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Abstract

The worst case execution times, the WCET, are
often essential to know for tasks that have to
fulfill deadlines. Such tasks can often be found
in real time systems. In order to calculate the
WCET, flow constraints, like maximum itera-
tions of loops, needs to be known. Entering all
such flow constraints to a WCET tool require
a lot of work for the user to be done. There-
fore methods for achieving flow constraints au-
tomatically are important. However, most of to-
day’s WCET tools require manual annotations
of loops for real sized programs. One of the rea-
sons is that the most powerful analysis methods
are too costly in terms of computation power.

This paper suggest three approaches to reduce
the required computations to be done, in order
to be able to analyze larger programs.

• Reduce the program size by removing all
parts of the program that do not affect the
control flow.

• Find syntactical methods with low calcula-
tion cost in order to find upper loop bounds.

• Make a detailed study of industrial code in
order to find commonly used language con-
structs. The result of this work can be used
to guide the syntactical methods, so it will
be performed prior to that.

This work will result in three papers and a li-
centiate thesis.

1 Introduction

An approximation of WCET can be obtained
either by measurements or by analysis. Mea-

suring means to execute the program for some
input and measure the elapsed time. Such an
approximation will give a time that is equal to
the actual WCET in case the worst case is gen-
erated by the set of input data, else lower. When
analyzing the program safe approximations can
be done, i.e. decisions that always leads to a
longer execution time. With this approach in
the analysis, the time will be at least equal to
the actual WCET.

The industrial standard of today is to measure
the WCET, or to estimate from manual code
analysis. Measuring requires that a hardware
platform or time accurate simulator is available.
However, often the input data to the program
can vary in such ranges that testing them all
to find the one that causes WCET is not feasi-
ble. Therefore the programmer has to read the
code as well as the system specifications care-
fully in order to find out for which combination
of input data the WCET will occur. This is a
tedious and error prone work. Even when it has
been done, the important question ”Is this the
worst case?” can not be answered for sure. The
same problem occurs when estimating WCET
by manual analysis of the code.

To be sure to find an approximation that is
guaranteed to be safe (equal to or larger than
the actual WCET) we need to statically analyze
the program. Current methods either require
the bounds of a number of loops to be entered by
the user, or too much computation to be able to
work with large programs. We aim to show that
we can increase the number of programs that are
possible to analyze by reducing the amount of
computation power that is needed.

• The complexity of some analysis methods
depends on both the program size and the
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number of iterations in the loops. This is
the case for abstract execution, which we
will describe in more detail in ??. To speed
up such analyzes we will remove the as-
signment statements that do not affect the
control flow. Not all variables need to be
involved in of loop exit conditions or in
branch conditions. Thus the result of as-
signments of such variables are not needed
to determine loop bounds, and their defini-
tions can therefore be removed. When re-
moving such statements we need to consider
pointers as well as global variables. The
value of a variable may be used to control
the program flow when used in one context
but not another. Hence it would be pos-
sible to remove the corresponding defining
statements in latter case but not in the for-
mer. To be able to remove as much code as
possible we should perform this analysis in
a context sensitive manner. The result will
be presented in a paper.

• Some language constructs may occur more
frequently in industrial real time code than
in code from desktop applications. We have
an idea that this may concern loop condi-
tions and dependencies between loops. We
can find out that if we look into details and
use a global view. We aim to inspect code
from 5 embedded systems vendors in detail.
The result will be presented in a paper.

• The knowledge that we will get from the
inspection mentioned above, can be used
to introduce suitable syntactical methods
to find loop bounds that would else require
the user to supply information. Syntactical
methods are such that looks for certain pat-
terns or program construct in the program
to analyze. It is prepared to act in a cer-
tain way when finding such patterns, e.g.
make some calculations base on the pat-
terns found, and annotate the loop with the
result. Eventually one can find upper loop
bounds this way. We will do the syntactical
analysis in a global and context sensitive
manner. We will consider pointers. If we
manage to identify the most frequent loop
constructs this way, then we will be able
to analyze a larger set of programs than
we would have done without this analysis.
The result of this work will be presented in
a paper.

We will also present the results of the items as
listed above as licentiate thesis.

The rest of the paper is organized like this:
In Section 2 we will outline the area of WCET
analysis with focus on flow analysis. In Section
3 we present some research results that benefit
a work in the flow analysis area, as well as its
context. Finally, in Section 4 we will explain
details about the planned work.

2 Background

The task of calculating an estimated WCET for
some code can be divided into three main parts,
flow analysis, low level analysis and calculation.

The goal of the flow analysis is to provide the
WCET calculation with information about pos-
sible upper loop bounds and infeasible paths.
Infeasible paths are such paths that can never
be executed, because of the conditions. You can
see an example in Figure 1 where the path A, B,
C, E, F, G can never be executed since the con-
ditions in statements B and E can not be true
at the same time.

The information produced by the flow analy-
sis must be safe. This means that one must en-
sure that the flow constraints, when used by the
calculation, will never result in an estimated ex-
ecution time that is less than the actual WCET.
If the flow analysis can not find a single value
for the number of iterations of a loop, but rather
an interval, then the upper limit of the inter-
val can be use as an safe approximation. One
way to do that is to give all the values as a set.
Another way is to use a single interval includ-
ing the lowest possible and the highest possible
number of iterations. The latter may result in
an overestimated calculated execution time, but
it is still safe. We want the overestimation to be
as small as possible, but sometimes we need to
make compromises in order to make the analysis
more efficient.

