
Resource Constrained Test Case Prioritization with Simulated
Annealing in an Industrial Context

Eric Felding
Linköping University
Linköping, Sweden

Per Erik Strandberg
Westermo Network Technologies AB

Västerås, Sweden

Nils-Hassan Quttineh
Linköping University
Linköping, Sweden

Wasif Afzal
Mälardalen University
Västerås, Sweden

ABSTRACT
We need to find an effective prioritization of regression test cases
due to their growing number. This may happen on parallel test
systems and software branches. We compared regression test pri-
oritization approaches against several goals of importance in an
industrial context. We experimentally compared different simulated
annealing approaches, hypothetical ideal and worst prioritizations,
as well as reference prioritizations such as random, historical failure
rate, age, etc. These were evaluated against a heuristic metric that
combines several factors, as well as reference metrics such as failure
count, days since last execution, etc. By simulating resource star-
vation in terms of available time, we found that some approaches
rapidly degraded, e.g., by only prioritizing recently failed tests, the
average number of nights since last execution was about five times
as bad as for a random selection. The simulated annealing approach
with large search space and many iterations came out best for many
metrics. Interestingly, the poorest prioritization was achieved by
aiming at diversity, and the coverage-based prioritization was poor
at finding failures.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
software testing, test case prioritization.

ACM Reference Format:
Eric Felding, Per Erik Strandberg, Nils-Hassan Quttineh, and Wasif Afzal.
2024. Resource Constrained Test Case Prioritization with Simulated An-
nealing in an Industrial Context. In The 39th ACM/SIGAPP Symposium on
Applied Computing (SAC ’24), April 8–12, 2024, Avila, Spain. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3605098.3635971

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SAC ’24, April 8–12, 2024, Avila, Spain
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0243-3/24/04.
https://doi.org/10.1145/3605098.3635971

1 INTRODUCTION
Software (SW) is everywhere and regularly updated in agile devel-
opment processes. Regression testing (RT) is to re-test the SW to
find out if changes introduced bugs. For embedded systems, the
testing should include hardware at some point of the development
process, resulting in a test system. On such test systems, test suites
can take hours or days to run and with frequent SW changes, and
with added test cases, there is not enough time to test everything
for each change. Prioritizing test cases thus becomes an interesting
problem and with it comes the challenge of what factors to consider
and what metrics to optimize.

We investigate the Test Case Prioritization (TCP) problem in
an industrial context characterized by frequent changes: Given a
test suite, the problem is to find the best permutation of test cases
according to a merit function 𝑓 . The function 𝑓 can depend on
many factors, e.g. code coverage, test case diversity, if the test case
has recently been run. The problem of TCP is not new, however its
importance has increased in an industrial environment character-
ized by an iterative and incremental development process. In this
rapidly changing development environment, multiple objectives
are at play and it is not certain which ones are the most valuable.
Our research goal is therefore to explore how different factors
are affected by different prioritizations and if one mathematical
approach can capture many factors.

Industrial Context:WestermoNetwork Technologies AB (West-
ermo) specializes in the development of robust industrial data com-
munication products for industrial domains, such as on-board and
track-side rail, energy distribution, etc. The SW in these products is
theWestermo Operating System (WeOS), an embedded OS based on
GNU/Linux developed by several software teams. WeOS is tested
with a test automation framework developed in-house at Westermo.
Testing is conducted using more than 20 test systems built up of
network topologies with physical devices, see Figure 1. A physical
test system has between 6 and 20 WeOS devices controlled by a PC
running the test framework, which communicates with the devices
over a serial console connection. Many test systems also have de-
vices used to simulate loss of connection, traffic generators, as well
as I/O for powering units on and off.

The rest of the paper is organized as follows. Sec. 2 presents
related work. Sec. 3 introduces metrics and an optimization model.
The design of the case study is in Sec. 4, with data collection in Sec. 5.
Sec. 6 summarizes the results of our analysis. The contributions are
discussed in Sec. 7 and Sec. 8 concludes the paper.

https://doi.org/10.1145/3605098.3635971
https://doi.org/10.1145/3605098.3635971

SAC ’24, April 8–12, 2024, Avila, Spain Eric Felding, Per Erik Strandberg, Nils-HassanQuttineh, and Wasif Afzal

Figure 1: A Westermo test system with a network topology
built up of switches, routers and other peripheral equipment.

2 RELATEDWORK
In previous work, many techniques for solving TCP are proposed;
Khatibsyarbini et al. [17] mention neural networks, greedy heuris-
tics, genetic algorithms, etc. Yoo andHarman [38]mentionweighted
sums, Integer Linear Programming (ILP), meta-heuristics, multi-
objective mathematical optimization, etc. A simple prioritization
is the (additional) greedy approach, where the first test case is the
one with the best value, the second has the second best value and
so forth. If the value of the test cases is their coverage, then using
the standard greedy approach sorts the test cases by how much
each test case covers. This leads to test cases with small coverage
being placed late in the suite. Greedy prioritizations are very fast
and often very good [38].

Another relevant metric is the diversity of test cases. Two test
cases are diverse if the distance between them, with respect to some
metric, is large. Diversity metrics may involve coverage, and they
may sometimes correlate [24]. Haghighatkhah [12] found that TCP
based on diversity works well with a greedy approach. Thomas et
al. [36] use topic models of linguistic data to prioritize test cases.
This stems from the idea that similarly named test cases ought to test
the same thing. Their technique outperforms standard techniques
and has comparative results with history-based approaches.

Test cases need to be prioritized with respect to some metric,
e.g., coverage, human or business importance [14], time since eval-
uation, diversity, interaction testing [38]. The tool currently in use
at Westermo was implemented and evaluated about seven years
ago [34]. The evaluation found that fault-detecting test cases were
located early in the suite, that no test case had systematically been
suppressed and that the need for manual work had been reduced.

