
Requirements Similarity and Retrieval

Muhammad Abbas1,2 Q, Sarmad Bashir1,2, Mehrdad Saadatmand1, Eduard
Paul Enoiu2, and Daniel Sundmark2

1 RISE Research Institutes of Sweden, Väster̊as, Sweden, {first.last}@ri.se
2 Mälardalen University, Väster̊as, Sweden, {first.middle.last}@mdu.se

Abstract. Requirement Engineering (RE) is crucial for identifying, an-
alyzing, and documenting stakeholders’ needs and constraints for de-
veloping software systems. In most safety-critical domains, maintaining
requirements and their links to other artifacts is also often required
by regulatory bodies. Furthermore, in such contexts, requirements for
new products often share similarities with previous existing projects per-
formed by the company. Therefore, similar requirements can be retrieved
to facilitate the feasibility analysis of new projects. In addition, when a
new customer requests a new product, retrieval of similar requirements
can enable requirements-driven software reuse and avoid redundant de-
velopment efforts. Manually retrieving similar requirements for reuse is
typically dependent on the engineer’s experience and is not scalable, as
the set could be quite large. In this regard, applying Natural Language
Processing (NLP) techniques for automated similarity computation and
retrieval ensures the independence of the process from the human expe-
rience and makes the process scalable. This chapter introduces linguis-
tic similarity and several NLP-based similarity computation techniques
that leverage linguistic features for similarity computation. Specifically,
we cover techniques for computing similarity ranging from lexical to
state-of-the-art deep neural network-based methods. We demonstrate
their application in two example cases: a) requirements reuse and b)
requirements-driven software retrieval. The practical guidance and ex-
ample cases presented in the chapter can help practitioners apply the
concepts to improve their processes where similarity computation is rel-
evant.

Keywords: Requirements similarity · Requirements retrieval · Re-
quirements reuse · Software reuse · NLP

1 Introduction

Requirements Engineering (RE) is a crucial system/software engineering activ-
ity for eliciting and documenting stakeholder needs [37]. Enabling a smooth
execution of the RE activities requires maintaining and managing requirements.
Furthermore, most safety standards require demonstrating the traceability of
requirements across various abstraction levels; therefore, the need to manage
requirements is even more prevalent when engineering safety-critical systems.

This preprint will appear as a chapter in a book provisionally titled "Natural Language Processing for Requirements Engineering", to be published by Springer

2 M. Abbas et al.

Various RE activities, such as requirements retrieval and traceability link recov-
ery, require finding similar requirements for reuse or impact analysis. Finding
similar requirements manually is time-consuming and could be subject to fatigue
effect [12].

In most settings, the requirements are predominantly expressed in a natural
language. Therefore, linguistic similarity serves as a bridge to connect multi-
ple aspects of natural language requirements, ranging from lexical attributes,
syntactic structures, and semantic relations. These linguistic characteristics are
architectural keystones for various NLP-based RE applications. From text clas-
sification to summarization and information retrieval to clustering, linguistic
similarity enables understanding language nuances and interpreting meaningful
insights from vast amounts of textual data. For instance, search engines rely on
linguistic similarity measures to retrieve relevant documents by comparing their
linguistic characteristics to a user query. Typically, intermediate representations
of the input text are used to compute similarity to perform various tasks. Dif-
ferent similarity measures that quantify the degrees of closeness between two
elements are used for similarity computation. In this context, multiple metrics
such as cosine [42], Jaccard similarity index [52], and edit distance [44] can be
employed to quantify the similarity among multiple textual fragments, e.g., re-
quirements. In Section 2.3, we discuss them in detail with examples.

In the domain of RE, the similarity among requirements at a lexical or se-
mantic level is a crucial enabler for supporting various RE activities, leveraging
NLP and machine learning (ML) techniques. In particular, classification and
content-based recommender systems are often exploited, such as identifying and
allocating requirements [10,9,4] and recommending the reuse of existing require-
ments [1,3]. Moreover, requirements similarity is also exploited in other RE tasks,
such as trace link recovery [32,49] for ensuring continuity, identification of equiv-
alent requirements [29], and change impact analysis [15,6]. In this regard, Ilyas et
al. [36] propose a framework SimReq to support design and code reusability based
on similarity metrics such as Dice, Jaccard, and Cosine coefficient. In another
work, Dag et al. [22] propose the ReqSimile tool based on recommender sys-
tems to retrieve previous requirements from a large industrial dataset for reuse.
The tool is based on the Term Frequency-Inverse Document Frequency (TFIDF)
model and cosine similarity measure [39]. Such example use cases benefit from
applying NLP techniques and similarity computation methods to augment the
RE process.

With the benefit of retrospective insights, this chapter aims to offer multi-
ple approaches to address the problem of requirements similarity and retrieval,
leveraging various NLP techniques. The chapter introduces similarity from the
lens of linguistics and presents various approaches used to represent requirements
for similarity computation in Section 2. In Section 3, we demonstrated the ap-
plicability of various requirements similarity pipelines in two relevant RE tasks
inspired from real-word cases: a) requirements reuse and b) requirements-driven
software reuse. Section 3 also presents the procedure for applying the similar-
ity computation pipelines to perform the two considered tasks. In Section 4,

Requirements Similarity and Retrieval 3

we presents and discusses the obtained results. Finally, Section 5 concludes the
chapter with future directions.

2 Linguistic Similarity

The scientific study of a language referred to as linguistics, is a complex and mul-
tifaceted field of study [33]. Conventionally, the linguistic field analyzes multiple
components of the natural language, such as phonology, syntax, morphology,
semantics, and pragmatics. In this context, phonology studies speech structure
based on speech unit patterns and pronunciation rules to identify the words in a
language [17]. Syntax and morphology focus on the arrangement and structure
of meaningful linguistic elements, including words and morphemes. In particular,
morphology studies morphemes that are the smallest building blocks and provide
meaningful constituents for a linguistic expression [34]. It includes base words,
such as hat and swim, alongside affixes, like “inter” in the term interface, the
plural “s” or “es”, and the past tense “ed”. Furthermore, syntax refers to how
individual words and their basic meaningful units—morphemes— are combined
to form larger units, such as sentences and phrases, based on grammar rules
and constraints [55]. The enrichment of a language makes it more challenging
to comprehend the actual meaning conveyed, even with employed grammatical
structures. Consequently, the sub-field semantics is concerned with understand-
ing the underlying meaning within sentences or phrases [23]. In the context of
speech, communicating sentences or phrases not only depends on structural and
linguistic knowledge but also on the context of the utterance. The study of how
sentences have been used in speech to convey their intended meaning is called
pragmatics [13].

In linguistics, the notion of linguistic similarity serves as an essential cat-
alyst to comprehend various facets of a natural language. As aforementioned,
the natural language exhibits different linguistic dimensions incorporating a di-
verse set of structures, rules, and expressions. In essence, linguistic similarity
analyzes the relationships and patterns within this set. It delves deeper into the
attributes of a language to comprehend shared features, create associations, and
indicate variations. Usually, similarity is quantified in textual data at a lexical
or semantic level. They serve as a fundamental to multiple NLP-related appli-
cations [53]. Multiple methods are employed to learn the lexical characteristics,
focusing on surface-level attributes of terms. A comparison between two text
fragments shows lexical similarity when they share considerable common words
or phrases. However, lexical methods do not attribute to the variability of word
meanings or that different words can represent a similar concept. Other similarity
methods delve deeper into natural language semantics to address this drawback.
For example, given two requirements: “The user should be able to login into the
system” and “System must allow the user to login” that are semantically related
as they represent the same underlying concept: enable user login. Semantic sim-
ilarity methods determine the ranking or degree of semantic relatedness among
multiple data points [20]. Therefore, semantic approaches can capture syntac-

4 M. Abbas et al.

tically different but semantically similar inputs like the example requirements
described above.

The process of computing linguistic similarity for various NLP tasks, includ-
ing requirements retrieval and reuse, can be categorized into the following steps:
data pre-processing, data representation, similarity computation methods, and
performance evaluation of the developed NLP pipelines. We discuss these steps
below.

