
Journal of Parallel and Distributed Computing 184 (2024) 104780

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

journal homepage: www.elsevier.com/locate/jpdc

Tiny Twins for detecting cyber-attacks at runtime using concise Rebeca 

time transition system
Fereidoun Moradi ∗, Bahman Pourvatan, Sara Abbaspour Asadollah, Marjan Sirjani

School of Innovation, Design and Engineering, Mälardalen University, Västerås 722 20, Sweden

A R T I C L E I N F O A B S T R A C T

Keywords:

Cyber-security
Intrusion detection systems
Runtime monitoring
Model checking
Model abstraction

This paper presents a method for detecting cyber-attacks in cyber-physical systems using a monitor. The method 
employs an abstract model called Tiny Twin, which is built at design time and is used at runtime to detect 
inconsistencies. Tiny Twin is a state transition system that represents the observable behavior of the system 
from the monitor point of view. We model the behavior of the system in the Rebeca modeling language and use 
Afra model checker to generate the state space. The Tiny Twin is built automatically, by abstracting the state 
space while keeping the observable actions and preserving the trace equivalence. For doing that we had to solve 
the complexities in the state space introduced by time-shifts, nondeterministic assignments and abstraction of 
internal actions. We formally define the state space as Concise Rebeca Timed Transition System (CRTTS), and 
then map CRTTS to an LTS. The LTS is then fed to a tool to abstract away the non-observable actions.
1. Introduction

CPSs consist of collaborative computational entities that are inter-
acting with physical components through sensors and actuators. Exam-
ples of CPSs are water treatment systems, robotic arms, or the power 
grid. Such CPSs have the combined advantages of the physical and cy-
ber world but are also subject to both threats to safety and security. 
With increased connectivity, heterogeneous nature, and large-scale de-
ployment, CPSs have larger attack surfaces. Adversaries can manipulate 
controls or sensor readings through the communications network or 
tampering the devices, leading to cyber or physical attacks. Examples 
of such attacks include the security incident at Maroochy Water Ser-
vices in Australia, which caused a system failure and the release of one 
million liters of untreated sewage into the river [40]. The attack on the 
Brazil power grid [8] left nearly 53 million residents in darkness. In se-
curity analysis, the investigation of attack schemes often serves as the 
first step to establishing security in a vulnerable system [12]. In [28], 
we presented attack schemes on CPSs to discover vulnerabilities, and 
here, we use an abstract model to build an intrusion detection system 
for detecting attacks.

Intrusion Detection Systems (IDS) are deployed in communication 
networks to protect the system against cyber-attacks [26]. Traditional 
IDSs may struggle to detect complex attacks, but they can be improved 

* Corresponding author.
E-mail addresses: fereidoun.moradi@mdu.se (F. Moradi), bahman.pourvatan@mdu.se (B. Pourvatan), sara.abbaspour@mdu.se (S. Abbaspour Asadollah), 

by incorporating more advanced logic based on human reasoning, or 
models of behaviors. Specification-based IDS [26] uses a formal model 
to monitor the legitimate behavior of a system and detect any devia-
tions from it. This approach generates alarms and performs predefined 
actions, such as dropping packets, when a violation occurs. The ap-
proach presented in this paper can be classified as a specification-based 
IDS.

In our approach, we detect cyber-attacks on sensor data and control 
commands using an abstract model called Tiny Twin. This model is 
built at design time and employed at runtime within a monitor to find 
inconsistencies. The monitor walks over the Tiny Twin to check whether 
the sensor data and control commands transmitted in the network are 
consistent with the state transitions in the Tiny Twin.

In this work, the behavior of the system (and the environment) is 
modeled using Timed Rebeca modeling language [36], and we per-
form model checking to verify the requirements and generate the state 
space. Transitions in the state space may be labeled with actions that 
are not visible to the monitor (and the controller), the so-called non-
observable actions. Therefore, these transitions are abstracted away in 
the Tiny Twin. If we do not abstract the non-observable actions, the 
monitoring process may become complex and time-consuming. This is 
because the monitor would have to perform look-ahead search on mul-
tiple branches, which can slow down the monitoring process.
Available online 4 October 2023
0743-7315/© 2023 The Author(s). Published by Elsevier Inc. This is an open access

marjan.sirjani@mdu.se (M. Sirjani).

https://doi.org/10.1016/j.jpdc.2023.104780
Received 10 March 2023; Received in revised form 15 August 2023; Accepted 26 Se
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ptember 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
mailto:fereidoun.moradi@mdu.se
mailto:bahman.pourvatan@mdu.se
mailto:sara.abbaspour@mdu.se
mailto:marjan.sirjani@mdu.se
https://doi.org/10.1016/j.jpdc.2023.104780
https://doi.org/10.1016/j.jpdc.2023.104780
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2023.104780&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Journal of Parallel and Distributed Computing 184 (2024) 104780F. Moradi, B. Pourvatan, S. Abbaspour Asadollah et al.

Fig. 1. At design time, the Timed Rebeca model is developed from the specification of the system. The model checking tool of Timed Rebeca, Afra, generates the 
state space which we formally define as Concise Rebeca Time Transition System (CRTTS).
Similar to [38], we focus on the software aspect of cyber-physical 
systems. The model of the physical world is abstract, with particular 
attention to its interface to the software. Including all details of the 
dynamics of the system is not necessary for our purpose. For exam-
ple, we simplify the heating and cooling dynamics by considering the 
average temperature rate instead of modeling heating and cooling in 
detail. Timed Rebeca [36] allows using nondeterministic assignments 
for variables. This type of assignment is generally used to model the en-
vironment. Nondeterministic assignments create multiple branches in 
the state space from one state to other states where we have the same 
nondeterministic assignment as the label on all the transitions, but with 
different values assigned to the variable in the target state. This phe-
nomenon can also cause inefficiency in runtime monitoring. We resolve 
this problem in our approach by tagging the transitions with the value 
of the variable in the target state. At runtime, the value of the variables 
are determined, and the sequence of actions taken by the system shows 
a deterministic behavior.

The time in the Timed Rebeca model and subsequently in Tiny 
Twin is represented as logical time. However, the monitor deals with 
physical time in the real world, which is based on the physical clocks. 
We develop the monitor using a coordination language Lingua Franca 
(LF) [22] to synchronize logical time and physical time. The LF aligns 
these two timelines at runtime using a scheduler that monitors the local 
clock of each actor and delays processing the message until its measure-
ment of physical time exceeds a threshold [24].
Contribution. We develop various techniques and tools to design an 
efficient and effective IDS. We propose a mapping and abstraction tech-
nique to create the Tiny Twin based on a Timed Rebeca model, and we 
develop a monitor algorithm to detect cyber-attacks using Tiny Twin. 
We use LF to build an executable model, and for alignment of logical 
and physical timelines.

We presented our overall approach for detecting attacks in [29]. In 
this paper, we provide a formal foundation for our approach and present 
a theory to map the state space of a Timed Rebeca model into a Labeled 
Transition System (LTS). This is achieved by defining a Concise Rebeca 
Timed Transition System (CRTTS) and implementing an ltscast function 
to convert CRTTS into an LTS. We use the mCRL2 ltsconvert tool [14] to 
abstract away non-observable actions from LTS while preserving trace 
equivalence between the original model and its abstracted version.

2. Overview of our approach

We start by developing a Timed Rebeca model from the system spec-
ification and verify the requirements using Afra model checker [3] as 
shown in Fig. 1. The Timed Rebeca model represents the behavior of 
the system by modeling its components, such as sensors, actuators, and 
controllers, as actors, and their interactions as message passing [29]. As 
shown in Fig. 2, we propose a method for abstracting the state space 
generated by Afra. The state space is mapped into an LTS using our 
ltscast function, and the ltsconvert tool [14] is used to abstract the LTS 
and create the Tiny Twin based on the observable actions in the system. 
At runtime, the Tiny Twin is used within a monitor to detect cyber-
2

attacks on sensor data and control commands as shown in Fig. 3. To 
prevent damage to the system, the monitor drops control commands 
that are not consistent with the state transitions in the Tiny Twin.

We consider a physically secure monitor that is connected to the 
controller via secure channels. When a controller is compromised, the 
best way to address incorrect behavior is by introducing a physically 
independent secure proxy, as suggested by McLaughlin and Mohan et 
al. [25,27]. This proxy remains disconnected from the Internet or USB 
and is securely connected to the controller. Our monitor functions as 
a proxy, responsible for ensuring the correct behavior of the system, 
while the controller handles the crucial task of controlling the physical 
process, which involves potentially risky communications through the 
Internet. Therefore, any upgrades or modifications to the control system 
will be applied to the controller, not the secure proxy.

Threat Model. We assume an attacker can inject arbitrary code 
into the controller software (e.g., the firmware of PLCs) and as a 
consequence, can drop actuator commands, read/modify sensor data 
coming from the plant, and manipulate communications between the 
controllers. This means that the attacker can modify the behavior of 
the system and disrupt the physical process through the false data in-
jection attack, which uses forged sensor data to cause harmful control 
decisions. However, the assumed attacker can not maliciously alter sen-
sor signals at a network level, or within the sensor devices, because the 
attacker is assumed to reside in the controller only. The coordinated 
attack is also possible, where one or more of the above attacks are per-
formed together in an attempt to disrupt the correct functionality of the 
system. According to [28], we simulate these attacks on sensor data and 
control commands via compromised components.

The standard semantics of Timed Rebeca in terms of timed transition 
system with discrete progress of time steps, called TTS, that is proposed 
in [17]. In TTS, each statement of a message server is executed at a 
time, and the execution of different message servers is interleaved. In 
this paper, we consider the state space generated by Afra based on the 
TTS semantics of Timed Rebeca models.

Timed models result in an infinite number of states in the state 
space due to the progress of time, making the transition systems un-
bounded. To overcome this, a new notion of equivalence between two 
states called the shift-equivalence relation is introduced for Timed Re-
beca in [17] and [16]. Afra uses the shift-equivalence relation to generate 
the state space, but the state space generated by Afra is not formally 
defined. In order to define our abstraction technique, we first define 
Bounded Rebeca Timed Transition System (BRTTS) which is the result 
of applying the shift-equivalence relation between the states in TTS. We 
then abstract the internal actions in BRTTS to derive Concise Rebeca 
Timed Transition System (CRTTS).

3. Background: Timed Rebeca and Lingua Franca

In this section, we provide an overview on Timed Rebeca [36], and 
describe Lingua Franca programming language [23]. Then, we present 
a running example that is used throughout the paper to describe our 
method.
Timed Rebeca. Rebeca [35] is an actor-based language for modeling 
and formal verification of concurrent and distributed systems. Actors, 

called rebecs, are instances of reactive classes and communicate via asyn-



Journal of Parallel and Distributed Computing 184 (2024) 104780F. Moradi, B. Pourvatan, S. Abbaspour Asadollah et al.

Fig. 2. We define the ltscast function to map CRTTS into LTS. The LTS is then abstracted by the mCRL2 ltsconvert tool to create the Tiny Twin.
Fig. 3. At runtime, the Tiny Twin is used within the monitor to detect cyber-
attacks on sensor data and control commands. The monitor drops control com-
mands that are not consistent with the state transitions in the Tiny Twin.

chronous message passing, which is non-blocking for both sender and 
receiver. Timed Rebeca as an extension of Rebeca has a notion of log-
ical time that is a global time synchronized between all actors. Each 
actor has a set of variables which stores values, a set of methods (called 
message servers) and a message bag to store the received messages along 
with their arrival times and their deadlines. The actor takes a message 
with the least arrival time from its bag and executes the correspond-
ing message server. The actor can change values of its variables and send 
messages to its known actors while executing a message server. In Timed 
Rebeca, the primitives delay and after are used to model the progress of 
time while executing a message server.

Timed Rebeca is supported by Afra model checker tool [3]. Afra 
generates the state space of the Timed Rebeca model, in which states 
contain the local state of all actors and the logical time, and transi-
tions represent three types of possible actions, taking a message from 
the message bag, executing the corresponding message server of the 
enabled actor, and progressing the logical time of the model. An ap-
proach based on a shift-equivalence relation is proposed in [16] to make 
the state space of a Timed Rebeca model bounded. Two states are in 
the shift-equivalence relation when all the elements of both states have 
the same value except for the elements related to time (like the current 
time value, and the time tags on the messages in the queues including 
deadlines). The elements related to time can be different but they all 
should have the same difference in their amount.
Lingua Franca (LF). Lingua Franca is a meta language based on the 
Reactor model for programming CPS [22,24]. A Reactor model is a col-
lection of reactors (like rebecs in Rebeca). A reactor has one or more 
routines that are called reactions (like message servers in Rebeca). Re-
actions define the functionality of the reactor, and have access to a state

shared with other reactions, but only within the same reactor (similar to 
Rebeca). Reactors have named (and typed) ports that allow them to be 
connected to other reactors. Two reactors can communicate if an output

port of a reactor is connected to an input port of the other reactor. The 
usage of ports establishes a clean separation between the functionality 
and composition of reactors; a reactor only references its own ports. 
Reactions are similar to the message handlers in the actor model [13], 
except rather than responding to messages, reactions are triggered by 
3

discrete events and may also produce them. An event relates a value to 
Fig. 4. The components of the temperature control system and its environment.

a tag that represents the logical time at which the value is present. An 
event produced by one reactor is only observed by other reactors that 
are connected to the port on which the event is produced. Events arrive 
at input ports, and reactions produce events via output ports.