The low level analysis mainly concerns effects
on the execution time from memory hierarchies
and pipelines.

With the flow constraints, pipeline and cache
effects available, the actual WCET can be cal-
culated by use of the object code and a timing
model for the processor in use [9]. The tim-
ing model can be more or less complex, e.g., if
desired it can include effects of pipelining and
caches.

This work will focus on the flow analysis part.

2



foo(x):

A: loop(i=1..100)

B: if (x > 5) then

C: x = x*2

else

D: x = x+2

end

E: if (x < 0) then

F: b[i] = a[i];

end

G: bar (i)

end loop

Figure 1: Infeasible path. The path A, B, C, E,
F, G can never be executed.

2.1 Flow analysis in WCET

A major issue for the flow analysis is to identify
loops and find the upper loop bounds. In order
to do this we need a suitable representation of
the program code. We use a control flow graph,
CFG, for that purpose.

int fac(int n)

{

int x;

x = 1;

do {

x *= n;

n--;

} while (n > 1);

return x;

}

Figure 2: A simple loop.

2.1.1 Using the control flow graph to

identify loops

In Figure 2 you can see a piece of C-code that
constitutes a loop. Figure 3 shows the corre-
sponding CFG. If there exist a single node which
will always be executed before all other nodes
in the loop then this node is called the loop
header, or entry node (node number 2 in Fig-
ure 2), and the loop is said to be a structured
loop, natural loop or reducible loop. A loop with
more than one possibility to enter the loop body
is named unstructured loop or irreducible loop.
Unstructured loops should not be confused with
unstructured coding in general. Using control
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Figure 3: A CFG for a simple loop.

transfer statements like the goto statement in
C will in most cases not introduce paths in the
CFG that differs from those originating from
structured constructs in a high level language.
An unstructured loop can informally be seen as
built from a structured loop with one or more
additional jump to some node that is not the
header node of the structured loop.

In general, a CFG can contain edges between
any two nodes. There can be nested loops, pos-
sibly with unstructured and structured loops
mixed, also possibly with multiple exits. To
identify distinct loops is therefore a non-trivial
task.

Unstructured loops may be harmful for some
other parts of the flow analysis [33] as well as
for the actual calculation parts.

2.1.2 Context sensitive flow analysis

The upper loop bound, i.e. the upper limit on
the possible number of iterations, is necessary
to be able to calculate the WCET. A function
is usually called with different actual parameter
values on different call sites. As a consequence
a loop in a function may iterate a different num-
ber of times, depending on in which context the
enclosing function is called.

To be sure that no underestimation of the
WCET will be done, we may give a flow fact
that is the union of iterations at the various call
sites. Anther possibility is to make the analysis
context sensitive. This means that we specify
flow constraints individually for different con-
texts. This requires the recipients of the flow
constraints (i.e. the low level analysis as well
as the WCET calculation part) to be able to
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handle context sensitive flow constraints.
A context sensitive analysis will take into ac-

count the certain conditions of a context when
making the analysis. If the analysis is made in a
context sensitive manner, it will produce a more
precise result to the expense of consuming more
resources in terms of computation power and
memory. There may be different levels of con-
text sensitivity.

2.1.3 Loop dependencies

A loop that is enclosed within another loop, ei-
ther directly or indirectly because of a function
call, may have different loop bounds in differ-
ent iterations of the outer loop. In Figure 4.
The inner loop will iterate a different number
of times because of its dependency on the outer
loop counter. But also the outer loop may iter-
ate different number of times when the function
bar is called in different contexts.

void bar(int e)

{

int i, j;

for (i=0; i<e; i++) {

j = i;

while (j > 0) {

baz();

j--;

}

}

}

Figure 4: Context dependent loops.

2.1.4 Multiple loop exits

Some loops have multiple exits like in Figure 5.
The presence of multiple exits is not always ob-
vious on the source level. In the loop in Figure
6 there may be multiple exits, since the com-
piler will probably translate the boolean binary
operator to two different branches.

The presence of multiple exits makes it more
complex to find the loop bounds.

2.1.5 Automatic flow analysis

The problem of finding infeasible paths and
loop bounds will highly benefit from informa-
tion from the programmer about this informa-
tion, so called manual annotations. These anno-
tations can be given in a number of ways, e.g., as

extern int foo;

for (i=0,j=1; i<100; i++, j+=3) {

if (j > foo) {

break;

}

}

Figure 5: A loop with multiple exits.

extern int foo;

i = 0;

while (i < 100 && i < foo) {

i++;

}

Figure 6: A loop with implicit multiple exits.

an extension of the programming language or in
separate file. The need for manual annotations
poses several problems:

• It is a tedious work for the programmer.

• Mistakes are easily done.

• An optimizing compiler may reorganize the
code, like moving code into or out from
loops, unrolling loops etc, hence introduc-
ing changes in the CFG. A loop that is an-
notated in the source code maybe does not
even exist after the compilation process is
finished.

Therefore many researchers aim to develop
strategies to find the flow constraints automati-
cally. A fully automatic analysis means that the
programmer does not need to supply any anno-
tations that describe the program flow, only the
code as such is needed. Optionally an automatic
analysis can demand the programmer to supply
specific flow constraints in case it fails to cal-
culate this. If the automatic analysis e.g., fails
to bound a certain loop automatically, it can
prompt the programmer for the bounds of that
loop.