If the goal of the test suite is to detect failing tests, then a proxy
metric is needed because the true number of found faults would
only be known if all test cases would be executed each night. Some-
times the focus instead lie on prioritizing test cases that have not
been run for a long time – such a prioritization could target the
time-since-run metric. Various methods for evaluating a prioritized
test suite exist. In their survey, Heleno et al. [5] identify: Average
Percentage of Faults Detected (APFD), the cost-cognizant weighted
APFD (APFDC), relative position, Average Percentage of Statement
Coverage (APSC). Additionally, Khatibsyarbin et al. [17] also dis-
cuss coverage effectiveness and execution time. The most common

evaluation techniques seem to be APFD and APFDC [5, 17]. The
APFD metric can be seen as the area under the curve of a test case
vs. the number of faults detected graph [27].

Metrics for coverage can also be constructed. A special version
is when statements are used and then APSC is achieved. This rea-
soning can be used to construct any APxx metric that would be of
interest. Based on the APFD, APFDC takes into account the cost
and importance of test cases [7]. This prioritizes test cases deemed
severe and de-prioritizes expensive test cases. When both costs and
fault severities are identical, the formula reduces to the formula for
APFD. Elbaum et al. [7] used a greedy heuristics based on severity

cost to
achieve good results. Hemmati [16] maintains that one may want to
maximize the average distance between test cases given a diversity
metric such as the Jaccard distance. Azizi and Do [2] claim that the
most common similarity metric for TCP is the Jaccard distance.

Integer programming for regression testing is explored in pre-
vious work (e.g. by Mirarab et al. [23], Zhang et al. [39], Hao et
al. [13], as well as Fu et al. [11]), and covers constraints such as
limited time, limits in number of test cases to select, etc. As far as
we can tell, these papers do not consider continuous integration
(CI), or multiple heterogeneous test systems.

In CI, SW updates are frequent and developers want rapid feed-
back.Wewere unable to find previous work involvingmathematical
optimization methods for RT and CI, whereas Elbaum et al. [8] and
Spieker et al. [30] have explored other approaches for RT and CI.
A recent survey by Lima and Vergilio [20] states that the area of
RT in CI is very new with most studies published after 2016. Most
of the studies use a history-based approach. The most common
evaluation metrics are time for executing the prioritization method
or the test suite, and APFD or APFDC.

Haghighatkhah [12] found that using historical data is very
effective. When no previous data exists or is limited, one ought to
strive for diversity. Later, one should incorporate test results data,
while still aiming for diversity such that multiple test cases do not
find the same fault. Liang et al. [19] use a lightweight technique
that updates the prioritization whenever SW changes are submitted.
Busjaeger and Xie [3] use machine learning while looking at code
coverage, test script file path similarity, text content similarity,
failure history, and test case age with promising results. Qu et
al. [26], studied what happens when the execution of a test suite is
divided over multiple machines. From a given prioritization, they
split the execution of the suite over multiple test systems. Given
the heterogeneity of test systems in our context this is not directly
applicable for us.

3 METRICS AND OPTIMIZATION MODEL
In order to get an idea of the relevance of metrics used for both
prioritization and evaluation, a survey with eleven open questions
was sent to WeOS developers and testers, asking for factors of im-
portance for regression test prioritization as well as ranking some
pre-defined factors. The survey was completed by six respondents,
which was enough to give us an indication that our metrics for
prioritization and evaluation are relevant. For regression test pri-
oritization, the respondents gave different factors of importance,
such as taking into account previous failures, testing for changes in

Resource Constrained Test Case Prioritization with Simulated Annealing in an Industrial Context SAC ’24, April 8–12, 2024, Avila, Spain

WeOS code as well as in the test framework, testing for basic func-
tionality, for test cases to run at least once a week, to test multiple
subsystems, and for flaky test cases to be prioritised. For ranking of
pre-defined factors, all respondents agreed that prioritising failing
test cases, prioritising test cases that have not been run for several
nights, large coverage of functional areas and prioritising test cases
that target changed WeOS code, is at least ‘valuable’.

The metrics in this paper are either intersystem or intrasystem,
i.e., some look at the whole meta-suite and some instead give a
value for each test system (that is then averaged). E.g., if one night
we find 0 out of 1 fail on test system 𝐴 and 19 out of 19 fails on test
system 𝐵 then we have found 50% of possible fails per test system
and 95% of possible fails in total. Our proposed model aggregates
most metrics into one, such that we may capture as many factors
as possible.

3.1 Metrics
This subsection introduces the metrics used for prioritization.

Fail Count and Percentage: This can be counted as the percentage
of fails detected of all possible. We want to maximize the average
number of fails found per system (#f), average percent of fails found
per system (%fs) and average percent of fails found in total (%ft).

APFD: An intrasystem metric that measures how early fault
revealing test cases are placed. Test cases are sorted by fail-rate.

APFDC: An intrasystemmetric that measures how early in a suite
fault revealing test cases are placed. This metric also involves the
duration of test execution as a cost and prioritizes rapid test cases
before slow ones. The implementation is inspired by Khowala [18].

APTU: To address the issue of fault detection over parallel het-
erogeneous test systems, we propose a metric APTU (Average Per-
centage of Time Used), which cares about the start time of a failing
test case, regardless of the test system.

Age: We use two metrics for age. First, the mean number of days
since the execution of all the test cases in the suite per system
(#dt), a metric where low values are good. Second, we use the mean
number of days since previous execution of the tests that were
executed, (#de), a metric where high values are good in the sense
that we prioritized old test cases.

Coverage: This metric measures how many of the possible func-
tional areas of the SW that are covered by the test cases (cov). We
report the average coverage per test system. At the company, a
functional area could be a feature such as firewall or backup, and
test cases are annotated with the areas they target.