In LF, the logical time does not advance during a reaction. A reac-
tor can have one or more timers. Timers are like ports that can trigger 
reactions. A timer has the form timer name(offset, period) that once trig-
gers at the time shown by offset (if offset is zero, then timer triggers 
at the start time of the execution), and then triggers every period. LF 
has a built-in type for specifying time intervals. A time interval consists 
of an integer value accompanied with a time unit (e.g., sec for seconds 
or msec for milliseconds). Timers are used for specifying periodic tasks, 
which are very common in embedded computing. Each LF code con-
tains a main reactor that is an entry point for the execution of the code. 
The mapping of Timed Rebeca to Lingua Franca and reverse, including 
the timing features, is a natural mapping that is discussed in [38,37].
Running Example: A Simplified Temperature Control System.

Fig. 4 shows the components of the system and its environment, and 
its Timed Rebeca model and LF code are shown in Listing 1. We use 
the transition system of this simplified version to illustrate the mapping 
from CRTTS to LTS, and generate the Tiny Twin (see Section 4).

The temperature control system is designed to maintain the tem-
perature of a room within a desired range. There is a window inside 
the room and the outside air blows inside when the window is open. 
The temperature of the room is slowly affected by outside air blowing, 
whether the outside weather is colder or warmer than the current tem-
perature of the room. In the system, the controller receives sensor data 
from the sensor and activates the cooling or heating process, or switch 
the heating/cooling process off. In Timed Rebeca, we abstract the data 
values and represent them in a symbolic way, for example, the values 
between 26.55 to 27.55 are represented as 27.

Listing 1(a) shows the Timed Rebeca model that has four reactive 
classes: 𝖼𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋, 𝗌𝖾𝗇𝗌𝗈𝗋, 𝗁𝖼_𝗎𝗇𝗂𝗍 and 𝗋𝗈𝗈𝗆. In the reactive class 𝖼𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋, 
the message server 𝗀𝖾𝗍𝗌𝖾𝗇𝗌𝖾(𝗂𝗇𝗍 𝗍) takes temperature value and sends the 
message 𝖺𝖼𝗍𝗂𝗏𝖺𝗍𝖾𝗁() or 𝗌𝗐𝗂𝗍𝖼𝗁𝗈𝖿𝖿 () to the corresponding message servers 
in the reactive class 𝗁𝖼_𝗎𝗇𝗂𝗍 depending on the temperature value (line 6
to 16). We model the environment using the reactive class 𝗋𝗈𝗈𝗆. The 
change in the temperature of the room is modeled using a nondeter-

ministic assignment of values 0 or 1 to the variable 𝗈𝗎𝗍𝗌𝗂𝖽𝖾_𝖺𝗂𝗋_𝖻𝗅𝗈𝗐𝗂𝗇𝗀



Journal of Parallel and Distributed Computing 184 (2024) 104780F. Moradi, B. Pourvatan, S. Abbaspour Asadollah et al.

1 reactiveclass Controller(8){

2 knownrebecs{ HC_Unit hc_unit;}

3 statevars{ boolean h_active; int temperature;}

4 Controller(){

5 h_active = false; temperature = 20;}

6 msgsrv getsense(int t){

7 temperature = t;

8 if (21 > temperature && h_active == false) {

9 hc_unit.activateh();

10 h_active = true;

11 } else

12 if (21 <= temperature && h_active == true){

13 hc_unit.switchoff();

14 h_active = false;

15 }

16 }

17 }

18 reactiveclass Sensor(5){

19 knownrebecs{ Room room; Controller controller; }

20 msgsrv getTemp(int temp) {

21 controller.getSense(temp);}

22 }

23 reactiveclass HC_Unit(5){

24 knownrebecs{ Room room; }

25 statevars{ boolean heater_on; }

26 HC_Unit(){ heater_on = false; }

27 msgsrv activateh(){

28 room.regulate(1); heater_on = true;}

29 msgsrv switchoff(){

30 room.regulate(0); heater_on = false;}

31 }

32 reactiveclass Room(5){

33 knownrebecs{ Sensor sensor; }

34 statevars{

35 int temp, outside_air_blowing;

36 int regulation; }

37 Room(){ temp = 21; regulation = 0;

38 outside_air_blowing = 0;

39 self.tempchange();

40 }

41 msgsrv tempchange() {

42 outside_air_blowing = ?(1,0);

43 temp = temp - outside_air_blowing + regulation;

44 sensor.getTemp(temp);

45 self.tempchange() after(10);

46 }

47 msgsrv regulate(int v) { regulation = v;}

48 }

49 main{

50 Controller controller(hc_unit):();

51 Sensor sensor(room,controller):();

52 HC_Unit hc_unit(room):();

53 Room room(sensor):(); }

(a) Timed Rebeca model

1 target Cpp {fast: false};

2 reactor Controller { input getsense:int;

3 output activateh:int; output switchoff:int;

4 state h_active:bool(false);

5 reaction(getsense) -> activateh, switchoff {=

6 int temperature = *getsense.get();

7 if(21 > temperature && h_active == false) {

8 activateh.set(1);

9 h_active = true;

10 } else

11 if(*21 <= temperature && h_active == true) {

12 switchoff.set(0);

13 h_active = false;

14 }

15 =}

16 }

17 reactor Sensor {

18 input getTemp:int; output out:int;

19 reaction(getTemp) -> out {=

20 out.set(getTemp.get()); =}

21 }

22 reactor HC_Unit {

23 input activateh:int; input switchoff:int;

24 output regulate:int;

25 reaction(activateh) -> regulate {=

26 regulate.set(1); =}

27 reaction(switchoff) -> regulate {=

28 regulate.set(0); =}

29 }

30 reactor Room {

31 input regulate:int; output getTemp:int;

32 state temperature:int(21);

33 state cold_air_blowing:int(0);

34 state regulation:int(0);

35 timer start(0, 10 sec);

36 reaction(start) -> getTemp {=

37 cold_air_blowing = rand() % 3 + (-1);

38 temp = temp - cold_air_blowing + regulation;

39 getTemp.set(temp);

40 =}

41 reaction(regulate) {=

42 regulation = *regulate.get();

43 =}

44 }

45 main reactor Simple_Temperature_Control_System {

46 room = new Room(); sensor = new Sensor();

47 unit = new HC_Unit();

48 controller = new Controller();

49 room.getTemp -> sensor.getTemp;

50 sensor.out -> controller.getsense;

51 unit.regulate -> room.regulate;

52 controller.activateh -> unit.activateh;

53 controller.switchoff -> unit.switchoff;}

(b) LF code

Listing 1: (a) The Timed Rebeca model and (b) the LF code of the simplified temperature control system example.
(line 42). While the heating and cooling process is continuous in nature, 
we model the state changes in a discrete way. We model the changes 
at certain times (or when an event occurs). We model the change in 
the temperature of the room in a periodic way, every 10 units of time 
(line 45). In the 𝗆𝖺𝗂𝗇 section, we create instances of the four reactive 
classes (line 49 to 53). Similar to the Timed Rebeca model of the sys-
tem, the LF code implements all components of the system as shown in 
Listing 1(b). The input port 𝗀𝖾𝗍𝗌𝖾𝗇𝗌𝖾 in the reactor 𝖼𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋 is defined 
to get temperature value (line 2), and the output ports 𝖺𝖼𝗍𝗂𝗏𝖺𝗍𝖾𝗁 and 
𝗌𝗐𝗂𝗍𝖼𝗁𝗈𝖿𝖿 are defined to send commands to the 𝗁𝖼_𝗎𝗇𝗂𝗍 (lines 8 and 12). 
We set the value of 𝖺𝖼𝗍𝗂𝗏𝖺𝗍𝖾𝗁 to 1 to trigger the heating, the value of 
𝗌𝗐𝗂𝗍𝖼𝗁𝗈𝖿𝖿 to 0 to trigger the switch off in the 𝗁𝖼_𝗎𝗇𝗂𝗍. A key property of 
LF is the logical time. All events occur at an instant in logical time. We 
use a 𝗍𝗂𝗆𝖾𝗋 (line 35) to periodically invoke the reactions and model the 
4

periodic events (similar to 𝖺𝖿𝗍𝖾𝗋 in Timed Rebeca model).
4. From the state space to the Tiny Twin

We create the Tiny Twin based on the state space (generated by 
Afra) by keeping only the observable actions for the monitor while 
abstracting away the remaining actions. Here, we introduce a Timed 
Rebeca model and its constituents based on the definition of Timed 
Rebeca semantics [14,17]. We refer to the Timed Transition System se-
mantics of Timed Rebeca as RTTS. In Section 4.2, we define Bounded 
RTTS (BRTTS) using shift-equivalence relation and abstract the internal 
actions to derive Concise RTTS (CRTTS). Internal actions in BRTTS are 
caused by executing statements of a message server in the Timed Re-
beca model [17]. In Section 4.3, we define the ltscast function to map 
CRTTS into LTS, which we can then use in ltsconvert tool to abstract the 
non-observable actions. Finally, we explain the algorithm for the ltscast
function in Section 4.4.



F. Moradi, B. Pourvatan, S. Abbaspour Asadollah et al.

The original state space generated by Afra is deterministic. When 
the original state space is deterministic, then bisimulation and trace 
equivalence coincide.

4.1. Afra state space

A Timed Rebeca model can be used to model concurrent, distributed 
and cyber-physical systems and is defined as follows.

Definition 1. Timed Rebeca model [17]. A Timed Rebeca model 𝑀 is 
a set of rebecs. Each rebec 𝑟 ∈𝑀 is defined as a tuple 𝑟 = (𝑟, 𝑟, 𝑟)
where 𝑟 is defined as the local state of the rebec, 𝑟 is the set of its 
message servers, and 𝑟 is the set of its known rebecs.1 The local state 
𝑟 of rebec 𝑟 is a tuple of (𝑉𝑟, 𝐵𝑟, 𝑝𝑐𝑟, 𝑟𝑒𝑠𝑟), where 𝑉𝑟 is the set of variables 
of rebec 𝑟 together with their values, 𝐵𝑟 is the message bag of rebec 𝑟, 
𝑝𝑐𝑟 ∈ℕ ∪ {𝑛𝑢𝑙𝑙} is the program counter which points to the statement in 
the body of the current message server2 (𝑛𝑢𝑙𝑙 if 𝑟 is idle), and 𝑟𝑒𝑠𝑟 ∈ ℕ0
(ℕ0 is the set of non-negative integers) is the resuming time, 𝑟𝑒𝑠𝑟 > 0 if 
rebec 𝑟 is executing a delay. □

In a Timed Rebeca model, rebecs can be used to represent com-
ponents of a CPS or a distributed system. The interactions between 
rebecs are modeled as message passing. The messages can also be seen 
as events that trigger the execution of a message server that can be seen 
as an event handler. A Timed Rebeca message is defined as follows.

Definition 2. Timed Rebeca Message. A message in Timed Rebeca 
model is defined as 𝑡𝑚𝑠𝑔 = ((𝑠𝑖𝑑, 𝑟𝑖𝑑, 𝑚𝑖𝑑, 𝑝𝑠), 𝑎𝑟, 𝑑𝑙), where 𝑠𝑖𝑑 and 𝑟𝑖𝑑
are the name of the sender and receiver rebecs of the message; respec-
tively, 𝑚𝑖𝑑 is the name of the message server in Timed Rebeca model, 
𝑝𝑠 is the set of input parameters, 𝑎𝑟 ∈ ℕ0 and 𝑑𝑙 ∈ ℕ0 are the arrival 
time and deadline of the message, respectively. □

The RTTS describes the behavior of a Rebeca model. It consists of 
a finite set of states (each state has the current time now), a finite set 
of actions, and a transition relation between states. Before defining the 
formal semantics of Timed Rebeca as an RTTS, the actions in RTTS are 
defined by the following definition.