2.1.6 The code representation to ana-

lyze

The flow analysis can be performed on either
object code, source code or some intermediate
representation of the program.

Using source code has the draw-back that
some cooperation with a compiler is needed,
hence there will be a binding.
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Using object code one may get into problems
when building the CFG. One reason can be that
there are branch instructions that hold the tar-
get address in a variable or register. The prob-
lem in such a case is that in order to build the
CFG, a value range analysis is needed (which is
a kind of flow analysis), but the flow analysis
needs the CFG. Another effect of making the
analysis on the object code level is a stronger
binding between the flow analysis and the hard-
ware platform. Analysis on the object code can
in some cases perform better if it uses infor-
mation about the structure of the source code
which may be passed by the compiler.

The advantage of making the flow analysis
based on the object code is that it can be more
independent from the compiler, and all opti-
mizations have been done. The advantage with
analyzing on source code level is that the flow
analysis is not bound to the hardware architec-
ture, hence this gives a more modular design.
Also the building of the CFG is simpler, often
there is already some kind of CFG representa-
tion present in the compiler.

2.2 How to obtain flow constraints

There are three main approaches for deriving
flow constraints; symbolic execution, abstract
interpretation and syntactical analysis.

2.2.1 Symbolic execution

In symbolic execution the current program
state, like values of variables, may contain sym-
bolic expressions. Such expressions can be eval-
uated when needed or when the values of the
variables involved in the expression are known.
The process can informally be described as an
interpretation of the program. The purpose is to
use it in the flow analysis to try to find constant
values of variables in hope to find loop bounds
and infeasible paths.

2.2.2 Abstract interpretation and ab-

stract execution

A program can be analyzed using formal seman-
tics. The meaning of the program is seen as the
final state that was reached after executing the
program with a certain initial state. If concrete
semantics and concrete values are be used, then
e.g., operational semantics can be used. While

making such an analysis the number of itera-
tions of each loop can be calculated, and thus
loop bounds can be found for certain input val-
ues. However the problem we have to solve is to
find loop bounds for a set of input values. The
set of possible values can be huge. Repeating the
analysis process for all possible combinations of
input values would require far too much compu-
tational effort. This would in principle be the
same problem as using testing by simulation to
get the WCET approximation. The purpose of
abstract interpretation is to process all possible
input values in a single analysis.

Abstract interpretation can be seen as an ex-
tension the operational semantics. The value
domain is extended to include abstract values.
An abstract value can be description of possible
actual values. It can also contain other values
like undefined. The semantics of language con-
structs like operators and expressions need to be
redefined to be able to operate on the abstract
values.

The methods for the actual interpretation
may vary. Gustafsson [13] describes a method
where an abstract value is represented by a sin-
gle interval. He uses an interpretation algorithm
that is able to distinguish individual iterations
in loops. When we will use the term abstract ex-
ecution for this implementation of abstract in-
terpretation in the rest of this paper.

A major problem with abstract execution is
that the calculation efforts may be considerably
large, which may lead to too long analyzing time
for certain programs [13, 10]. To reduce the
computational requirements merges are done.
Merge here means to merge two or more abstract
states, achieved by performing the abstract ex-
ecution through different paths, to one single
state. Such a merge will be made in a safe
way, so the resulting state will always include
the worst case. An abstract state contains the
abstract values of all the program variables that
exists in the current scope.

Specific node types or edge types in the CFG
can be used as merge points [16]. A typical point
for a merge may be the last statement of a loop.
A merge at the end of a loop will merge the
state of the current iteration with the state of
the previous.

2.2.3 Syntactical analysis

In a simple loop construct like the one in Figure
7 it is quite obvious that the number of itera-
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tions is 100. The purpose of syntactical analysis
is to find loop constructs in the code that are
simple enough to be bounded using some kind
of pattern matching for common patterns. In a
loop a value may be calculated that affects the
number of iterations of some other loop. A sim-
ple case is if the iteration variable of an outer
loop is used as end value of the counter of an
inner loop, like in Figure 8. In this and some
other certain cases the inner loop can be stati-
cally bounded although the termination condi-
tion contains a variable.

int fac(void)

{

int x, n;

x = 1;

n = 100;

while (n > 1) {

x *= n;

n--;

}

return x;

}

Figure 7: A simple loop with a constant upper
limit.

for (i=0; i<100; i++) {

for (j=i; j<100; j++) {

x += j+i;

}

}

Figure 8: Nested loops where the number of it-
erations of the inner loop depends on which it-
eration of the outer loop it is run.

2.2.4 Combined with abstract execution

In [17, 15] a combination of syntactical analysis
with abstract execution is described. The point
is to benefit the best from both, see Section 3.8.3
for further discussion.

3 Related work

3.1 Loop dependencies

Healy et al. showed in [21] that it can be possi-
ble to obtain a total count of iterations for the

inner loop in cases like the one in Figure 8. Their
method is to express the number of loop iter-
ations as sums and then convert the sums to
closed form. Thus no iteration at all is needed
for bounding such loops. The method works
for, in principle, any loop nesting level. They
also showed that loops with nonunit stride (i.e.
a loop counter incremented or decremented by
some other value than 1) can be expressed as
sums, which yields in an exact loop iteration
count. The restriction is that the increment or
decrement as well as the loop limit (e.g. the ex-
pression that the loop counter is compared to)
must be a constant. They use GPAS, General-
Purpose Algebraic Simplifier, which is a part of
the tool Ctadel, to assist in their calculations.