2.1 Data Pre-processing

To perform NLP-related tasks, it is essential to establish or learn a language
model that provides a statistical representation of words within vector space [11].
Such language models consider words as real-valued vectors, later employed as
features for NLP-related similarity tasks. Therefore, a preliminary crucial step is
pre-processing the natural language-related artifacts in a structured manner for
later analysis. This is because the raw textual data, such as textual requirements,
are often unstructured and contain noisy elements like punctuation, special char-
acters, and inconsistent capitalization. In many cases, commonly employed pre-
processing techniques include the removal of stop words, also known as common
words that have minimal semantic value to the analysis, such as “the”, “is”, etc,
and the lemmatization technique that performs the morphological analysis and
reverts the words to their base or dictionary form. In addition, part-of-speech
(POS) tagging, word segmentation, and tokenization are other techniques that
could be applied to NL requirements to achieve a desired format [30,8,43].

The structured format required from the pre-processing step depends on the
subsequent data representation technique for analysis of the NLP task at hand.
Particularly, the selection suite of pre-processing techniques depends on the unit
of analysis, which could comprise words, sentences, phrases, and paragraphs.
Based on the unit under analysis, the features are represented in a vector space,
describing the unit’s characteristics.

2.2 Data Representation

A foundational aspect of enabling similarity computation for multiple NLP
tasks is data representation in a format that ML algorithms can process and
comprehend. In this regard, the data is often represented as “features” in a
multi-dimensional vector space, enabling semantic and syntactic interpretation
of the data [38]. For example, lexical approaches often use statistical measures
to extract a representation vector from NL requirements. On the other hand,
learning-based approaches such as word embeddings use neural networks to learn
a “language model” from the corpus [43]. Such language representation tech-
niques capture nuances beyond the lexical level and are classified as “semantic”
approaches. First, we discuss some classical representation methods, followed
by widely adopted techniques for different NLP-related requirements similarity
tasks.

Requirements Similarity and Retrieval 5

Categorical Representation. Such representation methods are considered
straightforward because of their direct approach to transforming the textual
data into vector formats using binary indicators “0” or “1”. The two common
techniques are one-hot encoding and Bag-of-Words (BoW) models. Both are
briefly discussed below.
One hot encoding is a traditional method of encoding words as spare binary
vectors, where the dimension of the vector is the same as the vocabulary size.
The resultant vectors are binary, meaning that each word vector comprises zeros
and ones, where zero represent the absence and one represent the presence of a
word in vocabulary. The one-hot encoding method does not capture the context
or semantics between words of a text fragment.
Bag of Words (BoW) is an extension of one hot-encoding, which represents the
words in a sentence as a collection and maintains the frequency of each word [57].
However, the BoW technique disregards the sequence of the words, grammar,
and their semantic relationship. For example, consider the following two re-
quirements: R1 = “The system shall encrypt data.” and R2 = “The system must
secure user data.”. Utilizing a BoW model with the vocabulary of {the, system,
shall, encrypt, data, must, secure, user}, the vector representations could be
as follows: V1 = [1,1,1,1,1,0,0,0] and V2 = [1,1,0,0,1,1,1,1], where the length
of each individual requirement vector is equal to the vocabulary size, with one
position in the vector to score each word. As a result, the vectors may become
sparse because of the increased vocabulary size and possible large number of
“0s”, maintaining no order of words in the requirements.

Weighted Representation. The weighted representation techniques capture
more information than simple binary or count-based representations, like one-
hot encoding and BoWs models, which assign equal weightage to each word.
Weighted representation models allocate different importance to words based on
specific defined criteria. A commonly used weighted word representation tech-
nique is discussed below.
Term Frequency-Inverse Document Frequency (TFIDF): A corpus-based ap-
proach that evaluates how relevant a word is in a document compared to the
collection of documents [5]. The TFIDF technique operates in two parts: TF
measures the occurrence of a word in a single document, which can be referred
to as a text fragment or requirement. As a single word can appear multiple times
in large requirements compared to smaller ones, the TF of a word is computed by
dividing it by the total words in a requirement. For each word w in requirement
r :

TF (w, r) = Number of times w appears in r

Total number of w in r

The second part of the technique is IDF, which reduces the effect of common
words such as “the”, “and” etc. IDF values the rarity of the words in a corpus
and assigns more weight to words that occur less frequently across the pool of
documents. IDF is calculated across the entire corpus, therefore, for a given word

6 M. Abbas et al.

w and a corpus with N requirements:

IDF (w) = log
(

N

Number of requirements containing w

)
Given that, the TFIDF score for each word w in every requirement r is the
product of TF and IDF:

TFIDF (w, r) = TF(w, r) × IDF(w)

The TFIDF algorithm considers the lexical aspects of the input requirements
and derives the term matrix. Based on the feature matrix, feature vectors for
individual requirements can be extracted. It is important to highlight that the
TFIDF approach can not capture words’ semantics and syntactical information
but rather is only weighting the terms.

Distributed Representation. The conventional feature learning techniques,
such as categorical and weighted, do not capture the semantics and syntactic
meaning between the words and encounter issues with the high dimensionality
of vector space. This challenge prompted researchers to explore distributed word
representations in a lower-dimensional space. The distributed representation of
words, commonly known as word embeddings, can capture the global context and
semantic relationships between terms of a text fragment [51]. Such representation
of words in a vector space captures linguistic regularities and patterns that have
demonstrated exceptional performance in NLP tasks. The fundamental concept
behind distributed representations is that words with similar meanings must ap-
pear closer to each other in vector space. For instance, a well-known example
of this is deriving a resultant vector by computing vec(“king”) - vec(“man”) +
vec(“woman”), where the closest vector typically corresponds to vec(“queen”)
among all the other vectors in an embedding space [41]. Below, we discuss sem-
inal distributed word representation techniques.

Continuous Bag of Words (CBOW) language model aims to predict the tar-
get word vector based on its context that constitutes preceding and proceeding
words. The CBOW architecture consists of a shallow feed-forward natural net-
work consisting of three layers. The first layer consists of the context words that
result in an average word vector of fixed length, regardless of the context size,
and is projected to the middle hidden layer. Finally, the last layer correlates the
output and improves the representation based on the backpropagation of the
error to predict the middle word based on its context words.
Skip-Gram (SG) model for representing words as feature vectors are opposite
in approach to CBOW but similar in the architecture. The SG language model
estimates the context words given the current word as input. The first input
layer represents the current word and the second projection layer for predicting
a range of context words. This range is defined as the window size representing
the words to be considered for prediction. The window slides across the given
input sentence to calculate the likelihood of context words given a specific target

Requirements Similarity and Retrieval 7

word [40].

The CBOW and SG are Word2Vec models that capture the semantic relation-
ship between words but struggle to comprehend the polysemy—same word with
multiple meanings—of words. For example, unless specifically trained as a single
vector, both CBOW and SG models treat words like “Windows 11” as distinct
vectors “Windows” and “11”, which results in only taking into account the local
context of the words. As a result, this will lead to less accurate predictions and
poor performance on NLP tasks. To address such issues, the researchers proposed
two enhanced distributed representation algorithms, i.e., GloVe and FastText,
which are commonly used in multiple NLP tasks. Below, we discuss them briefly.

GloVe language model is based on unsupervised learning to capture the global
statistical information of words. It is designed to combine global matrix factor-
ization and local context window-based methods to leverage the best of both
approaches in creating word embeddings [45]. GloVe creates a co-occurrence
matrix consisting of statistics of words, where each element Xij

represents how
often word i appears in the context of the word j in an appropriate context
window. This is followed by the factorization to get the word vectors. GloVe
pre-trained embeddings3 are available in different dimensions, which are trained
on huge amounts of the corpus.
FastText (FT) is an extension of the SG language model that enriches the dense
word vectors with sub-word information. FT learns the structural information
of words to provide efficient word representation [14]. It treats each word as
a composition of n-grams, capturing the morphology of words and generating
embeddings for those words not seen during training, commonly referred to as
out-of-vocabulary (OOV) words. For example, given the word “system” and
window size of 3, FT model represents the word as <sy, sys, yst, ste, tem, em>
character n-grams, including special boundary symbols. In this way, the FT
model can better capture the internal structure of words and understand both
suffixes and prefixes. In addition, FT treats each word as another feature, and
the final representation of the word is the sum of its n-grams vectors and word
vectors. This ensures that both the morphological and semantic properties of
words are captured. FT library4 provides word representation models for dif-
ferent languages and is widely used in NLP-related similarity and classification
tasks.