Definition 3. Actions in Rebeca Timed Transition System. There are 
three types of actions in Rebeca Timed Transition Systems which is 
defined below. The condition for triggering of each action is also ex-
plained:
1. Take Message: When a rebec 𝑟 is idle (𝑝𝑐𝑟 = 𝑛𝑢𝑙𝑙) and its message 
bag is not empty (𝐵𝑟 ≠ ∅), it takes a Timed Rebeca message 𝑡𝑚𝑠𝑔 for 
execution from its message bag if arrival time of 𝑡𝑚𝑠𝑔 is less than or 
equal to the current time ′𝑛𝑜𝑤′ (𝑡𝑚𝑠𝑔.𝑎𝑟𝑟 ≤ 𝑛𝑜𝑤).
2. Internal Action: The execution of a statement in the message server 
𝑚 of a rebec 𝑟 is an internal action that is shown by 𝜏.𝑟.𝑚. This action 
shows the changes of local state of the rebec 𝑟. The internal action 
is taken in state 𝑠, if there is a rebec 𝑟 where 𝑝𝑐𝑠,𝑟 ≠ 𝑛𝑢𝑙𝑙 and 𝑟𝑒𝑠𝑠,𝑟 =
𝑛𝑜𝑤𝑠 (the value of 𝑟𝑒𝑠𝑠,𝑟 does not change during the execution of the 
statement, except for running a delay statement).
3. Time Progress: Time Progress shows progress of 𝑛 ∈ℕ units of time. 
Time progress is triggered when there is no internal or take message 
actions. Hence, the set of actions is 𝐴𝑐𝑡 = {𝑡𝑚𝑠𝑔| 𝑡𝑚𝑠𝑔 ∈ 𝐵𝑟 ∧ 𝑟 ∈𝑀 ∧
𝑡𝑚𝑠𝑔.𝑎𝑟𝑟 ≤ 𝑛𝑜𝑤} ∪ {𝜏.𝑟.𝑚|𝑟 ∈𝑀 ∧𝑚 ∈𝑟} ∪ℕ. □

1 A known rebec for a rebec 𝑟 is a rebec which can be a receiver rebec of the 
message 𝑚𝑠𝑔 that is sent by the sender rebec 𝑟.

2 The current message server is the message server that is executed and has 
5

not finished yet.
Journal of Parallel and Distributed Computing 184 (2024) 104780

We show the diagram of the transition system of the running ex-
ample to provide insight into the system model before presenting the 
formal semantics of Timed Rebeca in RTTS.
Running Example: Afra state space of the simplified temperature 
control system. Fig. 5(a) shows the state space generated by Afra for 
the Timed Rebeca model in Listing 1(a). This example is a reactive sys-
tem, and its diagram shows that it exhibits recurrent behavior. Each 
state has a state variable 𝗍𝖾𝗆𝗉 that its value is changed when the action 
𝗍𝖾𝗆𝗉𝖼𝗁𝖺𝗇𝗀𝖾 is executed (see line 43 in Listing 1(a)). The 𝗍𝗂𝗆𝖾+= 𝟣𝟢 de-
notes that the logical time progresses by 10 units of time (see line 45
and the red color transitions in the diagram). The 𝗀𝖾𝗍𝗍𝖾𝗆𝗉, 𝗀𝖾𝗍𝗌𝖾𝗇𝗌𝖾, 
𝗍𝖾𝗆𝗉𝖼𝗁𝖺𝗇𝗀𝖾, 𝗋𝖾𝗀𝗎𝗅𝖺𝗍𝖾, 𝖺𝖼𝗍𝗂𝗏𝖺𝗍𝖾𝗁, and 𝗌𝗐𝗂𝗍𝖼𝗁𝗈𝖿𝖿 are take message actions 
which are shown on transitions. The states with multiple outgoing tran-
sitions (in gray color) are due to the nondeterministic assignment for 
the variable 𝗈𝗎𝗍𝗌𝗂𝖽𝖾_𝖺𝗂𝗋_𝖻𝗅𝗈𝗐𝗂𝗇𝗀 in the Timed Rebeca model (see line 42). 
In the state space generated by Afra, the internal actions correspond to 
the changes on the program counter are abstracted. We explain about 
these internal actions in the Definition 8.

In the following, we define RTTS as the formal semantics of a Timed 
Rebeca model.

Definition 4. Formal Semantics of Timed Rebeca in RTTS. RTTS of a 
Timed Rebeca model M is a tuple of (𝑆, 𝑠0, 𝐴𝑐𝑡, ⟶), where 𝑆 is the set 
of states, 𝑠0 ∈ 𝑆 is the initial state, 𝐴𝑐𝑡 is the set of actions defined in 
Definition 3, and ⟶ ⊆ 𝑆 ×𝐴𝑐𝑡 ×𝑆 is the transition relation set.
– States. Each state 𝑞 ∈ 𝑆 has a state descriptor (global state) which 
consists of the local states of all rebecs in the model M, together with 
the current time at the state 𝑞 that is 𝑛𝑜𝑤𝑞 ∈ℕ0. The local state of rebec 
𝑟 in state 𝑞 is shown by (𝑉𝑟,𝑞 , 𝐵𝑟,𝑞 , 𝑝𝑐𝑟,𝑞 , 𝑟𝑒𝑠𝑟,𝑞). So, the state descriptor of 
state 𝑞 is defined as {(𝑉𝑞,𝑟, 𝐵𝑞,𝑟, 𝑝𝑐𝑞,𝑟, 𝑟𝑒𝑠𝑞,𝑟)|𝑟 ∈𝑀} ∪ {𝑛𝑜𝑤𝑞}, where M is 
the Timed Rebeca model in Definition 1.
– Transition Relations. For each transition relation (𝑠, 𝑎𝑐𝑡, 𝑡) ∈⟶, the 
state descriptor of state 𝑡 is obtained by the following rules. Note that 
the conditions to take each action is defined in Definition 3:
1. 𝑎𝑐𝑡 is a take message: After executing the 𝑎𝑐𝑡, 𝑝𝑐𝑡,𝑟 is set to the first 
statement of the message server corresponding to 𝑡𝑚𝑠𝑔, and 𝑟𝑒𝑠𝑡,𝑟 is set 
to 𝑛𝑜𝑤𝑡 (which is the same as 𝑛𝑜𝑤𝑠). Note that the other members of the 
state descriptor of state 𝑡 remain the same as in the state 𝑠.
2. 𝑎𝑐𝑡 is an internal action: The statement of message server of rebec 
𝑟 specified by 𝑝𝑐𝑠,𝑟 is executed and one of the following cases occurs 
based on the type of the statement.

a) Non-delay statement: the execution of such a statement may 
change the value of a variable of rebec 𝑟, or send a message to an-
other rebec, in this case, the message is added to the message bag of the 
receiver rebec in 𝑟 (the set of known rebecs of rebec 𝑟). Here, 𝑝𝑐𝑡,𝑖 is 
set to the next statement (or 𝑛𝑢𝑙𝑙 if there are no more statements).

b) Delay statement with parameter 𝑑 ∈ ℕ: the execution of a delay 
statement sets 𝑟𝑒𝑠𝑡,𝑟 to 𝑛𝑜𝑤𝑠 + 𝑑. All other elements of the state remain 
unchanged.
3. 𝑎𝑐𝑡 is a time progress: In this case, 𝑛𝑜𝑤𝑡 is set to 𝑛𝑜𝑤𝑠 + 𝑛 where 𝑛
is the minimum value which makes one of the aforementioned condi-
tions become true. For any rebec 𝑟, if 𝑝𝑐𝑠,𝑟 ≠ 𝑛𝑢𝑙𝑙 and 𝑟𝑒𝑠𝑠,𝑟 = 𝑛𝑜𝑤𝑡 (the 
current value of 𝑝𝑐𝑠,𝑟 points to a delay statement), 𝑝𝑐𝑡,𝑟 is set to the next 
statement (or to 𝑛𝑢𝑙𝑙 if there are no more statements). □

Reactive systems are known for their never-ending processes. 
Progress of time and increasing the value of the current time can cre-
ate an infinite state space. In the next subsection, we explain how this 
problem is addressed.

4.2. Defining BRTTS based on shift-equivalence relation

The progress of time results in an infinite number of states in RTTS 
of Timed Rebeca models. These models are used to represent reactive 
systems that generally show periodic or recurrent behaviors, meaning 

they perform periodic actions over an infinite period of time. Therefore, 



Journal of Parallel and Distributed Computing 184 (2024) 104780F. Moradi, B. Pourvatan, S. Abbaspour Asadollah et al.

Fig. 5. (a) The state space of the Timed Rebeca model of the simplified temperature control system in Listing 1, (b) the LTS created by the ltscast function for the 
6

simplified temperature control system.



F. Moradi, B. Pourvatan, S. Abbaspour Asadollah et al.

to make the transition systems bounded, a new notion of equivalence 
between two states called shift-equivalence relation is proposed in [16].

Intuitively, in shift-equivalence relation, two states of a RTTS are 
equivalent if and only if they are the same in all of their parts in the 
state descriptors except for those parts related to the time (the value of 
𝑛𝑜𝑤 in the state, the resuming time 𝑟𝑒𝑠𝑟 for local state of each rebec 𝑟 in 
the state, arrival time 𝑎𝑟 and deadline 𝑑𝑙 of all messages in all message 
bags for all rebecs in the state). Therefore, shifting the times of those 
parts in one state makes it the same as the other state [16].

Definition 5. Shift-Equivalence Relation in RTTS. In a 𝑅𝑇𝑇𝑆 =
(𝑆, 𝑠0, 𝐴𝑐𝑡, ⟶), two states 𝑠, 𝑡 ∈ 𝑆 are in shift-equivalence relation 𝑠 ≅ 𝑡

if and only if each element of two states that are related to time has 
time difference Δ ∈ ℕ0. For the state descriptors of states 𝑠 and 𝑡 the 
following conditions hold.
1. 𝑛𝑜𝑤𝑠 = 𝑛𝑜𝑤𝑡 +Δ
2. 𝑀 𝑖𝑠 𝑎 𝑇 𝑖𝑚𝑒𝑑 𝑅𝑒𝑏𝑒𝑐𝑎 𝑚𝑜𝑑𝑒𝑙 𝑎𝑛𝑑 ∀𝑟 ∈ 𝑀, 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝑉𝑟,𝑠 = 𝑉𝑟,𝑡, ∥
𝐵𝑟,𝑠 ∥=∥𝐵𝑟,𝑡 ∥ (size of two bags are equal), 𝑝𝑐𝑟,𝑠 = 𝑝𝑐𝑟,𝑡, 𝑟𝑒𝑠𝑟,𝑠 = 𝑟𝑒𝑠𝑟,𝑡 +Δ
3. ∀𝑡𝑚𝑠𝑔 ∈𝐵𝑟,𝑠 𝑒𝑥𝑖𝑠𝑡𝑠 𝑡𝑚𝑠𝑔′ ∈𝐵𝑟,𝑡 𝑤ℎ𝑒𝑟𝑒 𝑡𝑚𝑠𝑔.𝑠𝑖𝑑 = 𝑡𝑚𝑠𝑔′.𝑠𝑖𝑑, 𝑡𝑚𝑠𝑔.𝑟𝑖𝑑 =
𝑡𝑚𝑠𝑔′.𝑟𝑖𝑑, 𝑡𝑚𝑠𝑔.𝑚𝑖𝑑 = 𝑡𝑚𝑠𝑔′.𝑚𝑖𝑑, 𝑡𝑚𝑠𝑔.𝑝𝑠 = 𝑡𝑚𝑠𝑔′.𝑝𝑠, 𝑡𝑚𝑠𝑔.𝑎𝑟 = 𝑡𝑚𝑠𝑔′.𝑎𝑟 +
Δ, 𝑡𝑚𝑠𝑔.𝑑𝑙 = 𝑡𝑚𝑠𝑔′.𝑑𝑙 +Δ. □

We define a function to obtain the time difference value between 
two shift-equivalent states, and we use this function in the definition of 
BRTTS.

Definition 6. Shift function. The function 𝛿 ∶ 𝑆 × 𝑆 ↦ ℕ receives two 
states that are shift-equivalent, and returns a positive integer which is 
equal to the Δ defined in Definition 5.

The BRTTS in which the transition system is bounded is defined as 
follows.

Definition 7. Bounded Rebeca TTS (BRTTS). Let 𝐴 = (𝑆, 𝑠0, 𝐴𝑐𝑡, ⟶)
be a RTTS. BRTTS 𝐴 is 𝐴′ = (𝑆′, 𝑠0, 𝐴𝑐𝑡′, ⟶′), where:
States. The set of states of BRTTS is the subset of states of RTTS where 
the states which are in shift-equivalence relation are merged: 𝑆′ = 𝑆 ⧵
{𝑡|∃𝑠 ∈ 𝑆′; 𝑠 ≅ 𝑡 ∧ 𝑛𝑜𝑤𝑠 < 𝑛𝑜𝑤𝑡}
Actions. 𝐴𝑐𝑡′ = 𝐴𝑐𝑡 × ℕ0 where 𝐴𝑐𝑡 is the set of actions in RTTS in 
Definition 3.
Transition Relations. Transitions in BRTTS are the same transitions in 
RTTS except for the transitions leading to or from states that have the 
shift-equivalent state in BRTTS. One of the following conditions holds.