3.2 Multiple loop exits

Because also a regular boolean expression, like
in Figure 6, implies multiple loop exits, we
should not be surprised if these are quite com-
mon. The study in [28] does also indicate this.

The Florida group, [20, 19], has shown that it-
eration counts for loops with multiple exits can
be calculated, provided that loop increments are
constant, and the loop counters are compared to
constant values in the loop termination condi-
tions. They also show algorithms to find bounds
for loops that contains unknown variables in
some of the termination conditions. They can
do this as tight as possible, i.e. without losing
any of the information that is known.

When the iteration of loops depend on some
unknown input, then the analyzer can calculate
symbolic expressions for the loop bounds, and
prompt the user for values of the unknown vari-
ables. It is more likely that the user knows the
values (or ranges) of the inputs, than of the loop
ranges. Therefore this approach is more reliable
than annotating the actual loops. The Florida
group has shown also this in detail.

The algorithm is not able to handle dependen-
cies across more than one nesting level, and it
also restricts the inner loop not to be enclosed
within a conditional branch which can not be
calculated.

3.3 Analysis of simple programs

Stappert and Altenbernd [32] developed a
method that needs no user annotations. They
calculate the WCET for each basic block as the
first step, taking in account pipeline effects. The
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result from this is used in the flow analysis. The
method works like this: Create all permutations
of paths. Sort them in descending order with
respect to execution times. Use symbolic ex-
ecution on the paths one by one to find if it
is a feasible path. As soon as a contradiction
of conditional paths indicates an infeasible path
the analysis continues with the next path. This
goes on until the first feasible path has been
found. The permutations actually do not need
to be generated, only execution times of pairs
of basic blocks needs to taken care of (the basic
blocks for then and else respectively).

They also developed a tool PTA, Program
Timing Analyzer. The flow analysis part of the
tool is integrated entirely into a compiler. The
symbolic execution uses actual values extended
with unknown, and is therefore quite similar
to abstract interpretation. PTA is limited to
programs without loops. This may seem as a
large limitation, but they claim that many tool-
generated tasks have no loops. They tested the
tool on a suit of some tasks fulfilling that con-
dition. The results show that the calculated
WCET is quite tight. The overestimations that
were noticed also include effects from imperfec-
tions in the calculation part (not only related to
the flow analysis part) see [32].

3.4 Annotations and optimiza-

tions

One disadvantage with manual annotations, as
mentioned in Section 2.1.5, is that the compiler
may reorganize the code quite much due to op-
timizations. This may be a problem even in the
case where the annotations has been derived au-
tomatically and on the source code level. This
problem is addressed by Kirner and Puschner
[24]. They suggest an annotation language and
a method to keep the flow constraints consistent
during the compilation process.

3.5 Realistic Experiments

To make benchmarks that shows the usefulness
of a certain algorithm involved in WCET, one
needs to have access to real-time programs ac-
tually used. There is a benchmark suit avail-
able at C-lab in University of Paderborn. Eng-
blom [6, 7] made a lot of interesting findings re-
garding specific properties of real-time systems,
compared to desktop programs. Also there are

some preliminary findings in [28] that show some
properties of code for real-time systems.

In a comparison between specInt95 and code
for embedded systems, Engblom showed that
the differences in programming style between
desktop applications and embedded systems are
significant. Therefore relying on desktop pro-
grams only, is not sufficient when testing tools
for embedded systems.

Another related investigation, [5, ?], showed
that it can be possible to perform a WCET cal-
culation of systems calls in a certain real-time
operating system, RTEMS. They found that the
code was quite simple; no nested loops, unstruc-
tured code or recursion were found. Some func-
tion pointers were used.

As we have seen so far, there are no stan-
dardized WCET benchmarks with code typical
for real-time systems.

3.6 Program Slicing

A program slice is a subset of a program where
the elements are statements. The slice has the
same possible values of a certain set of variables
at a certain execution point (program state-
ment) as the original program. When executing
the program slice it will have exactly the same
properties as the original program with respect
to the set of variables at the program statement
of interest.

The purpose is that it will be easier to ana-
lyze the program slice than the entire program,
since it is smaller. Program slicing were intro-
duced by Mark Weiser [34, 35]. One possible use
of program slicing in flow analysis is to remove
statements whose execution does not affect the
control flow [29].

3.7 Unstructured loops

There are some methods for identifying loops in
code potentially containing unstructured loops,
DJ graphs [31] being one.

A general method for solving problems in-
duced by unstructured loops is suggested in [27].
The main idea is to use some algorithm for iden-
tifying all kind of loops, of which the DJ graph
algorithm is one. Using a context sensitive rep-
resentation with references to the basic blocks
rather than the actual basic blocks themselves,
copies of any unstructured loop can be made,
one for each header node. In case of using the
DJ graph algorithm some of the loop copies may
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expose new loops (not recognized as a sepa-
rate loop by the DJ graph algorithm in the first
stage), since this copying method works like ’un-
messing’ a loop. This problem in may require to
apply the DJ graph algorithm recursively.

