
The Journal of Systems and Software 210 (2024) 111958

Available online 3 January 2024
0164-1212/© 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Modeling and safety analysis for collaborative safety-critical systems using
hierarchical colored Petri nets

Nazakat Ali a,*, Sasikumar Punnekkat a, Abdul Rauf b

a School of Innovation, Design and Technology, Mälardalen University, Västerås, Sweden
b Knightec AB, Västerås, Sweden

A R T I C L E I N F O

Editor: W. Eric Wong

Keywords:
Safety-critical
Petri nets
Safety analysis
Colored Petri-nets

A B S T R A C T

Context: Collaborative systems enable multiple independent systems to work together towards a common goal.
These systems can include both human-system and system-system interactions and can be found in a variety of
settings, including smart manufacturing, smart transportation, and healthcare. Safety is an important consid-
eration for collaborative systems because one system’s failure can significantly impact the overall system per-
formance and adversely affect other systems, humans or the environment.
Goal: Fail-safe mechanisms for safety-critical systems are designed to bring the system to a safe state in case of a
failure in the sensors or actuators. However, a collaborative safety-critical system must do better and be safe-
operational, for e.g., a failure of one of the members in a platoon of vehicles in the middle of a highway is
not acceptable. Thus, failures must be compensated, and compliance with safety constraints must be ensured
even under faults or failures of constituent systems.
Method: In this paper, we model and analyze safety for collaborative safety-critical systems using hierarchical
Coloured Petri nets (CPN). We used an automated Human Rescue Robot System (HRRS) as a case study, modeled
it using hierarchical CPN, and injected some specified failures to check and confirm the safe behavior in case of
unexpected scenarios.
Results: The system behavior was observed after injecting three types of failures in constituent systems, and then
safety mechanisms were applied to mitigate the effect of these failures. After applying safety mechanisms, the
HRRS system’s overall behavior was again observed both in terms of verification and validation, and the
simulated results show that all the identified failures were mitigated and HRRS completed its mission.
Conclusion: It was found that the approach based on formal methods (CPN modeling) can be used for the safety
analysis, modeling, validation, and verification of collaborative safety-critical systems like HRRS. The hierar-
chical CPN provides a rigorous way of modeling to implement complex collaborative systems.

1. Introduction

In the era of industry 4.0, the collaboration between/among systems
is an important aspect where a common mission can be achieved
through the collaboration of systems, and even collaboration between
those systems with humans enables the necessary abstraction (Lee et al.,
2015). This concept led to the emergence of collaborative systems,
defined as “jointly acting and sharing information, resource, and re-
sponsibilities in order to achieve a common goal” (Maier, 1998). The
motivation for using collaborative systems is to achieve capabilities that
cannot be achieved by a single system alone. A capability can be, for
example, a collaborative or complex service delivered to the system’s

end users or to other subsystems/systems. For instance, several vehicles
form a group in the platoon driving system and drive with a narrow
inter-vehicle gap to increase traffic flow and fuel reduction. Therefore,
collaboration is one of the corner stones of the modern systems.
Furthermore, collaborative systems provide unprecedented capabilities
and opportunities due to growing intelligence, autonomy, and inter-
connection. However, safety concern is among the main challenges
when designing and deploying collaborative safety-critical systems. For
instance, if a leader vehicle in an autonomous platoon driving fails to
communicate with other member vehicles, then the critical commands
such as emergency stop from the leader vehicle become unavailable, and
driving with a short gap would not be safe anymore (Ali et al., 2021).

* Corresponding author.
E-mail address: nazakat.ali@mdu.se (N. Ali).

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

https://doi.org/10.1016/j.jss.2024.111958
Received 17 May 2023; Received in revised form 22 November 2023; Accepted 2 January 2024

mailto:nazakat.ali@mdu.se
www.sciencedirect.com/science/journal/01641212
https://www.elsevier.com/locate/jss
https://doi.org/10.1016/j.jss.2024.111958
https://doi.org/10.1016/j.jss.2024.111958
https://doi.org/10.1016/j.jss.2024.111958
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2024.111958&domain=pdf
http://creativecommons.org/licenses/by/4.0/

The Journal of Systems & Software 210 (2024) 111958

2

Emergent behavior in a collaborative system can lead to overall
system failure if it is not properly designed, verified, or implemented
(Raman and Murugesan, 2022). Failures in collaborative systems can
have multiple causes, including constituent system failures, component
failures, interoperability issues, human errors, cyber-attacks, and envi-
ronmental factors. From a developer’s perspective, factors such as sys-
tem design flaws, lack of adequate verification, and unmanaged system
complexity can lead to the above failure causes. Identifying and miti-
gating these potential failures is important to ensure the collaborative
systems’ reliability and safety. Researchers (Hussain et al., 2022; Gual-
tieri et al., 2021) are working on different aspects to fix the problems
related to collaboration in safety-critical systems to ensure that the
collaborative systems are safe before entering the deployment phase and
work correctly in all identified scenarios. Formal methods are often
recommended for the modeling and analysis of safety-critical systems to
bring acceptable confidence in such complex systems. Therefore, formal
methods such as Colored Petri Nets (CPN) are used for modeling both
functional specifications and interaction design to ensure the collabo-
rative systems meet all specified requirements.

Formal methods are a set of mathematical techniques used to
formally specify, design, verify, and validate safety-critical systems. It
can be used to ensure that a system meets its safety requirements and
does not contain any faults that could lead to unsafe behavior (Liu,
2014). In contrast to traditional system design techniques that focus on
extensive testing to verify the system behavior but can only draw partial
conclusions, formal methods provide further insurance as they only
accept systems that have been proved correctly (Bowen and Stavridou,
1993). CPN is one of the formal specification languages (Peterson, 1977)
that enables us to model and analyze safety-critical systems, especially
asynchronous, distributed, concurrent, non-deterministic, and parallel
systems.

This paper aims to model, validate and verify collaborative safety-
critical systems using hierarchical CPN. Hierarchical CPN is used for a
variety of reasons, such as: it allows for the modeling and analysis of
complex systems at different levels of abstraction; It is used to model and
verify collaborative systems, which are composed of multiple interact-
ing systems; By using the hierarchical structure of hierarchical CPN, it is
possible to divide the system into smaller and more manageable sub-
systems, which can be modeled and verified individually (Jensen and
Kristensen, 2015); it is a discrete event modeling language that com-
bines basic Petri nets with the functional programming language CPN
ML which is based on standard ML; CPN uses the graphical represen-
tation to describe the model simply and intuitively which enables us to
better understand the requirements specification of the system
compared with the textual descriptions; it also simulates and executes
the model for system verification. The hierarchical system modeling
provides a simplified net that can give a broad overview of the system. It
also allows a system module to have submodules and reuse submodules
in various parts of the model. The ability of the CPN to verify the system
model formally is particularly important for safety-critical systems.
Therefore, it has been used in modeling and safety analysis of
safety-critical systems (Hu et al., 2017; Wu, 2014; Song and Schnieder,
2018; Wu and Zheng, 2018). Colored Timed Petri Net (CTPN) (Kuo and
Huang, 2000) is a variant of CPN where the color attributes manage
large systems that have many similar or redundant logical structures.
Using a CPN variant without timing properties can be advantageous for
simpler systems without significant time-sensitive behaviors. It can lead
to faster modeling and analysis efforts. However, it comes at the cost of
limited expressiveness and accuracy for systems that do involve timing
constraints. CTPNs are well-suited for systems where timing and syn-
chronization aspects are critical, whereas hierarchical CPNs are favored
when dealing with large and complex systems that benefit from a
structured and modular modeling approach (Li et al., 2016). When
dealing with large and complex systems, hierarchical CPNs can be more
scalable and maintainable compared to CTPNs. The hierarchical
approach allows for easier management of system complexity as the

system grows. Since we aim to model a complex collaborative system
therefore we opted for hierarchical CPNs over other CPN variants.

Collaborative systems are distributed systems that work jointly to
perform a higher-level complex task that a single constituent system
cannot perform alone. Collaborative systems should be resilient by
design since they are used in critical applications and should work even
if some of the constituent systems fail. Different from most safety anal-
ysis techniques for systems that perform their duty independently and
do not collaborate with each other to complete a common mission, our
approach presents modeling and safety analysis for collaborative safety-
critical systems using hierarchical CPN. The hierarchical CPN allows one
to verify some properties of the underlying system by formal analysis
independent of the simulation, which only indicates the presence of
faults in the model instead of asserting the absence of faults. It also
supports modularity in modeling the system using CPN to manage large
systems.

The main problem in a collaborative system is that when one con-
stituent system fails the collaborative system can not achieve its com-
mon goal. Therefore, collaborative systems should be modelled,
verified, and validated carefully. In this study, we modelled a collabo-
rative safety-critical system and selected hierarchical CPN for model-
ling. Verifying and validating collaborative systems at the system level is
another challenge that makes it difficult to ensure safety (Honour,
2013). We incorporated three failures at the system level in a collabo-
rative system and verified the systeḿs safe behaviour in the presence of
these failures by designing a safety mechanism for each injected failure.
We verified the safe behaviour of a collaborative system using bound-
edness, deadlocks and dead transitions. We also validated the system to
ensure that the system is free of livelocks, free of self-loop, and full state
space is computed which in turn tells whether all variable states are
involved in the simulation. From the verification and validation results,
it was confirmed that the collaborative system achieves its common goal
safely and the injected failures were acceptably mitigated.

In summary, we make the following contributions:

• We have proposed a unique approach to carry out simulation-based
safety verification and validation of collaborative systems. This
approach models, verifies, and validates a collaborative system using
hierarchical CPN to ensure that the collaborative system achieves its
common mission under hazardous scenarios.

• The proposed approach is demonstrated in a concrete use case of
human rescue robot system, which can help researchers and practi-
tioners to model, verify and validate complex collaborative systems.
The boundedness, deadlocks and dead transition safety properties
were used to verify the system while livelocks, self-loop, and state
space were used to validate the system.