1. 𝑞
𝑎𝑐𝑡
→𝑝 ∧ 𝑝,𝑞∈𝑆′

(𝑎𝑐𝑡,0)∈𝐴𝑐𝑡′ , 𝑞
(𝑎𝑐𝑡,0)
←←←←←←←←←←←←←←←←←←←←←←←←→′𝑝

3. 𝑞
𝑎𝑐𝑡
→𝑝 ∧ 𝑞∈𝑆′ ∧ 𝑝∉𝑆′ ∧ 𝑠∈𝑆′ ∧ 𝑠≅𝑝

(𝑎𝑐𝑡,𝛿(𝑠,𝑝))∈𝐴𝑐𝑡′ , 𝑞
(𝑎𝑐𝑡,𝛿(𝑠,𝑝))

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→′𝑠

2. 𝑞
𝑎𝑐𝑡
→𝑝 ∧ 𝑞∉𝑆′ ∧ 𝑝∈𝑆′ ∧ 𝑠∈𝑆′ ∧ 𝑠≅𝑞

(𝑎𝑐𝑡,𝛿(𝑠,𝑞))∈𝐴𝑐𝑡′ , 𝑠
(𝑎𝑐𝑡,𝛿(𝑠,𝑞))

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→′𝑝

In BRTTS, the execution of statements in a message server of a re-
bec (after executing a take message action) is shown as a sequence of 
internal actions. In an internal action path, all states with only one in-
coming transition and one outgoing transition are merged. The states 
with branches are not merged in the model. This reduction is based on 
the (weak) bisimulation equivalency [17]. The definition of BRTTS be-
comes concise, CRTTS, by merging all states between internal actions 
in the internal action paths of BRTTS. We define an internal action path 
as follows.

Definition 8. Internal Action Path. Let (𝑆, 𝑠0, 𝐴𝑐𝑡, ⟶) be a BRTTS. 
An internal action path is a longest sequence of transitions from state 
𝑠 to state 𝑡, where the first transition is a take message action and the 
rest transitions are internal action 𝜏 , and all states between state 𝑠 and 𝑡
7

have only one incoming transition and one outgoing transition. Internal 
Journal of Parallel and Distributed Computing 184 (2024) 104780

action path from state 𝑠 to state 𝑡 is denoted as 𝑃𝑠,𝑡 = 𝑠 
(𝑎𝑐𝑡,𝛼0)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑠1

(𝜏.𝑟.𝑚,𝛼1)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

𝑠2⋯ 𝑠𝑛
(𝜏.𝑟.𝑚,𝛼𝑛)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑡 where 𝑎𝑐𝑡 is a take message action, 𝑟 = 𝑎𝑐𝑡.𝑟𝑖𝑑, and 

𝑚 = 𝑎𝑐𝑡.𝑚𝑖𝑑. □

An example of an internal action path in an example BRTTS is shown 
in Fig. 6. The transitions from state S2 to state S7 represent the inter-
nal actions where they are merged with state S2 and make the state 
space concise. Based on the definition of internal action path, we define 
CRTTS as follows.

Definition 9. Concise RTTS (CRTTS). Let 𝐴 = (𝑆, 𝑠0, 𝐴𝑐𝑡, ⟶) be a 
BRTTS. CRTTS 𝐴 is 𝐴′ = (𝑆′, 𝑠0, 𝐴𝑐𝑡′, ⟶′), such that for each internal 

action path 𝑃𝑠 in 𝐴 there exists a transition 𝑠 
(𝑎𝑐𝑡,Σ𝑛

𝑖=0𝛼𝑖)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑡 in 𝐴′. The 

following condition is held for the internal action paths.

𝑃𝑠,𝑡=𝑠
(𝑎𝑐𝑡,𝛼0)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←→𝑠1

(𝜏.𝑟.𝑚,𝛼1)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→𝑠2⋯𝑠𝑛

(𝜏.𝑟.𝑚,𝛼𝑛 )
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→𝑡 ∈ 𝐴

𝑠

(𝑎𝑐𝑡,Σ𝑛
𝑖=0𝛼𝑖 )

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→′𝑡, 𝑠𝑖∉𝑆′ 𝑖∈[1..𝑛]

where 𝑎𝑐𝑡 is a take message action, 𝑟 = 𝑎𝑐𝑡.𝑟𝑖𝑑, and 𝑚 = 𝑎𝑐𝑡.𝑚𝑖𝑑. □

4.3. Mapping CRTTS to LTS

There are two issues in CRTTS where we need to apply changes to 
obtain LTS.

1. For each transition 𝑠 
(𝑎𝑐𝑡,𝛼)
←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑡 where 𝛼 > 0, the action 𝑎𝑐𝑡 comes with 

the time shifting value 𝛼. There are cases where 𝑎𝑐𝑡 is a non-observable 
action that must be abstracted from the behavioral model, as an ex-
ample see transition (𝑎𝑐𝑡, 𝛼) from S8 to S1 in Fig. 6(b)). But we do not 
want to abstract the time shift and its value. In this case, we split the 
transition 𝑠 

(𝑎𝑐𝑡,𝛼)
←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑡 into two transitions 𝑠 

𝑎𝑐𝑡
←←←←←←←←←←←←→ 𝑡1 and 𝑡1

𝛼
←←←←←←→ 𝑡 (see transi-

tion 𝑎𝑐𝑡 between S8 and S10, and transition 𝛼 between S10 and S1 in 
Fig. 6(c)). This way we can keep the time shift while abstracting the 
non-observable action.
2. Nondeterministic assignments are implemented in the model checker 
where the state space is generated but they are not defined in the formal 
semantics of Timed Rebeca [36]. Nondeterministic assignments create 
multiple branches in the state space and are shown with the same label 
on all the transitions where different values are assigned to the variable 
in the target states. In case of nondeterministic assignments, there may 
be two transitions 𝑠 

𝑎𝑐𝑡
←←←←←←←←←←←←→ 𝑡1 and 𝑠 

𝑎𝑐𝑡
←←←←←←←←←←←←→ 𝑡2 where 𝑡1 ≠ 𝑡2 (see outgoing tran-

sitions at S2 in Fig. 6(b)). We use the different state descriptors 𝑡1 and 𝑡2
and change the actions in the transitions to be 𝑠 

𝑎𝑐𝑡.𝑣1
←←←←←←←←←←←←←←←←←←←←←←→ 𝑡1 and 𝑠 

𝑎𝑐𝑡.𝑣2
←←←←←←←←←←←←←←←←←←←←←←→ 𝑡2

where 𝑣1 and 𝑣2 are different values for a state variable in the states 𝑡1
and 𝑡2 (see outgoing transitions at S2 in Fig. 6(c)).

The target of our mapping which is the input to the mCRL2 ltscon-

vert tool is an LTS. A labeled transition system (LTS) is defined as 
follows [14].

Definition 10. LTS. LTS associated with the state space of a mCRL2 
model is a tuple of (𝑆, 𝑠0, 𝐴𝑐𝑡, ⟶), where:
States. 𝑆 is the set of states.
Initial State. 𝑠0 is the initial state.
Actions. 𝐴𝑐𝑡 is a finite set of actions including the internal action 𝜏 .
Transition Relations. ⟶ ⊆ 𝑆 ×𝐴𝑐𝑡 ×𝑆 is the transition relation. □

We define the ltscast function to map CRTTS to LTS as follows.

Definition 11. LTS cast Function (ltscast). Every CRTTS 𝐴 = ⟨𝑆, 𝑠0, 
𝐴𝑐𝑡, ⟶ ⟩ can be mapped to LTS 𝐿 =

⟨
𝑆′, 𝑠′0,𝐴𝑐𝑡

′,⟶′⟩ by LTS cast 
Function 𝑙𝑡𝑠𝑐𝑎𝑠𝑡: CRTTS ⟶ LTS, where
– For all 𝑠 ∈ 𝑆, there exists 𝑠′ ∈ 𝑆′,

– 𝐴𝑐𝑡 =𝐴𝑐𝑡′, and



Journal of Parallel and Distributed Computing 184 (2024) 104780F. Moradi, B. Pourvatan, S. Abbaspour Asadollah et al.

Fig. 6. (a) An example of a state transition system in BRTTS. There is an internal action path between two states S2 and S7 in BRTTS. (b) The CRTTS is created by 
merging states S4 and S6 with S2 in the internal action path. (c) The transitions with time shifting value 𝛼 > 0 outgoing from states S5, S7, and S8 are split into two 
subsequent transitions, and the nondeterministic transitions outgoing from states S2, S5 and S7 are labeled with different state descriptors in LTS.
– ⟶′ ⊆ 𝑆′ × 𝐴𝑐𝑡′ × 𝑆′ is defined as a transition relation if and only if 
one of the following conditions holds.

1. 𝑠
(𝑎𝑐𝑡,𝛼)
←←←←←←←←←←←←←←←←←←←←←←←←→𝑡 ∧ (𝛼≠0)

𝑠
𝑎𝑐𝑡

←←←←←←←←←←←←→′𝑡1 , 𝑡1
𝛼

←←←←←←→′𝑡, 𝑆′= 𝑆 ∪ {𝑡1}

2. 𝑠
(𝑎𝑐𝑡,𝛼)
←←←←←←←←←←←←←←←←←←←←←←←←→𝑡 ∧ (𝛼=0)

𝑠
𝑎𝑐𝑡

←←←←←←←←←←←←→′𝑡

3. 𝑠
𝑎𝑐𝑡

←←←←←←←←←←←←→𝑡1 ∧ 𝑠
𝑎𝑐𝑡

←←←←←←←←←←←←→𝑡2 ∧ 𝑡1≠𝑡2

𝑠
𝑎𝑐𝑡.𝑣1
←←←←←←←←←←←←←←←←←←←←←←→′𝑡1 ∧ 𝑠

𝑎𝑐𝑡.𝑣2
←←←←←←←←←←←←←←←←←←←←←←→′𝑡2

where 𝑣1 and 𝑣2 are two different values for a state variable in the states 
𝑡1 and 𝑡2. □

The example CRTTS in Fig. 6(b) shows that the transitions (𝑎𝑐𝑡, 𝛼)
and (𝑛, 𝛼) from S8 to S1, and from S5 to S3, and the transition (𝜏.𝑟.𝑚, 𝛼)
from S7 to S1 come with the time shifting value 𝛼 > 0. Therefore, these 
transitions respectively are split into two transitions 𝑎𝑐𝑡 and 𝛼, and 𝜏.𝑟.𝑚
and 𝛼 in Fig. 6(c). Moreover, the outgoing transitions from states S2, S5 
and S7 are labeled with different values 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5 and 𝑣6 for a 
state variable in the state descriptors of the target states.

4.4. ltscast function

The ltscast function gets a CRTTS as input (the state space generated 
by Afra) and produces an LTS as output (the input model for mCRL2 
ltsconvert tool). The function follows two steps to create an LTS (see the 
details of the ltscst algorithm in Appendix A). (1) It traverses transitions 
one by one and divides transitions into two subsequent transitions if 
they have a non-zero value for the time shifting. One subsequent tran-
sition represents an action, and the other transition represents a time 
shifting. (2) It traverses transitions and tags transitions that introduce 
nondeterminism with different values to remove nondeterminism, these 
values are the values of a state variable in the target states of the tran-
sitions.

The mapping algorithm traverses the state space using a Depth-First 
search to visit all states and transitions. The time complexity of the 
algorithm is 𝑂(max(𝑉 , 𝐸)), and its space complexity is 𝑂(𝑉 +𝐸), where 
𝑉 is the number of states and 𝐸 is the number of transitions in the 
state space. The relation between the CRTTS and the created LTS is 
bisimulation.
Running Example: Mapping CRTTS to LTS and Creating the Tiny 
Twin. We use ltscast to map the state space generated by Afra and create 
an LTS (see Fig. 5 (b)). The transition between two states that are in 
8

the shift-equivalence relation is tagged with the value of the time-shift 
(in blue color). The time shifting notation [𝑎 ≫ 𝑏] on state transitions 
denotes that the source state has the current time value 𝑎 (i.e., the value 
of variable 𝑛𝑜𝑤), which is shifted by the value 𝑏 and becomes the time 
value at the target state (together with all the other elements related to 
time).

The ltsconvert tool abstracts the LTS to its equivalence relation. To 
create the Tiny Twin of the temperature control system, the modeler 
provides the tool with a list of labels that denote the silent transitions. 
The silent transitions are abstracted away from the LTS while preserv-
ing trace equivalence. In this system, the actions 𝗀𝖾𝗍𝗌𝖾𝗇𝗌𝖾, 𝖺𝖼𝗍𝗂𝗏𝖺𝗍𝖾𝗁 and 
𝗌𝗐𝗂𝗍𝖼𝗁𝗈𝖿𝖿 are observable in the system behavior from the controller 
point of view, while actions 𝗍𝖾𝗆𝗉𝖼𝗁𝖺𝗇𝗀𝖾, 𝗀𝖾𝗍𝗍𝖾𝗆𝗉, 𝗋𝖾𝗀𝗎𝗅𝖺𝗍𝖾 and 𝗍𝖾𝗆𝗉𝖼𝗁𝖺𝗇𝗀𝖾

are non-observable. We may want to check properties on the control 
system, such as “the command 𝗌𝗐𝗂𝗍𝖼𝗁𝗈𝖿𝖿 will be issued in less than 10 
units of time if 𝗍𝖾𝗆𝗉 = 𝟤𝟣” or “the command 𝖺𝖼𝗍𝗂𝗏𝖺𝗍𝖾𝗁 will be issued if 
𝗍𝖾𝗆𝗉 = 𝟤𝟢 and the action 𝗌𝗐𝗂𝗍𝖼𝗁𝗈𝖿𝖿 has already executed”. The ltsconvert

tool receives the labels of non-observable actions as a list of silent tran-
sitions to abstract the LTS. The abstraction is applied by the tool, and 
the resulting abstract model (i.e., Tiny Twin) is shown in Fig. 7. The 
Tiny Twin has 10 states and 13 transitions, while the original CRTSS 
in Fig. 5(a) has 21 states and 25 transitions. In this example, because 
the system is simplified and does not have any complex behavior, we 
do not expect to see a significant reduction in the number of states and 
transitions compared to the original model.