Diversity: Using the mean Jaccard distance1 between all run test
cases, we get an intersystem metric. The diversity (div) metric uses
the system, branch, and areas as elements that can differ.

3.2 Mathematical Model
We propose a mathematical optimization model for the TCP. The
model gives each test case multiple costs and we want to minimize
the sum of the costs. This means that a test case with a large cost
is deemed important and placed early on in the test suite.

Intersystem cost: First, a cost 𝑐𝑖 for each test case 𝑖 , regardless of
system, to capture the idea that test cases will hopefully be run on

1Other diversity metrics, e.g. Test Set Diameter [10], Cohen and Vitányi’s [4] normal-
ized compression distance, were not explored due to their computational complexity.

at least one system that night. This cost is multiplied by variable 𝑧𝑖 ,
the earliest end time for the test case on any system.

𝑐𝑖 = ((days_last_run) / (days_last_fail)) × (mods + 1) (1)

Here mods is the number of modifications associated with all areas
covered by that test case since the latest execution.

Intrasystem cost: Second, a cost 𝑐𝑖 𝑗 for running each test case 𝑖 on
each system 𝑗 , based on its fail-rate 𝑓𝑖 𝑗 and estimated execution time
𝑡𝑖 𝑗 . To ensure that a test case that passes its first run is scheduled
again, we impose a minimum fail-rate of 0.1% for all test cases. The
cost 𝑐𝑖 𝑗 is multiplied by variable 𝑥𝑖 𝑗 , the test case’s predicted end
time, hence taking the sequence of the test cases on each system
into account.

𝑐𝑖 𝑗 = max(𝑓𝑖 𝑗 , 0.001) / 𝑡𝑖 𝑗 (2)
Penalty cost: Third, each test case 𝑖 is given a cost for not being

run on system 𝑗 with time budget 𝑇𝑗 . The cost 𝑑𝑖 𝑗 is multiplied by
variable 𝑢𝑖 𝑗 , a binary variable that indicates whether a test case is
expected to be run on a system (0) or not (1).

𝑑𝑖 𝑗 = ((days_last_run)𝑗 / (days_last_fail)𝑗) × (mods + 1) ×𝑇𝑗 (3)

Variables

𝑥𝑖 𝑗 = completion time of test case 𝑖 on system 𝑗

𝑦𝑖 𝑗𝑘 =

{
1 if test case 𝑖 precedes test case 𝑘 on system 𝑗

0 otherwise
𝑧𝑖 = earliest completion time for test case 𝑖 on any system

𝑢𝑖 𝑗 =

{
1 if test case 𝑖 is not expected to run on system 𝑗

0 otherwise

Parameters

𝑓𝑖 𝑗 = fail-rate of test case 𝑖 on system 𝑗

𝑡𝑖 𝑗 = execution time for test case 𝑖 on system 𝑗

𝑇𝑗 = time budget for system 𝑗

𝑐𝑖 = cost for running test case 𝑖 on any system
𝑐𝑖 𝑗 = cost for running test case 𝑖 on system 𝑗

𝑑𝑖 𝑗 = penalty cost for not running test case 𝑖 on system 𝑗

𝑀 = Big M, a sufficiently large number

Proposed model

min ℎ =
∑︁
𝑖

𝑐𝑖𝑧𝑖 +
∑︁
𝑖, 𝑗

𝑐𝑖 𝑗𝑥𝑖 𝑗 + 𝑑𝑖 𝑗𝑢𝑖 𝑗 (4a)

s.t. 𝑥𝑖 𝑗 + 𝑡𝑘 𝑗 ≤ 𝑥𝑘 𝑗 +M(1 − 𝑦𝑖 𝑗𝑘) ∀ 𝑖, 𝑗, 𝑖 < 𝑘 (4b)
𝑥𝑘 𝑗 + 𝑡𝑖 𝑗 ≤ 𝑥𝑖 𝑗 +M𝑦𝑖 𝑗𝑘 ∀ 𝑖, 𝑗, 𝑖 < 𝑘 (4c)
𝑥𝑖 𝑗 ≤ 𝑇𝑗 +M𝑢𝑖 𝑗 ∀ 𝑖, 𝑗 (4d)
𝑧𝑖 = min

𝑗
{𝑥𝑖 𝑗 } ∀ 𝑖 (4e)

𝑥𝑖 𝑗 ≥ 𝑡𝑖 𝑗 ∀ 𝑖, 𝑗 (4f)
𝑧𝑖 ≥ 0 ∀ 𝑖 (4g)
𝑦𝑖 𝑗𝑘 ∈ {0, 1} ∀ 𝑖, 𝑗, 𝑘 (4h)
𝑢𝑖 𝑗 ∈ {0, 1} ∀ 𝑖, 𝑗 (4i)

(Note that constraint (4e) can be reformulated as a linear constraint.)
The proposed model is classified as an ILP and the objective func-
tion (4a) factors in multiple costs and penalises test cases that are

SAC ’24, April 8–12, 2024, Avila, Spain Eric Felding, Per Erik Strandberg, Nils-HassanQuttineh, and Wasif Afzal

not run. Constraints (4b)–(4c) schedules each test case on each sys-
tem, and constraint (4d) detects if a test case is unable to fit into
the time budget. Constraint (4e) identifies the earliest completion
time for each test case over all systems, and constraints (4f)–(4i)
define all variable restrictions.

The proposed model gives raise to a large number of variables
and constraints. Big M constraints are known to yield poor LP-
relaxations and make the model hard to solve, and we therefore use
a meta-heuristic to solve it.