Contextual Representation. While contextual embedding models fall within
the scope of distributed representation, they are discussed separately because,
unlike methods such as FastText and GloVe that produce static word vectors,
the models based on deep learning and attention mechanism yield word repre-
sentation, which vary depending on surrounding context or the specific usage
of the word. Context-aware embedding methods create vectors that more ef-

3 https://nlp.stanford.edu/projects/glove/
4 https://fasttext.cc/

https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/

8 M. Abbas et al.

fectively capture a wide range of linguistic features, including polysemy and
complex syntax. Below, we discuss the most seminal of the context-aware em-
bedding techniques.
Bidirectional Encoder Representations from Transformers (BERT) is a pre-t-
rained transformer network based on encoder architecture, which considers po-
sitional and contextual information of words to capture semantics better. The
pertaining objective of BERT is masked language modeling and next-sentence
prediction. BERT is trained on BooksCorpus and the English Wikipedia with
2,500M words. It achieved state-of-the-art results in multiple NLP downstream
tasks such as question-answering and sentence classification. However, a signif-
icant drawback of the BERT network is that it does not compute independent
sentence-level embeddings. Researchers have adopted another approach to over-
come this limitation: providing an input sentence to the BERT network and
obtaining a fixed-sized sentence-level vector. This can be achieved by averaging
the outputs—similar to averaging word embeddings—or using the output of a
special [CLS] token. The [CLS] stands for classification token, which is added
at the start of the input sentence, and its final hidden state is often used as a
sentence-level representation for classification tasks [21].
Sentence-BERT(SBERT) is a variant of BERT, which directly generates sentence-
level embeddings from the network. The SBERT’s architecture is based on the
siamese network, which is fine-tuned to ensure semantically similar sentences are
closer together in the embedding space [48]. A mean-pooling operation is added
to the network to get fixed-size sentence embeddings. SBERT is trained on Stand-
ford Natural Language Inference (SNLI) [16] and Multi-Genre SLI [56] datasets,
which consist of one million sentences combined with the labels neutral, contra-
diction and entailment. The ability of SBERT to generate meaningful sentence
embeddings makes it well-suited for various NLP tasks such as sentence-level
similarity and information retrieval. SBERT has shown state-of-the-art perfor-
mance compared to the other sentence embedding models when tested on se-
mantic textual similarity datasets, i.e., STS benchmark and SemEval STS tasks
2012-2016.
Universal Sentence Encoder (USE) is based on Deep Averaging Network (DAN)
architecture to represent the text as vectors and capture both the semantic and
contextual meaning. It has been trained on large and diverse datasets, which
include different sources on the web, including books, articles, and discussion
forums [19]. USE encodes sentences or phrases and is widely used for text clas-
sification and semantic similarity tasks.

Requirements Similarity and Retrieval 9

 Takeaway: Data Representation

Representing data as feature vectors is essential for NLP tasks involving
similarity computation. Contextual embedding techniques provide con-
siderable advantages for tasks where linguistic context plays an impor-
tant role. However, the selection of embedding techniques depends on the
trade-off between linguistic representation and computational efficiency.
Moreover, it is also important to evaluate simpler static embedding tech-
niques that may suffice for projects with lower resources and can also be
considered as baselines for comparison.

2.3 Similarity Measures

In the context of textual requirements, similarity refers to the degree to which
two or more entities exhibit proximity in specific characteristics. Characterizing
similarity measures for different RE tasks depends on how the data is repre-
sented as features. Therefore, various similarity metrics are available and can
be applied to quantify the degree of closeness at the syntactic or semantic level.
This chapter only uses the cosine similarity metric in its pipelines. Nevertheless,
for the readers, we provide a brief overview and comparison of some of the most
seminal similarity metrics below.

– Dice is a non-parametric similarity measure used to compare the overlap be-
tween two sets of vectors. The Dice metric is particularly useful when com-
paring sets with significantly different sizes. It normalizes for vector lengths
by dividing the sum of non-zero entries and filtering out empty elements that
do not contribute to understanding the similarity between two sets [25].

– Edit distance is a class of similarity metrics based on the dissimilarity be-
tween input data points. Edit distance-based metrics could be applied to
raw text data points and work based on quantifying the number of edits
required to make the two inputs similar [24]. A widely used metric based on
edit distance within software engineering is Levenshtein distance [44]. It is
often used for text similarity and spell-checking tasks.

– Jaccard Similarity Index (JSI) can work both on the syntactic level and
with representation vectors. However, unlike edit distance, JSI is based on
the ratio of common terms over their union. JSI is commonly used in docu-
ment clustering and information retrieval tasks for measuring the similarity
between given data elements [52].

– Euclidean distance is a metric based on quantifying a straight-line distance
between two data points in multi-dimensional feature space. It is often used
for tasks like dimensionality reduction [27] and recommender systems to
measure the distance between items and users to identify similar items for
personalized recommendations [7].

– Cosine similarity metric is a widely used distributional measure among mul-
tiple NLP applications [42]. It calculates the cosine angle formed between

10 M. Abbas et al.

Table 1: Comparison of different similarity computation metrics
Metric Range Pros Cons

Dice [0, 1] 1. Effective for binary and
sparse datasets.

2. Emphasize the relative impor-
tance of shared data items.

1. Less effective for continuous
or non-binary data.

2. Sensitive to duplicate ele-
ments.

Edit
distance

[0, 1] 1. Effective for comparing two
sets where the order of ele-
ments is essential.

2. Offer a granularity measure of
similarity.

1. Less effective for comparing
numerical vectors.

2. Ignore semantics between
data items.

JSI [0, 1] 1. Effective for sparse data.
2. Focuses on data items overlap

ratio.

1. Sensitive to the size of data
items.

2. Ignores the order of data
items.

Euclidean
distance

[0, ∞] 1. Captures both magnitude and
direction differences between
vectors.

2. Suitable where each sentence
vector dimension equally af-
fects the distance.

1. Sensitive to high dimen-
sional vectors.

2. Can be influenced by out-
liers in high-dimensional
vector space.

Cosine
Similarity

[-1, 1] 1. Invariant to the magnitude of
vectors.

2. Less sensitive to individual
outliers.

3. Suitable for high-dimensional
vectors.

1. Do not capture differences
in magnitude.

2. Assumes all dimensions are
independent.

two vectors in multi-dimensional feature space and does not depend on their
magnitude. The similarity score between two non-zero vectors ranges from -1
to 1, with -1 representing opposite vectors, 0 representing no similarity (or-
thogonal vectors), and 1 indicating perfect similarity (proportional vectors).
In the case of non-negative vectors, the cosine similarity ranges between 0 to

Requirements Similarity and Retrieval 11

1. Notably, the efficacy of similarity computed through cosine relies on the
employed language model for measuring feature vectors.

Table 1 compares the above-mentioned similarity metrics. The defined ranges
are generic and can vary depending on the data types and normalization tech-
niques.

Read and execute Jupyter Notebook to explore different similarity
metrics on an example.

2.4 Performance Measures for Evaluation

In the context of RE, particularly for requirements similarity and retrieval tasks,
evaluating NLP pipelines involves analyzing specific datasets comprising nu-
merous requirement artifacts. Each NLP approach could recommend multiple
requirement candidates based on the similarity computation techniques. There-
fore, it is important to determine the effectiveness of NLP pipelines indicating
superior performance. This could be achieved by adopting several metrics based
on the problem characterization. We provide a brief overview below.