5. Monitor algorithm

The monitor observes sensor data and control commands as events. 
It checks if the events are consistent with the transitions in the Tiny 
Twin. The monitor must traverse all time shifting and internal actions 
at each state during monitoring until it finds the event as the label on 
the outgoing transition. The Tiny Twin has transitions of four types: 
take message, time progress, time shifting, and internal action (see sub-
section 11). Although we abstract internal actions in the internal action 
paths (see Definition 8), the internal actions that correspond to the ob-
servable actions and involve delay statements in the Time Rebeca model 
are still in the model. If the monitor gets an event which cannot be 
matched with the transitions in the Tiny Twin, then it shows a mis-

match between what the monitor expects and what is happening, and 



F. Moradi, B. Pourvatan, S. Abbaspour Asadollah et al.

the monitor makes an alarm and terminates the monitoring (see the 
details of the monitor algorithm in Listing 1).

Algorithm 1: Monitor Algorithm.
Input: an LTS (𝑆′ ∶ 𝑠𝑡𝑎𝑡𝑒𝑆𝑒𝑡, 𝑠′0 ∶ 𝑖𝑛𝑖𝑡𝑎𝑙𝑆𝑡𝑎𝑡𝑒, 𝐴𝑐𝑡′ ∶ 𝑎𝑐𝑡𝑖𝑜𝑛𝑆𝑒𝑡, 𝑇 ′ ∶ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑡)
Output: 𝑎𝑛 𝑎𝑙𝑎𝑟𝑚 (𝑇 𝑖𝑚𝑒, 𝐸𝑣𝑒𝑛𝑡)

1 begin

2 𝑆 = {(𝑠′0 , 0, 𝑔𝑒𝑡𝑇𝑆𝑒𝑡(𝑠0))};
3 𝑝𝑟𝑜𝑐𝑒𝑒𝑑← 𝑡𝑟𝑢𝑒;
4 while 𝑝𝑟𝑜𝑐𝑒𝑒𝑑 do

5 (𝑒, 𝑘) ← 𝑔𝑒𝑡𝐸𝑣𝑒𝑛𝑡();
6 𝑝𝑟𝑜𝑐𝑒𝑒𝑑← 𝑓𝑎𝑙𝑠𝑒;
7 𝑐ℎ𝑘 ← 𝑡𝑟𝑢𝑒;
8 while 𝑠𝑡 ∈ 𝑆 & 𝑐ℎ𝑘 & (𝑔𝑒𝑡𝑇𝑀𝑠𝑔(𝑠𝑡, 𝑒) ∥ 𝑔𝑒𝑡𝑇 𝑇 𝑖𝑚𝑒(𝑠𝑡, 𝑘)) do

9 𝑡 ← 𝑔𝑒𝑡𝑇𝑀𝑠𝑔(𝑠𝑡, 𝑒);
10 𝑐ℎ𝑘 ← 𝑓𝑎𝑙𝑠𝑒;
11 if 𝑡! = 𝑛𝑢𝑙𝑙 then

12 𝑝𝑟𝑜𝑐𝑒𝑒𝑑← 𝑡𝑟𝑢𝑒;
13 𝑐ℎ𝑘 ← 𝑡𝑟𝑢𝑒;
14 𝑠𝑡.𝑡𝑟𝑎𝑛𝑠𝑆𝑒𝑡 = 𝑠𝑡.𝑡𝑟𝑎𝑛𝑠𝑆𝑒𝑡 ⧵ 𝑡;
15 if 𝑠𝑡.𝑡𝑟𝑎𝑛𝑠𝑆𝑒𝑡 == ∅ then

16 𝑆 = 𝑆 ⧵ 𝑠𝑡;
17 𝑆 = 𝑆 ∪ {(𝑡.𝑡𝑎𝑟𝑔𝑒𝑡, 𝑠𝑡.𝑛𝑜𝑤, 𝑔𝑒𝑡𝑇𝑆𝑒𝑡(𝑡.𝑡𝑎𝑟𝑔𝑒𝑡))};

put: 𝑒;

18 𝑡 ← 𝑔𝑒𝑡𝑇 𝑇 𝑖𝑚𝑒(𝑠𝑡, 𝑘);
19 if 𝑡! = 𝑛𝑢𝑙𝑙 & (𝑘 >= 𝑠𝑡.𝑛𝑜𝑤 + 𝑡.𝑔𝑒𝑡𝑇 𝑖𝑚𝑒()) then

20 𝑝𝑟𝑜𝑐𝑒𝑒𝑑← 𝑡𝑟𝑢𝑒;
21 𝑐ℎ𝑘 ← 𝑡𝑟𝑢𝑒;
22 𝑠𝑡.𝑡𝑟𝑎𝑛𝑠𝑆𝑒𝑡 = 𝑠𝑡.𝑡𝑟𝑎𝑛𝑠𝑆𝑒𝑡 ⧵ 𝑡;
23 if 𝑠𝑡.𝑡𝑟𝑎𝑛𝑠𝑆𝑒𝑡 == ∅ then

24 𝑆 = 𝑆 ⧵ 𝑠𝑡;
25 𝑆 = 𝑆 ∪ {(𝑡.𝑡𝑎𝑟𝑔𝑒𝑡, 𝑠𝑡.𝑛𝑜𝑤 + 𝑡.𝑔𝑒𝑡𝑇 𝑖𝑚𝑒(), 𝑔𝑒𝑡𝑇𝑆𝑒𝑡(𝑡.𝑡𝑎𝑟𝑔𝑒𝑡))};

26 𝑐ℎ𝑘 ← 𝑡𝑟𝑢𝑒;
27 while 𝑠𝑡 ∈ 𝑆 & 𝑐ℎ𝑘 & (𝑔𝑒𝑡𝑇 𝑇 𝑎𝑢(𝑠𝑡) ∥ 𝑔𝑒𝑡𝑇 𝑇 𝑖𝑚𝑒(𝑠𝑡, 𝑘)) do

28 𝑐ℎ𝑘 ← 𝑓𝑎𝑙𝑠𝑒;
29 𝑡 ← 𝑔𝑒𝑡𝑇 𝑇 𝑎𝑢(𝑠𝑡);
30 if 𝑡! = 𝑛𝑢𝑙𝑙 then

31 𝑝𝑟𝑜𝑐𝑒𝑒𝑑← 𝑡𝑟𝑢𝑒;
32 𝑐ℎ𝑘 ← 𝑡𝑟𝑢𝑒;
33 𝑠𝑡.𝑡𝑟𝑎𝑛𝑠𝑆𝑒𝑡 = 𝑠𝑡.𝑡𝑟𝑎𝑛𝑠𝑆𝑒𝑡 ⧵ 𝑡;
34 if 𝑠𝑡.𝑡𝑟𝑎𝑛𝑠𝑆𝑒𝑡 == ∅ then

35 𝑆 = 𝑆 ⧵ 𝑠𝑡;
36 𝑆 = 𝑆 ∪ {(𝑡.𝑡𝑎𝑟𝑔𝑒𝑡, 𝑠𝑡.𝑛𝑜𝑤, 𝑔𝑒𝑡𝑇𝑆𝑒𝑡(𝑡.𝑡𝑎𝑟𝑔𝑒𝑡))};

37 𝑡 ← 𝑔𝑒𝑡𝑇 𝑇 𝑖𝑚𝑒(𝑠𝑡, 𝑘);
38 if 𝑡! = 𝑛𝑢𝑙𝑙 & (𝑘 >= 𝑠𝑡.𝑛𝑜𝑤 + 𝑡.𝑔𝑒𝑡𝑇 𝑖𝑚𝑒()) then

39 𝑝𝑟𝑜𝑐𝑒𝑒𝑑← 𝑡𝑟𝑢𝑒;
40 𝑐ℎ𝑘 ← 𝑡𝑟𝑢𝑒;
41 𝑠𝑡.𝑡𝑟𝑎𝑛𝑠𝑆𝑒𝑡 = 𝑠𝑡.𝑡𝑟𝑎𝑛𝑠𝑆𝑒𝑡 ⧵ 𝑡;
42 if 𝑠𝑡.𝑡𝑟𝑎𝑛𝑠𝑆𝑒𝑡 == ∅ then

43 𝑆 = 𝑆 ⧵ 𝑠𝑡;
44 𝑆 = 𝑆 ∪ {(𝑡.𝑡𝑎𝑟𝑔𝑒𝑡, 𝑠𝑡.𝑛𝑜𝑤 + 𝑡.𝑔𝑒𝑡𝑇 𝑖𝑚𝑒(), 𝑔𝑒𝑡𝑇𝑆𝑒𝑡(𝑡.𝑡𝑎𝑟𝑔𝑒𝑡))};

45 return 𝑛𝑒𝑤 𝑎𝑙𝑎𝑟𝑚(𝑘, 𝑒);

In the following, we explain the details of the monitor algorithm 
where the Tiny Twin in the form of LTS (𝑆′, 𝑠′0, 𝐴𝑐𝑡

′, 𝑇 ′) is the input, 
and where 𝑆′, 𝑠′0, 𝐴𝑐𝑡

′ and 𝑇 ′ are the set of states, the initial state, the 
action set, and the transition set, respectively. The algorithm starts from 
the initial state of the Tiny Twin, 𝑠′0 ∈ 𝑆′, as the only state in the set of 
current states, 𝑆. The set 𝑆 keeps all current states during monitoring 
along with the logical time and the outgoing transitions of the current 
states (line 2). The algorithm begins and proceeds its operation by ob-
serving an event (a sensor data or a control commands) at the current 
logical time 𝑘 (line 5). The algorithm checks the outgoing transitions at 
each state in the set 𝑆, and compares the observed event 𝑒 to the labels 
on the outgoing transitions, and traverses the transition that matches 
the event using the function 𝗀𝖾𝗍𝖳𝖬𝗌𝗀 (line 9 to 17). It also checks if the 
time 𝑘 is one of the outgoing transitions at the current state using the 
function 𝗀𝖾𝗍𝖳𝖳𝗂𝗆𝖾 (line 8). It puts the event out in the network if it is 
consistent with the transition (line 17). If the algorithm observes that 
time 𝑘 progresses, it checks whether the time 𝑘 is equal to or greater 
than the logical time 𝑛𝑜𝑤 (line 19), if this is the case, it traverses the 
timed transition and updates the current state (line 19 to 25). In addi-
9

tion, the algorithm traverses transitions that are either internal actions 
Journal of Parallel and Distributed Computing 184 (2024) 104780

Fig. 7. The Tiny Twin of the transition system of the simplified temperature 
control system shown in Fig. 5(b).

(𝑡𝑎𝑢) using function 𝗀𝖾𝗍𝖳𝖳𝖺𝗎 or time shifting using function 𝗀𝖾𝗍𝖳𝖳𝗂𝗆𝖾

(lines 27 and 44).
Running Example: Monitoring using Tiny Twin. Let the Tiny Twin 
of Fig. 7 be the input model of the monitor. It sets the current state to 
S0. The monitor observes the sensor data 20 at time 𝑘, i.e. 𝑘 = 0 and 
compares the sensor data with the label of the outgoing transition. As 
the sensor data and the label on the outgoing transition at state S0 are 
the same, the monitor traverses the transition and sets the current state 
to S2.

The sensor data is then sent out over the network to the controller. 
The monitor proceeds by observing the control command 𝖺𝖼𝗍𝗂𝗏𝖺𝗍𝖾𝗁
that is issued by the controller. It traverses the outgoing transition 
𝗋𝗈𝗈𝗆.𝖺𝖼𝗍𝗂𝗏𝖺𝗍𝖾𝗁 since it matches to the command. At state S1, the moni-
tor waits to observe the logical time 𝑘 advances. If the monitor observes 
a new sensor data 21 at time 𝑘 = 10, it traverses the timed transition 
and sets the current state to S3. The monitor compares the sensor data 
with the label on the outgoing transition at state S3 and sets the cur-
rent state to S5. The monitor repeats the same process by observing the 
sensor data or control commands. The monitor makes an alarm and ter-
minates the monitoring process if it observes a sensor data or a control 
command inconsistent with the model. In the developed module for the 
monitor, it returns an alarm containing (𝑘, 𝑒) where 𝑘 is a time showing 
at which time during system execution an inconsistency is identified 
and 𝑒 is the inconsistent sensor data or control commands at state 𝑆𝑖 in 

the Tiny Twin where the monitor terminated.