3.8 WCET tools

3.8.1 aiT

There is a commercial tool, aiT, that uses ab-
stract interpretation [1]. Their analysis builds
the CFG from executable code, using task scope.
The tool has so far focused on analyzing code
from the airplane industry. To make their analy-
sis the user (i.e., the programmer) usually needs
to provide some information, e.g. flow con-
straints. To reduce the workload for the user
they have recently developed an improved an-
notation language [11].

The tool provides some different loop analy-
sis methods. Since this is a commercial tool we
have not access to all details about the algo-
rithms used.

3.8.2 BoundT

Holsti et al. [23] has developed a commercial
tool, BoundT [2], which so far has been primar-
ily used to analyze code from the space industry.
The tool builds the CFG from object code. It
is more likely that the analysis will succeed if
there are debug information present in the ob-
ject code. This makes BoundT’s analysis, to
some extent, dependent on the compiler that
was used, despite that its input is pure binaries.

They provide a language for a user to make
annotations in a separate file. The language
makes it possible for the user to refer to e.g.
loops in an descriptive way when specifying the
number of iterations. Also variables and func-
tion invocations can be bound.

The automatic analysis is limited to counter-
based loops, i.e. loops where a single variable is
incremented with a constant value and the loop
exit condition is a constant limit.

Using BoundT under certain conditions
showed some unexpected problems, concerning
the flow analysis, [26]. One of the problems con-
cerned building the CFG from object code.

3.8.3 Prototype research tools

Ermedahl and Gustafsson [10, 13] show how ab-
stract execution can be used to calculate au-

tomatic loop bounds, eliminating the need for
the programmer to supply manual annotations.
They present a total of three different tools. The
first tool is described in [10]. This prototype
tool handles a subset of the language C. They
claim that their method is able to detect false
paths as well as calculating safe loop bounds for
nested loops. They present experimental results
for a single academic program that shows a de-
cent overestimation. In [13] the correctness of
the method is proved.

The method is used also as base for a tool
that handles a subset of Real Time Talk, RTT,
see [14]. RTT is an object oriented language for
real time systems. Gustafsson concludes that
it is possible to analyze programs of ’reason-
able size’ without manual annotations using this
tool. The result is said to be safe and tight. In-
feasible paths can be found and thus excluded
from the calculation.

In [17, 15] yet another prototype tool is de-
scribed. This time the tool works on the inter-
mediate code that is generated from a compiler
framework, that supports the full C language.
Later the same tool was integrated also with the
SUIF compiler framework [30].

Also in this tool the flow analysis uses ab-
stract execution. To reduce the computational
efforts, the abstract execution only uses a single
interval to represent an abstract value that is
not a pointer. For pointer values a set represen-
tation is used.

There are some more tools, mainly used for
research:

• The Florida group has developed a tool that
is integrated into a compiler framework. The
tool is capable of handling nested loops and
loops with multiple exits without annota-
tions.

• Vienna WCET group’s tool, [3], requires the
analyzed program to be written in wcetC, a
dialect of C that is extends C with annota-
tions for WCET flow constraints. The com-
piler part of the tool is based on gcc. There
are some restriction on the programs to be
analyzed.

• pWcet, [25], is a tool that also calculates an
execution time that might not be the worst
case, but the tool also provide the probability
for the time to be the actual WCET.

• Heptane, [22], developed at Irisa. Loops
needs to be annotated manually.

• Cinderella, [4], is a tool developed at Prince-
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ton University. It requires loop bounds to be
entered by the user.

4 Research Description

We intend to extend the currently known syn-
tactical analysis methods [20, 19, 21] to find loop
bounds. The purpose of this is to supply the
WCET calculation with needed flow informa-
tion. The syntactical analysis is not assumed to
be able to find all loop bounds, but we expect
it to reduce the computational efforts of other
analysis methods like abstract execution. The
syntactical analysis may also be able to produce
tighter bounds than other analysis methods. We
believe that it is possible that these methods to-
gether will be efficient enough to make it pos-
sible to analyze real world programs with no
other need for user interaction than program in-
put. We will compare the performance with and
without the support of syntactical analysis.

As a first move we will inspect the loop prop-
erties of a number of real time programs. The
primary purpose with this part of the thesis is
to identify which program constructs regarding
loop conditions that are essential to handle by
the syntactical analysis.

4.1 Program reduction

In order to make the syntactical analysis more
efficient, we will perform a program reduction.
We will use program slicing, described in 3.6, to
remove all assignment statements that do not
affect the control flow.

A number of program slices will be created,
each of them can be seen as a subset (state-
ments are elements in the set) to the original
program. Such a program slice will be created
for a conditional branch statement with respect
to all variables included in the branch condition.
The reduced program will be the union of all the
slices.

The removed statements are not needed in the
flow analysis, since we are only interested in loop
bounds and infeasible paths. The program re-
duction will be done in a global and context sen-
sitive manner. Pointers will be handled. Various
types of pointer analysis will be used in order to
see which is most efficient. Parts of this work
has already been done as a master thesis, [29].

We expect the program reduction to speed up
the analysis time, both for the syntactical analy-

sis and for other analysis passes like abstract ex-
ecution. The effects of using program reduction
will be studied. The analysis time will measured
for the syntactical analysis and for abstract exe-
cution with and without program reduction. We
will also measure the effects of different pointer
analysis methods to find out if the effects of a
more precise pointer analysis (which may give a
more efficient program reduction, which in turn
will reduce the workload for the analysis) will
outweigh the cost for such a pointer analysis.