Filtering: For the task of filtering/retrieving requirements, especially in the sce-
nario of requirements reuse, NLP pipelines are often evaluated on precision,
recall, and F1 score metrics. This is because such performance measures provide
a balanced view of the developed approach’s effectiveness in identifying relevant
requirements [28]. Precision calculates the ratio of correctly identified require-
ments to the total number of requirements flagged as relevant, whereas Recall
evaluates the ratio of correctly identified relevant requirements to the total set
of relevant requirements F1 score is the harmonic mean of precision and recall
metric, which is useful to find a trade-off between retrieving maximum relevant
requirements—achieving high recall—while ensuring the relevance of retrieved
requirements—maintaining high precision—in NLP pipelines. In this chapter, we
provide a detailed analysis of the requirement reuse pipelines based on precision,
recall, and F1 score.

In scenarios like retrieving software for reuse through similar requirements
and assessing the performance of the NLP pipeline in light of human judg-
ment, evaluating the significance of their interrelationship is critical. In this
regard, correlation methods like Pearson and Spearman’s rank coefficient can
facilitate quantitative similarity analysis in refining and evaluating the retrieval
process [59]. Pearson correlation quantifies the linear relationship between the
ranks of retrieved items and ground truth ranks, while Spearman correlation
assesses the monotonic relation between the ranked order of retrieved items and
their ground truth, regardless of exact values. In this chapter, we demonstrate
the use of correlation coefficients on multiple datasets for different cases, with
further details available in the upcoming section.

https://github.com/a66as/ReqSim/blob/main/Notebooks/Similarity_Computation_Measures_Examples.ipynb

12 M. Abbas et al.

Ranking. After filtering the requirements, the volume of potential requirement
pairs could be significantly large; therefore, it is important to prioritize or rank
the requirements based on their equivalence. In this regard, Lag metric can quan-
tify the effectiveness of ranking requirements in NLP-based retrieval pipelines. In
a nutshell, the Lag metric calculates, on average, the quantity of non-equivalent
requirement pairs ranked higher in similarity than the true equivalent pairs [29].
A lower Lag value indicates the higher effectiveness of a retrieval pipeline. This
chapter does not focus on ranking.

 Takeaway: Performance Measures for Evaluation

Different metrics serve different purposes. Therefore, selecting perfor-
mance measures for evaluation depends on the NLP application. Con-
sidering the data and task characteristics to evaluate NLP approaches is
important.

3 Considered Cases and Procedure

This chapter leverages the application of similarity analysis in two RE example
cases—presented in Sub-Section 3.1—to demonstrate their relevance in the field.
These cases are performed using various similarity measuring pipelines presented
in Sub-Section 3.2. The cases are demonstrated on data collected from industry
and the Semantic Textual Similarity (STS) benchmark dataset [18], presented
in Sub-Section 3.3.

3.1 Example Cases

Companies often do not develop products from scratch but reuse existing com-
ponents from existing projects. In contexts like these, when a new project is to
be delivered to a new customer, finding reuse opportunities for existing software
based on similar requirements could save time and boost confidence in the end
products. Reusing existing software increases confidence in the end product be-
cause they have already been tested and proven in other products before [2].
In addition, it reduces the development, certification, and testing time. In such
cases, to aid reuse, new requirements are compared to requirements from exist-
ing projects to recommend reuse and avoid redundant development efforts. This
chapter demonstrates similarity-driven requirements retrieval for two cases with
the RE domain as follows.

– Case 1: Requirements reuse is focused on identifying similar requirements.
This case is focused on demonstrating the applicability of automated similar-
ity computation pipelines on a public dataset. In addition, this case demon-
strates how to evaluate the computed similarity in light of human-rated sim-

Requirements Similarity and Retrieval 13

ilarity using relevant metrics, such as precision, recall, and their harmonic
mean (F1 score).

– Case 2: Requirements-driven software retrieval for reuse goes beyond iden-
tifying similar requirements and looks into the relevance of the retrieved
software. This case demonstrates how similar requirements could be used
to retrieve software for reuse. Furthermore, this case evaluated the similar-
ity computation pipelines in light of the relevance of the retrieved software
by correlating requirements similarity to software similarity. This case is
demonstrated on both an industrial and a public dataset.

3.2 Similarity Computation Pipelines

In this chapter, we employ various pipelines comprising data representation tech-
niques for similarity computation and evaluation of RE tasks, i.e., requirements
reuse and requirements-driven software retrieval for reuse. These techniques
range from weighted representation (TFIDF) to distributed methods (GloVe,
FastText) and extend to contextual models (USE, BERT, SBERT). We consider
the following data representation approaches (discussed in Section 2) with cosine
similarity metric to construct pipelines for similarity computation:

– Lexical and Weighted: From the traditional lexical approaches, we consider
the string-level JSI and TFIDF-based pipelines

– Distributed (word2vec): We consider two seminal distributed representation
pipelines, GloVE (GLV) and FastText (FT) from the word2vec family.

– Contextual:
• Vanilla BERT : We consider pipelines that utilize representation ob-

tained from both the BERT with averaging strategy (BERT-Avg) and
BERT with sentence token embedding (BERT-CLS).

• Sentence BERT (SBERT): We considered two specific variants of the
SBERT model, namely stsb-roberta-base-v2 5 and all-MiniLM-L6-v2 6,
which we have labeled as ST-Roberta and Mini-LM, respectively. Both
variants are explicitly designed for clustering and semantic search tasks.

• Universal Sentence Encoder (USE): We also consider pipelines based on
USE, which is trained on semantic textual similarity tasks.

As pre-processing might impact the pipeline’s performance, we also consider
two pre-processing configurations of the pipelines. In particular, we consider
computing similarity using each similarity pipeline with no, basic7, and full pre-
processing8. In the rest of this chapter, pipeline variants with basic and full pre-
processing are distinguished with names starting with “b” and “p”, respectively.

5 STSb-roberta-base-v2, available online at Hugging Face
6 Mini-LM, available online at Hugging Face
7 In basic pre-processing, the text is converted to lower case, and special characters

are replaced with a blank space that is followed by lemmatization.
8 Full pre-processing uses basic pre-processing and also removes stop-words.

https://huggingface.co/sentence-transformers/stsb-roberta-base-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

14 M. Abbas et al.

Table 2: Considered datasets (Pre-processing (P.))
Dataset Rows No P. Basic P. P.

Words AVG. Words Words AVG. Words Words AVG. Words

STS Dev. + Test 2173 52646 12.11 52652 12.12 30733 7.07

Industrial Project A 112 5935 52.99 5976 53.35 3553 31.72

Project B 142 10878 76.61 11343 78.88 6805 47.92

Fig. 1: Top-10 frequently occurring words in the data

3.3 Data Collection

To demonstrate the applicability of various similarity pipelines, we considered
two example cases inspired by the current challenges of a large-scale railway com-
pany. Due to confidentiality agreements, we cannot share industrial data. There-
fore, we apply the same pipelines on the public dataset to support replication.
We consider one public dataset—the STS benchmark—from the NLP domain
that helps demonstrate both example cases. In addition, for the requirements-
driven software reuse, we also consider an industrial dataset from a larger railway
vehicle manufacturing company.

The STS benchmark dataset contains pairs of natural language phrases that
human subjects have rated from 0 (no similarity) to 5 (highly similar). As shown
in Table 2, for this chapter, we consider development (Dev.) and Test set rows
that include sentences with more than 30 characters. The considered industrial
dataset contains 250+ requirements originating from two projects (Project A
and Project B) that are already delivered to customers, as shown in Table 2.
The requirements in both projects describe a similar safety-critical sub-system
within a railway vehicle responsible for the train’s propulsion control. All the
requirements in both projects have traceability to implementation models that
are used to generate code.

Requirements Similarity and Retrieval 15

code generation,
tracing

Source Coderealized by
Requirement

Pairs

computed reqs. similarity

Similarity
Computation

Pairs Selector

Correlation software sim.

JPLag

Text-related tasks Source code-related tasks
Resulted data Data

Human-rated
similarity

Similarity
Computation

Correlation

Industrial STS

Case 2: Requirements-driven Software Retrieval

Case 1: Requirements Reuse on public data

Resultant Dataset

Ground truth
conversion

STS Dataset

Similarity-driven
retrieval

Precision (P), Recall
(R), F1 score

Fig. 2: Data collection procedure

In Table 2, we also present the total number of words in the datasets and
the average number of words per requirement/phrase in three cases, i.e., un-
processed (No P.), basic pre-processing with lemmatization (Basic P.), and
full pre-processing with stop words removal (P.). In addition, to provide some
insights into the data, Figure 1 presents the top ten most frequently occurring
words in both datasets.