We use the value of the objective function (4a) as an additional
metric to compare prioritizations with. We call this metric h-met,
our heuristic metric. The problem of finding a valid test suite is
simple; just schedule the test cases in any order. Further, we see
that from a given suite it is trivial to get to a new suite; just swap
the order of two test cases on the same system. These insights lead
us to try simulated annealing (SA) [35]. Perejo et al. [25] discuss
alternative meta-heuristics to SA such as hill-climbing, tabu search,
variable neighborhood search, evolutionary algorithms, and many
more. Mansour et al. [21] tested several different test case selection
algorithms including SA. Because of their objective function, they
gain high coverage with a low number of test cases, that is, they
maximized for coverage. They recommend SA over other algorithms
when the test cases have different costs.

Phrased as a search-based software engineering problem [15],
TCP could be explained as: (i) We represent the test suite as a 2D-
array. The elements are test case tuples, each column represents
a system, and each row represents the order of test cases for. The
tuples contain costs for the test case, estimated runtime, test case
number, and associated system. (ii) The fitness function used is (4a).
From the array, we have the order of the test cases, runtimes, and
costs, so it is easy to compute. Finally, (iii) themanipulation operator
is to change place of the elements in the same row. Readers are
reminded that, for SA, we sometimes accept changes that do not
lead to improvements in the fitness function. As the iterations
progress, the likelihood of accepting poorer suites decrease. This
likelihood is modeled with “temperature” in a probability function.

We consider several SA configurations. First a random approach,
SA-r. With a random start suite, its neighborhood consists of all
test suites where all test cases are in the same order except two
in the same system, that is we move to a neighbour by swapping
two test cases in the same system. SA-r uses starting temperature
106 and end temperature 10−9. The second approach, SA-c, warm
starts with the cost prioritization since it approximates the system-
wide cost 𝑐𝑖 𝑗 well. This in an attempt to improve a not terrible
starting solution quite fast. For SA-c, we use a smaller search space,
only permutations with adjacent tests are considered. SA-c uses
starting temperature 104 and end temperature 10−8. We evaluate
both approaches with 104 and 105 iterations, called short and long.
We thus have four different SA prioritizations SA-rs, SA-rl, SA-cs,
and SA-cl. An exponential temperature update is used due to the
difference in magnitude between the starting and ending tempera-
tures. The starting and end temperatures were discovered through
empirical testing. More precisely we tested SA-rs and SA-cs on
the training set with different starting and ending temperatures of
10−10, 10−9, . . . , 109, 1010.

All SA approaches use 𝑒𝑥𝑝 (−(diff / temp)) as probability func-
tions. Here diff is the difference in value of the objective function

(4a), and temp is the current value of the temperature. This function
is quite common for SA approaches as it ranges from 0 to 1 for pos-
itive differences between the current solution and the new solution.
That is, we always accept a better solution than our current and
reject worse solutions often but not always. More iterations lead
to a higher temperature and thus lower and lower probability. The
probability for rejection also increases if solutions worsen.

4 CASE STUDY DESIGN
Here we describe our case study design, covering elements inspired
by case study guidelines from Runeson et al. [28].

We investigate TCP at Westermo as the contemporary software
engineering phenomenon in the real-life setting. Therefore the case
of the case study is the industrial TCP process at Westermo. The
unit of analysis is the test results data from a period of 500 nights
when no prioritization was needed (all test cases ran each night).

The TCP problem at Westermo is selected because of existing
relationships among the authors. The first author is a thesis student,
investigating the TCP problem given by the company supervisor
(second author), the third author is acting as the academic supervi-
sor for the student and the fourth author is a subject expert with
experience of joint projects with the company.

Three recent surveys on TCP and RT are from Ali et al. [1], Lima
and Vergilio [20], and Minhas et al. [22]. All of them agree on the
need of further research on the topic in terms of understanding
industrial factors of importance, such as test case volatility, feature
coverage and other similar contextual factors. In their review paper
covering regression testing, Yoo and Harman [38] found that there
are few available data sets and more industry-academia collabora-
tion needs to happen.

This work aims to answer two research questions. RQ1: How
could one formulate a mathematical optimization model for West-
ermo’s regression testing? RQ2: How are different metrics such as
“time since latest run,” coverage or fail detection rate affected by
different prioritization approaches?

Westermo provided test data from a period of 500 days when no
prioritization was needed as all test cases could be run each night
[32]. There are about 5000 nightly suites in the data set, where
a suite is a series of test cases on the same test system and the
same branch. In the data set, there is one stable branch and one
development branch. There are also dates for when the development
branch was changed into the stable branch, that is to say when
there was a new release. The two active branches in the data set is
in sharp contrast to the almost 60 branches in use today [31]. Note
that, since our work prioritizes over SW branches and test systems,
only one test suite is generated per night. This can be seen as a
“meta-suite” containing multiple “system suites”.

For each test case executed, the following information is saved:
which parameters were used, execution time, and the result of the
test case (pass/fail/other). The data also contains information on
when the SW and testware were changed. The following factors
for prioritization can thus be used: estimated time for a test case,
expected failure rate of a test case, how do changes between SW
and testware interact, and the coverage and diversity of test cases.

A non-disclosure agreement was signed by the researchers out-
side the case company. The data was provided after evaluation that

Resource Constrained Test Case Prioritization with Simulated Annealing in an Industrial Context SAC ’24, April 8–12, 2024, Avila, Spain

stop

start

choice/budget

read data for

coming night

prioritize

execute/evaluate

nights left?

update evaluation

history and repeat

Figure 2: Flow chart for the implementation.

it does not harm anyone involved. This study has scientific value
for the company and research on the topic in general, thus the study
is considered beneficial.

5 DATA COLLECTION
We implemented a proof-of-concept prioritization tool in approx-
imately 2000 lines of Python code, see overview in Figure 2 [9].
Initially, the commercial solver Gurobi with the Python API was
explored. First, for a given night, the tool reads the data with the
source code modification history of the previous day as well as the
test case execution results from all test systems of the correspond-
ing night. A prioritization is then created. Test cases that are viable
for being in the prioritization are those that would have run that
night or that have unused results from previous nightly testing. A
test case’s result is considered unused if the test case has not been
run or updated in the previous night.