The research procedure is divided into following steps:

1) We used the human rescue robot system (HRRS) as a case study,
modeled it using hierarchical CPN, and introduced some simulated
failures to demonstrate its safe behavior.

2) In modeling HRRS using hierarchical CPN, three types of failures
(representative of the sense, compute and actuate phases of control
applications) are incorporated, i.e.:
a. Sensor Failure: Failure due to the problem in sensing the envi-

ronment that hinders the task of sensing objects of interest.
b. Navigation Failure: Failures during navigating to the target loca-

tion, e.g., slippery ground.
c. Object Clearance Failure: Failures in clearing the area due to

insufficient actuating mechanism on the robot.
3) After injecting faults that can cause the above failures, the system

behavior was observed, and a state space graph was generated to
check whether the hazardous states were reachable or dead.

4) Subsequently, safety mechanisms were defined for each failure
mode, and the model was verified and validated against different

N. Ali et al.

The Journal of Systems & Software 210 (2024) 111958

3

safety property requirements. The verification and validation results
show that respective failures were acceptably mitigated, and HRRS
completed its mission successfully.

The remainder of this paper is structured as follows. Section 2 rep-
resents the related work. Section 3 gives an overview of the background.
Section 4 describes the procedure steps of our proposed approach.
Section 4 describes the system modeling with CPN. Section 5 describes
the simulation configuration of the CPN model. Section 6 defines the
safety mechanism for injected failures. Section 7 discusses the CPN
model verification and validation, and Section 8 concludes this paper.

2. Related work

Hu et al. (2017) proposed a Colored Petri Net (CPN) based hierar-
chical control structure to identify hazards related to the railway system
and verify the model’s consistency with the actual system. The proposed
method is the combination of CPN and System-Theoretic Process Anal-
ysis (STPA), which is named formalSTPA. The formalSTPA identifies
hazards by obtaining system hazards that may potentially lead to a
mishap. It also identifies safety constraints to prevent hazards from
occurring. After identifying safety constraints, a preliminary control
structure is designed to fulfill requirements, and the control structure
should be improved over time. The authors transformed the control
structure model into the CPN model, which describes system behavior
and the system’s internal interactions. After obtaining the CPN model,
ASK-CTL was used to verify the CPN model. Along with the CPN model,
the state-space analysis was also used to identify the cause of hazards.
Lastly, safety requirements were proposed to ensure system safety.

Gonçalves et al. (2017) presented a formalized safety assessment
model to provide evidence of the safety and reliability of unmanned
aerial vehicles (UAV). The proposed model shows the real dynamics of
the decision-making process, including failure conditions. The authors
made some assumptions for the implementation of the model. The
assessment model includes four steps, i.e., identification of UAV flight
phase, identification of failure conditions leading to most hazardous
events, evaluation of failures in each flight phase, information to flight
control, and decision making from control operators. In this study, the
authors intended to show how the UAV enters the most feared events
and the UAV ability to react after being in a fault situation. The results
show that it was possible to identify and define safety-critical areas and
corrective actions to prevent faults.

Wang et al. (2016) proposed a hazard identification method by
combining STPA and STPA Based on the Formalization Method (BMF)
called BMF-STPA. This approach combines the STPA hazard analysis
technique with the formalization of CPN in order to determine system
control structure models, identify safety hazards, and generate a hazard
log. The main features of this BMF-SPTA approach include the combi-
nation of STPA with a formal modeling technique to generate an inte-
grated hazard log. This approach can effectively determine interactive
factors among external and internal interfaces. The BMF-STPA based
approach also can conduct a hazard analysis and determine causes that
lead to mishaps. The authors concluded that the BMF-STPA approach
could model the system behavior through CPN to verify that safety
behavior would be possible. Another reason for CPN was also to trace
the hazards in the system through state space.

Song et al. (2017) used CPN as part of the verification process, which
helps evaluate functional safety along with performance assessment
using parameters from formal models developed for Train to Train
Distance Measurement System (TTDMS). The authors made three main
contributions. Firstly, they proposed a formalized TTDMS model and
validated its correctness using state space analysis and simulation-based
verification. Secondly, the corresponding checking queries were devel-
oped for the purpose of functional safety verification as well as to
evaluate system performance by applying parameters in the formal
models. Lastly, the authors estimated the reliability of a functional

prototype TTDMS based on the processes which can be used during
development stages, with both formal verifications and simulations
being performed simultaneously for better results. The authors
concluded that applying their process is easier than executable code or
mathematical methods when evaluating and verifying systems due to
improved readability and reliability compared to other approaches.

Akhtar et al. (2019) proposed a novel formal system for specification,
analysis, design, modeling, and verification for a multi-agent safe-
ty-critical system. The proposed system is specified, designed, and
analyzed using Gaia multi-agent methodology (Honour, 2013). The
authors specified model-based agent roles along with regular expres-
sion, liveness properties, first-order predicate, and calculus-based safety
properties that must also be correct, complete, consistent, and unam-
biguous. Finally, hierarchical CPN was used to model and verify the
designed systems before implementation. The hierarchical CPN was
constructed on two abstraction levels to achieve modularity.

Zhang et al. (2022) proposed a formal approach to quantitatively
evaluate the operational efficiencies of the Centralized Traffic Control
(CTC) system with respect to different safety control schemes. The
proposed approach adopts stochastic CPN to describe the CTC system
model, and evaluates its efficiency based on data collected during
simulation. The proposed approach was exemplified by studying how
prohibiting passenger trains from passing freight trains between two
adjacent stations affects the CTC system’s overall performance. Results
showed that the proposed approach is an effective way to measure such
systems’ operations performances. The authors also mentioned that
their approach could help in deciding which safety control scheme is
most effective at improving operational efficiency while maintaining
safe operations.

Summary: From the investigation of related work, we learned that
the use of CPN in modelling and verifying safety-critical systems is
evident. The authors Hu et al. (2017) and Wang et al. (2016) have
combined STPA with the CPN. The integration of the CPN model, which
replaced the original control structure model in STPA, significantly
enhanced the systematic capabilities for modelling various features.
Some authors have (Gonçalves et al., 2017; Zhang et al., 2022) used CPN
for safety assessment process modelling in UAV case study and railway
domain respectively. The obtained results enabled the identification and
definition of critical areas as well as the formulation of corrective
measures that will lead to an acceptable level of risk for the regulatory
authority. However, the verification and validation were not considered.
The verification and validation for a TTDMS were considered in (Song
et al., 2017), however, the applied case study was not a collaborative
system. In another study (Akhtar et al., 2019), a multi-agent system was
modelled with CPN, but verification and validation were not considered.
Safety professionals are using CPN for modelling and safety analysis for
safety-critical systems. However, to the best of our knowledge, there is
no study where a collaborative system is modelled with hierarchical
CPN, verified, and validated at the system level while injecting failures.

3. Background

3.1. Formal definition of CPN

CPN is a high-level Petri net that allows the tokens to have a data
value attached to it, called the token color. Formally, a CPN model N =
(Σ, P, T, I, O, C, G, V, M0) (Jensen and Kristensen, 2015; Valadares et al.,
2021) where:

1) Σ represents a finite set of colors which are nonempty type;
2) P = {p1, p2, .., pm} is a finite set of places;
3) T = {t1,t2,.., tn} is a finite set of transitions such that P ∩ T = ∅;
4) I denotes an input function such that P × T → N defines directed arcs

from P to T, where N is a set of nonnegative integers;
5) denotes the output function such that T × P → N is an output function

that defines directed arcs from T to P;

N. Ali et al.

The Journal of Systems & Software 210 (2024) 111958

4

6) C denotes color functions which are defined from P into Σ;
7) G is a guard function that is defined from set T into the expressions

such that [∀t ∈ T that is Type(G(t)) = Bool ∧ Type (Var (G(t)))⊆ Σ];
8) V is the finite set of variables v ∈ V of colors c ∈ C. Arc expressions

and guards contain variables v ∈ V of the suitable types;
9) M0 specifies the initial placement color of tokens on the places of the

model. The M0 is the initial marking defined on P: M0(p) ∈ Bag(C
(p)), ∀p ∈ P. The input and output functions are defined on Bag(C(t)).

Hierarchical CPN (Peterson, 1977) supports modularity in modeling
the system using CPN to manage large systems. The Hierarchical CPN
modules have a specific type of transition called substitution transitions
and a specific type of place called the port place. The substitution
transition substitutes a detailed module, while the port place acts as a
buffer to send or receive tokens among various modules through sub-
stitution transitions.

A CPN module is a 4-tuple CPNmodule = (CPN, Tsub, Pport, PT) (An
et al., 2018) where:

1. CPN = (Σ, P, T, I, O, C, G, V, M0) is a CPN model without hierarchical
properties

2. Tsub ⊆ T represents a set of substitution transitions;
3. Pport ⊆ P denotes a set of port places and
4. PT: Pport → (In, Out, In/Out) denotes a port-type function that is

responsible for assigning a port type to each port place.

A hierarchical CPN can be expressed as a 4-tuple MHierarchal = (S, SM,
PS, FS) where:

1. S is a finite set of CPN modules. For each CPNmodule = (CPN, Ts
sub,

Ps
sub, PTS), with the requirement (PS1 ∪ TS1) ∩ (PS2 ∪ TS2) = ∅ for all

s1,s2 ∈ S such that s1 ∕= s2;
2. PT such that Tsub → S is a submodule function that assigns a sub-

module to each Tsub ⊆ T with the requirement that the module hi-
erarchy is acyclic;

3. PS is a port-socket function that is responsible for assigning a port-
socket relation PS(t) ⊆ Psock(t) × PSM(t)

port to each substitution transi-
tion t ∈ Tsub. It is needed that ST(t) = PT(p′),C(p) = C(p′) ∧ I(p)() =

I(p′)() ∀(p,p′) ∈ PS(t) ∧ for all t ∈ Tsub;
4. FS ⊆ 2p is a set of nonempty fusion set such that C(p) =

C(p′) and I(p)() = I(p′)() ∀(p,p′) ∈ fs and ∀fs ∈ FS.