F. Moradi, B. Pourvatan, S. Abbaspour Asadollah et al.

6. Case study: a temperature control system

We evaluate the applicability of our method in detecting and pre-
venting cyber-attacks using a temperature control system case study. 
This case study is a more complex version of the running example. The 
goal of attacks in this system is to change the temperature out of the 
desired range or cause damage to the physical infrastructure (i.e., the 
heating and cooling unit). We assume that attackers can alter/inject 
false sensor data or compromise the controller to tamper with the com-
mands issued by the controller. We developed the Timed Rebeca model 
of the temperature control system and used Afra to generate the state 
space. We develop a monitor in LF as a reactor to observe and check the 
system behavior at runtime. The Timed Rebeca model, the LF code of 
the system and the monitor are available on GitHub.3

Tiny Twin. The Tiny Twin is created by providing the ltsconvert tool 
with an LTS and the respective silent transitions. The CRTTS of the 
Timed Rebeca model which is generated by Afra has 799 states and 
1440 transitions. The CRTTS is mapped to an LTS with 994 states and 
1634 transitions using the ltscast function. In the next step, the Tiny 
Twin is created that has 125 states and 154 transitions.

We show a subset of the state transitions of the Tiny Twin to explain 
the system behavior at different states (see Fig. 8). In the Tiny Twin of 
the temperature control system, we see branching states (e.g., 𝑆32 and 
𝑆22) that present different control flow paths, where the controller de-
cides to activate/switch off the hc_unit regarding the received sensor 
data. Also, there are some cycles of sensor data transmission and con-
trol commands, where the same sensor data and control commands are 
repeated (e.g., from state S28 to state S20, state S15 to state S122 and 
state S29 to state S28).
Attack Types and Detection Capability. We consider the number of 
possible false sensor data and faulty control commands as the num-
ber of attacks. In this case, the possible sensor data are considered as 
(20, 22, 23, or 24) and the possible control commands are (𝖺𝖼𝗍𝗂𝗏𝖺𝗍𝖾𝗁, 
𝖺𝖼𝗍𝗂𝗏𝖺𝗍𝖾𝖼 or 𝗌𝗐𝗂𝗍𝖼𝗁𝗈𝖿𝖿). The combinations of these inputs generate 960 
attacks during 80 seconds which is a predefined system execution pe-
riod. The number of possible false sensors is represented in an abstract 
way, like in testing we consider different ranges and boundary points. 
These attacks consist of false sensor data injection attacks that are com-
bined with tampering control commands. In the following, we illustrate 
the attacks and detection capability of the monitor on a run of the sys-
tem where the actions are shown on the state transitions of the Tiny 
Twin in Fig. 8. The current temperature of the room is below the de-
sired range, therefore the heating process has been activated (state S32 
to state S28). The controller waits for new sensor data and switches 
off the hc_unit when the temperature goes to the desired range (state 
S27 to state S68). If the temperature drops below the desired range, the 
heating process is activated (state S35 to state S30).

Table 1 shows the states with one or more outgoing transitions that 
correspond to the sensor data or control commands. If the compromised 
controller sends a command that differs from the outgoing transition, 
the monitor can detect/drop the faulty control command. From states 
S32, S21, S20, S35 and S16 you may move to different states. For in-
stance, assume that 21 is sensed as the temperature value in S32 but the 
compromised sensor sends the value 24. According to the Tiny Twin of 
the case study, the value for the next states can be either 20 (S90), 21 
(S22), or 22 (S97) so the monitor detects the false sensor data. Note that 
the controller should in principle sends activatec to activate the cooling 
process by sensing 24. But this is where in modeling the behavior of the 
environment, in the Timed Rebeca model, we do not model any jumps 
in the temperature from 21 to 24. So, this is captured as an unexpected 
behavior. As another example, assume that the value 22 is sensed as 
the temperature value in S32 but the compromised sensor sends a sensed 
value 21 or 20. In this case, the monitor can not detect the false sen-
10

3 https://github .com /fereidoun -moradi /RoomTemp.
Journal of Parallel and Distributed Computing 184 (2024) 104780

Fig. 8. A subset of the state transitions in the Tiny Twin of the temperature 

control system. It shows timed transitions, time shifting and branching states.

https://github.com/fereidoun-moradi/RoomTemp


Journal of Parallel and Distributed Computing 184 (2024) 104780F. Moradi, B. Pourvatan, S. Abbaspour Asadollah et al.

Table 1

Attacks and detection capability of the monitor module.

System # False sensor data/ Detection Capability

States Attacks Faulty control commands (DS/DC)

S32, S21, S20, S35 4 Sensor data (20, 22, 23, or 24) DS (23 and 24) where 21 is actual sensed value
S27, S24, S17 4 Sensor data (21, 22, 23 or 24) DS (21, 22, 23 and 24) where 20 is actual sensed value
S46, S44, S112, S39, S37 4 Sensor data (20, 22, 23 or 24) DS (20, 22, 23 and 24) where 21 is actual sensed value
S90 and S30 2 Command (𝖺𝖼𝗍𝗂𝗏𝖺𝗍𝖾𝖼 or 𝗌𝗐𝗂𝗍𝖼𝗁𝗈𝖿𝖿) DC (𝖺𝖼𝗍𝗂𝗏𝖺𝗍𝖾𝖼 and 𝗌𝗐𝗂𝗍𝖼𝗁𝗈𝖿𝖿)
S74 2 Command (𝖺𝖼𝗍𝗂𝗏𝖺𝗍𝖾𝗁 or 𝖺𝖼𝗍𝗂𝗏𝖺𝗍𝖾𝖼) DC (𝖺𝖼𝗍𝗂𝗏𝖺𝗍𝖾𝗁 and 𝖺𝖼𝗍𝗂𝗏𝖺𝗍𝖾𝖼)
S16 4 Sensor data (20, 22, 23 or 24) DS (20, 23 and 24) where 21 is actual sensed value

#Attacks.: Number of simulated attacks, DS: Detect false sensor data, DC: Detect faulty control commands.
Table 2

Alarms of the monitor in case of attacks.

System False sensor data/ Alarms

States Faulty control commands list

S32 Sensor data (23) [𝗍𝗂𝗆𝖾,𝗒𝗂 ∶ 𝟤𝟥, 𝗍𝖾𝗆𝗉 ∶ 𝟤𝟣]
S27 Sensor data (20) [𝗍𝗂𝗆𝖾,𝗒𝗂 ∶ 𝟤𝟣, 𝗍𝖾𝗆𝗉 ∶ 𝟤𝟢]
S46 Sensor data (22) [𝗍𝗂𝗆𝖾,𝗒𝗂 ∶ 𝟤𝟤, 𝗍𝖾𝗆𝗉 ∶ 𝟤𝟣]
G90 Command (𝖺𝖼𝗍𝗂𝗏𝖺𝗍𝖾𝖼) [𝗍𝗂𝗆𝖾,𝗎𝗂 ∶ 𝖺𝖼𝗍𝗂𝗏𝖺𝗍𝖾𝖼, 𝗍𝖾𝗆𝗉 ∶ 𝟤𝟣]
G74 Command (𝗌𝗐𝗂𝗍𝖼𝗁𝗈𝖿𝖿) [𝗍𝗂𝗆𝖾,𝗎𝗂 ∶ 𝗌𝗐𝗂𝗍𝖼𝗁𝗈𝖿𝖿 , 𝗍𝖾𝗆𝗉 ∶ 𝟤𝟣]
S16 Sensor data (24) [𝗍𝗂𝗆𝖾,𝗒𝗂 ∶ 𝟤𝟦, 𝗍𝖾𝗆𝗉 ∶ 𝟤𝟣]

𝗍𝗂𝗆𝖾: the logical time which is derived using Lingua Franca code, 𝗒𝗂 : the in-
consistent sensor data, 𝗎𝗂 : the inconsistent control command, 𝗍𝖾𝗆𝗉: the stored 
temperature value in the controller

sor data. We are able to use meta-rules to check if the paths between 
turning the heating (or cooling) unit(s) are taken too quickly, or any of 
these processes stay turned on for a time longer than expected.

Table 2 shows the alarms list returned by the monitor when a false 
sensor data or a faulty control command is detected. The alarm is com-

prised of a time value, a false sensor data or a faulty control command, 
the status of the physical plant reported by the sensor and the value of 
the state variables in the state where the monitor terminated the system 
execution. Having this report would be very helpful for system tester-

s/developers to find the situation of the system state when the alarm 
happened and find the actual source of the attack.

In a CPS, there may be several variables involved in the physical 
process as well as various sensors and actuators. Tiny Twin provides 
relevant information about attacks that can be employed in mitigation 
techniques, backtracking and recovering the system after attacks. We 
have developed the Timed Rebeca models and the LF codes of two case 
studies (Secure Water Treatment system (SWaT) and Pneumatic Con-

trol System (PCS)), for which the monitor can properly detect attacks on 
the system [30]. In the PCS, system dynamics can be affected by envi-

ronmental factors such as changes in the quality of the air supply. By 
assigning nondeterministic values to the state variable representing the 
motion rate of the cylinders in the Timed Rebeca model, we capture 
the variability of the environment. In the SWaT case study, the pro-

cess of increasing and decreasing water level is a continuous behavior. 
We discretize the water level into low, medium, and high categories us-

ing state variables. The PCS and SWaT systems are distributed control 
systems whereas TCS is a centralized control system. We model both 
periodic and trigger sensors, which are two different types of sensors 
used in PCS and TCS. The use of different sensor types in PCS and TCS 
systems highlights the importance of adapting the modeling approach 
to the specific characteristics of each system. In these case studies, the 
original state space model of the Timed Rebeca model of the SWaT con-

tains 614 states and 777 transitions and the original state space model 
of the PCS has 1388 states and 2686 transitions. The Tiny Twin mod-

els of these systems respectively have 85 states and 139 transitions and 
11

120 states and 224 transitions.
7. Related work

There is a rich literature on using formal models to detect and 
prevent cyber-attacks on CPS. For instance, authors in [21,6] define 
the behavior of the system using an automaton and employ it to de-
tect attacks. Authors in [20] model the system as finite state machines 
and verify the system behavior at runtime. Lanotte et al. [18,19] and 
Pinisetty et al. [31] propose formal approaches based on runtime en-
forcement to ensure specification compliance in the control systems. 
The advantage of our approach is that the model used within the moni-
tor (the Tiny Twin) is not purely a specification. The model is executed 
(similar to a program) which enables us to debug it, make necessary 
revisions, and reflect important details back into the model [39].

In [32], Rocchetto and Tippenhauer present a taxonomy of the di-
verse attacker models for CPSs security and investigate the impact of 
single-point cyber attacks on SWaT [1]. They [33] use the ASLan++ 
tool for modeling the physical layer interactions and the CL-AtSe tool 
for analyzing the state space. Hailesellasie and Hasan [11] verify the 
PLC network within an industrial control system by creating graphs of 
the potentially compromised PLC program and a trusted version of the 
program. The methods in [33,11] prioritize aspects like system archi-
tecture or data flow to discover vulnerabilities. They may not explicitly 
represent the entities and their respective roles. In our approach, we re-
duce the semantic gap between the model and the entities in real-world 
applications, enhancing the relevance of the system design because of 
incorporating actors.

Adepu and Mathur [2] propose a method that detects attacks by 
identifying anomalies in the behavior of the physical process in the 
plant. Orpheus [7] monitors the behavior of a device control program 
based on the invoked system calls, and McLaughlin [25] presents a mon-
itor for the use of electromechanical devices. Compared to the methods 
that implement monitoring codes to detect attacks (e.g., [2,7,25]), the 
Tiny Twin does not need coding and embedding within the controllers. 
The monitor embeds the Tiny Twin and is placed as a proxy within the 
network where it can handle large plants containing several different 
sensors and actuators.

Russo et al. [34] propose a lightweight Digital Twin Framework 
(DTF) to support the quick build of reliable Digital Twins (DTs) for 
experimental and testing purposes. In [15], authors design a DTF for 
staging security training and research activities in a replica of a smart 
grid. The framework includes a module for the automatic execution 
of attack scripts. Eckhart et al. [9] present CPS Twinning, a DTF aim-
ing at mirroring CPS. Their proposal is inspired by MiniCPS [4], i.e., 
a framework for real-time CPS simulation. In this study, our focus lies 
on formal methods for modeling Digital Twins, while other research on 
Digital Twins (e.g., [34,15,9]) try to design a framework to generate 
the virtual environment from the specification for testing, monitoring, 
and security analysis.

Giraldo et al. [10] address various security aspects in CPS applica-
tions and assess metrics like false alerts and attack detection probability. 
They provide an overview of detection mechanisms and their efficacy. 
Bartocci et al. [5] investigate methods for specifying detection targets, 

measurement techniques, and system instrumentation.