After prioritization, test cases are executed. For the 500 nights
in the data, Westermo scheduled all test cases. For the simulation
we used a budget of 50000 seconds, almost 14 hours, for each test
system. This is enough for 95% of the nights and excludes some
extreme values that would skew the time budget. The budget is
representative of the testing starting at 6 PM and being done at 8
AM. The results were gathered using different prioritizations and
different time budgets. The budgets used were 5%, 25%, 50% and,
100% of the base-line. The test cases are run test system-wise until
that test system’s time budget is spent. The test cases that are run
on each test system had their execution history updated and their
result for that particular test system is considered used.

In the evaluation stage, values of each metric are calculated and
saved. The night is now over and the process is repeated.

In order to know which test cases that are candidates for being
in nightly testing, the prioritization tool reads the data, e.g. when
a new test case is introduced the tool would know about it. How-
ever, the results are only used in the evaluation stage and never in
the prioritization stage with the exception of the ideal and worst
possible prioritizations (described below). Also, the tool only uses
test cases that were executed successfully (i.e., pass or fail). This is
relevant since Westermo also provided data on other verdicts, e.g.
when test cases could not run to completion.

The data set includes one development branch and one stable
branch, and both branches receive code changes. In addition, the

stable branch is sometimes updated with the SW from the develop-
ment branch. This is to say that the SW had a new version released.
When this happens, we also transfer the execution history from the
development branch’s test cases to the stable branch. Since each
test system has unique hardware, their execution history is handled
separately. This also helps with the fact that the number of test
systems increase. In short, for each test case we have two branches
and multiple systems to deal with, but not all test cases can run on
all test systems or all branches.

AtWestermo, the test cases are implemented as scripts, and some
allow different parameter settings. Each script and parameter com-
bination creates a new test case. So, for a script 𝐴 and parameters
𝑃1 and 𝑃2, we have two test cases, 𝐴 − 𝑃1 and 𝐴 − 𝑃2.

The data used for prioritization is: (i) the historic mean fail-rate
with respect to each test system, (ii) the historic mean execution
time of the test case from the execution history with regard to each
test system, (iii) number of modifications to areas associated with
the test case since the last run regardless of the test system, (iv)
days since the last run regardless of test system, and with regards
to test system, and (v) number of days since the last fail regardless
of test system, and with regards to test system. The prioritizations
that rely on randomness (rdm and the four SA versions) were run
five times, and the average is used as a comparison.

In addition to the four proposed SA prioritizations in the end of
Section 3, we also explored nine reference prioritizations. These
thirteen approaches represent rows in Table 1.

Ideal: We define the ideal prioritization as, test system-wise,
sorted by if the test case will find a fail and then also by its duration.
In this case, all fails are found early and efficiently. This prioritiza-
tion is unrealistic in the sense that it will “cheat” and look into the
future, so we use it as a reference only.

Worst: Similar to the ideal approach, this acts as a reference
approach by placing failing tests at the end of the suites.

Random (rdm): Random is a classic reference approach [38].
Fail-rate (fr): Given the execution history of the test cases, we

calculate the fail-rate of the test cases. We implement this prioriti-
zation as it is quite intuitive that a test case that usually fails might
fail again the coming night.

Age: To avoid a test case not being run, the age prioritization
sorts by descending number of days since latest execution.

Recent Failures (rec.f.): In this prioritization, the test cases are
sorted by the amount of days since the latest failure. For realism,
this prioritization was designed to be unaware of failures of test
cases not executed in the simulations.

Modification (mod): The data contains information on SW mod-
ifications broken down by functional area. Recent and frequent
changes are deemed more important, and the test cases are priori-
tized based on amount of modifications since latest execution.

Cost: Inspired by Elbaum et al. [7], we use a cost per test case:
fail-rate

execution time .
Coverage (cov): Using the area words we can use an additive

greedy heuristic which aims to maximize coverage. In a greedy way
we add test cases based on additional coverage until everything is
covered, at which point we reset the coverage and start over. As
tie-breaker the fail-rate is used.

SAC ’24, April 8–12, 2024, Avila, Spain Eric Felding, Per Erik Strandberg, Nils-HassanQuttineh, and Wasif Afzal

Table 1: Average metric value over all nights for all combinations of metric and prioritization with 5% of the time budget.
Columns represent metrics (see Section 3.1). Rows represent prioritization approaches (see Sections 3.2 and 5). Best value per
column (metric) is highlighted in bold, e.g., for the heuristic metric h-met the SA-rs was best. h-met is scaled by ×107. High
values are good for all metrics (+) except for #dt and h-met (-).

#f (+) %fs (+) %ft (+) APFD (+) APFDC (+) APTU (+) #de (+) #dt (-) cov (+) div (+) h-met (-)
ideal 13.1 0.805 0.663 0.962 0.963 0.968 9.55 40.6 0.291 0.907 74.9
worst 0.01 0.004 > 0.001 0.071 0.060 0.457 10.5 83.5 0.0561 0.909 264
rdm 2.29 0.069 0.0571 0.503 0.503 0.761 18.9 18.8 0.226 0.908 16.7
f.r. 3.47 0.097 0.0805 0.590 0.587 0.771 6.94 62.1 0.150 0.909 220
age 2.30 0.088 0.0606 0.522 0.517 0.758 21.8 11.1 0.166 0.907 31.0
rec.f 3.15 0.086 0.0770 0.512 0.503 0.791 6.28 71.1 0.139 0.909 62.2
mod 3.13 0.118 0.0796 0.609 0.596 0.770 17.8 28.8 0.146 0.907 8.52
cost 3.56 0.095 0.0820 0.458 0.546 0.793 5.47 59.9 0.276 0.908 165
cov 0.84 0.031 0.0270 0.450 0.474 0.731 7.20 70.6 0.318 0.908 184
SA-rs 3.23 0.119 0.0877 0.563 0.619 0.818 16.5 20.2 0.240 0.907 6.68
SA-rl 3.93 0.137 0.110 0.561 0.631 0.825 16.0 22.9 0.219 0.907 6.75
SA-cs 3.49 0.093 0.0806 0.461 0.550 0.793 5.39 60.0 0.275 0.908 167
SA-cl 3.60 0.096 0.0825 0.457 0.548 0.793 5.50 59.4 0.285 0.908 157