3.2. Reachability analysis

CPNs can be verified through reachability analysis. Reachability
analysis a technique that determines all the states that can be reached
from an initial state. This can be used to check for deadlocks and other
types of unwanted behavior in the system. Reachability analysis allows
calculating all reachable states and all possible system behaviors. CPN
offers verification of several properties, such as liveness property,
deadlock-freeness property, reachability analysis property, etc.

In safety-critical systems, the system model must be free of dead-
locks, and for any reachable state, there should be at least one state for
each transition. Therefore, in the behavioral verification of a CPN
model, the following properties are analyzed:

Reachability: A certain marking M is called reachable if there exists a
firing sequence that leads from the initial marking M0 to M. Formally, M
∈ R(N, M0).

Deadlocks: A marking M in the CPN model is dead if no transition is
enabled in that marking. A CPN model is deadlock-free if each reachable
marking enables a least one transition.

Dead Transitions: A transition is considered to be dead if there is no
reachable marking in which that transition is enabled.

Liveness: A transition t is said to be live if for any marking M ∈ R(M0),
there exists a sequence of transitions enable from M, which contains t.

Formally, ∀M ∈ R(N, M0) such that ∃M ∈ R(N, M): t′ ≤ M′. The liveness
property ensures that blocking will never occur in the CPN model.

Boundedness: A place P is called k-bounded for some k ∈ N, if in any
reachable marking, place P never has more than k tokens, i.e., ∀M ∈ R(N,
M0): M(P) ≤ k. The boundedness property ensures that the number of in-
process parts is upper bounded, which in turn ensures the stability of the
CPN model (Savi and Xie, 1992).

Dead Markings: The dead marking information tells us about the
markings with no enabled transitions.

CPN IDE1 is a tool suite for modeling, editing, simulation, and state
space analysis. Using Cpntool suit, we can generate a state space for a
given Petri net model by calculating the reachable states (markings),
which makes it possible to answer a large set of verification questions
concerning the system’s behavior, e.g., deadlocks, liveness, and fairness
(Jensen et al., 2007). The state space can also be represented through a
directed graph called a state space graph, where nodes of the graph
represent states and arcs represent occurring events. State space analysis
makes it possible to ensure that all possible executions are covered.

3.3. Human rescue robot system

Autonomous robots have been used in search and rescue operations
during disasters such as earthquakes, floods, and hurricanes, as well as
in industrial accidents and other emergency situations to increase the
speed and effectiveness of search and rescue operations while reducing
the risk to human rescuers. For instance, as a rapid response, Miami
Dade Fire Rescue (MDRF) primarily carried out tactical drone operations
for direct lifesaving and mitigation activities when portions of the
surfside’s twelve-story Champlain Towers South condominium
collapsed on June 24, 2021 (Murphy, 2021).

HRRS is a type of collaborative system that is designed to assist with
search and rescue operations in hazardous or inaccessible environments.
These systems typically involve a combination of robots, sensor equip-
ment, and human operators working together to locate and rescue vic-
tims. The robots used in human rescue robot systems are typically
mobile and equipped with cameras, sensors, and other equipment to
help them navigate and gather information about the environment (Ali
et al., 2022).

This paper uses HRRS as a case study to illustrate our concept of
safety for collaborative systems by modeling it in hierarchical CPN.
HRRS consists of three types of robots, i.e., Searching Robot (SR), Ob-
stacles Removing Robot (OR), and Lifesaving Robot (LSR) which are
controlled by a Control Station (CS) as shown in Fig. 1.

Each robot is considered an independent system collaborating with
others to rescue victims from the disaster area. The CS manages overall
rescue operations and controls robots. It initiates a rescue operation by
sending disaster information, such as location, to the robots. The robots
periodically update their status (health diagnostic information, location,
and task status) to CS.

The rescuing robots are expected to be able to perform safe opera-
tions to rescue victims from the disaster area. All three collaborative
systems SR, OR and LSR) interact with each other to save human life.
The role and responsibilities of each robot are described below.

SR: The searching robot gets disaster information from CS using CS to
Robot (CS2R) communication, searches for victims on the ground, and
sends its location to the obstacle-removing robot and lifesaving robot
using Robot to Robot (R2R) communication. It also updates its status to
CS using Robot to CS (R2CS) communication. SR also updates its status
to CS periodically.

OR: It is responsible for removing obstacles from a victim’s sur-
roundings so that LSR would quickly rescue the victim without any
hurdles. OR receives the victiḿs location from SR and scans for obstacles
surrounding the victim. When it finds obstacles around the victim, it

1 https://cpnide.org/

N. Ali et al.

https://cpnide.org/

The Journal of Systems & Software 210 (2024) 111958

5

estimates the shortest path and starts moving towards the victim. After
completing its mission, the OR sends a clearance message to the LSR for
further operations. The OR also updates its status to CS periodically.

LSR: LSR receives a clearance message and location of the victim
from OR, approaches the victim, and evacuates the victim to a desig-
nated safe zone. LSR also updates its status to CS periodically.

4. Modeling and safety analysis for HRRS with hierarchical CPN

In this section, we describe the modelling and safety analysis for
HRRS. The modelling and safety analysis procedure is mentioned in
Fig. 2.

Our modelling and safety analysis procedure has six steps: 1) define

the scope of the collaborative system (2) model the collaborative system
using hierarchical CPN; 3) model each system that participate in the
collaboration; 4) inject faults in each participating system (5) design
safety guards for each injected fault and redesign the system; 6) simulate
the collaborative system to check the behaviour of the system before and
after applying safety guards (validation and verification).

The Scope of collaborative system (i.e., HRRS) is described in the
Section 3.3. Rest of the steps are covered under this section, Section 5, 6
and 7 of this paper.

Using hierarchal CPN for safety analysis of collaborative systems
provides a more detailed view of the system state, which can help
identify potential safety hazards more accurately. The additional attri-
butes of tokens, such as colors and data values, can provide a better
understanding of the system’s behavior and help in identifying potential
safety hazards that may be skipped using traditional Petri nets.

Before modeling the system, we make the following assumptions:

• Only one victim is in the scenario at a time.
• Only one type of fault for each robot in one simulation.
• Each robot moves independently from the other, i.e., they do not

move together in a group. They just move when the conditions for
their function are fulfilled.

During system modeling, we consider the following failure cases at
the system level:

• Sensor Failure: Failure due to the problem in sensing the environ-
ment that hinders the task in sensing objects of interest.

• Navigation Failure: Failure while navigating to the target location, e.
g., slippery ground.

• Object Clearance Failure: Failure in clearing the area due to insuf-
ficient actuating mechanism on the robot.

The above assumptions were made for simplification in the initial
study, and we plan to relax them in future works and add more failure
modes.

4.1. Model structure

In this section, we present a hierarchical CPN model for HRRS. Fig. 3
shows the top-level hierarchical CPN model for collaborative HRRS,
which consists of four substitution transitions (rectangles with double-
lined borders) representing entities defined for CS, SR, OR, and LSR.
The model shows that CS triggers the rescue operation by sending the
rescue operation’s location. Next, the SR searches for victims and sends
the victim position to OR. The OR searches for obstacles around the
victim, removes the obstacles, and sends a clearance message along with
the victim’s position to LSR. Finally, the LSR approaches victims and
takes them to a safe area. Each robot reports its status to CS periodically.

4.2. Model description

The model description is divided into 1) color sets, 2) variables, 3)
constants, 4) parameters, and 5) functions.

Color Sets: A color set is like a data type that defines the content of a
variable. We defined some color sets in the model, as shown in Appendix
(Table 3).

Variables: There are some variables defined for modeling the system.
The description of variables can be seen in Appendix (Table 4).

Constants: We defined some constants in the model, which are shown
in the Appendix (Table 5). These constants are used to represent error
conditions and some default values.

Parameters: We defined some parameters in the model, as shown in
Appendix (Table 6). These parameters are used as initial values of some
places to make it easy to simulate different configurations. If the model
needs to be simulated with different configurations, we can simply

Fig. 1. HRRS high-level architecture.

Fig. 2. Detailed procedure of modelling and safety analysis.

N. Ali et al.

The Journal of Systems & Software 210 (2024) 111958

6

replace the values of the parameters with new values.
Functions: There are some functions defined in the model, as shown

in Fig. 4. The model has a complex logic, and these functions are used to
make it less cluttered and comprehensible. The description of defined
functions are mentioned below.

CalcTaskCondN: The function for calculating a value based on the
weather condition and the severity. The value is later used for deter-
mining the failure condition with respect to the robot’s robustness level
in performing a navigation function.

CalcTaskCondS: This function is used for determining the sensor-
related failure condition with regard to the robot’s robustness level in
performing the environment sensing function.

CalcTaskCondO: The function for calculating a value based on the
weather condition and the severity. The value is later used for deter-
mining the actuating-related failure condition regarding the robot’s
robustness level in performing object removal functions.

CalcTaskCondV: The function for calculating a value based on the
weather condition and the severity. The value is later used to determine
the sensor-related failure condition regarding the robot’s robustness
level in the victim localization function.

HdlErrSrSens: The function for determining the error condition for
the SR sensing function.

HdlErrSrNav: The function for determining the error condition for the
SR navigation function.

HdlErrOrNav: The function for determining the error condition for
the OR navigation function.

HdlErrOrObjAct: The function for determining the error condition for
OR object-removal function.

HdlErrLsrNavRoute: The function for determining the error condition
for the LSR navigation route function.

HdlErrLSrNavSens: The function for determining the error condition
for the LSR navigation sensing function.

HdlErrLsrLocVic: The function for determining the error condition for
the LSR victim localization function.

HdlNavF: The function for determining the failure condition for the
navigation function. This function calculates the failure condition based
on the input task state, weather condition, severity, error condition, and
the robot robustness level.

HdlScanF: This is the function for determining the failure condition
for environmental scanning. This function calculates the failure condi-
tion based on the input task state, weather condition, severity, error
condition, and the robot robustness level.

HdlObjF: This function is for determining the failure condition for the
object-removal. This function calculates the failure condition based on
the input task state, weather condition, severity, error condition, and the
robot robustness level.