F. Moradi, B. Pourvatan, S. Abbaspour Asadollah et al.

8. Conclusion

In this paper, we used a Tiny Twin to detect the attacks on sensors 
and controllers. We employ the mCRL2 ltsconvert tool to build the Tiny 
Twin, which is an abstract version of a state transition system repre-
senting the system’s correct behavior in the absence of an attack. In our 
method, we develop a ltscast function to map the state space generated 
by Afra to the LTS that is an input model for the mCRL2. We implement 
a monitor that executes together with the system. It produces an alarm 
if the sensor data or the control commands are not consistent with the 
state transitions in the Tiny Twin.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Appendix A. ltscast function algorithm

Algorithm 2 shows the high-level pseudo-code of ltscast function. In 
the following, we describe the details of the algorithm. The algorithm 
gets (𝑆, 𝑠0, 𝐴𝑐𝑡, 𝑇 ) as the input CRTTS and returns (𝑆′, 𝑠′0, 𝐴𝑐𝑡

′, 𝑇 ′) as 
the LTS. In the input CRTTS, each transition contains a source state, a 
target state, an action which is a pair of name of the action and the time 
shifting value. The algorithm performs the mapping process using two 
loops (lines 6 and 14). In the first loop (lines 6 and 13), we check all 
transitions if a transition contains a non-zero time shifting value. If a 
transition is found with a time shifting (line 8), it creates a new state 
that is the same as the target state and puts the state in 𝑆′ (line 9). It 
also divides the transition into two subsequent transitions and puts the 
transitions in 𝑇 ′ (line 10). When a transition is divided, one subsequent 
transition represents an action, and the other transition represents a 
time shifting (line 10). If no time shifting is found, it keeps the states in 
𝑆′ and the transition in 𝑇 ′ without any change (line 11).

Algorithm 2: ltscast Function.
Input: a CRTTS (𝑆 ∶ 𝑠𝑡𝑎𝑡𝑒𝑆𝑒𝑡, 𝑠0 ∶ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑡𝑎𝑡𝑒, 𝐴𝑐𝑡 ∶ 𝑎𝑐𝑡𝑖𝑜𝑛𝑆𝑒𝑡, 𝑇 ∶ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑡)
Output: an LTS (𝑆′ ∶ 𝑠𝑡𝑎𝑡𝑒𝑆𝑒𝑡, 𝑠′0 ∶ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑡𝑎𝑡𝑒, 𝐴𝑐𝑡′ ∶ 𝑎𝑐𝑡𝑖𝑜𝑛𝑆𝑒𝑡, 𝑇 ′ ∶ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑡)

1 begin

2 𝑠′0 = 𝑠0 ;
3 𝑠𝑡𝑎𝑡𝑒𝑆𝑒𝑡 𝑆′ = ∅;
4 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑡 𝑇 ′ = ∅;
5 𝑎𝑐𝑡𝑖𝑜𝑛𝑆𝑒𝑡 𝐴𝑐𝑡′ = ∅;
6 for each 𝑡 ∈ 𝑇 do

7 if 𝑡.𝑎𝑐𝑡𝑖𝑜𝑛.𝛼 ≠ 0 then

8 𝑠𝑡𝑎𝑡𝑒 𝑠𝑡 = 𝑛𝑒𝑤 𝑠𝑡𝑎𝑡𝑒();
9 𝑆′ = 𝑆′ ∪ {𝑡.𝑠𝑜𝑢𝑟𝑐𝑒, 𝑡.𝑡𝑎𝑟𝑔𝑒𝑡, 𝑠𝑡};

10 𝑇 ′ = 𝑇 ′ ∪ {𝑛𝑒𝑤 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑡.𝑠𝑜𝑢𝑟𝑐𝑒, 𝑡.𝑎𝑐𝑡𝑖𝑜𝑛.𝑎𝑐𝑡, 𝑠𝑡), 
𝑛𝑒𝑤 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑠𝑡, 𝑡.𝑎𝑐𝑡𝑖𝑜𝑛.𝛼, 𝑡.𝑡𝑎𝑟𝑔𝑒𝑡)};

11 else

12 𝑆′ = 𝑆′ ∪ {𝑡.𝑠𝑜𝑢𝑟𝑐𝑒, 𝑡.𝑡𝑎𝑟𝑔𝑒𝑡};
13 𝑇 ′ = 𝑇 ′ ∪ {𝑛𝑒𝑤 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑡.𝑠𝑜𝑢𝑟𝑐𝑒, 𝑡.𝑎𝑐𝑡𝑖𝑜𝑛.𝑎𝑐𝑡, 𝑡.𝑡𝑎𝑟𝑔𝑒𝑡)};

14 for each 𝑡 ∈ 𝑇 ′ do

15 for each 𝑡1 ∈ 𝑇 ′ do

16 if 𝑡1 .𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑡.𝑠𝑜𝑢𝑟𝑐𝑒 ∧ 𝑡1 .𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑡.𝑎𝑐𝑡𝑖𝑜𝑛 ∧ 𝑡1 .𝑡𝑎𝑟𝑔𝑒𝑡 ≠ 𝑡.𝑡𝑎𝑟𝑔𝑒𝑡 then

17 𝑡1 .𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑡1 .𝑎𝑐𝑡𝑖𝑜𝑛 + 𝑔𝑒𝑡𝐷𝑖𝑓 (𝑡.𝑡𝑎𝑟𝑔𝑒𝑡, 𝑡1.𝑡𝑎𝑟𝑔𝑒𝑡);
18 𝐴𝑐𝑡′ =𝐴𝑐𝑡′ ∪ {𝑡1 .𝑎𝑐𝑡𝑖𝑜𝑛};

19 𝐴𝑐𝑡′ =𝐴𝑐𝑡′ ∪ {𝑡.𝑎𝑐𝑡𝑖𝑜𝑛};

20 return (𝑆′ , 𝐴𝑐𝑡′ , 𝑇 ′)

In the second loop (line 14 to 19), we find the outgoing transi-
tions of a state which have the same label. If there are two outgoing 
transitions with the same label from the same source state to different 
target states (line 14), we tag the transitions using function 𝗀𝖾𝗍𝖣𝗂𝖿 . The 
function 𝗀𝖾𝗍𝖣𝗂𝖿 is used to compare the state variables of the two states 
(line 17). If the value of a state variable is different in the two states, 
12

the function returns the value of the variable in the target state, if the 
Journal of Parallel and Distributed Computing 184 (2024) 104780

values are the same it returns a zero. The transition is tagged using this 
value. If there are more than one variable with different values in the 
two states, the tag is the concatenation of all the values of the variables 
in the target state. Finally, the labels of the actions are added to the set 
𝐴𝑐𝑡′.

References

[1] S. Adepu, A. Mathur, An investigation into the response of a water treatment system 
to cyber attacks, in: 2016 IEEE 17th International Symposium on High Assurance 
Systems Engineering, HASE, IEEE, 2016, pp. 141–148.

[2] S. Adepu, A. Mathur, Distributed attack detection in a water treatment plant: method 
and case study, IEEE Trans. Dependable Secure Comput. 18 (2018) 86–99.

[3] Afra, An integrated environment for modeling and verifying Rebeca family designs, 
Online. URL https://rebeca -lang .org /alltools /Afra, 2022. (Accessed 9 December 
2022).

[4] D. Antonioli, N.O. Tippenhauer, Minicps: a toolkit for security research on cps 
networks, in: Proceedings of the First ACM Workshop on Cyber-Physical Systems-
Security and/or Privacy, 2015, pp. 91–100.

[5] E. Bartocci, J. Deshmukh, A. Donzé, G. Fainekos, O. Maler, D. Ničković, S. Sankara-
narayanan, Specification-based monitoring of cyber-physical systems: a survey on 
theory, tools and applications, in: Lectures on Runtime Verification: Introductory 
and Advanced Topics, 2018, pp. 135–175.

[6] L.K. Carvalho, Y.-C. Wu, R. Kwong, S. Lafortune, Detection and mitigation of classes 
of attacks in supervisory control systems, Automatica 97 (2018) 121–133.

[7] L. Cheng, K. Tian, D. Yao, Orpheus: enforcing cyber-physical execution semantics to 
defend against data-oriented attacks, in: Proceedings of the 33rd Annual Computer 
Security Applications Conference, 2017, pp. 315–326.

[8] J.P. Conti, The day the samba stopped [power blackouts], Eng. Technol. 5 (2010) 
46–47.

[9] M. Eckhart, A. Ekelhart, Towards security-aware virtual environments for digital 
twins, in: Proceedings of the 4th ACM Workshop on Cyber-Physical System Security, 
2018, pp. 61–72.

[10] J. Giraldo, D. Urbina, A. Cardenas, J. Valente, M. Faisal, J. Ruths, N.O. Tippen-
hauer, H. Sandberg, R. Candell, A survey of physics-based attack detection in cyber-
physical systems, ACM Comput. Surv. 51 (2018) 1–36.

[11] M. Hailesellasie, S.R. Hasan, Intrusion detection in plc-based industrial control sys-
tems using formal verification approach in conjunction with graphs, J. Hardw. Syst. 
Secur. 2 (2018) 1–14.

[12] H. He, J. Yan, Cyber-physical attacks and defences in the smart grid: a survey, IET 
Cyber-Phys. Syst.: Theory Appl. 1 (2016) 13–27.

[13] C. Hewitt, Viewing control structures as patterns of passing messages, Artif. Intell. 
8 (1977) 323–364.

[14] D.N. Jansen, J.F. Groote, J.J. Keiren, A. Wijs, An O (m log n) algorithm for branching 
bisimilarity on labelled transition systems, in: International Conference on Tools and 
Algorithms for the Construction and Analysis of Systems, Springer, 2020, pp. 3–20.

[15] N.K. Kandasamy, S. Venugopalan, T.K. Wong, L.J. Nicholas, Epictwin: an electric 
power digital twin for cyber security testing, research and education, arXiv preprint, 
arXiv :2105 .04260, 2021.

[16] E. Khamespanah, M. Sirjani, Z. Sabahi-Kaviani, R. Khosravi, M. Izadi, Timed Rebeca 
schedulability and deadlock freedom analysis using bounded floating time transition 
system, Sci. Comput. Program. 98 (2015) 184–204.

[17] E. Khamespanah, M. Sirjani, M. Viswanathan, R. Khosravi, Floating time transition 
system: more efficient analysis of timed actors, in: Formal Aspects of Component 
Software, Springer, 2015, pp. 237–255.

[18] R. Lanotte, M. Merro, A. Munteanu, A process calculus approach to detection and 
mitigation of plc malware, Theor. Comput. Sci. 890 (2021) 125–146.

[19] R. Lanotte, M. Merro, A. Munteanu, Industrial control systems security via runtime 
enforcement, ACM Trans. Priv. Secur. 26 (2022) 1–41.

[20] E. Lee, Y.-D. Seo, Y.-G. Kim, A cache-based model abstraction and runtime verifica-
tion for the Internet-of-things applications, IEEE Int. Things J. 7 (2020) 8886–8901.

[21] P.M. Lima, M.V. Alves, L.K. Carvalho, M.V. Moreira, Security against network at-
tacks in supervisory control systems, IFAC-PapersOnLine 50 (2017) 12333–12338.

[22] M. Lohstroh, Í.Í. Romeo, A. Goens, P. Derler, J. Castrillon, E.A. Lee, A. Sangiovanni-
Vincentelli, Reactors: a deterministic model for composable reactive systems, in: 
Cyber Physical Systems. Model-Based Design, Springer, 2019, pp. 59–85.

[23] M. Lohstroh, C. Menard, A. Schulz-Rosengarten, M. Weber, J. Castrillon, E.A. Lee, A 
language for deterministic coordination across multiple timelines, in: 2020 Forum 
for Specification and Design Languages, FDL, IEEE, 2020, pp. 1–8.

[24] M. Lohstroh, C. Menard, S. Bateni, E.A. Lee, Toward a lingua franca for deterministic 
concurrent systems, ACM Trans. Embed. Comput. Syst. 20 (2021) 1–27.

[25] S. McLaughlin, CPS: stateful policy enforcement for control system device usage, in: 
Proceedings of the 29th Annual Computer Security Applications Conference, 2013, 
pp. 109–118.

[26] R. Mitchell, I.-R. Chen, A survey of intrusion detection techniques for cyber-physical 
systems, ACM Comput. Surv. 46 (2014) 1–29.