Procedure, Applicability and Evaluation. We compute requirements sim-
ilarity with some seminal textual similarity computation pipelines in the two
cases. Below, we detail the procedure and evaluation metrics for each case.

Case 1: Requirements Reuse. The STS dataset comes in pairs of sentences
with human-rated similarity values (0 to 5) as a ground truth. To demonstrate
and evaluate the applicability of the similarity pipelines, we first converted the
human-rated similarity values into percentages. In addition, to allow the com-
putation of robust metrics for performance evaluation, we converted the human-
rated similarity values to either similar or non-similar, as shown in the top part
of Figure 2. In particular, with random trails, we considered a human-rated sim-
ilarity value of more than 60% to be classified as similar. This threshold value

16 M. Abbas et al.

was selected based on its effects on data imbalance between the similar and
non-similar groups of pairs. In other words, the chosen 60% threshold resulted
in a nearly perfect balanced dataset. As shown in Case 1 of Figure 2, the resul-
tant data was subjected to similarity computation with the selected pipelines.
In particular, the first set of sentences in the pairs are used as queries to retrieve
the most similar sentences from the second set of sentences based on computed
similarity. Since the ground truth of most similar sentences to query sentences is
already available and the pairs are already grouped into similar and non-similar
pairs, we can calculate relevant standard metrics for performance evaluation,
such as precision, recall, and F1 score. In this context, True Positives (TP) are
requirements correctly identified as the most similar and match the ground truth.
False Negatives (FN) are instances where requirements are similar (ground truth
= True), but not identified as the most similar by the pipeline. Similarly, False
Positives (FP) represent requirement instances misidentified as the most similar
when they are actually not the most similar ones (ground truth = False).

Read and execute Jupyter Notebook to explore different NLP
pipelines for requirements reuse.

Case 2: Requirements-driven Software Retrieval. To mimic real-world software
retrieval scenarios, we considered Project A from the industrial case as a “query”
project as it was done later in time than Project B. As shown in the bottom
left part of Figure 2, we use various similarity measures to retrieve the most
similar requirement from Project B for each requirement in Project A to create
requirement pairs and compute similarity among them. As typical in the NLP
community, the computed similarity is often evaluated in light of its association
with human-rated similarity [48]. However, in the context of requirements-driven
retrieval of software for reuse, we can use the software similarity as a ground
truth to evaluate the significance of the computed requirements similarity in a
software retrieval context.

In this chapter, we use a string tiling algorithm to compute software similarity
using JPLag [46]. JPLag was initially designed to detect plagiarism in students’
assignments and thus can detect semantically similar code. In addition, it ignores
code comments and white spaces and scans and parses the input programs to
convert them into comparable string tokens. JPLag then uses a greedy version
of the string tiling algorithm to compute the similarity between the tokens of
the source code. The similarity number is the percentage of similar tokens in the
pair of source codes.

As shown in the bottom left part of Figure 2, we trace the implementation
models and then the generated code for each requirement to compute similar-
ity among their software using JPlag. That way, the association between the
computed requirements similarity and their software similarity could be used to
evaluate the applicability of such approaches in a software retrieval context. The

https://github.com/a66as/ReqSim/blob/main/Notebooks/STS_Reuse_Pipelines.ipynb

Requirements Similarity and Retrieval 17

association is quantified using correlation analysis with a correlation coefficient
(ρ or rho) as an indicator of the association’s strength.

The correlation coefficient is a value between -1 and 1 that shows a negative
or positive association between two variables. Hinkle et al. [35] propose to inter-
pret the correlation coefficient value based on the ranges presented in Table 3.
In requirements-driven software retrieval for reuse context, a high positive cor-
relation between software and requirements similarity is favored and could be
used as a means of evaluating such pipelines in a retrieval context.

Table 3: Interpretation of Correlation coefficient (rho OR ρ) as per Hinkle et
al. [35]

Correlation coefficient Interpretation
Between 0.9 and 1.0 Very High
Between 0.7 and 0.9 High
Between 0.5 and 0.7 Moderate
Between 0.3 and 0.5 Low
Between 0.0 and 0.3 Negligible

As shown in the bottom right part of Figure 2, we also compute the simi-
larity among the pairs of phrases in the STS dataset using the same similarity
measuring pipelines. We then use the association between the computed similar-
ities and human-rated similarities as a means of evaluation. The STS dataset is
quite similar to our industrial dataset as the phrases could be used to represent
requirements, and the scaled human-rated similarity could be used to repre-
sent software similarity. Therefore, both tasks could be performed on both of
the considered datasets and will enable replication. We provide our replication
package with the source code and dataset 9 to allow replication and support
future research on the topic.

Read and execute Jupyter Notebook to explore different NLP
pipelines for similarity computation.

4 Results and Discussions

This section presents and discusses the results of the two considered example
cases where the similarity analysis is relevant. In particular, we first present and
discuss the performance of the pipeline in requirements reuse based on standard
metrics like precision, recall and F1 score. Note that for the requirements reuse,
we manipulated the STS benchmark for demonstration, and therefore, the results
may vary in other cases. We also present the software retrieval performance of
9 Replication package, https://github.com/a66as/ReqSim/

https://github.com/a66as/ReqSim/blob/main/Notebooks/STS_Similarity_Pipeline.ipynb
https://github.com/a66as/ReqSim/

18 M. Abbas et al.

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Pipelines

sc
or

e

JS
I

bJ
SI

pJ
SI

TF
ID

F
bT

FI
D

F
pT

FI
D

F
G

LV
bG

LV
pG

LV FT bF
T

pF
T

BE
R

T−
Av

g.

bB
ER

T−
Av

g.

pB
ER

T−
Av

g.
BE

R
T−

C
LS

bB
ER

T−
C

LS

pB
ER

T−
C

LS
M

in
i−

LM
bM

in
i−

LM
pM

in
i−

LM
ST

−R
ob

er
ta

bS
T−

R
ob

er
ta

pS
T−

R
ob

er
ta

U
SE

bU
SE

pU
SE

Precision (STS)
Recall (STS)
F1 Score (STS)

Fig. 3: Pipelines performance in requirements reuse on public dataset

the considered pipelines in terms of the association between their computed
requirements similarity and the actual software similarity values.

Considering the importance of visualization in facilitating comprehen-
sion of the results, we provide Jupyter Notebook to explore and create
different visualization graphs.

4.1 Case 1: Requirements Reuse

We apply the pipelines presented in Section 3.2 to the STS dataset, as described
in Section 3.3. To demonstrate the applicability of the pipelines in the context of
requirements reuse, we present standard metrics that evaluate the performance
of the various pipelines, shown in Figure 3. Below, we discuss the results briefly.

Lexical and Distributed representation-based pipelines. As shown in Figure 3,
the string-level JSI (with F1 score = 0.81) and the weighted representation-
based TFIDF (with F1 score = 0.78) pipelines follow the word2vec distributed
representation-based pipelines (with F1 score of 0.81 for both FT and GLV)
closely in terms of F1 score. In addition, the recall (0.85) for the simple string-
level JSI with pre-processing is slightly higher than the TFIDF-based pipelines

https://github.com/a66as/ReqSim/blob/main/Notebooks/Graphs_R%20(Rep.%20Notebook).ipynb

Requirements Similarity and Retrieval 19

(0.78). The shorter length of the sentences and common vocabulary in the STS
dataset could explain this. On the other hand, the GLV and FT-based pipelines
with pre-processing tend to perform slightly better than TFIDF in terms of
recall and F1 score. However, we observe that the TFIDF-based pipeline with
pre-processing achieved a slightly higher precision. It is important to consider
that recall may take precedence over precision (or vice versa) in some scenarios.

Contextual representation-based pipelines. For the vanilla BERT, the BERT-
Avg-based pipeline (with best F1 score = 0.77) tends to perform better than
BERT-CLS (with best F1 score = 0.69). However, both of the vanilla BERT
variants generally tend to have comparatively lower performance in similarity-
driven tasks. The subpar performance of vanilla BERT could be explained by
its training objectives. BERT’s primary pre-training objective is mask word and
next sentence prediction and, therefore, might not perform well in similarity-
driven tasks.