HdlVicLocF: This function determines the failure condition for the
victim localization. This function calculates the failure condition based
on the input task state, weather condition, severity, error condition, and
the robot robustness level.

Table 1 categorizes the functions used in building and simulating
HRRS system model.

4.3. Modelling HRRS in hierarchical CPN with failures

As explained below, we incorporated three types of system-level
failures into the CPN model.

Sensor Failure: Failures due to the problem in sensing the environ-
ment that hinders the task of sensing objects of interest.

Navigation Failure: Failures while navigating to the targeted loca-
tion, e.g., slippery ground.

Object Clearance Failure: Failure in clearing the area due to

Fig. 3. Hierarchical CPN model for HRRS.

Fig. 4. List of functions defined in HRRS CPN model.

N. Ali et al.

The Journal of Systems & Software 210 (2024) 111958

7

insufficient actuating mechanism on the robot.

4.3.1. Hierarchical CPN model for CS
A hierarchical CPN model for CS is shown in Fig. 5. The CS first as-

sesses the search and rescue area, for that it gets mission id (m_id),
mission goal (m_g), mission state (m_st), mission conditions (m_cd) and
gets mission area coordinates (m_l). The color tokens over Start Mission
show the weather conditions and their severity at the beginning of the
rescue operation. This step is initiated by the operators in the CS. For
example, the operator determines the weather conditions (good, wind,
rain, fog, and snow) and the severity of weather as low, medium and
high. The severity is an enumeration of these values. In the first
assessment it checks whether CS has some existing error (err) e.g.,
location, mission identification and etc. If turns to be true (err =

SYS_ERR_CS_TRUE), the simulation does not proceed further. In the next
stage, the model has a guard condition to check the state of the mission
state (m_st). If the mission state turns to be false and mission state is
updated as FAILED (m_st = FAILED), the mission is aborted, and mission
state is updated. Otherwise, the CS will start the rescue mission by
sending a search area location (s_l) and other information (m_id, m_g,
m_st, m_cd) to SR for further processing. The CS also controls overall
rescue operations and gets task status (t_st) to monitor the rescue
operation. It also gets mission updates from each robot periodically.

4.3.2. Hierarchical CPN model for SR
We modeled SR using hierarchical CPN, as shown in Fig. 6. The SR

receives necessary information from the CS that includes task state (t_st),
task condition (t_cd), and coordinates for the targeted location (s_l) and
navigates to the targeted place to search the potential victims. When SR
finds victims, it sends the location information (v_l) of victims and other
information to the LSR for rescue and goes to the Ready state.

As mentioned above, we incorporated two failure cases, i.e., Handle
Env. Sens Failure and Handle Navigation Failure into the CPN model for
SR. Moreover, new types of places and transitions, which are faulty
states and transitions, are also added to the CPN model. For example,
Handle Env. Sens Failure is added to see SR’s behavior when it fails to
sense the environment due to environmental variabilities such as fog,
rain, etc. In addition, Handle Navigation Failure fault is also added to see
SR’s behavior in case SR fails to navigate to a certain destination due to
environmental conditions. When any type of the above-mentioned faults
occur, the SR updates task status (t_st) to the CS and goes to the Ready
state.

4.3.3. Hierarchical CPN model for OR
We modeled OR using hierarchical CPN, as shown in Fig. 7. The OR

gets victim coordinates (v_l) and other information (t_cd, t_st) from SR,

Table 1
Functions and their categorization.

Function Type Functions SR OR LSR

General CalcTaskCondN ✓ ✓ ✓
CalcTaskCondS ✓ ✓ ✓
CalcTaskCondO ✓ ✓ ✓
CalcTaskCondV ✓ ✓
HdlNavF ✓ ✓ ✓
HdlScanF ✓ ✓ ✓
HdlObjF ✓ ✓
HdlVicLocF ✓ ✓ ✓

Robot Specific HdlErrSrSens ✓
HdlErrSrNav ✓
HdlErrOrNav ✓
HdlErrOrObjAct ✓
HdlErrLsrNavRoute ✓
HdlErrLSrNavSens ✓
HdlErrLsrLocVic ✓

Fig. 5. Hierarchical CPN model for CS.

N. Ali et al.

The Journal of Systems & Software 210 (2024) 111958

8

calculates an optimal route to the victim, searches obstacles around the
victim, removes the obstacles, and reports its task status (t_st) to CS. The
OR also sends location information of victims (v_l) and other necessary
information (t_st, t_cd) to the LSR for further processing.

We inserted two failure cases, i.e., Handle Obs Clearance problem and
Handle Navigation Failure, into the CPN model for OR. If the searching for
obstacles mission fails due to a problem in OR, then Handle Obs Clear-
ance problem transition can be fired while Handle Navigation Failure
transition is designed to know the OR’s behavior in case of environ-
mental variabilities. In both cases, they update the task status (t_st) back
to the CS and go the Ready state.

In OR, there is one transition on the top-level model where failure
can be simulated, which is the “Clear Location” transition. The failure is
simulated through “HdlObjF” as shown in Fig. 12. The “HdlObjF” takes
WEATHER (w), SEVERITY (s), the Robot Robustness (r), the TASK_-
STATE (st), and the ERROR NO (err) parameters to simulate the failure
state. CalcTaskCondV function is used to calculate the combination of
WEATHER and SEVERITY in order to determine the robustness level of
OR at failure state.

4.3.4. Hierarchical CPN model for LSR
The task of LSR is to get the clearance message from OR and to move

victims to a safe zone from the disaster zone. Fig. 8 shows the CPN model
for LSR. It tells us the operational behavior of the LSR with and without
hazardous events. Handle Env. Sens. Error and Handle Nav. Error are two

faults added into the model to see the system’s behavior in case of these
two faults. In SLR, there is one transition on the top-level model where
failure can be simulated, which is the “Locate Victim” transition, as
shown in Fig. 8.

The sensing failure in LSR is simulated through the function
“HdlVicLocF” (see Fig. 4). The “HdlVicLocF” uses some input parame-
ters to simulate a failure state. In the current model, it uses the
WEATHER (w), SEVERITY (s), the Robot Robustness (r), the TASK_-
STATE (st), and the ERROR NO (err) parameters. If the robot’s current
configuration, which is characterized by the robot’s robustness, is lower
than the combination of the current WEATHER and SEVERITY, then LSR
will encounter a failure. The combination of the WEATHER and
SEVERITY is separately calculated by the function CalcTaskCondV, as
shown in Fig. 4. Function CalcTaskCondV is used to calculate the com-
bination of WEATHER and SEVERITY for the victim localization failure.

In SLR, “Navigation to Victim Location” transition is where failure can
be simulated, as shown in Fig. 8. The navigation failure is simulated
through the function “HdlNavF” (see Fig. 4). The “HdlNavF” function
takes some input parameters to simulate a failure state. The parameters
are WEATHER (w), SEVERITY (s), robot’s robustness (r), the TASK_-
STATE (st), and the ERROR (err) parameters. If the robot’s current
configuration, which is characterized by the robot’s robustness, is lower
than the combination of the current WEATHER and SEVERITY, then the
LSR will experience navigation failure. The combination of the
WEATHER and SEVERITY is individually calculated by the function

Fig. 6. Hierarchical CPN model for SR.

N. Ali et al.

The Journal of Systems & Software 210 (2024) 111958

9

CalcTaskCondV, as shown in Fig. 4. Function CalcTaskCondV is used to
calculate the combination of WEATHER and SEVERITY for the victim
localization function.

In order to cope with the navigation failure, we extended the “Nav-
igation to victim Location” transition in LSR to another subpage model
called Nav2Dest_SM, as shown in Fig. 9. The extended model takes
victim’s position (v_pos) and task state (t_st) to find the optimal route
and drive to the destination otherwise, it reports the navigation problem
to the CS.

5. Simulation configurations

As mentioned earlier, the model can be parameterized to allow
different configurations for simulating different scenarios. The config-
urations can be done by changing the parameters of some initial values
or by changing the functions to give different results that will change the
simulation flow.

Changing Parameters: This modeling type gives the designers flexi-
bility because one does not need to change the initial values of param-
eters directly in the model. Instead, one can simply change the
parameter value and simulate the model for desired values, as shown in
Fig. 10.

Changing Functions: Some functions might need to be modified to
control the flow of the simulation. The following functions (Fig. 11) can

be modified according to our goal.
The results of the above functions are compared to the robot’s

robustness level, as shown in Fig. 12.
A failure condition is met when the result of a function is over the

robot’s robustness level. Thus, depending on the set of robot’s robust-
ness level, we might need to change the above functions, e.g., to simu-
late a failure condition for a certain robustness level. The constants used
in those functions can be set to any value that meets our simulation
goals.

6. Failure handling modelling

In failure handling modeling, we incorporate additional places and
transitions to simulate failure handling to enable the simulation to
proceed without failure. The following sections explain hierarchical
CPN modeling for each collaborative system, i.e., SR, OR and LSR.

6.1. Hierarchical CPN model for SR with safety

When SR faces a failure in “Scan Surrounding” (Fig. 6), a safety
mechanism called “Handle Env Sens Failure’’ is defined to address sensing
failure. In this section, we further extended the “Handle Env Sens Failure’’
transition to ensure safety (Fig. 13). The “Handle Env Sens Failure’’
transition processes the incoming tokens, i.e., task state (t_st), task

Fig. 7. Hierarchical CPN model for OR.