6 DATA ANALYSIS & RESULTS
This section presents and compares the results from the metrics
and prioritizations. We also cover the durations needed to build
suites, and compare the performance of the prioritizations.

Table 1 presents the average performance over all nights, for
each combination of metric and prioritization when a limited time
budget equal to 5% of the available time was used. The best value
is highlighted with bold text; ideal and worst are not considered,
they are only used as references.

To our surprise, the h-met value for cost prioritization is lower
than SA-cs even though SA-cs starts from the cost prioritization
and seeks a lower h-met value. A possible explanation is the non-
determinism of SA, and that these prioritizations handle history
differently. This is most prominent with a low time budget. We also
see that SA-rl is the best in many metrics. For other time budgets
(25, 50 and 100%), SA-rl also fared well, in particular for fault finding
metrics, and APFDC. Across time budgets, the recent fail and mod-
ification prioritization approaches were the best in some metrics
(some of the APxx metrics as well as #de and div). Further, the mod-
ification prioritization gave the best h-met for the 50% budget. We
observed that h-met seems to decrease as the time budget increases,
which is better due to the fact that more test cases are expected
to run each night and thus fewer test cases to be penalized. We
also note that modification prioritization achieves good marks in
the h-met metric. As could be expected, the coverage prioritization
was always the best for maximizing the coverage metric. Similarly,
the age prioritization always gave the lowest mean number of days
since executing for the entire suite. Random prioritization has the
second lowest age of executed test cases with SA coming after.
The diversity metric decreases slightly with increased time budget
likely due to the test cases being somewhat similar. The difference
in diversity between prioritizations is small and we are tempted to
suggest avoiding this metric. Interestingly, the poorest prioritiza-
tion was achieved by aiming at diversity followed by recent fails.
We can see that ideal is the prioritization that has the best coverage.
In contrast, coverage prioritization is bad at finding fails.

Figure 3 illustrates the performance of six prioritization ap-
proaches with respect to the metric of number of days since last
execution. As could be expected, a prioritization that only focuses
on age results in testing with a low average age (see Fig. 3b), so
with only that goal in mind, that prioritization is meaningful. Also,
the figure clearly illustrates how well random and SA-rl perform
over time with respect to this metric. However, the recent fail and
SA-cs prioritizations rapidly degrade and surpasses 100 days in
the end of the curve. Hence, they are about five times as poor as
random with respect to this metric. As argued by Harman [14],
single objective prioritization is unlikely to be practical. Figure 3
gives a mixed message; if the objective function and metric go hand
in hand, the outcome could be desirable. However, it is not certain
that all multi objective prioritizations result in desirable outcomes.

The duration of the suite generation (after data had been col-
lected) was very low (from 0.8 to 4.3 ms) for the simplest prioritizers
(ideal, worst, rdm, fr, age, rec.f, mod, and cost), 1.09 seconds for
cov, about 15 seconds for the short SA approaches, and almost 100
seconds for the long SA approaches. These are low values when
compared to 14 hours of nightly testing.

We compared the prioritizations using performance profiles [6]
and found that the ideal approach was best in about half of the
metrics, the modification prioritization was the approach that was
“least worst” when compared to the others, and age prioritization
was quite good. Ideal prioritization quickly found fails, but did not
take into account all factors of TCP to be considered the best. Cost
prioritization was slightly better than random prioritization. SA
approaches were not in the top. However, if we removed time for
generating a suite in the performance profile analysis, then SA-rl
and SA-rs both rose to the top. SA-c approaches performed poorly.
Finally, the worst prioritization was indeed the worst.

7 DISCUSSION
The random prioritization was bad at finding fails. However, it
resulted in good coverage and did not let any test case get too old.
Modification prioritization successfully found faults since changes

Resource Constrained Test Case Prioritization with Simulated Annealing in an Industrial Context SAC ’24, April 8–12, 2024, Avila, Spain

(a) Random (b) Age (c) Modification

(d) Recent fail (e) SA-cs (f) SA-rl

Figure 3: Average number of days since last execution of the test cases in the suite (y-axis), with a 5% time budget, over time
(x-axis), when using six prioritization approaches. Please note that the figures have different scales on the y-axes – an average
age of 80 days since last execution is indicated with dotted lines.

increase the chance for new bugs. Further, all areas are updated at
some point, so no test case was completely forgotten. For finding
fails, this prioritization is above average, and for some time budgets
best. Age prioritization did not forget any test cases, thereby also
yielding good coverage. However, it was poor at prioritizing failing
tests. As expected, it prioritized older test cases early and thus have
great values for the age metrics. Using the functional areas of the
SW as a basis for a greedy additional coverage prioritization was
not very successful, except for maximizing coverage.

SA-r performed well, in part because the prioritization with the
lowest h-met, modification prioritization, performed well. It also
seems as the other parts of the model correlated with prioritizations
age, fail-rate, and cost, worked in great unison to make SA-r the best
performing prioritization, excluding duration. Compared to SA-r,
SA-c did not perform well. We speculate that the neighborhood
was too small – i.e. it was hard for SA-c to change the suite since
each iteration only involved changing two adjacent test cases.