On the other hand, USE (with F1 score = 0.82) closely follow the performance
SBERT variants (with best F1 score = 0.84). The SBERT and USE seem to
perform slightly better than all other considered pipelines. In particular, the
ST-Roberta performs slightly better than all other pipelines, with an F1 score of
0.84. Its training data could explain this slightly better performance of SBERT
and USE. The STS benchmark dataset— which we consider to demonstrate
these pipelines — is part of the pre-training datasets of these models.

Surprisingly, the SBERT variants and USE show a slight improvement in per-
formance when pre-processing is applied. In general, minimal/no pre-processing
of datasets is required for contextual representation models because of their
ability to capture a wide range of linguistic features directly and the use of stop
words for learning context. However, as observed from the results, pre-processed
input could have marginally better performance in some cases. This showcases
the ability of such models to capture the nuances of data effectively, even when
pre-processed.

 Takeaway: Requirements Reuse

The presented performance results of these pipelines demonstrate their
relevance and applicability in requirements reuse and similarity analysis
tasks. However, it is important to consider the interplay between data
pre-processing and representation techniques to optimize the outcome of
the NLP task at hand.

4.2 Case 2: Requirements-driven Software Retrieval

We also apply the selected pipelines for requirements-driven retrieval of software.
In this case, we use both the STS benchmark and an industrial dataset from a
big railway company. To evaluate the performance of the computed requirements

20 M. Abbas et al.

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Pipelines

rh
o

JS
I

b
JS

I
p
JS

I
T
F
ID

F
b
T
F
ID

F
p
T
F
ID

F
G

LV
b
G

LV
p
G

LV F
T

b
F
T

p
F
T

B
E

R
T
−
A
vg

.

b
B

E
R

T
−
A
vg

.

p
B

E
R

T
−
A
vg

.

B
E

R
T
−
C

L
S

b
B

E
R

T
−
C

L
S

p
B

E
R

T
−
C

L
S

M
in

i−
L
M

b
M

in
i−

L
M

p
M

in
i−

L
M

S
T
−
R

o
b
e
rt

a

b
S

T
−
R

o
b
e
rt

a

p
S

T
−
R

o
b
e
rt

a
U

S
E

b
U

S
E

p
U

S
E

Pearson rho (Industrial)

Spearman rho (Industrial)

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

Pipelines

rh
o

JS
I

b
JS

I
p
JS

I
T
F
ID

F
b
T
F
ID

F
p
T
F
ID

F
G

LV
b
G

LV
p
G

LV F
T

b
F
T

p
F
T

B
E

R
T
−
A
vg

.

b
B

E
R

T
−
A
vg

.

p
B

E
R

T
−
A
vg

.

B
E

R
T
−
C

L
S

b
B

E
R

T
−
C

L
S

p
B

E
R

T
−
C

L
S

M
in

i−
L
M

b
M

in
i−

L
M

p
M

in
i−

L
M

S
T
−
R

o
b
e
rt

a

b
S

T
−
R

o
b
e
rt

a

p
S

T
−
R

o
b
e
rt

a
U

S
E

b
U

S
E

p
U

S
E

Pearson rho (STS)

Spearman rho (STS)

Fig. 4: Similarity pipelines Vs. Correlation coefficient

similarity in the context of software retrieval, we report the correlation coeffi-
cient (ρ) to quantify the association between the computed similarities with the
similarity of their software. Below, we discuss these results briefly.

Lexical and Distributed representation-based pipelines. As shown in Figure 4, lex-
ical approaches (JSI with ρ = 0.50 and pTFIDF with ρ = 0.49) that are based
on syntax tend to perform slightly better than the pre-trained word2vec-based
approaches (GLV with ρ = 0.30 and FT with ρ = 0.30) in the industrial case.
However, the same trend is not apparent in the benchmark dataset. In the STS
benchmark, pGLV (with ρ = 0.66) and pFT (with ρ = 0.71) perform slightly
better than the lexical approaches. This could be explained by the vocabulary
used in the industrial requirements. The vocabulary used in the industrial doc-
uments contains domain-specific words that are often out-of-vocabulary (OOV)
for the pre-trained word2vec models. In particular, on average, 925 out of 2370
unique words of the industrial requirements are OOV in the wor2vec-based mod-
els. In contrast, the vocabulary used in the public STS benchmark is commonly
used in public articles that are typically used to pre-train such models. This is
also apparent in the most frequently occurring words in both datasets, shown
in Figure 1. Therefore, traditional approaches could perform better in a soft-
ware retrieval context where requirements are domain-specific and use complex
and non-public vocabulary. There has been some work on adapting/fine-tuning
such models for software engineering [26,54]; however, the efforts are limited to
generic software engineering datasets and tasks.

We also observed a drop in the performance in terms of the correlation coeffi-
cient for the string-level JSI-based pipeline when pre-processing is applied for the
industrial case. In contrast, the TFIDF and the word2vec-based pipelines show
an increase in the correlation coefficient when pre-processing is applied in both
cases. On the other hand, the word2vec-based GLV pipeline tends to produce the
best results only with basic pre-processing, while FT favors full pre-processing.
Nevertheless, both lexical and word2vec-based pipelines show improved perfor-

Requirements Similarity and Retrieval 21

mance with pre-processing in the STS benchmark case. As mentioned before,
evaluating these models in different pre-processing configurations is important
for obtaining the best performance in a specific case.

Contextual representation-based pipelines. For BERT, the results indicate a
slight variation across the BERT with averaging strategy (BERT-Avg) and BERT
with sentence token embedding (BERT-CLS). In the industrial case, the bBERT-
CLS pipeline produced a slightly higher correlation with the similarity of the
software it retrieved than BERT-Avg. However, an opposite trend could be ob-
served for the STS benchmark. Generally, the results also indicate that BERT
performs well in a retrieval context when pre-processing is applied. It is also im-
portant to note that, like the results of requirements reuse, both vanilla BERT
variants perform slightly worse than the lexical or word2vec-based pipelines in
the industrial and benchmark cases, respectively. As mentioned before, this is
because the BERT’s primary pre-training objective is mask word and next sen-
tence prediction. It is not specifically tailored for similarity-related tasks and,
therefore, may not perform very well in tasks where similarity computation is
relevant. In general, on average, BERT-Avg performed slightly better than the
BERT-CLS.

Both SBERT variants, Mini-LM and ST-Roberta, tend to perform the best in
the benchmark case. The performance in terms of correlation is also only slightly
lower than that of USE in the industrial case. It appears that pre-processing has
a negative impact on the performance of the SBERT-based variants. This is
because these language models were fine-tuned with whole sentence similarity
tasks in mind by generating semantically rich sentence-level embeddings and op-
timizing them for the association of the computed similarity with human-rated
similarity. Also, the SBERT network relies on contextual information, and when
pre-processing is applied, such as stop word removal or lemmatization, the se-
mantic information is degraded, and the word order is disrupted. As mentioned
in the requirements reuse case’s results, the training set used to train them
could explain the good performance results (moderate and high correlation in
industrial and STS cases, respectively) of the SBERT-based pipelines in the
benchmark. The benchmark itself was used in the fine-tuning of the ST-Roberta
variant. Nevertheless, since these models were trained for sentence similarity, the
industrial case also reflects better performance. USE closely followed SBERT
variants’ performance in industrial and benchmark cases. In the industrial case,
the performance of USE without pre-processing appears to be slightly better
than S-BERT variants. This could be explained by the fact that USE is sensi-
tive to data pre-processing, and the results also reflect that it has a negative
impact on the performance of the USE-based pipelines. However, the impact
of pre-processing varies in different variants of language models because of the
characteristics of domain-specific datasets, and it should be assessed with a range
of standard pre-processing techniques.