N. Ali et al.

The Journal of Systems & Software 210 (2024) 111958

10

condition (t_cd), search location information (s_l), and robot robustness
level (r), only in the case of failure when TASK_ROBOT (t_st) = FAILED
becomes true. In the case of sensing failure, the SR retries three times (k
= 3) and tries to increase the robot robustness level (r) in each iteration.
In the first iteration, the SR tries with normal robot robustness level (r),
and if it fails, then in the next iteration, the safety mechanism will in-
crease the robot robustness level (r) to a higher value (PrmLsrLvl1) and
try again. This corresponds to, for example, activating additional sensors
to sense the environment better in bad weather conditions. The
TASK_STATE (t_st) needs to be changed to a SUCCESSFUL first to enable
the next iteration. In the next iteration, the “Scan Surrounding” transi-
tion will again compute the failure state as explained. If the increase of
robot robustness level cannot cope with sensing failure, the “Handle Env
Sens Failure’’ transition will be again activated. And inside this transi-
tion, the flow will go through the “Report Scan Failure” as the condition k
= 3 is fulfilled, and there is a token in the “Retry Counter” place. In the
case of unresolved failure, the TASK_STATE will be set to FAILED, and
the robot’s robustness level will be reset back to its original value
(PrmLsrLvl0).

When the safety mechanism sufficiently addresses the sensing fail-
ure, the simulation will continue to the “Send Victim Coordinate” tran-
sition in the SR model (Fig. 6).

Similarly, when SR faces failure due to the “Navigation to Location”
transition. A safety mechanism called “Handle Navigation Failure” is
defined to cope with this failure. The safety mechanism for transition
“Handle Navigation Failure” is mentioned in Fig. 14. The “Handle Navi-
gation Failure” transition will process the incoming tokens only in the
case of failure (TASK_STATE (t_st) = FAILED). In the first iteration, the
safety mechanism will increase the Robot Robustness level (r) to a
higher value (PrmLsrLvl1), which means that the SR will increase
traction to be able to navigate better in a bad weather condition. To

enable the next iteration, the TASK_STATE (t_st) is initially changed to
SUCCESSFUL. The “Navigation to Location” transition will again
compute the failure state in the next iteration. If the Robot Robustness
level rise cannot sufficiently control navigation failure, the “Handle
Navigation Failure” transition will be triggered again. Inside the “Handle
Navigation Failure” transition, the simulation flow will go through the
“Report Navigation Failure” as the condition [k = 3] is satisfied, and there
is a token in the “Retry Counter” place as shown in Fig. 13. In the case of
unresolved failure, the TASK_STATE will be set to FAILED, and the ro-
bot’s robustness level will be reset to its original value (PrmLsrLvl0).
Otherwise, if the safety mechanism is sufficient to cope with the navi-
gation failure, the simulation will continue to the “Send Victim Coordi-
nate” transition in the SR model (see Fig. 6).

6.2. Hierarchical CPN model for OR with safety

In the CPN model for OR (Fig. 7), two types of failures, i.e., obstacle
clearance failure and navigation failure, can occur in “Clear Location”
and “Navigation to Victims Location” transitions, respectively. The safety
mechanism for obstacle clearance failure is shown in Fig. 15.

When obstacle clearance failure occurs in the “Clear Location” tran-
sition, the “Handle Obs Clearance Problem” transition is activated and
copes with obstacle clearance failure. The “Handle Obs Clearance Prob-
lem” transition will process the incoming tokens only in the case of
failure (TASK_STATE (t_st) = FAILED). In the first iteration, the safety
mechanism will increase the robot robustness level (r) to a higher value
(PrmLsrLvl1). Then, the OR will activate alternate actuators to clear
obstacles around the victim. The TASK_STATE (t_st) requires to be
changed to a SUCCESSFUL first to enable the next iteration. In the next
iteration, the “Handle Obs Clearance Problem” transition will again
compute the failure state, and if the increase of robot robustness level

Fig. 8. Hierarchical CPN model for LSR.

N. Ali et al.

The Journal of Systems & Software 210 (2024) 111958

11

cannot cope with obstacle clearance failure, the “Handle Obs Clearance
Problem” transition will be again activated. Inside the “Handle Obs
Clearance Problem” transition, the flow will go through the “Report Object
clearance Failure” as the condition [k = 3] is fulfilled, and there is a token
in the “Fail Counter” place. In the case of unresolved failure, the
TASK_STATE will be set to FAILED, and the robot’s robustness level will
be reset to its original value (PrmLsrLvl0). Otherwise, the “Send Area
Clear Status” transition will be activated.

Similarly, the “Navigation to Victims Location” failure is handled in the

Fig. 9. CPN sub-model for navigation of LSR to a certain destination.

Fig. 10. Simulation configurations with changing parameters.

Fig. 11. Simulation configurations with changing functions.

N. Ali et al.

The Journal of Systems & Software 210 (2024) 111958

12

same way as the navigation failure was handled in SR (Fig. 14).

6.3. Hierarchical CPN model for LSR with safety

In the LSR model with a safety mechanism, additional places and
transitions were incorporated to simulate safety mechanisms to enable
the simulation to proceed without failure. As described earlier (see
Fig. 8), when the failure occurs in the “Navigation to Victim Location”
transition, the “Handle Nav. Error” transition is activated to cope with
navigation failures. We reused the safety mechanism defined for “Handle
navigation Failure” in SR (Fig. 14) to cope with the “Handle Nav. Error” in
LSR. The “Handle Nav. Error” transition will process the incoming tokens
only in the case of failure (TASK_STATE (t_st) = FAILED). In the first
iteration, the safety mechanism will increase the robot robustness level
(r) to a higher value (PrmLsrLvl1), which means that the LSR will acti-
vate more sensors to navigate better in bad weather conditions.

Therefore, the TASK_STATE (t_st) requires to be changed to a SUC-
CESSFUL first to enable the next iteration. The “Navigation to Victim
Location” transition will again compute the failure state in the next
iteration. If the rise of robot’s robustness level cannot cope with navi-
gation failure, the “Handle Nav. Error” transition will be activated again.
Inside the “Handle Nav. Error” transition, the flow will go through the
“Report Navigation Failure” as the condition [k = 3] is fulfilled, and there
is a token in the “Retry Counter” place. In the case of unresolved failure,
the TASK_STATE will be set to FAILED, and the robot’s robustness level
will be reset back to its original value (PrmLsrLvl0). Otherwise, the
“Evacuate Victim” transition in the LSR model will be activated (see
Fig. 8).

As explained in section 5.3.4, environmental factors may affect the
robot’s perception of locating the victims. Therefore, we must model the
system in a way that works in extreme weather conditions. In SR, we
defined “Handle Env. Sens. Failure” as a safety mechanism for such kinds
of failures (failures related to the environment sensing) to cope with
failures related to sensing the environment (Fig. 13). In LSR, we reused
the safety mechanism defined for “Handle Env. Sens. Failure” in SR
(Fig. 13) to cope with the sensing-related failures in LSR.

7. HRRS model validation and verification

In this section, we have identified three requirements for system
validation. After the HRRS model is validated, the functional safety is
verified using state space analysis in Section 7.1.

7.1. Validation of hierarchical CPN model for HRRS

Design validation is an important step that is required to be per-
formed before any further analysis of safety-critical systems. Validation
plays a critical role in ensuring that a system is fit for its intended pur-
pose, satisfies user needs, and operates reliably (Jensen et al., 2007). As
mentioned above, here we validate three system safety criteria of the
HRRS hierarchal CPN model. The model validation process helps us
whether the model satisfies specific safety requirements, which verify
the functional safety in Section 7.2. The HRRS model has to satisfy the
following three requirements as shown in Table 2. VR1 ensures that all
states in HRRS are involved in the state space, VR2 talks about the
endless loops in the system, and VR3 shows any abnormal system
termination.

Fig. 12. Simulation configuration with failure conditions.

Fig. 13. Safety mechanism to address sensing failure in SR, OR and LSR.

N. Ali et al.

The Journal of Systems & Software 210 (2024) 111958

13

We apply the above three validation requirements to HRRS after
designing safety mechanisms for injected failures. The result of VR1 and
VR2 for HRRS is presented in Fig. 16 which is generated through state
space analysis. For this statistic, we had 199,793 nodes and 200,516 arcs
in state space for HRRS. It means that the whole CPN model for HRRS
can generate 199,793 different markings, and 200,516 arcs connect the
markings. Therefore, the state-space status is Full, which tells us that all
available states have been calculated in the space.

The Scc (strongly connected component) graph has the same mark-
ings and arcs as the state space, meaning there are no cycles in the state
space. The Scc indicates that each vertex can be reached from any other

vertex, thereby representing that every state or marking within the
model is accessible from any other state or marking. The Scc graph has
the same markings and arcs as the state-space, which shows there are no
cycles or self-loops in the model.

State space is used to verify a formal model with respect to a set of
correctness criteria that includes an absence of self-loop and an absence
of livelock (Katsaros, 2009; Jensen and Kristensen, 2009a). There are
two ways to check the absence of livelocks: If the state space and its Scc
graph are isomorphic without any self-loops, then the system model is
free from livelocks. However, if the state space contains self-loops or if
there’s at least one strongly connected component consisting of more

Fig. 14. Safety mechanism for navigation failure in SR, OR and LSR.

Fig. 15. Safety mechanism for obstacle clearance failure in OR, SR and LSR.

N. Ali et al.

The Journal of Systems & Software 210 (2024) 111958

14

than one node (meaning the number of nodes in the Scc graph is fewer
than those in the state space), we must then examine whether all ter-
minal components are trivial.

Livelock in CPN models can occur due to various reasons, such as
conflicts in the token colors, incorrect transitions, or issues in the
modeling of the system. A livelock is identified when the state space
exhibits a cyclic pattern with no markings occurring outside this cycle.
In such a scenario, once the cycle is entered, it perpetually repeats
without any progress. VR3 can be validated by following queries as
shown in Fig. 17. From the results, can see that there is no livelock in the
HRRS model. It validates the modeĺs correctness in terms of no conflicts
in the token colors, incorrect transitions, or issues in the modeling of the
system.

7.2. Verification of hierarchical CPN model for HRRS

The model verification focuses on ensuring that the formal repre-
sentation of the system is accurate and adheres to specific safety prop-
erty requirements.