To evaluate diversity, the mean Jaccard distance between the test
cases was used, which was not very valuable. If other features in
a distance metric were used, then perhaps the results would have
been better. It is also possible that the use of Westermo’s areas is
a too coarse basis for diversity. A possible approach for a good
diversity metric is to use the test set diameter [10]. However, this
metric is computationally intensive.

A weakness of the proposed optimization model is that coverage
is not accounted for. However, the results from the SA approaches
show pretty good functional coverage metrics when compared to
the coverage-only approach. The mathematical model was however
discarded due to it being computationally intractable, even without

considering coverage. SA is not limited by the preference of a linear
objective function, and future work could explore the possibility to
incorporate more factors into the objective function.

The lack of randomness in many of the prioritizations could be
seen as a shortcoming. Coverage prioritization seems to suffer from
this as the greedy additivemethod only looks at the test areas during
a single prioritization and not on coverage over many nights. It is
also possible that the fail-rate, recent fail, and cost prioritizations
would benefit from it – otherwise slow test cases might not be
re-selected if they pass the first time they run.

For future work, it would be interesting to make a deeper investi-
gation in the manipulation operator, i.e. the neighborhood of a suite.
The SA-c approach could be evaluated with a larger neighborhood
and SA-r with a smaller. This could lead to a better understanding
of the value of a warm start, and the best manipulation strategy.

From a human factors perspective, it would be relevant to know
how Westermo staff would feel about using SA in their daily work.
E.g. would they trust the level of randomness involved? Would they
see it as fair?

With SA-rs taking about 15 seconds to prioritize one meta-suite,
it would be possible to have a human in the loop. The human could
look at the meta-suite, change some parameters, and iteratively
co-create a meta-suite with a tool. This approach could lead to
biased suites, but perhaps improved human satisfaction.

This study presents several implications for industrial practi-
tioners, many of these repeat or confirm findings from previous
research. First, formal optimization for test case selection is only
suitable when there are few test cases, code branches and test sys-
tems, due to the duration required for solving to optimality. Second,

SAC ’24, April 8–12, 2024, Avila, Spain Eric Felding, Per Erik Strandberg, Nils-HassanQuttineh, and Wasif Afzal

the heuristic method of using simulated annealing with a multi-
objective (or weighted objective) function is a feasible and rather
rapid approach for prioritizing test cases (given that historic data
collection is fast, which it may or may not be in practice). Third,
practitioners ought to be careful what they wish for. As Norbert
Wiener (possibly the first to consider ethical implications of au-
tomation) warned, introducing automation is like getting wishes
satisfied by dark magic [37]. In particular, the study at hand found
that a test case prioritization focusing on only one factor (failing
test cases) may come with unexpected penalties for others (average
days since last execution), as illustrated in Fig. 3d. This challenge
is well studied in other domains such as avionics [29] and ethical
aspects of test case selection has also been partially covered [33].
In practice this means that practitioners ought to strive for a multi-
objective goal function, and monitor any potential performance
degradation aspects of the automation – in particular average days
since last execution.

8 CONCLUSION
The research goal of this study was to explore how different factors
(e.g. test coverage) are affected by different prioritizations, and if it
would be possible to capture many factors with one prioritization.
With respect to RQ1, we formulated a mathematical optimization
model, equations 4a–4i, which captured many factors of TCP in
the industry context at Westermo. However, the model did not
scale well enough. Instead, solving the model heuristically using
SA was shown to be a viable option for a practical application.
Regarding RQ2, we could see that fail-rate, time since latest run,
and coverage was highly dependent on the prioritization used. This
is particularly important to consider when the budget is low. Our
metric for diversity was not very successful. On this data set, we
see that modification prioritization is the overall best choice. If the
user can spare some time for planning, SA-r is the preferred choice.

ACKNOWLEDGMENTS
The work was sponsored by Westermo, the Swedish Knowledge
Foundation through grant 20150277 (ITS ESS-H), and the AIDOaRt
project, an ECSEL Joint Undertaking (JU) under grant agreement
No. 101007350.

REFERENCES
[1] Nauman Bin Ali, Emelie Engström, Masoumeh Taromirad, Mohammad Reza

Mousavi, Nasir MehmoodMinhas, Daniel Helgesson, Sebastian Kunze, andMahsa
Varshosaz. 2019. On the Search for Industry-Relevant Regression Testing Re-
search. Empirical Softw. Engg. 24, 4 (2019), 2020–2055.

[2] Maral Azizi and Hyunsook Do. 2018. Graphite: A greedy graph-based technique
for regression test case prioritization. In ISSREW’18. IEEE.

[3] Benjamin Busjaeger and Tao Xie. 2016. Learning for test prioritization: an
industrial case study. In FSE’16. ACM.

[4] Andrew R Cohen and Paul MB Vitányi. 2014. Normalized compression distance
of multisets with applications. IEEE PAMI 37, 8 (2014).

[5] Heleno de S. Campos Junior, Marco Antônio P Araújo, José Maria N David, Regina
Braga, Fernanda Campos, and Victor Ströele. 2017. Test case prioritization: a
systematic review and mapping of the literature. In SBES’17.

[6] Elizabeth D Dolan and Jorge J Moré. 2002. Benchmarking optimization software
with performance profiles. Mathematical programming 91, 2 (2002).

[7] Sebastian Elbaum, AlexeyMalishevsky, andGregg Rothermel. 2001. Incorporating
varying test costs and fault severities into test case prioritization. In ICSE’21.
IEEE.

[8] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for im-
proving regression testing in continuous integration development environments.
In FSE’14.

[9] Eric Felding. 2022. Mathematical Optimization and the Test Case Prioritization
Problem. Master’s thesis. Linköping University.