[27] S. Mohan, S. Bak, E. Betti, H. Yun, L. Sha, M. Caccamo, S3A: secure system simplex 
architecture for enhanced security and robustness of cyber-physical systems, in: Pro-
ceedings of the 2nd ACM International Conference on High Confidence Networked 

Systems, 2013, pp. 65–74.

http://refhub.elsevier.com/S0743-7315(23)00150-8/bib750A4EFB40DAF1A969A3DBE824604448s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib750A4EFB40DAF1A969A3DBE824604448s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib750A4EFB40DAF1A969A3DBE824604448s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibB7A325D87DE902A063B326D1FD5BC578s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibB7A325D87DE902A063B326D1FD5BC578s1
https://rebeca-lang.org/alltools/Afra
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib32DF18B4BDF8F45120FA91E97CCD9909s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib32DF18B4BDF8F45120FA91E97CCD9909s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib32DF18B4BDF8F45120FA91E97CCD9909s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib49E63DC1D6A63AF1BCF4271822B70291s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib49E63DC1D6A63AF1BCF4271822B70291s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib49E63DC1D6A63AF1BCF4271822B70291s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib49E63DC1D6A63AF1BCF4271822B70291s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib2BC6C5CEA6EDE7A787FAA6D8D7829158s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib2BC6C5CEA6EDE7A787FAA6D8D7829158s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib105169D82416507EADCC5E48054B0413s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib105169D82416507EADCC5E48054B0413s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib105169D82416507EADCC5E48054B0413s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibF16D8036B073F2AFD8432AF92AE61387s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibF16D8036B073F2AFD8432AF92AE61387s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib88894738F144640625B08DB0A1DA178Es1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib88894738F144640625B08DB0A1DA178Es1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib88894738F144640625B08DB0A1DA178Es1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib3C8FCB1EF820E9D2041B33ED548B5C75s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib3C8FCB1EF820E9D2041B33ED548B5C75s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib3C8FCB1EF820E9D2041B33ED548B5C75s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibA0C3E24C49DAC1383DB9A1AFFA647210s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibA0C3E24C49DAC1383DB9A1AFFA647210s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibA0C3E24C49DAC1383DB9A1AFFA647210s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibC037DFE7B1B4F7AA5BD4E6C12C69074Ds1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibC037DFE7B1B4F7AA5BD4E6C12C69074Ds1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibA1D0E978645298F8031E03D8B63500E6s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibA1D0E978645298F8031E03D8B63500E6s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibB0DBA8AE8A3135C8D495EBD9052EFC0Bs1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibB0DBA8AE8A3135C8D495EBD9052EFC0Bs1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibB0DBA8AE8A3135C8D495EBD9052EFC0Bs1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib9EDBDA9E9ECFF7694C75CBC863D3E18Fs1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib9EDBDA9E9ECFF7694C75CBC863D3E18Fs1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib9EDBDA9E9ECFF7694C75CBC863D3E18Fs1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibF561A96E9E53A8A111E15CAB66568BBBs1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibF561A96E9E53A8A111E15CAB66568BBBs1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibF561A96E9E53A8A111E15CAB66568BBBs1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibA42A3435ACB3AEF78688D60A1BB69CA4s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibA42A3435ACB3AEF78688D60A1BB69CA4s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibA42A3435ACB3AEF78688D60A1BB69CA4s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib8E5F50E52D0C8D271066B130576F273Bs1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib8E5F50E52D0C8D271066B130576F273Bs1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibFB8AFE386E9EFEE0F3ECB586A06F791Cs1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibFB8AFE386E9EFEE0F3ECB586A06F791Cs1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib14025B6B1BEA102DEBA585E9D6E9F4A0s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib14025B6B1BEA102DEBA585E9D6E9F4A0s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib1AAF80244847204AD2801866EBFC85EBs1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib1AAF80244847204AD2801866EBFC85EBs1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibFED93C3E686C4D9AF53BA227162C2F77s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibFED93C3E686C4D9AF53BA227162C2F77s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibFED93C3E686C4D9AF53BA227162C2F77s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib31D1A2B2CC2AD0FC865BECFF9EB2DCE2s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib31D1A2B2CC2AD0FC865BECFF9EB2DCE2s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib31D1A2B2CC2AD0FC865BECFF9EB2DCE2s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib11CA3010F5EE4404A04243E6AB9D47DBs1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib11CA3010F5EE4404A04243E6AB9D47DBs1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib12853D99AB3F23C7D415BC5125718032s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib12853D99AB3F23C7D415BC5125718032s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib12853D99AB3F23C7D415BC5125718032s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibE8D9F1C6AC9D7B401D0637F2FF21D85As1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibE8D9F1C6AC9D7B401D0637F2FF21D85As1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib4CA3F31B704E5CE8C0800935F7F0D8FCs1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib4CA3F31B704E5CE8C0800935F7F0D8FCs1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib4CA3F31B704E5CE8C0800935F7F0D8FCs1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib4CA3F31B704E5CE8C0800935F7F0D8FCs1


F. Moradi, B. Pourvatan, S. Abbaspour Asadollah et al.

[28] F. Moradi, S.A. Asadollah, A. Sedaghatbaf, A. Čaušević, M. Sirjani, C. Talcott, An 
actor-based approach for security analysis of cyber-physical systems, in: Interna-
tional Conference on Formal Methods for Industrial Critical Systems, Springer, 2020, 
pp. 130–147.

[29] F. Moradi, M. Bagheri, H. Rahmati, H. Yazdi, S.A. Asadollah, M. Sirjani, Monitoring 
cyber-physical systems using a tiny twin to prevent cyber-attacks, in: International 
Symposium on Model Checking Software, Springer, 2022, pp. 24–43.

[30] F. Moradi, S. Abbaspour, B. Pourvatan, Z. Moezkarimi, M. Sirjani, Crystal frame-
work: Cybersecurity assurance for cyber-physical systems (technical report), sub-
mitted to NWPT, 2023.

[31] S. Pinisetty, P.S. Roop, S. Smyth, N. Allen, S. Tripakis, R.V. Hanxleden, Runtime 
enforcement of cyber-physical systems, ACM Trans. Embed. Comput. Syst. 16 (2017) 
1–25.

[32] M. Rocchetto, N.O. Tippenhauer, On attacker models and profiles for cyber-physical 
systems, in: Computer Security–ESORICS 2016: 21st European Symposium on Re-
search in Computer Security, Proceedings, Part II 21, Heraklion, Greece, September 
26–30, 2016, Springer, 2016, pp. 427–449.

[33] M. Rocchetto, N.O. Tippenhauer, Towards formal security analysis of industrial con-
trol systems, in: ACM Asia Conference on Computer and Communications Security, 
ACM, 2017, pp. 114–126.

[34] E. Russo, G. Costa, G. Longo, A. Armando, A. Merlo, Lidite: a full-fledged and feath-
erweight digital twin framework, IEEE Trans. Dependable Secure Comput. (2023).

[35] M. Sirjani, M.M. Jaghoori, Ten years of analyzing actors: Rebeca experience, in: For-
mal Modeling: Actors, Open Systems, Biological Systems, Springer, 2011, pp. 20–56.

[36] M. Sirjani, E. Khamespanah, On time actors, in: Theory and Practice of Formal Meth-
ods, Springer, 2016, pp. 373–392.

[37] M. Sirjani, E. Khamespanah, E. Lee, Model checking software in cyberphysical sys-
tems, in: COMPSAC 2020, 2020.

[38] M. Sirjani, E.A. Lee, E. Khamespanah, Verification of cyberphysical systems, Mathe-
matics 8 (2020) 1068.

[39] M. Sirjani, L. Provenzano, S.A. Asadollah, M.H. Moghadam, M. Saadatmand, To-
wards a verification-driven iterative development of software for safety-critical 
cyber-physical systems, J. Internet Serv. Appl. 12 (2021) 2.

[40] J. Slay, M. Miller, Lessons learned from the maroochy water breach, in: International 
Conference on Critical Infrastructure Protection, Springer, 2007, pp. 73–82.

Fereidoun Moradi joined the Cyber-Physical Systems Anal-
ysis group at Mälardalen University in 2019 as a Ph.D. student. 
He received his M.Sc. degree in Information Security from the 
University of Isfahan in 2015, specializing in protocol security 
analysis. Before starting his Ph.D. studies, Fereidoun worked at 
Chavoosh Co. (R&D) for 5 years. He recently joined Hitachi En-
ergy as a Senior Cybersecurity Engineer in 2023.

Bahman Pourvatan is a research engineer at Mälardalen 
University. He works on modeling and analysis of real-time sys-
tems using different techniques. Bahman has been a university 
lecturer for over 25 years, teaching courses on programming, al-
gorithms, and software engineering.
13
Journal of Parallel and Distributed Computing 184 (2024) 104780

Sara Abbaspour is a lecturer specializing in safety and 
security-relevant cyber-physical systems. She works in the Cyber-
Physical Systems Analysis group at Mälardalen University in 
Sweden. Sara served as a Postdoctoral researcher from 2018 to 
2020 at Mälardalen University. She has successfully completed 
her PhD and defended her thesis titled ‘Concurrency Bugs: Char-
acterization, Debugging, and Runtime Verification’. Her primary 
research interests encompass safety and security-relevant cyber-
physical systems, debugging, testing, and runtime verification of 
concurrent, parallel, and multicore software, security for wireless 

networks, service-level agreements in Industrial IoT, autonomous driving, and advanced 
driver assistance systems (ADAS). Sara also has work experience in various aspects of 
industrial environments such as Mobile Development Systems, Multimedia Technologies 
and eLearning applications, RFID, Smart card technologies, and Software System Testing.

Marjan Sirjani is a Professor of Software Engineering at 
Mälardalen University in Sweden. Marjan has been working on 
modeling, formal verification, and safety and security assurance 
of distributed, self-adaptive and cyber-physical systems. Marjan 
has been the PC member and PC chair of several international 
conferences including SEFM, FM, FMICS, SAC, and DATE. She 
is an editor of the journal of Science of Computer Program-
ming. Marjan collaborated with different companies including 
Volvo CE, Volvo GTO, Volvo Cars, and ABB Robotics. Marjan 
and her research group designed the actor-based language Re-

beca (https://rebeca -lang .org/) in 2001 and are pioneers in building model checking 
tools, compositional verification theories, and state-space reduction techniques for ac-
tors.

http://refhub.elsevier.com/S0743-7315(23)00150-8/bib84BED71C8A45B9BAEDCB2845253404FFs1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib84BED71C8A45B9BAEDCB2845253404FFs1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib84BED71C8A45B9BAEDCB2845253404FFs1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib84BED71C8A45B9BAEDCB2845253404FFs1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib5523144E749CD191AE3DBF2FCEA92844s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib5523144E749CD191AE3DBF2FCEA92844s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib5523144E749CD191AE3DBF2FCEA92844s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib91362D803D1DA8ABBFE6C4457DB436D4s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib91362D803D1DA8ABBFE6C4457DB436D4s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib91362D803D1DA8ABBFE6C4457DB436D4s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib4B27B9A0973B75811F7B38B3A211DD51s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib4B27B9A0973B75811F7B38B3A211DD51s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib4B27B9A0973B75811F7B38B3A211DD51s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibFE96108D5BAE094BBA8974A7CF54B4C1s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibFE96108D5BAE094BBA8974A7CF54B4C1s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibFE96108D5BAE094BBA8974A7CF54B4C1s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibFE96108D5BAE094BBA8974A7CF54B4C1s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib922AB3A926DD2600178B9EE38F146246s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib922AB3A926DD2600178B9EE38F146246s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib922AB3A926DD2600178B9EE38F146246s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib0C0D41A3D8BAF5F9003714E88C3861FEs1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib0C0D41A3D8BAF5F9003714E88C3861FEs1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib2BE7B14586035A9D19AE6BBC37B2B6DCs1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib2BE7B14586035A9D19AE6BBC37B2B6DCs1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib9AD7C5F67B6E12913FC2299636A9E3CFs1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib9AD7C5F67B6E12913FC2299636A9E3CFs1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib79D3471DCBC90EC0675C04F4216146AAs1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bib79D3471DCBC90EC0675C04F4216146AAs1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibFFC354E9E118A9E8995EB9AC9844A5ECs1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibFFC354E9E118A9E8995EB9AC9844A5ECs1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibDD7FC6B2569C2C1D823512B9382EE87Ds1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibDD7FC6B2569C2C1D823512B9382EE87Ds1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibDD7FC6B2569C2C1D823512B9382EE87Ds1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibBAD5FA0186D42720CCFF350EBD78E046s1
http://refhub.elsevier.com/S0743-7315(23)00150-8/bibBAD5FA0186D42720CCFF350EBD78E046s1
https://rebeca-lang.org/

	Tiny Twins for detecting cyber-attacks at runtime using concise Rebeca time transition system
	1 Introduction
	2 Overview of our approach
	3 Background: Timed Rebeca and Lingua Franca
	4 From the state space to the Tiny Twin
	4.1 Afra state space
	4.2 Defining BRTTS based on shift-equivalence relation
	4.3 Mapping CRTTS to LTS
	4.4 ltscast function

	5 Monitor algorithm
	6 Case study: a temperature control system
	7 Related work
	8 Conclusion
	Declaration of competing interest
	Appendix A ltscast function algorithm
	References


