions
Iterations Search

Time (s)
Generated
Mutants

Surviving
Mutants

Test
cases Verdict Coverage Covered

Branches

Branchless
code objects

covered
PRG1 16 6042 1200 58 25 4 3/4 93.75 12 4/4
PRG2 19 5080 1200 43 25 4 4/4 94.74 13/14 5/5
PRG3 8 1 1 7 4 2 1/2 100 6/6 2/2
PRG4 24 1 4 23 15 9 5/9 100 16/16 8/8
PRG5 3 1 1 5 2 1 1/1 100 3/3 0/0
PRG6 3 1 1 5 5 1 1/1 100 3/3 0/0
PRG7 24 1 3 23 17 4 4/4 100 16/16 8/8
PRG8 6 1 1 6 3 2 2/2 100 4/4 2/2
PRG9 13 1 2 12 7 4 3/4 100 8/8 5/5

PRG10 12 1 1 5 2 6 6/6 100 10/10 2/2
TABLE III

INFORMATION REGARDING AUTOMATED TESTING OF THE TRANSLATED REAL-WORLD PLC PROGRAMS TO PYTHON USING THE PYNGUIN TOOL

time-related data types and blocks in FBD that do not exist
in Python (e.g.TON, TOF, TP), we simulate the behaviour of
the time-related data types and blocks in Python by using the
Python Time module. To be more specific, for this behaviour
simulation, first, we transform the TIME data type of FBD into
int in Python. Then we simulate the behaviour of each time-
related block by reading the current system clock and starting
a timer to keep track of the elapsed time. In the next step,
based on the block’s functional requirements in IEC 61131-3,
we check the internal state of the inputs as well as the elapsed
time periodically and update the block output based on this.
Regarding the PLC cyclic execution, it should be noted that
PyLC can simulate the cyclic execution behaviour of the PLC
program in the translated Python code but we found out this
feature is not compatible with the Pynguin test generator and
it stuck in an infinite loop. To solve this problem, we omit
the cyclic execution feature of the translated program which
can be a threat to validity in PLC programs that contain time-
related blocks.
Our emphasis on the FBD in this work arises from several
considerations. Firstly, the conversion of a graphical language
into a textual one, such as Python, poses a greater level
of complexity. Secondly, FBD holds extensive prevalence
within industrial applications. Thirdly, existing research has
already addressed the transformation of ST programs into
Python, obviating the need for redundant efforts. Transforming
a graphical programming language such as FBD into a textual
language like Python without having the predefined FBD
function block operations in Python is another encountered
challenge. To tackle it, we implement/simulate the behaviour
of each existing function block in FBD inside the PyLC
translation framework. Moreover, to implement the graphical
network between the blocks in FBD, first, we tag all the
variables and blocks with their unique ID. Then, we rebuild the
network based on the tags in the shape of the Python function
calls.
The scalability of the proposed automated translation frame-
work and its applicability on large-scale and more complex
PLC programs cannot be concluded in this work and needs
further investigation. Upon reviewing the results of automated
testing for 10 FBD programs using PyLC (refer to Table III),
an interesting trend emerges. It is evident that while the branch
coverage for most programs is commendable, not all generated
mutants were eliminated. This suggests that the automatically
generated assertions by the Pynguin tool might not be entirely
accurate, prompting the need for further investigation.

VI. RELATED WORK

This segment offers a concise outline of research efforts
in leveraging alternative programming languages for program
transformation. It also outlines investigations into automating
testing processes for PLC programs.

A. Program Transformation to Python for Enhanced Features
and Tools

Peterson et al. [17] propose ”F2PY,” a tool automat-
ing Python-Fortran interfaces by transforming FORTRAN to
Python. It prioritizes user-friendliness, compiler independence,
and automated generation of Fortran procedure wrappers.
Xia et al. introduce ”PypeR,” a Python package facilitating
seamless Python-R interaction via pipe communication, en-
hancing subprocess management, memory control, and cross-
platform portability [18]. The package accommodates multiple
R versions, ensures memory-efficient termination of linked
R processes, and boasts pure Python construction for wide
system compatibility. In a related effort, J. Rey et al. present
”PySAL” [19], an open-source Python library for spatial anal-
ysis, built upon ”GeoDA” and ”STARS” packages, discussing
its motivation, design, integration with graphical toolkits, and
future prospects of coupling with alternative front-ends like
”jython,” ”RPy,” and ”ArcGIS” [19].

Prior work focused on translating programming languages
to leverage target languages’ structures. However, automating
FBD to Python conversion, capitalizing on Python’s rich
testing tools, remains unexplored. This study thoroughly inves-
tigates this by analyzing syntactic and conceptual differences
between the languages.