[10] Robert Feldt, Simon Poulding, David Clark, and Shin Yoo. 2016. Test set diameter:
Quantifying the diversity of sets of test cases. In ICST’16. IEEE.

[11] Wenhao Fu, Huiqun Yu, Guisheng Fan, Xiang Ji, and Xin Pei. 2017. A regres-
sion test case prioritization algorithm based on program changes and method
invocation relationship. In APSEC’17. IEEE.

[12] Alireza Haghighatkhah. 2020. Test case prioritization using build history and test
distances. Ph. D. Dissertation. University of Oulu, Finland.

[13] Dan Hao, Lu Zhang, Lei Zang, Yanbo Wang, Xingxia Wu, and Tao Xie. 2015.
To be optimal or not in test-case prioritization. IEEE Transactions on Software
Engineering 42, 5 (2015).

[14] Mark Harman. 2011. Making the case for MORTO: Multi objective regression
test optimization. In ICSTE’11. IEEE.

[15] Mark Harman and Bryan F Jones. 2001. Search-based software engineering.
Information and software Technology 43, 14 (2001).

[16] Hadi Hemmati. 2019. Advances in techniques for test prioritization. In Advances
in Computers. Vol. 112. Elsevier.

[17] Muhammad Khatibsyarbini, Mohd Adham Isa, Dayang NA Jawawi, and Rooster
Tumeng. 2018. Test case prioritization approaches in regression testing: A sys-
tematic literature review. Information and Software Technology 93 (2018).

[18] Ketan Khowala. 2012. Single Machine Scheduling: Comparison of MIP Formulations
and Heuristics for Interfering Job Sets. Arizona State University.

[19] Jingjing Liang, Sebastian Elbaum, and Gregg Rothermel. 2018. Redefining priori-
tization: continuous prioritization for continuous integration. In ICSE’18.

[20] Jackson A Prado Lima and Silvia R Vergilio. 2020. Test Case Prioritization in
Continuous Integration environments: A systematic mapping study. Information
and Software Technology 121 (2020).

[21] Nashat Mansour, Rami Bahsoon, and Ghinwa Baradhi. 2001. Empirical compari-
son of regression test selection algorithms. Elsevier JSS 57, 1 (2001).

[22] Nasir Mehmood Minhas, Kai Petersen, Jürgen Börstler, and Krzysztof Wnuk. 2020.
Regression testing for large-scale embedded software development – Exploring
the state of practice. Information and Software Technology 120 (2020), 106254.

[23] Siavash Mirarab, Soroush Akhlaghi, and Ladan Tahvildari. 2011. Size-constrained
regression test case selection using multicriteria optimization. IEEE transactions
on Software Engineering 38, 4 (2011).

[24] Debajyoti Mondal, Hadi Hemmati, and Stephane Durocher. 2015. Exploring test
suite diversification and code coverage in multi-objective test case selection. In
ICST’15. IEEE.

[25] José Antonio Parejo, Antonio Ruiz-Cortés, Sebastián Lozano, and Pablo Fernandez.
2012. Metaheuristic optimization frameworks: a survey and benchmarking. Soft
Computing 16, 3 (2012).

[26] Bo Qu, Changhai Nie, and Baowen Xu. 2008. Test case prioritization for multiple
processing queues. In ISISE’08. IEEE.

[27] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold.
2001. Prioritizing test cases for regression testing. IEEE Transactions on software
engineering 27, 10 (2001).

[28] Per Runeson, Martin Höst, Austen Rainer, and Bjorn Regnell. 2012. Case Study
Research in Software Engineering: Guidelines and Examples. John Wiley & Sons.

[29] Nadine B Sarter, David D Woods, Charles E Billings, et al. 1997. Automation
surprises. Handbook of human factors and ergonomics 2 (1997).

[30] Helge Spieker, Arnaud Gotlieb, Dusica Marijan, and Morten Mossige. 2017. Rein-
forcement learning for automatic test case prioritization and selection in contin-
uous integration. In ISSTA’17.

[31] Per Erik Strandberg. 2021. Automated System-Level Software Testing of Industrial
Networked Embedded Systems. Ph. D. Dissertation. Mälardalen University.

[32] Per Erik Strandberg. 2022. The Westermo test results data set. Technical Report.
GitHub, https://github.com/westermo/test-results-dataset.

[33] Per Erik Strandberg, Mirgita Frasheri, and Eduard Paul Enoiu. 2021. Ethical
AI-Powered Regression Test Selection. In AITest’21. IEEE.

[34] Per Erik Strandberg, Daniel Sundmark, Wasif Afzal, Thomas J Ostrand, and
Elaine J Weyuker. 2016. Experience report: Automated system level regression
test prioritization using multiple factors. In ISSRE’16. IEEE.

[35] El-Ghazali Talbi. 2009. Metaheuristics : from design to implementation. John Wiley
& Sons.

[36] Stephen W Thomas, Hadi Hemmati, Ahmed E Hassan, and Dorothea Blostein.
2014. Static test case prioritization using topic models. Empirical Software
Engineering 19, 1 (2014).

[37] Norbert Wiener. 1973. Cybernetics–2nd edition: Or the control and communica-
tion in the animal and the machine.

[38] Shin Yoo and Mark Harman. 2012. Regression testing minimization, selection
and prioritization: a survey. Wiley STVR 22, 2 (2012).

[39] Lu Zhang, Shan-Shan Hou, Chao Guo, Tao Xie, and Hong Mei. 2009. Time-aware
test-case prioritization using integer linear programming. In ISSTA’09.

https://github.com/westermo/test-results-dataset

	Abstract
	1 Introduction
	2 Related Work
	3 Metrics and Optimization Model
	3.1 Metrics
	3.2 Mathematical Model

	4 Case Study Design
	5 Data Collection
	6 Data Analysis & Results
	7 Discussion
	8 Conclusion
	References