Reachability analysis can be used for various purposes, such as

verifying that specific properties hold in all reachable states (e.g., safety
properties, liveness properties), checking for deadlock conditions, or
detecting potential errors or undesirable behaviors. Reachability anal-
ysis is a technique used to determine a system’s set of reachable states. In
hierarchical CPN, this technique can be applied to each level of the hi-
erarchy separately or to the entire system as a whole. One approach to
reachability analysis in hierarchical CPN is to use a compositional
method, where the reachability of the entire system is constructed from
the reachability of its individual components. Another approach is to use
a global method, where the entire system is analyzed as a whole. This
can be done by generating a reachability graph for the entire system,
which represents all the reachable states. We employed this approach to
analyze HRRS.

Once the reachability graph has been generated, it can be analyzed to
check for certain properties, such as liveness, boundedness, or safety
properties.

The process of reachability analysis in hierarchical CPNs typically
involves the following steps:

1. Construct a CPN model of the system: The system is modeled as a
CPN, with places representing the states and transitions representing
the events that can change the state.

2. Identify the initial state: The system’s initial state is identified and
marked in the CPN model.

3. Generate the state space: The system’s state space is generated by
finding all the reachable states from the initial state.

4. Check for unwanted behaviors: Once the state space is generated, it
can be analyzed to check for unwanted behaviors such as deadlocks.

We followed the above steps to take advantage of state-space analysis
to verify whether the hazardous transitions are reachable in the HRRS
model. The state-space identifies all possible reachable states and tran-
sitions the system can reach from the initial state through transition
firings. The reachable states and state changes are represented by a
directed graph where the nodes are the set of reachable markings, and
the arcs are the binding elements. In addition, state-space includes
necessary information and properties, including the CPN model’s home
properties, liveness, fairness, statistics, and boundedness properties.
Hence, HRRS hierarchical CPN model is verified against three safety
properties requirements:

• Dead Transitions
• Boundedness
• Deadlock

First of all, we generated the state space report for HRRS with
injected failure. For this statistic, we had 107 nodes and 106 arcs in the
state space. It means that the whole CPN model for HRRS can generate
107 different markings, and 106 arcs connect the markings. Therefore,
the state-space status is Full, which tells us that all available states have
been calculated in the space.

The Scc graph has the same markings and arcs as the state space,
meaning there are no cycles in the state space. The liveness properties
specify some dead markings and dead transition instances in the
generated state space. In this case, we got 100 dead markings and 27
dead marking instances. The dead markings may indicate some dead-
locks and the deadlock instances confirm where the potential deadlocks
are in the model. Dead marking is a unique marking; it shows that the
system is terminated, and no more subsequent actions are available.
However, unnecessary dead markings are undesired and can be a design
defect. For example, among the dead marking instances,“Handle_Env”
shows a faulty transition, which is not fired, as a result, LSR could not
complete its assigned task.

The dead transitions do not always refer to the deadlocks in the
system or the presence of a fault in the system; some time it tells us that a
faulty transition is not reachable in the model. For instance,

Table 2
Validation requirements and description.

Requirements Description

VR1: A full state space needs
to be calculated

In state space analysis, a full state space needs to be
computed which in turn tells whether all variable
states are involved.

VR2: Self-loop is discouraged A self-loop refers to a scenario in which a system
retains the same marking while executing a
transition, resulting in the utilization of extra
system resources.

VR3: absence of livelocks An important model correctness criterion is the
absence of livelocks in the HRRS model

Fig. 16. State space report of HRRS CPN model.

Fig. 17. Absence of livelock in HRRS CPN model.

N. Ali et al.

The Journal of Systems & Software 210 (2024) 111958

15

Abort_Mission is a deadlock transition instance. This is a faulty transition;
rightly, it should not be reachable in the model (also refer to Fig. 5).
However, dead transitions may indicate the presence of a fault in the
system. For example, the “Evacuate_Victim” transition is a dead transi-
tion, which means that LSR terminated its mission somewhere in the
middle of the task due to this failure. Therefore, the model without a
safety mechanism needs a through investigation into the dead markings
and dead marking instances to rectify the potential design defects.

We also generated the state space graph for HRRS with injected
failures as shown in Fig. 18. From the result, it is clear that after the
transition SŔNavigate_to_Location, the SR could not get the location of
victims due to environment sensing failure, which can be seen from the
SŔHandle_Env_Sens_Failure transition. We also see that the robot in-
creases its robustness level (r = 55) but could not detect the victims
around the location due to environmental factors. As a result, the
mission was failed as we see from the CŚSet_Mission_Status transition
where task state (t_st=FAILED) is updated as failed.

As anticipated, the system has dead markings and dead transitions,
which is not desirable in the model. Therefore, it proves the designed
model is incorrect, and the designed model must be revised to ensure
that the faulty transitions are not fired.

In order to remove the design defect from the model, we revise the
HRRS CPN model. In our CPN model, we defined safety guards for each
type of failure and incorporated them into the CPN model to ensure
safety. “Handle Env Sens Failure” and “Handle Navigation Failure” tran-
sitions are expanded to define safety guards for sensing failure and
navigation failure in SR (see Figs. 13, 14). Similarly, the “Handle Obs
Clearance Problem” transition is further expanded, and OR’s robustness
level was increased to activate more actuators to handle the obstacle
clearance problem in OR (Fig. 15). Furthermore, “Handle Env.Sens.
Error” transition was expanded in the CPN model for LSR (Fig. 8), and a
sub-model was designed to address the environmental sensing problem
in LSR (Fig. 13). After redesigning the CPN model with safety, a state-
space report was again generated to see whether faulty transitions
were dead and other deadlocks were removed. Fig. 19 shows informa-
tion on the state-space report for the modified hierarchical CPN model
for HRRS. The generated state-space has 199,793 markings and 200,516
arcs. The construction of state-space took 300 s (Fig. 19). This is due to
the fact that the modified hierarchical CPN model for HRRS was
complex.

Dead Transitions: Detecting and handling dead transitions in a CPN
model is important to ensure that the modelled system operates
correctly and does not become stuck in an undesirable state. As we
mentioned, without safety mechanisms for injected failures, we got 27
dead markings that led to the system failure. After designing the safety
mechanisms for each injected failure, we simulated the system and
generated state space report as shown in Fig. 19. We see that there are
seven dead transition instances, no home markings, and no live transi-
tion instances. The fairness properties show that there is no infinite
occurrence if sequences as well.

In some cases, the presence of dead transitions might indicate a
design issue in the CPN model. We reviewed the overall system design to
ensure it accurately reflects the intended behavior and requirements.
Therefore, we investigated the dead transition instances i.e. CS_SM’A-
bort_Mission, LsrNavFailHdl’Increase_Traction, LsrNavFailHdl’Report_Na-
vigation_Failure, Nav2Dest_SM’

Report_Route_Failure, Nav2Dest_SM’Report_Sensor_Failure, SrNav-
FailHdl’Increase_Traction, and SrNavFailHdl’Report_Navigation_Failure.
During our investigation, we have seen that these dead transition in-
stances show that the faulty transitions must be dead, meaning that
these faulty transitions should not be enabled in the presence of defined
safety guards. For instance, the “Report_Sensor_Failure”, “Handle_-
Obs_Clearance_Problem,” and “Report_Obstacle_Clearance_Failure” transi-
tions are dead along with other faulty states, which means that faults in
HRRS are acceptably mitigated by defining safety mechanisms.

Boundedness can help in ensuring the correct behavior of a system

at a time point. The state transition for HRRS is shown in Fig. 3. We see
that the initial state (Start_Mission) is 1`(1,1,START,(BLIZZARD,MED,
1.0,1.0,1.0)). The mission starts when it gets weather conditions,
severity, location, and other parameter for the initial condition of the
mission condition. It is obvious that there must be always one and only
one multiset token on Start_Mission place because the mission only starts
when all parameters are available. Here, we can apply the boundedness
property to verify this function. The boundness properties can specify
how many and which tokens a place holds (Jensen and Kristensen,
2009b), it has the capacity to manifest either hardware or software
resource demands, as a higher token count in one location implies a
greater need for storage space. We run a query to verify the boundness
on Start_Mission place as shown in Fig. 20. As shown in the results, both
the upper bound and lower multiset are the same on the same place
Mark.Human_Rescue_Robot_System’

Start_Mission. It verifies that the model’s operation aligns with the
anticipated behavior.

Deadlock: The absence of deadlock markings in a CPN means that
the model has been designed or configured in such a way that deadlock
situations do not occur. This is essential for ensuring the proper func-
tioning and liveness of a system represented by the hierarchal CPN.
Achieving the absence of deadlock markings involves careful modeling
and analysis to ensure that proper synchronization mechanisms,
resource allocation, and transition firing conditions are in place to
prevent processes from getting stuck in a deadlock state. It ensures that
the CPN can always make progress and reach its desired states without
being indefinitely blocked. Algorithms such as (Katsaros, 2009) are used
to identify the deadlocks in the HRRS hierarchal CPN model. Fig. 21
shows the non-standard space query verifying that the HRRS hierarchal
CPN model does not include deadlock markings. We verified that all
dead markings are correct, meaning that the communication channels
have valid participant́s state combinations. We see that, when the
transition Life Saving Robot ends with the status successful, the Mission
Status also produces the same status because TASK_STATE (t_st) is
updated back to the CS. When the Mission Status goes to the FAILED state
it means that a failure has been encountered in the system or some
deadlock is occurred (Fig. 18). However, from the result, we see that the
system experienced no failure as we see the markings at the top model
(Human_Rescue_Robot_System_SM) produce normal outputs and pro-
duced no deadlocks. This is due to the fact that the unnecessary dead
markings were removed by revising the HRRS CPN model.

7.3. Discussion

From the verification and validation results, we can see that the
designed safety mechanisms have mitigated the injected failures. As we
expected, the number of live/dead transition instances and the fairness
properties are desirable which verifies the correctness of our revised
HRRS CPN model. The verification results against deadlock markings,
dead transitions, and boundedness properties show the correctness of
the revised HRRS model. Validation plays a critical role in ensuring that
a system is fit for its intended purpose and satisfies user needs. We also
validated the HRRS CPN model against three defined requirements
(VR1, VR1, and VR3) that show its fitness for the intended use.