We plan to present the results from these mea-
surements in a paper.

4.2 Code inspection

In order to find out which loop properties that
are common in code from real applications, we
will survey a number of real time applications.
We will use the same methods as outlined above
in the description of the syntactical analysis. We
plan to present the results from the code inspec-
tion in a paper (some preliminary results have
been obtained in [28]). Some properties that
might be useful to get quantified are listed be-
low. The amount of code that will be inspected,
will not be enough for statistical significance.
Therefor it might be valuable to do a more quali-
tative investigation concerning some of the find-
ings in the first round.

4.2.1 Program structure

The program structure can be analyzed by ex-
amining the call graph. The depth of a call
graph can give hints about how much calcu-
lation power that is needed for analyzing the
code. Extending the call graph with information
about the presence of loops will give more infor-
mation. Comparing a call graph in DAG form
with one in tree form will show to what extent
functions are reused. Calculating loop bounds
in functions called from different sites in a con-
text sensitive manner will cost more in calcula-
tion efforts, but may give better (tighter) loop
bounds. Recursive functions should be recorded
separately. These may be hard to bound syntac-
tically, but simple cases may be possible to han-
dle in case an inter-procedural analysis is per-
formed.
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4.2.2 Loop nesting

The nesting level of loops can be counted both
locally (per function) and globally (per task
or program). It is important to bound deeply
nested loops, since they will have the highest
influence on the final WCET. Also other ana-
lyzing methods (e.g., abstract execution) may
suffer from high computational load when ana-
lyzing these.

4.2.3 Loop conditions

Reducible loops have a single entry point (we
only consider reducible loops since we assume
that irreducible loops are already replaced by
their multiple reducible loops counterpart [27]).

There may be an arbitrary number of exits
from loops. Those with no exits (infinite loops)
may occur in real-time systems. We cannot
find the loop bound of such a loop syntactically.
However, although we can’t analyze them we
need to count them to conclude how large por-
tions of a program that needs to be excluded
from the analysis.

Loops that contain more than one exit branch
have been shown to be analyzable syntactically
[20], but are in general harder to calculate the
bounds of, both in terms of computational ef-
forts and implementation issues. Thus the num-
ber of loop exits is of interest as well as the num-
ber of targets of these exit branches.

For each termination condition there will be
one or more variables involved (otherwise the
loop is either equivalent to an infinite loop or
with a non-looping construct). Each such vari-
able needs to be carefully investigated. The fol-
lowing properties of the variable may be of in-
terest:

• The initial value.

• The variable update in the loop.

• The operators involved in the exit condition.

Initial values

We are mostly interested in the initial value
at the loop termination condition in which it
is used (do loops may be handled a bit differ-
ent, since the initial execution of the loop body
might affect the initial value of some variables).
The initial value can either be deduced from a
constant, or depend on a variable that is up-
dated in an outer loop or depend on an input
value to the code.

Initialization from constants. If the initial
value only depends on constants this will sim-
plify the analysis, and makes it more likely that
we can find a loop bound. The constant value
can be found as an assignment from an expres-
sion containing only operands that are constants
or that are other variables that recursively de-
pend on constants. It is of interest to record
the locations of the constants in terms of func-
tion nesting level. If all the constants are not
present in the same function as were they are
used, a more advanced syntactical analysis is
needed (e.g., a global analysis).

Initialization from variables updated in an outer

loop. There are certain kinds of nested loops
where the loop bound of the inner loop can be
calculated even if the number of iterations de-
pend on an outer loop induction variable [15].
Therefore these class of initializations are of a
certain interest. The following properties needs
to be recorded:

• The loop nesting levels between the use and
initialization. For example ”triangular loops”
can be recognized by a syntactical analysis,
and it may be possible to find loop bounds
in case there is a loop nesting level of one
between the two loops.

• The properties of the source to the initial-
ization are of interest. Gerlek et.al., [12],
makes a classification of induction variables
that may be useful as basis. The problem of
finding the bound for a loop can be expected
to vary based on these.

• Is the assignment of the initial value done
from an expression containing more than one
induction variables in outer loops? If so, it
will be a harder case to handle.

Initialization from input values. The initial
value can in some cases be deduced from some
input value. Input to a real-time system may
in general occur in various ways. One would be
that the code just use some global variable that
appears uninitialized to the analyzer (e.g., the
code reads from a labeled input port).

Different analyzable units (e.g., tasks) may
need to communicate to each other, and this
data will appear as inputs. The actual input
data can in such case be deduced to some global
entity, e.g., global variables. These variables
may occur as initialized to the analyzer.

In case of an analysis local to functions, also
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the function arguments are input.

There is a special problem in identifying in-
put values. The analyzer need to distinguish
between those global variables that are input
to the analyzed code and those that are rather
constants or induction variables in the context
of the use in a loop condition. This can nor-
mally not be done by looking at a part of the
system code in isolation. In general it can be
hard to perform an analysis on a complete sys-
tem because of the interaction of an operating
system.

In our inspection all definitions that depend
on global variables will be recorded as inputs.
When doing the syntactical analysis the user
may supply information about which are input
variables and the value of these. Optionally a
certain pass just to identify intertask communi-
cation might be developed. Finding loop bounds
if the initial values depend on input is much the
same problem as finding it for constant initial
values.