22 M. Abbas et al.

 Takeaway: Requirements-driven Software Retrieval for Reuse

In a requirements-driven software retrieval context, the considered NLP
approaches (particularly, the SBERT variants and USE) show better re-
sults in terms of the association between the computed requirements
similarity and its software similarity ranging from moderate positive (in
the industrial case) to high positive (in the public dataset). The results
demonstrate the relevance of such approaches in requirements-driven soft-
ware retrieval but also call for more research in the area.

5 Future Directions and Conclusions

In this section, we first present areas of future research and then conclude the
chapter with a summary.

5.1 Future Directions

Pre-processing and similarity. In NLP for RE, we mainly borrow standard pre-
processing pipelines from text mining and the NLP community. These borrowed
pre-processing pipelines for textual requirements often use domain-generic part-
of-speech (POS) and entity tagging that guides lemmatization and other tasks to
produce input for similarity eventually. However, current similarity-driven tasks
in the field rarely consider software engineering-related named entity recognition
(such as classes, components, and parameters) or other meta information (such
as input and conditions in the requirements) for similarity computation. A recent
study also suggests that engineers perceive two requirements to be similar if they
share similar input processing and have similar conditions [1]. Such additional
information is not extracted for similarity and, if done, could guide the similarity
computation in the right direction.

Pre-trained models for representation. We observed that quite a big portion
of railway industry-specific words from our data are not seen by most of the
considered pre-trained models. While newer approaches for embedding and rep-
resentation of textual data have ways to deal with such out-of-vocabulary words,
we believe that the performance may improve significantly if they are pre-
trained on domain-specific data. Literature suggests some efforts towards soft-
ware engineering-specific pre-trained models [26,54]. However, the efforts are lim-
ited to shallow language models or non-RE-related tasks. Studying the domain
adaptability, its challenges, and pre-training large language models specifically
for RE tasks from scratch could elevate RE processes in practice with more ac-
curate requirements retrieval and similarity analysis. In the future, we plan to
pre-train large language models for the railway domain to achieve various down-
stream to assist requirements engineers in requirements elicitation, specification,
and formalization.

Requirements Similarity and Retrieval 23

Cross-domain retrieval. As noted by the recent secondary study [58], require-
ments search and retrieval are less explored in NLP for RE. Having requirements-
driven software search and retrieval for reuse could reduce waste in the develop-
ment processes and could reduce the time-to-market for upcoming projects. The
typical assumption of such retrieval approaches is often that requirements simi-
larity could be used as a proxy for similarity in other domains, such as models
or software. This assumption allows requirements-driven reuse of artifacts from
other domains, but the current language models are not tailored and optimized
for those domains. For example, language models could be re-trained with the
objective of optimizing the correlation between the similarity it computes with
the similarity of software. In addition, requirements could be supplemented with
information from other domains, such as tokens from their code, to represent
better other domains in the training process of language models. We believe
considering cross-domain information for training language models may produce
better results in cross-domain recommendation tasks.

More applications to explore. Requirements similarity and text classification
could be leveraged to perform tasks beyond finding similar requirements or classi-
fications. For example, conditionals in requirements could be extracted, and test
cases could be generated to validate requirements [31]. Additionally, traceability
links could be used as an enabler for consistency checking between requirements
and their implementation, models, and test cases.

Furthermore, requirements representation and similarity could also be lever-
aged in deriving sub-requirements, requirements completion, and in-Editor sup-
port for requirements writing. In particular, the next words/phrases could be
suggested to engineers while writing requirements based on search and retrieval,
as done in other domains (e.g., [47]). Furthermore, having domain-specific pre-
trained models could also enable requirement assistants that use emerging gen-
erative approaches for reviewing requirements and requirements summarization.

5.2 Conclusions

Requirements similarity is a crucial enabler for RE recommenders, traceabil-
ity link recovery, reuse recommendation, and many other RE activities. In this
chapter, we presented linguistic similarity, data representation approaches, and
similarity metrics used to compute textual similarity. Furthermore, we demon-
strated the applicability of various similarity computation pipelines in require-
ments reuse and requirements-driven software retrieval for reuse. We also outline
future directions in similarity computation and retrieval for reuse.

Acknowledgements

This work has been supported by and received funding from the ITEA Smart-
Delta [50] and the KDT AIDOaRT projects.

24 M. Abbas et al.

References

1. Abbas, M., Ferrari, A., Shatnawi, A., Enoiu, E., Saadatmand, M., Sundmark, D.:
On the relationship between similar requirements and similar software: A case
study in the railway domain. Requirements Engineering 28(1), 23–47 (2023)

2. Abbas, M., Jongeling, R., Lindskog, C., Enoiu, E.P., Saadatmand, M., Sundmark,
D.: Product line adoption in industry: An experience report from the railway do-
main. In: Proceedings of the 24th ACM Conference on Systems and Software Prod-
uct Line: Volume A - Volume A. SPLC ’20, Association for Computing Machinery,
New York, NY, USA (2020). https://doi.org/10.1145/3382025.3414953

3. Abbas, M., Saadatmand, M., Enoiu, E., Sundamark, D., Lindskog, C.: Automated
reuse recommendation of product line assets based on natural language require-
ments. In: International Conference on Software and Software Reuse. pp. 173–189.
Springer (2020)

4. Abualhaija, S., Arora, C., Sabetzadeh, M., Briand, L.C., Traynor, M.: Automated
demarcation of requirements in textual specifications: a machine learning-based
approach. Empirical Software Engineering 25, 5454–5497 (2020)

5. Aizawa, A.: An information-theoretic perspective of tf–idf measures. Information
Processing & Management 39(1), 45–65 (2003)

6. Arora, C., Sabetzadeh, M., Goknil, A., Briand, L.C., Zimmer, F.: Change impact
analysis for natural language requirements: An nlp approach. In: 2015 IEEE 23rd
International Requirements Engineering Conference (RE). pp. 6–15. IEEE (2015)

7. Arsan, T., Köksal, E., Bozkus, Z.: Comparison of collaborative filtering algorithms
with various similarity measures for movie recommendation. International Journal
of Computer Science, Engineering and Applications (IJCSEA) 6(3), 1–20 (2016)

8. Balazs, J.A., Velásquez, J.D.: Opinion mining and information fusion: a survey.
Information Fusion 27, 95–110 (2016)

9. Bashir, S., Abbas, M., Ferrari, A., Saadatmand, M., Lindberg, P.: Requirements
classification for smart allocation: A case study in the railway industry. In: 31st
IEEE International Requirements Engineering Conference (September 2023)

10. Bashir, S., Abbas, M., Saadatmand, M., Enoiu, E.P., Bohlin, M., Lindberg, P.:
Requirement or not, that is the question: A case from the railway industry. In:
International Working Conference on Requirements Engineering: Foundation for
Software Quality. pp. 105–121. Springer (2023)

11. Bengio, Y., Ducharme, R., Vincent, P.: A neural probabilistic language model.
Advances in neural information processing systems 13 (2000)

12. Berry, D.M.: Empirical evaluation of tools for hairy requirements engineering tasks.
Empirical Software Engineering 26(6), 1–77 (2021)

13. Birner, B.J.: Introduction to pragmatics. John Wiley & Sons (2012)
14. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with

subword information. Transactions of the association for computational linguistics
5, 135–146 (2017)

15. Borg, M., Wnuk, K., Regnell, B., Runeson, P.: Supporting change impact analy-
sis using a recommendation system: An industrial case study in a safety-critical
context. IEEE Transactions on Software Engineering 43(7), 675–700 (2016)

16. Bowman, S.R., Angeli, G., Potts, C., Manning, C.D.: A large annotated corpus for
learning natural language inference. arXiv preprint arXiv:1508.05326 (2015)

17. Bybee, J.: Phonology and language use, vol. 94. Cambridge University Press (2003)
18. Cer, D., Diab, M., Agirre, E., Lopez-Gazpio, I., Specia, L.: Semeval-2017 task

1: Semantic textual similarity-multilingual and cross-lingual focused evaluation.
arXiv preprint arXiv:1708.00055 (2017)

https://doi.org/10.1145/3382025.3414953

Requirements Similarity and Retrieval 25

19. Cer, D., Yang, Y., Kong, S.y., Hua, N., Limtiaco, N., John, R.S., Constant, N.,
Guajardo-Cespedes, M., Yuan, S., Tar, C., et al.: Universal sentence encoder. arXiv
preprint arXiv:1803.11175 (2018)