Although we have carefully designed our model and conducted the
simulation to verify and validate the proposed approach, several chal-
lenges remain. We point out the high dependency on CPN simulator
where the real situation can not be reflected due to modelling limitations
in CPN IDE. Additionally, we can not guarantee that the proposed so-
lution will be applied for all collaborative scenarios because it has been
only applied to the HRRS case study. However, the safety mechanism for
injected failures can be applied to mitigate similar failures in other case
studies as well.

Along with the numerous benefits, there is a big disadvantage of CPN
analysis i.e., the sate space explosion problem (Valmari, 1996; Clarke
et al., 2001) that results in the great computational complexity of the

N. Ali et al.

The Journal of Systems & Software 210 (2024) 111958

16

analysis. Especially, this problem occurs in Petri nets with timed prop-
erties (Sloan and Buy, 1996; Luo et al., 2014). To reduce this risk, we
used a hierarchal approach to better manage the system and to avoid
unnecessary states. Hierarchal modelling in CPN can manage and reduce
the state space of a complex system by breaking it down into smaller,
more manageable sub-models. This hierarchical structuring can help

control state space explosion, making it easier to analyse and verify the
system. We also used multiset bounds to reduce the state space graph by
bounding the number of tokens in certain places. By limiting the possible
multiset sizes in specific places, we can reduce the combinatorial ex-
plosion of states in our CPN model. This is particularly useful when we
have places with large or unbounded token populations that can lead to

Fig. 18. Details of checking results in state space graph.

Fig. 19. State space report after mitigating the injected failures.

Fig. 20. Boundedness properties of a place.

N. Ali et al.

The Journal of Systems & Software 210 (2024) 111958

17

a vast state space.

8. Conclusions

In this paper, it has been shown how hierarchical CPN can be used to
model, validate and verify collaborative safety-critical systems.
Different from other approaches, a unique approach has been presented
to carry out simulation-based safety verification and validation. We
illustrate this approach using HRRS as a case study where we model the
HRRS using hierarchical CPN. After modeling, we injected three kinds of
failures at the system level and generated the state space to check if there
were dead markings, self-loops, or dead transitions. The simulation re-
sults indicated that there were no self-loops; however, several dead
transitions led to the mission failure of the HRRS. We identified the
failure transitions, developed safety mechanisms for each type of failure,
and again generated the state space to ensure the safe operation of HRRS
to complete its common mission without failures. The simulated results
show that all the identified failures were mitigated, and HRRS
completed its mission without failure. It was found that the approach
based on formal methods (CPN modeling) can be used for the safety
analysis, modeling, and verification of collaborative safety-critical sys-
tems like HRRS. The hierarchical CPN provides a rigorous way of
modeling to implement complex collaborative systems. However, we
have seen that CPNs can be computationally expensive to analyze,
which can be a limitation for large and complex systems. But it allows
for modeling large and complex systems by breaking them down into
smaller, more manageable subnets.

In general, hierarchical CPNs can be a useful tool for safety analysis
in collaborative systems, but they may not be the best choice for all types

of systems or all types of analysis. The choice of CPNs or other formal
methods may depend on the specific characteristics of the system to be
analyzed and the goals of the analysis.

In the future, we want to include scenarios with timing to make it a
timed-CPN. For instance, we want to check different weather conditions
after certain times to make it more resilient in adverse weather
conditions.

CRediT authorship contribution statement

Nazakat Ali: Conceptualization, Formal analysis, Investigation,
Software, Writing – original draft, Writing – review & editing, Meth-
odology. Sasikumar Punnekkat: Writing – review & editing, Re-
sources, Supervision. Abdul Rauf: Validation, Writing – review &
editing.

Declaration of competing interest

We declare no conflict of ineterst.

Data availability

Data will be made available on request.

Acknowledgment

This research was partially supported by the SSF funded DAISY
Project.

Appendix

Table 3
Color set and their meaning.

Color Set Meaning

SMALLINT A color set for a small integer value, from 1 to 100
LOC A location in 3D, e.g. (x, y, z) or (latitude, longitude, elevation).
SEARCH_LOC A color set for the search location. It is based on the LOC color set.
VICTIM A color set for representing an ID of a victim.
STATE A color set for representing different possible states. It is an enumeration with possible values: START, RUNNING, PAUSED, SUCCESSFUL, FAILED.
SEVERITY A color set for representing the different severity levels, for example, the severity of the weather. It is an enumeration of values: LOW, MED, and HIGH
WEATHER A color set for representing weather conditions. It is an enumeration of values: GOOD, WIND, RAIN, FOG, and SNOW.
BLIZZARD The weather condition can cause hazardous conditions; thus, the values are ordered based on the possible hazardous condition
WEATHER_STATE A color set for representing the state of the weather. It is based on the WEATHER and SEVERITY color set.
MISSION_STATE A color set for representing the state of a mission. It is based on the STATE color set.
TASK_STATE A color set for representing the state of a task. It is based on the STATE color set.
TASK_COND A color set for representing the condition faced by a task. It is based on the WEATHER_STATE color set
TASK A color set for representing a TASK performed by a robot. It is based on three color sets: TASK_STATE, TASK_COND, and

SEARCH_LOC.
TASK_ROBOT An extension of the TASK color set that comprises the TASK and the SMALLINT color set. The SMALLINT component is used to store the Robustness Level of the

robot.
VICTIMPOS A color set for representing the victim’s location. It is based on the LOC color set.

(continued on next page)

Fig. 21. Absence of deadlock markings.

N. Ali et al.

https://doi.org/10.13039/100003392

The Journal of Systems & Software 210 (2024) 111958

18

Table 3 (continued)

Color Set Meaning

MISSION_ID A color set for representing the mission identification number. It is based on the INT color set.
MISSION_GOAL A color set for representing the mission’s goal. It is currently set to the VICTIM color set.
MISSION_COND A color set for representing the environmental condition faced by a mission. It is based on the WEATHER_STATE color set.
MISSION A color set for representing a mission. It consists of five color sets:

MISSION_ID, MISSION_GOAL, MISSION_STATE,
MISSION_COND, and SEARCH_LOC.

Table 4
Variables and their meaning.

Variables Meaning

m The variable for storing the MISSION information
v_l The variable for storing the victim position information
s_l The variable for storing the search location information
m_id The variable for storing the mission ID
m_g The variable for storing the mission goal.
m_st The variable for storing the mission state
m_cd The variable for storing the mission condition.
t_st The variable for storing the task state
t_sti The variable for storing the task state that will go into a transition and used as an input of a function.
t_cd The variable for storing the task condition.
err The variable for storing error value.
r The variable for storing the robustness level of a robot
ri The variable for storing the robustness level of a robot that will go into a transition and used as an input of a function.
k The variable for storing the number of retries due to a failure.
n The variable for storing the number of retries due to a failure. The value is always k – 1.

Table 5
Constants and their meaning.

Constants Meaning

SYS_ERR_CS_FALSE The constant for no system error in CS
SYS_ERR_CS_TRUE The constant for existing system error in CS
SYS_ERR_SR_NA The constant for no system error in SR
SYS_ERR_SR_NAV_FAIL The constant for navigation failure in SR.
SYS_ERR_SR_SENS_FAIL The constant for sensor failure in SR
SYS_ERR_OR_NA The constant for no system error in OR
SYS_ERR_OR_NAV_FAIL The constant for navigation failure in OR
SYS_ERR_OR_SENS_FAIL The constant for sensor failure in OR
SYS_ERR_OR_OBJ_ACT_FAIL The constant for a failure with obstacle removing mechanism in OR
SYS_ERR_LSR_NA The constant for no system error in LSR
SYS_ERR_LSR_EVAC_VIC_FAIL The constant for a failure with the victim evacuation mechanism in LSR
SYS_ERR_LSR_LOC_VIC_FAIL The constant for a failure with the victim localization mechanism in LSR
SYS_ERR_LSR_NAV_NA The constant for no navigation failure in LSR
SYS_ERR_LSR_NAV_ROUTE_FAIL The constant for a failure with the routing calculation and following in LSR
SYS_ERR_LSR_NAV_SENS_FAIL The constant for a failure with the sensing for navigation in LSR

Table 6
Parameters and their meaning.

Parameters Meaning

PrmMissCond The parameter for the initial condition of the mission condition
PrmCsErr The parameter of the error condition of the CS
PrmErrSr The parameter of the error condition of the SR
PrmErrOr The parameter of the error condition of the OR
PrmErrLsr The parameter of the error condition of the LSR
PrmErrLsrNav The parameter of the error condition of the navigation function of the LSR
PrmSrLvl0 The robustness level of SR robot. This parameter is used as the initial value of the SR
PrmSrLvl1 The robustness level of SR. This parameter is used as the update value of the safety mechanism of the SR
PrmOrLvl0: The robustness level of OR robot. This parameter is used as the initial value of the OR
PrmOrLvl1 The robustness level of OR. This parameter is used as the update value of the safety mechanism of the OR
PrmLsrLvl0 The robustness level of LSR. This parameter is used as the initial value of the LSR
PrmLsrLvl1 The robustness level of LSR. This parameter is used as the update value of the safety mechanism of the LSR

N. Ali et al.

The Journal of Systems & Software 210 (2024) 111958

19

References

Akhtar, N., Rehman, A., Hussnain, M., Rohail, S., Missen, M.S., Nasir, M., Hayder, A.,
Salamat, N., Pasha, M., 2019. Hierarchical coloured petri-net based multi-agent
system for flood monitoring, prediction, and rescue (fmpr). IEEE Access 7,
180544–180557.

Ali, N., Hussain, M., Hong, J.E., 2021. Fault-tolerance by resilient state transition for
collaborative cyber-physical systems. Mathematics 9, 2851.

Ali, N., Hussain, M., Hong, J.E., 2022. SafeSoCPS: a composite safety analysis approach
for system of cyber-physical systems. Sensors 22, 4474.

An, Y., Wu, N., Zhao, X., Li, X., Chen, P., 2018. Hierarchical colored petri nets for
modeling and analysis of transit signal priority control systems. Appl. Sci. 8, 141.