Updating of variables in the loop body

One or more of the variables in a loop termi-
nation condition must change their value in the
loop, or the loop will never terminate using that
condition. A simple form is a loop counter, i.e.
a variable whose value will contain the current
iteration number while executing the loop. Also
other forms of updates are of interest. If the
value of the variable forms a series which we can
identify, there is a good chance that we can cal-
culate the loop bound. The following properties
will be recorded:

• Is the update self-referencing, i.e. is the right
hand side an expression that includes the tar-
get of the assignment (directly or indirectly)
within the loop.

• The operator(s) applied in update(s). If only
linear updates are involved a calculation of
the loop bounds can be expected to be less
complicated.

• The other operand(s). This may be constant
(directly or indirectly) or an input dependent
variable. In both cases it will probably be
easier to find loop bounds than for induction
variable dependent initialization values.

• Do the other operand alters its value in the
loop? In case it does, it is probably harder to
find a resulting loop bound (e.g., if an incre-
ment is altered in a conditional statement).

• Is the update statement conditional? If so, it
is in general not possible to find the wanted
series.

4.2.4 Branch conditions

Branch conditions, like if-statements and
switches in C, may also be of interest to the syn-
tactical analysis. Infeasible paths can be found
if the reaching definition for the involved vari-
ables are calculated in a context sensitive man-
ner. The values of variables involved in condi-
tions therefore needs to be recorded in the same
manner as initial values of loop conditions.

4.2.5 Arrays

In case array elements are used in place for sim-
ple variables in loop termination conditions this
imposes difficulties to the syntactical analysis.
Such language elements can take many different
syntactical forms. Below are listed some that
will be recorded in the first round.

• Initial value. A variable in a loop termination
condition is an array element (or its value de-
pends on an array element), and this variable
is loop invariant. For certain sub-cases we
might be able to find loop bounds.

• Update. A variable in a loop termination con-
dition is updated using an expression con-
taining an array element (or a variable whose
value depends on an array element). The up-
dated variable is an induction variable. The
index variable might be an induction variable
in an outer loop.

• The ”sentinel problem”. There is some loop
termination condition that compares an ar-
ray element with some other value. The array
index is an induction variable in the current
loop. This category can be tricky to han-
dle. But since we know that strings as well as
sometimes pointer arrays are often traversed
this way, it is important to know the number
of occurrences of this kind. Maybe we can
calculate the loop bounds for some sub-cases.

4.2.6 Pointers

The use of pointers in loop termination condi-
tions imposes problems for the syntactical anal-
ysis. Pointers that points to a distinct vari-
able in a certain context might give us some
hope. We should distinguish these uses of point-
ers from other.
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4.3 Syntactical analysis

In loop termination conditions there will usu-
ally be at least one variable present. For each
loop there will usually be at least one variable
involved in at least one expression that changes
its value in the loop, an induction variable. In
the simple case this is a loop counter. Such vari-
ables will get initial values prior to the loop, and
change their value. Other variables involved in
termination conditions as well as induction vari-
ables, will be initialized either with constants or
will get their value from some other variable. In
the latter case we can deduce some origin value
by use-def chains.

Use-def chains well give us either some ex-
pression with only constants, in which case we
can just calculate the value of that expression.
If, instead, the initialization expression contains
on one or more variables, then these variables
are inputs to the given scope. It will depend on
the scope we use in our analysis, to which extent
we will find constant values. We plan to use a
whole program scope (or task scope, in case of
code for real-time systems), in order to obtain a
maximum number of constant initializations of
loop variables.

Assume a a function that contains a loop, and
that some input parameter is involved in the
termination condition of that loop. Such a loop
will iterate a different number of times, if the
actual value of the parameter is different at dif-
ferent call sites. A whole program analysis will
need to consider the values from all call sites to
be able to produce flow information that gives
a safe WCET. However this may lead to con-
siderable overestimations. Therefore we plan to
make the analysis context sensitive. This means
that to handle each call separately and assume
that the calculation is able to do these too.

A context sensitive analysis can be costly in
both computation as well as in memory require-
ments. To make the analysis more efficient we
will perform the analysis first in a local manner
where we, when necessary and possible, express
loop bounds as symbolic expressions depending
on input. Input in this case input means input
to the analyzed function, i.e. the parameters
and global variables that eventually are needed
to express the number of iterations.

4.3.1 Detailed description

The calculation can be done in the following
manner.

• A first pass builds the call graph for the an-
alyzed entity, which possibly, but not nec-
essarily, is the main function. This graph is
a rooted DAG where each node correspond
to a function. It requires all files to be ana-
lyzed, one by one. This pass will annotate
the functions with with references to call
sites within the function.

• In a second pass this DAG is traversed in
a bottom-up manner. In each node of the
DAG a loop tree will be built. This analysis
is local to the function, so eventual function
calls will not be expanded.

The loop tree will be traversed in a bottom-
up manner. In each function we need to in-
vestigate variables with the following prop-
erties:

– Variables that controls the loops con-
tained in the function

– Variables that maps to variables in
parametric expressions of called func-
tions.