20. Chandrasekaran, D., Mago, V.: Evolution of semantic similarity—a survey. ACM
Computing Surveys (CSUR) 54(2), 1–37 (2021)

21. Clark, K., Khandelwal, U., Levy, O., Manning, C.D.: What does bert look at? an
analysis of bert’s attention. arXiv preprint arXiv:1906.04341 (2019)

22. och Dag, J.N., Regnell, B., Gervasi, V., Brinkkemper, S.: A linguistic-engineering
approach to large-scale requirements management. IEEE software 22(1), 32–39
(2005)

23. Davidson, D., Harman, G.: Semantics of natural language. Philosophy of language:
The central topics pp. 57–63 (2008)

24. Deza, E., Deza, M.M., Deza, M.M., Deza, E.: Encyclopedia of distances. Springer
(2009)

25. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology
26(3), 297–302 (1945)

26. Efstathiou, V., Chatzilenas, C., Spinellis, D.: Word embeddings for the software
engineering domain. In: 2018 IEEE/ACM 15th International Conference on Mining
Software Repositories (MSR). pp. 38–41 (2018)

27. Elmore, K.L., Richman, M.B.: Euclidean distance as a similarity metric for prin-
cipal component analysis. Monthly weather review 129(3), 540–549 (2001)

28. Falessi, D., Cantone, G., Canfora, G.: A comprehensive characterization of nlp
techniques for identifying equivalent requirements. In: Proceedings of the 2010
ACM-IEEE international symposium on empirical software engineering and mea-
surement. pp. 1–10 (2010)

29. Falessi, D., Cantone, G., Canfora, G.: Empirical principles and an industrial case
study in retrieving equivalent requirements via natural language processing tech-
niques. IEEE Transactions on Software Engineering 39(1), 18–44 (2011)

30. Faruqui, M., Dodge, J., Jauhar, S.K., Dyer, C., Hovy, E., Smith, N.A.: Retrofitting
word vectors to semantic lexicons. arXiv preprint arXiv:1411.4166 (2014)

31. Fischbach, J., Frattini, J., Vogelsang, A., Mendez, D., Unterkalmsteiner, M.,
Wehrle, A., Henao, P.R., Yousefi, P., Juricic, T., Radduenz, J., et al.: Automatic
creation of acceptance tests by extracting conditionals from requirements: Nlp ap-
proach and case study. Journal of Systems and Software 197, 111549 (2023)

32. Guo, J., Cheng, J., Cleland-Huang, J.: Semantically enhanced software traceability
using deep learning techniques. In: 2017 IEEE/ACM 39th International Conference
on Software Engineering (ICSE). pp. 3–14. IEEE (2017)

33. Halliday, M.A.K., Webster, J.J.: On Language and Linguistics: Volume 3. A&C
Black (2003)

34. Haspelmath, M., Sims, A.: Understanding morphology. Routledge (2013)
35. Hinkle, D.E., Wiersma, W., Jurs, S.G.: Applied statistics for the behavioral

sciences. Houghton Mifflin, 5th ed edn. (2003), https://cir.nii.ac.jp/crid/
1130012535369496890

36. Ilyas, M., Kung, J.: A similarity measurement framework for requirements en-
gineering. In: 2009 Fourth International Multi-Conference on Computing in the
Global Information Technology. pp. 31–34. IEEE (2009)

37. Kotonya, G., Sommerville, I.: Requirements engineering: processes and techniques.
Wiley Publishing (1998)

38. Latif, S., Bashir, S., Agha, M.M.A., Latif, R.: Backward-forward sequence genera-
tive network for multiple lexical constraints. In: Artificial Intelligence Applications

https://cir.nii.ac.jp/crid/1130012535369496890
https://cir.nii.ac.jp/crid/1130012535369496890

26 M. Abbas et al.

and Innovations: 16th IFIP WG 12.5 International Conference, AIAI 2020, Neos
Marmaras, Greece, June 5–7, 2020, Proceedings, Part II 16. pp. 39–50. Springer
(2020)

39. Manning, C.D.: An introduction to information retrieval. Cambridge university
press (2009)

40. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

41. Mikolov, T., Yih, W.t., Zweig, G.: Linguistic regularities in continuous space word
representations. In: Proceedings of the 2013 conference of the north american chap-
ter of the association for computational linguistics: Human language technologies.
pp. 746–751 (2013)

42. Mohammad, S.M., Hirst, G.: Distributional measures of semantic distance: A sur-
vey. arXiv preprint arXiv:1203.1858 (2012)

43. Naseem, U., Razzak, I., Khan, S.K., Prasad, M.: A comprehensive survey on word
representation models: From classical to state-of-the-art word representation lan-
guage models. Transactions on Asian and Low-Resource Language Information
Processing 20(5), 1–35 (2021)

44. Navarro, G.: A guided tour to approximate string matching. ACM computing sur-
veys (CSUR) 33(1), 31–88 (2001)

45. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP). pp. 1532–1543 (2014)

46. Prechelt, L., Malpohl, G., Philippsen, M., et al.: Finding plagiarisms among a set
of programs with jplag. J. UCS 8(11), 1016 (2002)

47. Raychev, V., Vechev, M., Yahav, E.: Code completion with statistical language
models. In: Proceedings of the 35th ACM SIGPLAN conference on programming
language design and implementation. pp. 419–428 (2014)

48. Reimers, N., Gurevych, I.: Sentence-bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084 (2019)

49. Rodriguez, D.V., Carver, D.L.: Comparison of information retrieval techniques for
traceability link recovery. In: 2019 IEEE 2nd International Conference on Infor-
mation and Computer Technologies (ICICT). pp. 186–193. IEEE (2019)

50. Saadatmand, M., Abbas, M., Enoiu, E.P., Schlingloff, B.H., Afzal, W., Dornauer,
B., Felderer, M.: Smartdelta project: Automated quality assurance and optimiza-
tion across product versions and variants. Microprocessors and Microsystems 103,
104967 (2023). https://doi.org/10.1016/j.micpro.2023.104967

51. Schnabel, T., Labutov, I., Mimno, D., Joachims, T.: Evaluation methods for un-
supervised word embeddings. In: Proceedings of the 2015 conference on empirical
methods in natural language processing. pp. 298–307 (2015)

52. Schütze, H., Manning, C.D., Raghavan, P.: Introduction to information retrieval,
vol. 39. Cambridge University Press Cambridge (2008)

53. Sunilkumar, P., Shaji, A.P.: A survey on semantic similarity. In: 2019 International
Conference on Advances in Computing, Communication and Control (ICAC3).
pp. 1–8. IEEE (2019)

54. Tabassum, J., Maddela, M., Xu, W., Ritter, A.: Code and named entity recognition
in StackOverflow. In: Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics. pp. 4913–4926. ACL (2020)

55. Van Valin, R.D.: An introduction to syntax. Cambridge university press (2001)
56. Williams, A., Nangia, N., Bowman, S.R.: A broad-coverage challenge corpus for

sentence understanding through inference. arXiv preprint arXiv:1704.05426 (2017)

https://doi.org/10.1016/j.micpro.2023.104967

Requirements Similarity and Retrieval 27

57. Zhang, Y., Jin, R., Zhou, Z.H.: Understanding bag-of-words model: a statistical
framework. International journal of machine learning and cybernetics 1, 43–52
(2010)

58. Zhao, L., Alhoshan, W., Ferrari, A., Letsholo, K.J., Ajagbe, M.A., Chioasca, E.V.,
Batista-Navarro, R.T.: Natural language processing for requirements engineering:
A systematic mapping study. ACM Computing Surveys (CSUR) 54(3), 1–41 (2021)

59. Zhao, Y., Scholer, F., Tsegay, Y.: Effective pre-retrieval query performance pre-
diction using similarity and variability evidence. In: Advances in Information Re-
trieval: 30th European Conference on IR Research, ECIR 2008, Glasgow, UK,
March 30-April 3, 2008. Proceedings 30. pp. 52–64. Springer (2008)