Bowen, J., Stavridou, V., 1993. Safety-critical systems, formal methods and standards.
Softw. Eng. J. 8, 189–209.

Clarke, E.; Grumberg, O.; Jha, S.; Lu, Y.; Veith, H. Progress on the state explosion
problem in model checking. Informatics: 10 years back, 10 years ahead 2001,
176–194.

Gonçalves, P., Sobral, J., Ferreira, L.A., 2017. Unmanned aerial vehicle safety assessment
modelling through Petri nets. Reliab. Eng. Syst. Saf. 167, 383–393.

Gualtieri, L., Rauch, E., Vidoni, R., 2021. Emerging research fields in safety and
ergonomics in industrial collaborative robotics: a systematic literature review.
Robot. Comput. Integr. Manuf. 67, 101998.

Honour, E. Verification and validation issues in systems of systems. arXiv preprint arXiv:
1311.3626 2013.

Hu, S., Wu, D., Wang, H., 2017. Safety analysis of train control system based on colored
petri nets and system-theoretic process analysis. In: Proceedings of the International
Conference on Electrical and Information Technologies for Rail Transportation,
pp. 175–184.

Hussain, M., Ali, N., Hong, J.E., 2022. Vision beyond the field-of-view: a collaborative
perception system to improve safety of intelligent cyber-physical systems. Sensors
22, 6610.

Jensen, K., Kristensen, L.M., 2009a. Coloured Petri Nets: Modelling and Validation of
Concurrent Systems. Springer Science & Business Media.

Jensen, K., Kristensen, L.M., 2009b. Coloured Petri Nets: Modelling and Validation of
Concurrent Systems. Springer-Verlag, Aarhus, Denmark.

Jensen, K., Kristensen, L.M., 2015. Colored Petri nets: a graphical language for formal
modeling and validation of concurrent systems. Commun. ACM 58, 61–70.

Jensen, K., Kristensen, L.M., Wells, L., 2007. Coloured Petri nets and CPN tools for
modelling and validation of concurrent systems. Int. J. Softw. Tools Technol. Trans.
9, 213–254.

Katsaros, P., 2009. A roadmap to electronic payment transaction guarantees and a
Colored Petri Net model checking approach. Inf. Softw. Technol. 51, 235–257.

Kuo, C.H., Huang, H.P., 2000. Failure modeling and process monitoring for flexible
manufacturing systems using colored timed Petri nets. IEEE Trans. Robot. Autom.
16, 301–312.

Lee, J., Bagheri, B., Kao, H.A., 2015. A cyber-physical systems architecture for industry
4.0-based manufacturing systems. Manuf. Lett. 3, 18–23.

Li, Z., Wang, S., Zhao, T., Liu, B., 2016. A hazard analysis via an improved timed colored
petri net with time–space coupling safety constraint. Chin. J. Aeronaut. 29,
1027–1041.

Liu, S. Formal modeling and analysis techniques for high level Petri nets. 2014.
Luo, J., Xing, K., Zhou, M., Li, X., Wang, X., 2014. Deadlock-free scheduling of automated

manufacturing systems using Petri nets and hybrid heuristic search. IEEE Trans. Syst.
Man Cybern. Syst. 45, 530–541.

Maier, M.W., 1998. Architecting principles for systems-of-systems. Syst. Eng. J. Int.
Counc. Syst. Eng. 1, 267–284.

Murphy, R., 2021. How robots helped out after the surfside condo collapse. IEEE Spectr.
https://spectrum.ieee.org/building-collapse-surfside-robots.

Peterson, J.L., 1977. Petri nets. ACM Comput. Surv. (CSUR) 9, 223–252.
Raman, R., Murugesan, A., 2022. Framework for complex SoS emergent behavior

evolution using deep reinforcement learning. In: Proceedings of the INCOSE
International Symposium, pp. 809–823.

Savi, V.M., Xie, X., 1992. Liveness and boundedness analysis for Petri nets with event
graph modules. In: Proceedings of the International Conference on Application and
Theory of Petri Nets, pp. 328–347.

Sloan, R.H., Buy, U., 1996. Reduction rules for time Petri nets. Acta Inform. 33, 687–706.
Song, H., Schnieder, E., 2018. Evaluating fault tree by means of colored Petri nets to

analyze the railway system dependability. Saf. Sci. 110, 313–323.
Song, H., Liu, J., Schnieder, E., 2017. Validation, verification and evaluation of a train to

train distance measurement system by means of colored petri nets. Reliab. Eng. Syst.
Saf. 164, 10–23.

Valadares, D.C.G., Sobrinho, Á.A.D.C.C., Perkusich, A., Gorgonio, K.C., 2021. Formal
verification of a trusted execution environment-based architecture for IoT
applications. IEEE Internet Things J. 8, 17199–17210.

Valmari, A., 1996. The state explosion problem. In: Proceedings of the Advanced Course
on Petri Nets, pp. 429–528.

Wang, R., Zheng, W., Liang, C., Tang, T., 2016. An integrated hazard identification
method based on the hierarchical Colored Petri Net. Saf. Sci. 88, 166–179.

Wu, D., Zheng, W., 2018. Formal model-based quantitative safety analysis using timed
coloured Petri nets. Reliab. Eng. Syst. Saf. 176, 62–79.

Wu, D. Verifiable design of a satellite-based train control system with petri nets.
Dissertation, Braunschweig, Technische Universität Braunschweig, 2014.

Zhang, T., Li, X., Wu, D., Wang, H., Liu, J., Zhang, D., 2022. Evaluating the safety control
scheme of railway centralized traffic control (CTC) system with coloured Petri nets.
Sustainability 14, 11669.

Dr. Nazakat Ali is a Post-Doctoral Researcher in Dependable Software Engineering group
at Mälardalen University, Department of Innovation, Design and Engineering in Västerås -
Sweden. He has done his PhD from Chungbuk National University, Cheongju, South Korea
in 2021. He received outstanding graduate researcher award during his PhD. Along with
this, he is also a recipient of several best conference paper awards. During his PhD, Nazakat
was working on the safety for collaborative cyber-physical systems. Before joining MDU,
he was postdoctoral researcher at Software Intelligence Engineering Lab. Chungbuk Na-
tional University, Cheongju South Korea during March 2021~ June 2022, where he was
working on learning-based safety analysis for supporting real-time collaboration in
intelligent cyber-physical systems.

Sasikumar Punnekkat (Senior Member, IEEE) received the M.Tech. degree (Hons.) in
computer science from the Indian Statistical Institute, in 1984, and the D.Phil. degree in
computer science from the University of York, in 1997. His D.Phil. dissertation was titled
‘‘fault-tolerant scheduling of real-time systems.’’ He started his career as a Scientist En-
gineer with the Indian Space Research Organization (ISRO) and made significant contri-
butions to the software development and testing of satellite launch vehicles. He was a
recipient of the Commonwealth Scholarship of the U.K. He continued with ISRO. He was
the head of software testing and reliability, until 2004, when he joined Mälardalen Uni-
versity, Sweden, where he has been the Chair of dependable software engineering, since
2007. He was also the Director of BITS, Goa campus, India, from 2015 to 2016. His
research interests include multiple aspects of real-time systems, dependability, and soft-
ware engineering. He has over 160 research publications in international conferences and
journals (including five best paper awards). He has been a member of several program
committees and has played a lead role in several EU and national projects, such as DAIS,
InSecTT, SafeCer, SafeCoP, SUCCESS, EuroWeb, EURECA, FORA, Retnet, Progress, and
Synopsis.

Abdul Rauf has been in the IT industry from last 15 years and has worked in different
aspects of the product development life cycle including requirements, implementation,
testing, and verification. This depth combined with the breadth of working experience in
research and academic domains makes him quite flexible. He has focused on quality
assurance and primarily worked in Test Management, Test Planning, Test Processes, Test
Strategy, Test Design, Test Analysis, Manual Testing, Automation Testing, Regression
Testing, Agile Testing, and Acceptance testing. He has performed PhD studies within the
area of Test Coverage Analysis for GUI systems. Rauf is extremely interested in using
artificial intelligence for solving Software Engineering Problems especially those related to
Software Testing and verification.

N. Ali et al.

http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0021
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0021
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0021
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0021
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0003
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0003
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0028
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0028
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0024
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0024
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0008
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0008
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0018
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0018
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0006
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0006
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0006
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0011
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0011
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0011
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0011
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0005
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0005
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0005
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0030
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0030
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0031
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0031
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0010
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0010
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0026
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0026
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0026
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0029
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0029
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0015
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0015
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0015
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0001
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0001
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0016
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0016
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0016
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0035
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0035
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0035
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0002
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0002
https://spectrum.ieee.org/building-collapse-surfside-robots
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0009
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0004
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0004
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0004
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0025
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0025
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0025
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0034
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0013
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0013
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0020
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0020
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0020
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0023
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0023
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0023
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0032
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0032
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0019
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0019
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0014
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0014
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0022
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0022
http://refhub.elsevier.com/S0164-1212(24)00001-3/sbref0022

	Modeling and safety analysis for collaborative safety-critical systems using hierarchical colored Petri nets
	1 Introduction
	2 Related work
	3 Background
	3.1 Formal definition of CPN
	3.2 Reachability analysis
	3.3 Human rescue robot system

	4 Modeling and safety analysis for HRRS with hierarchical CPN
	4.1 Model structure
	4.2 Model description
	4.3 Modelling HRRS in hierarchical CPN with failures
	4.3.1 Hierarchical CPN model for CS
	4.3.2 Hierarchical CPN model for SR
	4.3.3 Hierarchical CPN model for OR
	4.3.4 Hierarchical CPN model for LSR

	5 Simulation configurations
	6 Failure handling modelling
	6.1 Hierarchical CPN model for SR with safety
	6.2 Hierarchical CPN model for OR with safety
	6.3 Hierarchical CPN model for LSR with safety

	7 HRRS model validation and verification
	7.1 Validation of hierarchical CPN model for HRRS
	7.2 Verification of hierarchical CPN model for HRRS
	7.3 Discussion

	8 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgment
	Appendix
	References