When tracing the definition chains of these
variables backwards we will obtain their
values as expressions. Such an expression
is either possible to evaluate to a plain con-
stant or it will contain one or more vari-
ables. These variables are either formal pa-
rameters to the function or global variables.
All global variables will be handled as if
they are parameters. This means that the
list of parameters will be extended with the
necessary global variables.

This way we will get some loops for which
we know the loop bounds and some that can
only be expressed in parametric form. The
analysis will annotate the function with
both, but only the parametric ones will
need to be available for callers to the cur-
rent function. The annotation will include
a reference to the location of the loop within
the tree.

Called functions will be handled in a similar
way. We are only interested in the available
annotations of the called functions. When
we have applied the information obtained
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by the use-def analysis we can divide them
into two types: those that can be evalu-
ated to constants and those that are still
on parametric form. Both types will gen-
erate new annotations of the current func-
tion. The new annotation will either con-
tain final values or a parametric form of
the loop bounds. They will contain refer-
ences to the the precise call site within the
function as well as to the annotation of the
called function. This way only those anno-
tations that are needed will be propagated
upwards in the call graph. At the same
time we will maintain a context sensitive
information when needed.

Each annotation may have two representa-
tions in parallel of the same information. A
summation form is needed in case there will
be a dependency to some outer loop’s in-
duction variable. There can also be a closed
form of the summation. This may speed
up the in case that the function is called
from many sites and all of them can supply
constants to the variables in the paramet-
ric form. The closed form will be added on
demand to avoid the transformation being
done in case never needed.

When reaching the root of the analyzed
entity, there may still be formal parame-
ters and global variables whose values are
needed but unknown. These must be input
data to the analyzed code. The user can be
informed about which input data that are
needed, and will be able to supply these.

The user supplied program input is a pos-
sibly empty set of values, and a possibly
empty set of ranges. These values will
be used to calculate the upper and lower
bounds of all parametric loop information
that was propagated up to the root node.

• A third pass will calculate flow constraints
from the information obtained during the
first pass. This pass will be run in a top-
down manner, to be able to bring necessary
scope information down to the location of
the flow fact. Engblom et al has designed
a language, see [8], that may be useful to
express context sensitive flow constraints.

Annotations containing final information
about the final loop bounds will have the form

<{v1, v2, ...vn}, {I1, I2, ... In}>

where vi are constant values and Ii are intervals
with a constant range.

Annotations for parametric expressions will
have the form

<es, ec>

where ec is optional.
es has the form

es -> sarith

sarith -> sarith op sarith | variable

| constant | floor(arith)

| sum(arith, arith, sarith)

op -> + | - | * | /

ec has the form

ec -> arith

arith ->arith op arith | variable

| constant

op -> + | - | * | /

4.4 The effects of syntactical anal-

ysis

We believe that a syntactical analysis as de-
scribed above can speed up the analysis consid-
erably for certain programs. We aim to do mea-
surements where we perform an analysis based
on abstract execution. We will compare the
effects of adding syntactical analysis as a pre-
processing step. A context sensitive syntacti-
cal analysis will require more computations and
memory than with an insensitive analysis. Since
we beleave that the the result will be more pre-
cise. Compared to the abstract execution it will
still be fast. We will put efforts in finding use-
ful benchmarks for the comparisions, and write
a paper to make our results available for other
researchers.

In some cases it may be possible to calculate
final values of all the flow controlling variables
that are updated in the loop body. If we can do
that, the loop will be annotated with these val-
ues. Other analyzes may benefit these in order
to speed up their calculation time. The effect of
calculating final values of such variables will be
measured by comparing analysis with and with-
out this syntactical analysis. The method can
also be validated by comparing the requirements
that we have on the source code with those of
other current research methods.

We plan to present the results from these mea-
surements in a paper.
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4.5 Written papers

• Elimination of Unstructured Loops in Flow
Analysis, [27]

• Inspection of Industrial Code for Syntactical
Loop Analysis, [28]

• A Tool for Automatic Flow Analysis of C-
programs for WCET Calculation, [18]

• A Prototype Tool for Flow Analysis of C Pro-
grams, [17]

4.6 Planned papers

• Speed up of WCET analysis by program re-
duction, EMSOFT or RTCSA

• Loop properties of industrial real-time pro-
grams, submitted during spring 2006

• Speed up of WCET calculation by syntactical
analysis, submitted during spring 2006

4.7 Courses

• Program Language Semantics, 5p

• Processoriented programming, 5p

• Logic Programming, 5p

• Research Methodology, 5p

• Algorithm Analysis, 5p

• Functional Programming, 5p (not finished)

• Program Analysis, 5p (not started)

4.8 Project plan

Spring 2005

• Course in program analysis.

• Extending the program reduction with
pointer analysis, and making measurements
as described above.

Spring 2006

• Make code inspection of loop properties as
described above. This includes implementa-
tions.

• Implement syntactical analysis as described
above and make measurements. This in-
cludes implementations, but it should be pos-

sible to re-use quite a lot from the code in-
spection.

• Writing the licentiate thesis, this will be
based on a the following papers:

• Elimination of Unstructured Loops in
Flow Analysis, [27]. One possibility is to
improve this paper a bit and refere to it as
a technical report.

• Speed up of WCET analysis by program
reduction, possibly on RTCSA, or other
conference during spring 2005

• Loop properties of industrial real-time
programs, submitted during spring 2006

• Speed up of WCET calculation by syn-
tactical analysis, submitted during spring
2006
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