B. Automated Testing of ICS Control Applications

Several academic works have investigated different aspects
of automated testing for PLC programs, aiming to improve
test coverage, detect faults, and ensure the correctness of
control logic. Adiego et al. [20] introduce an automated testing
approach for critical PLC programs using the BIP framework.
This addresses challenges in manual testing, offering early
bug detection and automation benefits. The method transforms
UNICOS programs to BIP models, demonstrated via a water
treatment case study. The study by Tychalas et al. [21]
explores ICS security, focusing on PLC control applications. It
investigates vulnerabilities in PLC binaries and runtime, using
a novel fuzzing framework. The research reveals potential
vulnerabilities in complex binaries and emphasizes the impact
on control system stacks. Some studies explore automated
PLC program testing, including symbolic execution [22] and
runtime verification [23]. He et al. [22] propose STAutoTester,

addressing tool scarcity. The framework combines DSE with
pruning for efficient multi-cycle test data generation and is
evaluated on 21 programs. The work enhances PLC soft-
ware reliability, complementing verification, monitoring, and
testing. Enoiu et al. [24] introduced a tool-driven approach
for safety-critical software written in FBD. Their toolbox,
COMPLETETEST, was evaluated on 157 programs from
Bombardier Transportation AB, demonstrating efficient test
generation and scalability. This research addresses a crucial
need in safety-critical software development, particularly in in-
dustries like railways. The approach, utilizing model-checking
techniques, shows promise in improving FBD program testing.
The evaluation provides valuable insights into its practicality
and performance.

Overall, these academic works demonstrate the ongoing ef-
forts to utilize automated testing techniques for PLC programs.
However, employing automated meta-heuristic testing tech-
niques for PLC programs remains obscure. Our work attempts
to investigate this by transforming FBD PLC programs into
Python.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we have introduced PyLC, a fully automated
PLC to Python framework, which builds on our previous
work [7]. PyLC can import a PLC program, written in FBD,
as a PLCopen XML file, and transform it automatically into
executable Python code. This automated translation framework
consists of two main modules including an automated XML
Analyzer and an automated Python Code Generator. PyLC
supports all the common block types of FBD programs, and
performs very fast without any manual human intervention. We
have demonstrated the applicability and efficiency of PyLC by
applying it to 10 different industrial real-world case studies of
a major automation company in Sweden. The results show
both PyLC’s potential and the translation’s correctness, using
automated meta-heuristic validation assisted by the Pynguin
[8] test automation tool. The validity and correctness of the
translated PLC programs have been assessed via scientifically-
proven testing techniques such as automated meta-heuristic
testing (98.84% coverage) and mutation analysis. The results
of this study show that PyLC can assist the current manual
PLC testing stage of the big automation companies, at the
unit level.

In future work, we aim to conduct a more thorough ex-
amination of the scalability of PyLC by applying it to even
more sophisticated real-world PLC programs. Investigating the
compatibility of timer blocks with Pynguin, adding support for
the translation of PLC programs in ST language, and finally,
enhancing the translation validation mechanism of PyLC with
a Python static verifier are the other future work directions.

ACKNOWLEDGMENT

This work is funded by EU H2020, via the VeriDevOps
project, grant agreement No 957212.

REFERENCES

[1] Iec 61131-3:2013. programmable controllers - part 3: Programming
languages, 2013.

[2] Mikael Ebrahimi Salari, Eduard Paul Enoiu, Wasif Afzal, and Cristina
Seceleanu. Choosing a test automation framework for programmable
logic controllers in codesys development environment. In 2022 IEEE
Int. Conf. on Software Testing, Verif. and Validation Workshops (ICSTW),
pages 277–284. IEEE, 2022.

[3] Klaus Lochmann, Amir Mohammad Alebrahim, Michael Felderer, Ed-
uardo Gómez, and Rudolf Ramler. Automated testing of plc software: A
systematic mapping study. Journal of Systems and Software, 143:45–67,
2018.

[4] Amr Salem and Reinhard Gotzhein. Software testing for safety-critical
systems: Challenges and solutions. In 2016 IEEE 1st Int. WS on Safety
and Security of Intelligent Vehicles (SaSeIV), pages 20–27. IEEE, 2016.

[5] Mark Harman and Phil McMinn. A theoretical and empirical study of
search-based testing: Local, global, and hybrid search. IEEE Transac-
tions on Software Eng., 38(2):427–448, 2012.

[6] Jeff Offutt, Ahmed Abdurazik, and Lori A. Clarke. Mutation testing of
safety-critical software. Software Eng. Journal, 11(6):355–369, 1996.

[7] Mikael Ebrahimi Salari, Eduard Paul Enoiu, Wasif Afzal, and Cristina
Seceleanu. Pylc: A framework for transforming and validating plc
software using python and pynguin test generator. In Proc. of the 38th
ACM/SIGAPP Symp. on Applied Computing, pages 1476–1485, 2023.

[8] Stephan Lukasczyk and Gordon Fraser. Pynguin: Automated unit test
generation for python. In Proc. of the ACM/IEEE 44th Int. Conf. on
Software Eng.: Companion Proc., pages 168–172, 2022.

[9] David M Auslander, Christopher Pawlowski, and John Ridgely. Recon-
ciling programmable logic controllers (plcs) with mechatronics control
software. In Proc. of the 1996 IEEE Int. Conf. on Control Applications,
pages 415–420. IEEE, 1996.

[10] Michael Tiegelkamp and Karl-Heinz John. IEC 61131-3: Programming
industrial automation systems, volume 166. Springer, 2010.

[11] Jan Hanssen, Jonas Jensen, and Anders Olsen. Model-based testing of
programmable logic controller programs. Journal of Ind. Automation,
2015.

[12] Dag H. Hanssen. Function Block Diagram (FBD), pages 157–179. John
Wiley & Sons, Ltd, 2015.

[13] E Blanco Viñuela, M Koutli, T Petrou, and J Rochez. Opening the floor
to plcs and ipcs: Codesys in unicos. ICALEPCS13, San Francisco, USA,
2013.

[14] Markus Simros, Martin Wollschlaeger, and Stefan Theurich. Program-
ming embedded devices in iec 61131-languages with industrial plc tools
using plcopen xml. In CONTROLO’2012, 2012.

[15] Yuxuan Liu, Zhenbang Wang, Ji Zhang, and Yang Liu. Data flow testing
for plc programs via dynamic symbolic execution. In 2021 28th Asia-
Pacific Software Eng. Conf. (APSEC), pages 123–132. IEEE, 2021.

[16] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Au-
tomated test case generation as a many-objective optimisation problem
with dynamic selection of the targets. IEEE Transactions on Software
Eng., 44(2):122–158, 2017.

[17] Pearu Peterson. F2py: a tool for connecting fortran and python programs.
Int. Journal of Computational Science and Eng., 4(4):296–305, 2009.

[18] Xiao-Qin Xia, Michael McClelland, and Yipeng Wang. Pyper, a python
package for using r in python. Journal of Statistical Software, 35:1–8,
2010.

[19] Sergio J Rey and Luc Anselin. Pysal: A python library of spatial
analytical methods. In Handbook of applied spatial analysis: Software
tools, methods and applications, pages 175–193. Springer, 2009.

[20] Borja Fernandez Adiego, Enrique Blanco Vinuela, Jean-Charles
Tournier, Vı́ctor M González Suárez, and Simon Bliudze. Model-based
automated testing of critical plc programs. In 2013 11th IEEE Int. Conf.
on Industrial Informatics (INDIN), pages 722–727. IEEE, 2013.

[21] Dimitrios Tychalas, Hadjer Benkraouda, and Michail Maniatakos.
{ICSFuzz}: Manipulating {I/Os} and repurposing binary code to enable
instrumented fuzzing in {ICS} control applications. In 30th USENIX
Security Symp. (USENIX Security 21), pages 2847–2862, 2021.

[22] Weigang He, Jianqi Shi, Ting Su, Zeyu Lu, Li Hao, and Yanhong Huang.
Automated test generation for iec 61131-3 st programs via dynamic
symbolic execution. Science of Computer Programming, 206:102608,
2021.

[23] Luis Garcia, Saman Zonouz, Dong Wei, and Leandro Pfleger De Aguiar.
Detecting plc control corruption via on-device runtime verification. In
2016 Resilience Week (RWS), pages 67–72. IEEE, 2016.

[24] Eduard P Enoiu, Adnan Čaušević, Thomas J Ostrand, Elaine J Weyuker,
Daniel Sundmark, and Paul Pettersson. Automated test generation using
model checking: an industrial evaluation. International Journal on
Software Tools for Technology Transfer, 18:335–353, 2016.

	Introduction
	Preliminaries
	Programmable Logic Controllers, IEC61131-3, and CODESYS IDE
	Python and Pynguin Test Automation Tool
	Logical Operators in IEC61131-3
	PLCopen XML Tree
	Cyclic Execution
	Data Types in IEC61131-3 and Python

	PyLC: An Automated PLC to Python Translation Framework
	PyLC Translation Workflow
	Step 1 - XML Analyzer
	Step 2 - Python Code Generator
	Step 3 - Meta-heuristic Test Generation
	Step 4 - Test Execution
	Step 5 - Translation Validation

	PyLC Translation Example

	Automated Validation of The Translated Code using Meta-heuristic Algorithms
	DYNAMOSA Algorithm
	Translation Validation Procedure in PyLC

	Results
	Experimental Setup
	RQ1-Automated Translation from PLC to Python
	RQ2-Evaluation and Validation of Translation in an Industrial Context
	Limitations, Threats to Validity, and Discussion

	Related Work
	Program Transformation to Python for Enhanced Features and Tools
	Automated Testing of ICS Control Applications

	Conclusions and Future Work
	References

